|  | /* | 
|  | * lib/prio_tree.c - priority search tree | 
|  | * | 
|  | * Copyright (C) 2004, Rajesh Venkatasubramanian <vrajesh@umich.edu> | 
|  | * | 
|  | * This file is released under the GPL v2. | 
|  | * | 
|  | * Based on the radix priority search tree proposed by Edward M. McCreight | 
|  | * SIAM Journal of Computing, vol. 14, no.2, pages 257-276, May 1985 | 
|  | * | 
|  | * 02Feb2004	Initial version | 
|  | */ | 
|  |  | 
|  | #include <linux/init.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/prio_tree.h> | 
|  |  | 
|  | /* | 
|  | * A clever mix of heap and radix trees forms a radix priority search tree (PST) | 
|  | * which is useful for storing intervals, e.g, we can consider a vma as a closed | 
|  | * interval of file pages [offset_begin, offset_end], and store all vmas that | 
|  | * map a file in a PST. Then, using the PST, we can answer a stabbing query, | 
|  | * i.e., selecting a set of stored intervals (vmas) that overlap with (map) a | 
|  | * given input interval X (a set of consecutive file pages), in "O(log n + m)" | 
|  | * time where 'log n' is the height of the PST, and 'm' is the number of stored | 
|  | * intervals (vmas) that overlap (map) with the input interval X (the set of | 
|  | * consecutive file pages). | 
|  | * | 
|  | * In our implementation, we store closed intervals of the form [radix_index, | 
|  | * heap_index]. We assume that always radix_index <= heap_index. McCreight's PST | 
|  | * is designed for storing intervals with unique radix indices, i.e., each | 
|  | * interval have different radix_index. However, this limitation can be easily | 
|  | * overcome by using the size, i.e., heap_index - radix_index, as part of the | 
|  | * index, so we index the tree using [(radix_index,size), heap_index]. | 
|  | * | 
|  | * When the above-mentioned indexing scheme is used, theoretically, in a 32 bit | 
|  | * machine, the maximum height of a PST can be 64. We can use a balanced version | 
|  | * of the priority search tree to optimize the tree height, but the balanced | 
|  | * tree proposed by McCreight is too complex and memory-hungry for our purpose. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * The following macros are used for implementing prio_tree for i_mmap | 
|  | */ | 
|  |  | 
|  | #define RADIX_INDEX(vma)  ((vma)->vm_pgoff) | 
|  | #define VMA_SIZE(vma)	  (((vma)->vm_end - (vma)->vm_start) >> PAGE_SHIFT) | 
|  | /* avoid overflow */ | 
|  | #define HEAP_INDEX(vma)	  ((vma)->vm_pgoff + (VMA_SIZE(vma) - 1)) | 
|  |  | 
|  |  | 
|  | static void get_index(const struct prio_tree_root *root, | 
|  | const struct prio_tree_node *node, | 
|  | unsigned long *radix, unsigned long *heap) | 
|  | { | 
|  | if (root->raw) { | 
|  | struct vm_area_struct *vma = prio_tree_entry( | 
|  | node, struct vm_area_struct, shared.prio_tree_node); | 
|  |  | 
|  | *radix = RADIX_INDEX(vma); | 
|  | *heap = HEAP_INDEX(vma); | 
|  | } | 
|  | else { | 
|  | *radix = node->start; | 
|  | *heap = node->last; | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned long index_bits_to_maxindex[BITS_PER_LONG]; | 
|  |  | 
|  | void __init prio_tree_init(void) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(index_bits_to_maxindex) - 1; i++) | 
|  | index_bits_to_maxindex[i] = (1UL << (i + 1)) - 1; | 
|  | index_bits_to_maxindex[ARRAY_SIZE(index_bits_to_maxindex) - 1] = ~0UL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Maximum heap_index that can be stored in a PST with index_bits bits | 
|  | */ | 
|  | static inline unsigned long prio_tree_maxindex(unsigned int bits) | 
|  | { | 
|  | return index_bits_to_maxindex[bits - 1]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Extend a priority search tree so that it can store a node with heap_index | 
|  | * max_heap_index. In the worst case, this algorithm takes O((log n)^2). | 
|  | * However, this function is used rarely and the common case performance is | 
|  | * not bad. | 
|  | */ | 
|  | static struct prio_tree_node *prio_tree_expand(struct prio_tree_root *root, | 
|  | struct prio_tree_node *node, unsigned long max_heap_index) | 
|  | { | 
|  | struct prio_tree_node *first = NULL, *prev, *last = NULL; | 
|  |  | 
|  | if (max_heap_index > prio_tree_maxindex(root->index_bits)) | 
|  | root->index_bits++; | 
|  |  | 
|  | while (max_heap_index > prio_tree_maxindex(root->index_bits)) { | 
|  | root->index_bits++; | 
|  |  | 
|  | if (prio_tree_empty(root)) | 
|  | continue; | 
|  |  | 
|  | if (first == NULL) { | 
|  | first = root->prio_tree_node; | 
|  | prio_tree_remove(root, root->prio_tree_node); | 
|  | INIT_PRIO_TREE_NODE(first); | 
|  | last = first; | 
|  | } else { | 
|  | prev = last; | 
|  | last = root->prio_tree_node; | 
|  | prio_tree_remove(root, root->prio_tree_node); | 
|  | INIT_PRIO_TREE_NODE(last); | 
|  | prev->left = last; | 
|  | last->parent = prev; | 
|  | } | 
|  | } | 
|  |  | 
|  | INIT_PRIO_TREE_NODE(node); | 
|  |  | 
|  | if (first) { | 
|  | node->left = first; | 
|  | first->parent = node; | 
|  | } else | 
|  | last = node; | 
|  |  | 
|  | if (!prio_tree_empty(root)) { | 
|  | last->left = root->prio_tree_node; | 
|  | last->left->parent = last; | 
|  | } | 
|  |  | 
|  | root->prio_tree_node = node; | 
|  | return node; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Replace a prio_tree_node with a new node and return the old node | 
|  | */ | 
|  | struct prio_tree_node *prio_tree_replace(struct prio_tree_root *root, | 
|  | struct prio_tree_node *old, struct prio_tree_node *node) | 
|  | { | 
|  | INIT_PRIO_TREE_NODE(node); | 
|  |  | 
|  | if (prio_tree_root(old)) { | 
|  | BUG_ON(root->prio_tree_node != old); | 
|  | /* | 
|  | * We can reduce root->index_bits here. However, it is complex | 
|  | * and does not help much to improve performance (IMO). | 
|  | */ | 
|  | node->parent = node; | 
|  | root->prio_tree_node = node; | 
|  | } else { | 
|  | node->parent = old->parent; | 
|  | if (old->parent->left == old) | 
|  | old->parent->left = node; | 
|  | else | 
|  | old->parent->right = node; | 
|  | } | 
|  |  | 
|  | if (!prio_tree_left_empty(old)) { | 
|  | node->left = old->left; | 
|  | old->left->parent = node; | 
|  | } | 
|  |  | 
|  | if (!prio_tree_right_empty(old)) { | 
|  | node->right = old->right; | 
|  | old->right->parent = node; | 
|  | } | 
|  |  | 
|  | return old; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Insert a prio_tree_node @node into a radix priority search tree @root. The | 
|  | * algorithm typically takes O(log n) time where 'log n' is the number of bits | 
|  | * required to represent the maximum heap_index. In the worst case, the algo | 
|  | * can take O((log n)^2) - check prio_tree_expand. | 
|  | * | 
|  | * If a prior node with same radix_index and heap_index is already found in | 
|  | * the tree, then returns the address of the prior node. Otherwise, inserts | 
|  | * @node into the tree and returns @node. | 
|  | */ | 
|  | struct prio_tree_node *prio_tree_insert(struct prio_tree_root *root, | 
|  | struct prio_tree_node *node) | 
|  | { | 
|  | struct prio_tree_node *cur, *res = node; | 
|  | unsigned long radix_index, heap_index; | 
|  | unsigned long r_index, h_index, index, mask; | 
|  | int size_flag = 0; | 
|  |  | 
|  | get_index(root, node, &radix_index, &heap_index); | 
|  |  | 
|  | if (prio_tree_empty(root) || | 
|  | heap_index > prio_tree_maxindex(root->index_bits)) | 
|  | return prio_tree_expand(root, node, heap_index); | 
|  |  | 
|  | cur = root->prio_tree_node; | 
|  | mask = 1UL << (root->index_bits - 1); | 
|  |  | 
|  | while (mask) { | 
|  | get_index(root, cur, &r_index, &h_index); | 
|  |  | 
|  | if (r_index == radix_index && h_index == heap_index) | 
|  | return cur; | 
|  |  | 
|  | if (h_index < heap_index || | 
|  | (h_index == heap_index && r_index > radix_index)) { | 
|  | struct prio_tree_node *tmp = node; | 
|  | node = prio_tree_replace(root, cur, node); | 
|  | cur = tmp; | 
|  | /* swap indices */ | 
|  | index = r_index; | 
|  | r_index = radix_index; | 
|  | radix_index = index; | 
|  | index = h_index; | 
|  | h_index = heap_index; | 
|  | heap_index = index; | 
|  | } | 
|  |  | 
|  | if (size_flag) | 
|  | index = heap_index - radix_index; | 
|  | else | 
|  | index = radix_index; | 
|  |  | 
|  | if (index & mask) { | 
|  | if (prio_tree_right_empty(cur)) { | 
|  | INIT_PRIO_TREE_NODE(node); | 
|  | cur->right = node; | 
|  | node->parent = cur; | 
|  | return res; | 
|  | } else | 
|  | cur = cur->right; | 
|  | } else { | 
|  | if (prio_tree_left_empty(cur)) { | 
|  | INIT_PRIO_TREE_NODE(node); | 
|  | cur->left = node; | 
|  | node->parent = cur; | 
|  | return res; | 
|  | } else | 
|  | cur = cur->left; | 
|  | } | 
|  |  | 
|  | mask >>= 1; | 
|  |  | 
|  | if (!mask) { | 
|  | mask = 1UL << (BITS_PER_LONG - 1); | 
|  | size_flag = 1; | 
|  | } | 
|  | } | 
|  | /* Should not reach here */ | 
|  | BUG(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove a prio_tree_node @node from a radix priority search tree @root. The | 
|  | * algorithm takes O(log n) time where 'log n' is the number of bits required | 
|  | * to represent the maximum heap_index. | 
|  | */ | 
|  | void prio_tree_remove(struct prio_tree_root *root, struct prio_tree_node *node) | 
|  | { | 
|  | struct prio_tree_node *cur; | 
|  | unsigned long r_index, h_index_right, h_index_left; | 
|  |  | 
|  | cur = node; | 
|  |  | 
|  | while (!prio_tree_left_empty(cur) || !prio_tree_right_empty(cur)) { | 
|  | if (!prio_tree_left_empty(cur)) | 
|  | get_index(root, cur->left, &r_index, &h_index_left); | 
|  | else { | 
|  | cur = cur->right; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!prio_tree_right_empty(cur)) | 
|  | get_index(root, cur->right, &r_index, &h_index_right); | 
|  | else { | 
|  | cur = cur->left; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* both h_index_left and h_index_right cannot be 0 */ | 
|  | if (h_index_left >= h_index_right) | 
|  | cur = cur->left; | 
|  | else | 
|  | cur = cur->right; | 
|  | } | 
|  |  | 
|  | if (prio_tree_root(cur)) { | 
|  | BUG_ON(root->prio_tree_node != cur); | 
|  | __INIT_PRIO_TREE_ROOT(root, root->raw); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (cur->parent->right == cur) | 
|  | cur->parent->right = cur->parent; | 
|  | else | 
|  | cur->parent->left = cur->parent; | 
|  |  | 
|  | while (cur != node) | 
|  | cur = prio_tree_replace(root, cur->parent, cur); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Following functions help to enumerate all prio_tree_nodes in the tree that | 
|  | * overlap with the input interval X [radix_index, heap_index]. The enumeration | 
|  | * takes O(log n + m) time where 'log n' is the height of the tree (which is | 
|  | * proportional to # of bits required to represent the maximum heap_index) and | 
|  | * 'm' is the number of prio_tree_nodes that overlap the interval X. | 
|  | */ | 
|  |  | 
|  | static struct prio_tree_node *prio_tree_left(struct prio_tree_iter *iter, | 
|  | unsigned long *r_index, unsigned long *h_index) | 
|  | { | 
|  | if (prio_tree_left_empty(iter->cur)) | 
|  | return NULL; | 
|  |  | 
|  | get_index(iter->root, iter->cur->left, r_index, h_index); | 
|  |  | 
|  | if (iter->r_index <= *h_index) { | 
|  | iter->cur = iter->cur->left; | 
|  | iter->mask >>= 1; | 
|  | if (iter->mask) { | 
|  | if (iter->size_level) | 
|  | iter->size_level++; | 
|  | } else { | 
|  | if (iter->size_level) { | 
|  | BUG_ON(!prio_tree_left_empty(iter->cur)); | 
|  | BUG_ON(!prio_tree_right_empty(iter->cur)); | 
|  | iter->size_level++; | 
|  | iter->mask = ULONG_MAX; | 
|  | } else { | 
|  | iter->size_level = 1; | 
|  | iter->mask = 1UL << (BITS_PER_LONG - 1); | 
|  | } | 
|  | } | 
|  | return iter->cur; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct prio_tree_node *prio_tree_right(struct prio_tree_iter *iter, | 
|  | unsigned long *r_index, unsigned long *h_index) | 
|  | { | 
|  | unsigned long value; | 
|  |  | 
|  | if (prio_tree_right_empty(iter->cur)) | 
|  | return NULL; | 
|  |  | 
|  | if (iter->size_level) | 
|  | value = iter->value; | 
|  | else | 
|  | value = iter->value | iter->mask; | 
|  |  | 
|  | if (iter->h_index < value) | 
|  | return NULL; | 
|  |  | 
|  | get_index(iter->root, iter->cur->right, r_index, h_index); | 
|  |  | 
|  | if (iter->r_index <= *h_index) { | 
|  | iter->cur = iter->cur->right; | 
|  | iter->mask >>= 1; | 
|  | iter->value = value; | 
|  | if (iter->mask) { | 
|  | if (iter->size_level) | 
|  | iter->size_level++; | 
|  | } else { | 
|  | if (iter->size_level) { | 
|  | BUG_ON(!prio_tree_left_empty(iter->cur)); | 
|  | BUG_ON(!prio_tree_right_empty(iter->cur)); | 
|  | iter->size_level++; | 
|  | iter->mask = ULONG_MAX; | 
|  | } else { | 
|  | iter->size_level = 1; | 
|  | iter->mask = 1UL << (BITS_PER_LONG - 1); | 
|  | } | 
|  | } | 
|  | return iter->cur; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct prio_tree_node *prio_tree_parent(struct prio_tree_iter *iter) | 
|  | { | 
|  | iter->cur = iter->cur->parent; | 
|  | if (iter->mask == ULONG_MAX) | 
|  | iter->mask = 1UL; | 
|  | else if (iter->size_level == 1) | 
|  | iter->mask = 1UL; | 
|  | else | 
|  | iter->mask <<= 1; | 
|  | if (iter->size_level) | 
|  | iter->size_level--; | 
|  | if (!iter->size_level && (iter->value & iter->mask)) | 
|  | iter->value ^= iter->mask; | 
|  | return iter->cur; | 
|  | } | 
|  |  | 
|  | static inline int overlap(struct prio_tree_iter *iter, | 
|  | unsigned long r_index, unsigned long h_index) | 
|  | { | 
|  | return iter->h_index >= r_index && iter->r_index <= h_index; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * prio_tree_first: | 
|  | * | 
|  | * Get the first prio_tree_node that overlaps with the interval [radix_index, | 
|  | * heap_index]. Note that always radix_index <= heap_index. We do a pre-order | 
|  | * traversal of the tree. | 
|  | */ | 
|  | static struct prio_tree_node *prio_tree_first(struct prio_tree_iter *iter) | 
|  | { | 
|  | struct prio_tree_root *root; | 
|  | unsigned long r_index, h_index; | 
|  |  | 
|  | INIT_PRIO_TREE_ITER(iter); | 
|  |  | 
|  | root = iter->root; | 
|  | if (prio_tree_empty(root)) | 
|  | return NULL; | 
|  |  | 
|  | get_index(root, root->prio_tree_node, &r_index, &h_index); | 
|  |  | 
|  | if (iter->r_index > h_index) | 
|  | return NULL; | 
|  |  | 
|  | iter->mask = 1UL << (root->index_bits - 1); | 
|  | iter->cur = root->prio_tree_node; | 
|  |  | 
|  | while (1) { | 
|  | if (overlap(iter, r_index, h_index)) | 
|  | return iter->cur; | 
|  |  | 
|  | if (prio_tree_left(iter, &r_index, &h_index)) | 
|  | continue; | 
|  |  | 
|  | if (prio_tree_right(iter, &r_index, &h_index)) | 
|  | continue; | 
|  |  | 
|  | break; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * prio_tree_next: | 
|  | * | 
|  | * Get the next prio_tree_node that overlaps with the input interval in iter | 
|  | */ | 
|  | struct prio_tree_node *prio_tree_next(struct prio_tree_iter *iter) | 
|  | { | 
|  | unsigned long r_index, h_index; | 
|  |  | 
|  | if (iter->cur == NULL) | 
|  | return prio_tree_first(iter); | 
|  |  | 
|  | repeat: | 
|  | while (prio_tree_left(iter, &r_index, &h_index)) | 
|  | if (overlap(iter, r_index, h_index)) | 
|  | return iter->cur; | 
|  |  | 
|  | while (!prio_tree_right(iter, &r_index, &h_index)) { | 
|  | while (!prio_tree_root(iter->cur) && | 
|  | iter->cur->parent->right == iter->cur) | 
|  | prio_tree_parent(iter); | 
|  |  | 
|  | if (prio_tree_root(iter->cur)) | 
|  | return NULL; | 
|  |  | 
|  | prio_tree_parent(iter); | 
|  | } | 
|  |  | 
|  | if (overlap(iter, r_index, h_index)) | 
|  | return iter->cur; | 
|  |  | 
|  | goto repeat; | 
|  | } |