| /* asm/bitops.h for Linux/CRIS | 
 |  * | 
 |  * TODO: asm versions if speed is needed | 
 |  * | 
 |  * All bit operations return 0 if the bit was cleared before the | 
 |  * operation and != 0 if it was not. | 
 |  * | 
 |  * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). | 
 |  */ | 
 |  | 
 | #ifndef _CRIS_BITOPS_H | 
 | #define _CRIS_BITOPS_H | 
 |  | 
 | /* Currently this is unsuitable for consumption outside the kernel.  */ | 
 | #ifdef __KERNEL__  | 
 |  | 
 | #include <asm/arch/bitops.h> | 
 | #include <asm/system.h> | 
 | #include <asm/atomic.h> | 
 | #include <linux/compiler.h> | 
 |  | 
 | /* | 
 |  * Some hacks to defeat gcc over-optimizations.. | 
 |  */ | 
 | struct __dummy { unsigned long a[100]; }; | 
 | #define ADDR (*(struct __dummy *) addr) | 
 | #define CONST_ADDR (*(const struct __dummy *) addr) | 
 |  | 
 | /* | 
 |  * set_bit - Atomically set a bit in memory | 
 |  * @nr: the bit to set | 
 |  * @addr: the address to start counting from | 
 |  * | 
 |  * This function is atomic and may not be reordered.  See __set_bit() | 
 |  * if you do not require the atomic guarantees. | 
 |  * Note that @nr may be almost arbitrarily large; this function is not | 
 |  * restricted to acting on a single-word quantity. | 
 |  */ | 
 |  | 
 | #define set_bit(nr, addr)    (void)test_and_set_bit(nr, addr) | 
 |  | 
 | #define __set_bit(nr, addr)    (void)__test_and_set_bit(nr, addr) | 
 |  | 
 | /* | 
 |  * clear_bit - Clears a bit in memory | 
 |  * @nr: Bit to clear | 
 |  * @addr: Address to start counting from | 
 |  * | 
 |  * clear_bit() is atomic and may not be reordered.  However, it does | 
 |  * not contain a memory barrier, so if it is used for locking purposes, | 
 |  * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() | 
 |  * in order to ensure changes are visible on other processors. | 
 |  */ | 
 |  | 
 | #define clear_bit(nr, addr)  (void)test_and_clear_bit(nr, addr) | 
 |  | 
 | #define __clear_bit(nr, addr)  (void)__test_and_clear_bit(nr, addr) | 
 |  | 
 | /* | 
 |  * change_bit - Toggle a bit in memory | 
 |  * @nr: Bit to change | 
 |  * @addr: Address to start counting from | 
 |  * | 
 |  * change_bit() is atomic and may not be reordered. | 
 |  * Note that @nr may be almost arbitrarily large; this function is not | 
 |  * restricted to acting on a single-word quantity. | 
 |  */ | 
 |  | 
 | #define change_bit(nr, addr) (void)test_and_change_bit(nr, addr) | 
 |  | 
 | /* | 
 |  * __change_bit - Toggle a bit in memory | 
 |  * @nr: the bit to change | 
 |  * @addr: the address to start counting from | 
 |  * | 
 |  * Unlike change_bit(), this function is non-atomic and may be reordered. | 
 |  * If it's called on the same region of memory simultaneously, the effect | 
 |  * may be that only one operation succeeds. | 
 |  */ | 
 |  | 
 | #define __change_bit(nr, addr) (void)__test_and_change_bit(nr, addr) | 
 |  | 
 | /** | 
 |  * test_and_set_bit - Set a bit and return its old value | 
 |  * @nr: Bit to set | 
 |  * @addr: Address to count from | 
 |  * | 
 |  * This operation is atomic and cannot be reordered.   | 
 |  * It also implies a memory barrier. | 
 |  */ | 
 |  | 
 | extern inline int test_and_set_bit(int nr, volatile unsigned long *addr) | 
 | { | 
 | 	unsigned int mask, retval; | 
 | 	unsigned long flags; | 
 | 	unsigned int *adr = (unsigned int *)addr; | 
 | 	 | 
 | 	adr += nr >> 5; | 
 | 	mask = 1 << (nr & 0x1f); | 
 | 	cris_atomic_save(addr, flags); | 
 | 	retval = (mask & *adr) != 0; | 
 | 	*adr |= mask; | 
 | 	cris_atomic_restore(addr, flags); | 
 | 	local_irq_restore(flags); | 
 | 	return retval; | 
 | } | 
 |  | 
 | extern inline int __test_and_set_bit(int nr, volatile unsigned long *addr) | 
 | { | 
 | 	unsigned int mask, retval; | 
 | 	unsigned int *adr = (unsigned int *)addr; | 
 | 	 | 
 | 	adr += nr >> 5; | 
 | 	mask = 1 << (nr & 0x1f); | 
 | 	retval = (mask & *adr) != 0; | 
 | 	*adr |= mask; | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* | 
 |  * clear_bit() doesn't provide any barrier for the compiler. | 
 |  */ | 
 | #define smp_mb__before_clear_bit()      barrier() | 
 | #define smp_mb__after_clear_bit()       barrier() | 
 |  | 
 | /** | 
 |  * test_and_clear_bit - Clear a bit and return its old value | 
 |  * @nr: Bit to clear | 
 |  * @addr: Address to count from | 
 |  * | 
 |  * This operation is atomic and cannot be reordered.   | 
 |  * It also implies a memory barrier. | 
 |  */ | 
 |  | 
 | extern inline int test_and_clear_bit(int nr, volatile unsigned long *addr) | 
 | { | 
 | 	unsigned int mask, retval; | 
 | 	unsigned long flags; | 
 | 	unsigned int *adr = (unsigned int *)addr; | 
 | 	 | 
 | 	adr += nr >> 5; | 
 | 	mask = 1 << (nr & 0x1f); | 
 | 	cris_atomic_save(addr, flags); | 
 | 	retval = (mask & *adr) != 0; | 
 | 	*adr &= ~mask; | 
 | 	cris_atomic_restore(addr, flags); | 
 | 	return retval; | 
 | } | 
 |  | 
 | /** | 
 |  * __test_and_clear_bit - Clear a bit and return its old value | 
 |  * @nr: Bit to clear | 
 |  * @addr: Address to count from | 
 |  * | 
 |  * This operation is non-atomic and can be reordered.   | 
 |  * If two examples of this operation race, one can appear to succeed | 
 |  * but actually fail.  You must protect multiple accesses with a lock. | 
 |  */ | 
 |  | 
 | extern inline int __test_and_clear_bit(int nr, volatile unsigned long *addr) | 
 | { | 
 | 	unsigned int mask, retval; | 
 | 	unsigned int *adr = (unsigned int *)addr; | 
 | 	 | 
 | 	adr += nr >> 5; | 
 | 	mask = 1 << (nr & 0x1f); | 
 | 	retval = (mask & *adr) != 0; | 
 | 	*adr &= ~mask; | 
 | 	return retval; | 
 | } | 
 | /** | 
 |  * test_and_change_bit - Change a bit and return its old value | 
 |  * @nr: Bit to change | 
 |  * @addr: Address to count from | 
 |  * | 
 |  * This operation is atomic and cannot be reordered.   | 
 |  * It also implies a memory barrier. | 
 |  */ | 
 |  | 
 | extern inline int test_and_change_bit(int nr, volatile unsigned long *addr) | 
 | { | 
 | 	unsigned int mask, retval; | 
 | 	unsigned long flags; | 
 | 	unsigned int *adr = (unsigned int *)addr; | 
 | 	adr += nr >> 5; | 
 | 	mask = 1 << (nr & 0x1f); | 
 | 	cris_atomic_save(addr, flags); | 
 | 	retval = (mask & *adr) != 0; | 
 | 	*adr ^= mask; | 
 | 	cris_atomic_restore(addr, flags); | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* WARNING: non atomic and it can be reordered! */ | 
 |  | 
 | extern inline int __test_and_change_bit(int nr, volatile unsigned long *addr) | 
 | { | 
 | 	unsigned int mask, retval; | 
 | 	unsigned int *adr = (unsigned int *)addr; | 
 |  | 
 | 	adr += nr >> 5; | 
 | 	mask = 1 << (nr & 0x1f); | 
 | 	retval = (mask & *adr) != 0; | 
 | 	*adr ^= mask; | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | /** | 
 |  * test_bit - Determine whether a bit is set | 
 |  * @nr: bit number to test | 
 |  * @addr: Address to start counting from | 
 |  * | 
 |  * This routine doesn't need to be atomic. | 
 |  */ | 
 |  | 
 | extern inline int test_bit(int nr, const volatile unsigned long *addr) | 
 | { | 
 | 	unsigned int mask; | 
 | 	unsigned int *adr = (unsigned int *)addr; | 
 | 	 | 
 | 	adr += nr >> 5; | 
 | 	mask = 1 << (nr & 0x1f); | 
 | 	return ((mask & *adr) != 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Find-bit routines.. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Since we define it "external", it collides with the built-in | 
 |  * definition, which doesn't have the same semantics.  We don't want to | 
 |  * use -fno-builtin, so just hide the name ffs. | 
 |  */ | 
 | #define ffs kernel_ffs | 
 |  | 
 | /* | 
 |  * fls: find last bit set. | 
 |  */ | 
 |  | 
 | #define fls(x) generic_fls(x) | 
 |  | 
 | /* | 
 |  * hweightN - returns the hamming weight of a N-bit word | 
 |  * @x: the word to weigh | 
 |  * | 
 |  * The Hamming Weight of a number is the total number of bits set in it. | 
 |  */ | 
 |  | 
 | #define hweight32(x) generic_hweight32(x) | 
 | #define hweight16(x) generic_hweight16(x) | 
 | #define hweight8(x) generic_hweight8(x) | 
 |  | 
 | /** | 
 |  * find_next_zero_bit - find the first zero bit in a memory region | 
 |  * @addr: The address to base the search on | 
 |  * @offset: The bitnumber to start searching at | 
 |  * @size: The maximum size to search | 
 |  */ | 
 | extern inline int find_next_zero_bit (const unsigned long * addr, int size, int offset) | 
 | { | 
 | 	unsigned long *p = ((unsigned long *) addr) + (offset >> 5); | 
 | 	unsigned long result = offset & ~31UL; | 
 | 	unsigned long tmp; | 
 | 	 | 
 | 	if (offset >= size) | 
 | 		return size; | 
 | 	size -= result; | 
 | 	offset &= 31UL; | 
 | 	if (offset) { | 
 | 		tmp = *(p++); | 
 | 		tmp |= ~0UL >> (32-offset); | 
 | 		if (size < 32) | 
 | 			goto found_first; | 
 | 		if (~tmp) | 
 | 			goto found_middle; | 
 | 		size -= 32; | 
 | 		result += 32; | 
 | 	} | 
 | 	while (size & ~31UL) { | 
 | 		if (~(tmp = *(p++))) | 
 | 			goto found_middle; | 
 | 		result += 32; | 
 | 		size -= 32; | 
 | 	} | 
 | 	if (!size) | 
 | 		return result; | 
 | 	tmp = *p; | 
 | 	 | 
 |  found_first: | 
 | 	tmp |= ~0UL >> size; | 
 |  found_middle: | 
 | 	return result + ffz(tmp); | 
 | } | 
 |  | 
 | /** | 
 |  * find_next_bit - find the first set bit in a memory region | 
 |  * @addr: The address to base the search on | 
 |  * @offset: The bitnumber to start searching at | 
 |  * @size: The maximum size to search | 
 |  */ | 
 | static __inline__ int find_next_bit(const unsigned long *addr, int size, int offset) | 
 | { | 
 | 	unsigned long *p = ((unsigned long *) addr) + (offset >> 5); | 
 |         unsigned long result = offset & ~31UL; | 
 |         unsigned long tmp; | 
 |  | 
 |         if (offset >= size) | 
 |                 return size; | 
 |         size -= result; | 
 |         offset &= 31UL; | 
 |         if (offset) { | 
 |                 tmp = *(p++); | 
 |                 tmp &= (~0UL << offset); | 
 |                 if (size < 32) | 
 |                         goto found_first; | 
 |                 if (tmp) | 
 |                         goto found_middle; | 
 |                 size -= 32; | 
 |                 result += 32; | 
 |         } | 
 |         while (size & ~31UL) { | 
 |                 if ((tmp = *(p++))) | 
 |                         goto found_middle; | 
 |                 result += 32; | 
 |                 size -= 32; | 
 |         } | 
 |         if (!size) | 
 |                 return result; | 
 |         tmp = *p; | 
 |  | 
 | found_first: | 
 |         tmp &= (~0UL >> (32 - size)); | 
 |         if (tmp == 0UL)        /* Are any bits set? */ | 
 |                 return result + size; /* Nope. */ | 
 | found_middle: | 
 |         return result + __ffs(tmp); | 
 | } | 
 |  | 
 | /** | 
 |  * find_first_zero_bit - find the first zero bit in a memory region | 
 |  * @addr: The address to start the search at | 
 |  * @size: The maximum size to search | 
 |  * | 
 |  * Returns the bit-number of the first zero bit, not the number of the byte | 
 |  * containing a bit. | 
 |  */ | 
 |  | 
 | #define find_first_zero_bit(addr, size) \ | 
 |         find_next_zero_bit((addr), (size), 0) | 
 | #define find_first_bit(addr, size) \ | 
 |         find_next_bit((addr), (size), 0) | 
 |  | 
 | #define ext2_set_bit                 test_and_set_bit | 
 | #define ext2_set_bit_atomic(l,n,a)   test_and_set_bit(n,a) | 
 | #define ext2_clear_bit               test_and_clear_bit | 
 | #define ext2_clear_bit_atomic(l,n,a) test_and_clear_bit(n,a) | 
 | #define ext2_test_bit                test_bit | 
 | #define ext2_find_first_zero_bit     find_first_zero_bit | 
 | #define ext2_find_next_zero_bit      find_next_zero_bit | 
 |  | 
 | /* Bitmap functions for the minix filesystem.  */ | 
 | #define minix_set_bit(nr,addr) test_and_set_bit(nr,addr) | 
 | #define minix_clear_bit(nr,addr) test_and_clear_bit(nr,addr) | 
 | #define minix_test_bit(nr,addr) test_bit(nr,addr) | 
 | #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) | 
 |  | 
 | extern inline int sched_find_first_bit(const unsigned long *b) | 
 | { | 
 | 	if (unlikely(b[0])) | 
 | 		return __ffs(b[0]); | 
 | 	if (unlikely(b[1])) | 
 | 		return __ffs(b[1]) + 32; | 
 | 	if (unlikely(b[2])) | 
 | 		return __ffs(b[2]) + 64; | 
 | 	if (unlikely(b[3])) | 
 | 		return __ffs(b[3]) + 96; | 
 | 	if (b[4]) | 
 | 		return __ffs(b[4]) + 128; | 
 | 	return __ffs(b[5]) + 32 + 128; | 
 | } | 
 |  | 
 | #endif /* __KERNEL__ */ | 
 |  | 
 | #endif /* _CRIS_BITOPS_H */ |