| /* | 
 |  * drivers/net/gianfar.c | 
 |  * | 
 |  * Gianfar Ethernet Driver | 
 |  * This driver is designed for the non-CPM ethernet controllers | 
 |  * on the 85xx and 83xx family of integrated processors | 
 |  * Based on 8260_io/fcc_enet.c | 
 |  * | 
 |  * Author: Andy Fleming | 
 |  * Maintainer: Kumar Gala | 
 |  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com> | 
 |  * | 
 |  * Copyright 2002-2009 Freescale Semiconductor, Inc. | 
 |  * Copyright 2007 MontaVista Software, Inc. | 
 |  * | 
 |  * This program is free software; you can redistribute  it and/or modify it | 
 |  * under  the terms of  the GNU General  Public License as published by the | 
 |  * Free Software Foundation;  either version 2 of the  License, or (at your | 
 |  * option) any later version. | 
 |  * | 
 |  *  Gianfar:  AKA Lambda Draconis, "Dragon" | 
 |  *  RA 11 31 24.2 | 
 |  *  Dec +69 19 52 | 
 |  *  V 3.84 | 
 |  *  B-V +1.62 | 
 |  * | 
 |  *  Theory of operation | 
 |  * | 
 |  *  The driver is initialized through of_device. Configuration information | 
 |  *  is therefore conveyed through an OF-style device tree. | 
 |  * | 
 |  *  The Gianfar Ethernet Controller uses a ring of buffer | 
 |  *  descriptors.  The beginning is indicated by a register | 
 |  *  pointing to the physical address of the start of the ring. | 
 |  *  The end is determined by a "wrap" bit being set in the | 
 |  *  last descriptor of the ring. | 
 |  * | 
 |  *  When a packet is received, the RXF bit in the | 
 |  *  IEVENT register is set, triggering an interrupt when the | 
 |  *  corresponding bit in the IMASK register is also set (if | 
 |  *  interrupt coalescing is active, then the interrupt may not | 
 |  *  happen immediately, but will wait until either a set number | 
 |  *  of frames or amount of time have passed).  In NAPI, the | 
 |  *  interrupt handler will signal there is work to be done, and | 
 |  *  exit. This method will start at the last known empty | 
 |  *  descriptor, and process every subsequent descriptor until there | 
 |  *  are none left with data (NAPI will stop after a set number of | 
 |  *  packets to give time to other tasks, but will eventually | 
 |  *  process all the packets).  The data arrives inside a | 
 |  *  pre-allocated skb, and so after the skb is passed up to the | 
 |  *  stack, a new skb must be allocated, and the address field in | 
 |  *  the buffer descriptor must be updated to indicate this new | 
 |  *  skb. | 
 |  * | 
 |  *  When the kernel requests that a packet be transmitted, the | 
 |  *  driver starts where it left off last time, and points the | 
 |  *  descriptor at the buffer which was passed in.  The driver | 
 |  *  then informs the DMA engine that there are packets ready to | 
 |  *  be transmitted.  Once the controller is finished transmitting | 
 |  *  the packet, an interrupt may be triggered (under the same | 
 |  *  conditions as for reception, but depending on the TXF bit). | 
 |  *  The driver then cleans up the buffer. | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/string.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/unistd.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/init.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/netdevice.h> | 
 | #include <linux/etherdevice.h> | 
 | #include <linux/skbuff.h> | 
 | #include <linux/if_vlan.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/of_mdio.h> | 
 | #include <linux/of_platform.h> | 
 | #include <linux/ip.h> | 
 | #include <linux/tcp.h> | 
 | #include <linux/udp.h> | 
 | #include <linux/in.h> | 
 | #include <linux/net_tstamp.h> | 
 |  | 
 | #include <asm/io.h> | 
 | #include <asm/reg.h> | 
 | #include <asm/irq.h> | 
 | #include <asm/uaccess.h> | 
 | #include <linux/module.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/crc32.h> | 
 | #include <linux/mii.h> | 
 | #include <linux/phy.h> | 
 | #include <linux/phy_fixed.h> | 
 | #include <linux/of.h> | 
 |  | 
 | #include "gianfar.h" | 
 | #include "fsl_pq_mdio.h" | 
 |  | 
 | #define TX_TIMEOUT      (1*HZ) | 
 | #undef BRIEF_GFAR_ERRORS | 
 | #undef VERBOSE_GFAR_ERRORS | 
 |  | 
 | const char gfar_driver_name[] = "Gianfar Ethernet"; | 
 | const char gfar_driver_version[] = "1.3"; | 
 |  | 
 | static int gfar_enet_open(struct net_device *dev); | 
 | static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev); | 
 | static void gfar_reset_task(struct work_struct *work); | 
 | static void gfar_timeout(struct net_device *dev); | 
 | static int gfar_close(struct net_device *dev); | 
 | struct sk_buff *gfar_new_skb(struct net_device *dev); | 
 | static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, | 
 | 		struct sk_buff *skb); | 
 | static int gfar_set_mac_address(struct net_device *dev); | 
 | static int gfar_change_mtu(struct net_device *dev, int new_mtu); | 
 | static irqreturn_t gfar_error(int irq, void *dev_id); | 
 | static irqreturn_t gfar_transmit(int irq, void *dev_id); | 
 | static irqreturn_t gfar_interrupt(int irq, void *dev_id); | 
 | static void adjust_link(struct net_device *dev); | 
 | static void init_registers(struct net_device *dev); | 
 | static int init_phy(struct net_device *dev); | 
 | static int gfar_probe(struct platform_device *ofdev, | 
 | 		const struct of_device_id *match); | 
 | static int gfar_remove(struct platform_device *ofdev); | 
 | static void free_skb_resources(struct gfar_private *priv); | 
 | static void gfar_set_multi(struct net_device *dev); | 
 | static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr); | 
 | static void gfar_configure_serdes(struct net_device *dev); | 
 | static int gfar_poll(struct napi_struct *napi, int budget); | 
 | #ifdef CONFIG_NET_POLL_CONTROLLER | 
 | static void gfar_netpoll(struct net_device *dev); | 
 | #endif | 
 | int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit); | 
 | static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue); | 
 | static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, | 
 | 			      int amount_pull); | 
 | static void gfar_vlan_rx_register(struct net_device *netdev, | 
 | 		                struct vlan_group *grp); | 
 | void gfar_halt(struct net_device *dev); | 
 | static void gfar_halt_nodisable(struct net_device *dev); | 
 | void gfar_start(struct net_device *dev); | 
 | static void gfar_clear_exact_match(struct net_device *dev); | 
 | static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr); | 
 | static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); | 
 |  | 
 | MODULE_AUTHOR("Freescale Semiconductor, Inc"); | 
 | MODULE_DESCRIPTION("Gianfar Ethernet Driver"); | 
 | MODULE_LICENSE("GPL"); | 
 |  | 
 | static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, | 
 | 			    dma_addr_t buf) | 
 | { | 
 | 	u32 lstatus; | 
 |  | 
 | 	bdp->bufPtr = buf; | 
 |  | 
 | 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT); | 
 | 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1) | 
 | 		lstatus |= BD_LFLAG(RXBD_WRAP); | 
 |  | 
 | 	eieio(); | 
 |  | 
 | 	bdp->lstatus = lstatus; | 
 | } | 
 |  | 
 | static int gfar_init_bds(struct net_device *ndev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(ndev); | 
 | 	struct gfar_priv_tx_q *tx_queue = NULL; | 
 | 	struct gfar_priv_rx_q *rx_queue = NULL; | 
 | 	struct txbd8 *txbdp; | 
 | 	struct rxbd8 *rxbdp; | 
 | 	int i, j; | 
 |  | 
 | 	for (i = 0; i < priv->num_tx_queues; i++) { | 
 | 		tx_queue = priv->tx_queue[i]; | 
 | 		/* Initialize some variables in our dev structure */ | 
 | 		tx_queue->num_txbdfree = tx_queue->tx_ring_size; | 
 | 		tx_queue->dirty_tx = tx_queue->tx_bd_base; | 
 | 		tx_queue->cur_tx = tx_queue->tx_bd_base; | 
 | 		tx_queue->skb_curtx = 0; | 
 | 		tx_queue->skb_dirtytx = 0; | 
 |  | 
 | 		/* Initialize Transmit Descriptor Ring */ | 
 | 		txbdp = tx_queue->tx_bd_base; | 
 | 		for (j = 0; j < tx_queue->tx_ring_size; j++) { | 
 | 			txbdp->lstatus = 0; | 
 | 			txbdp->bufPtr = 0; | 
 | 			txbdp++; | 
 | 		} | 
 |  | 
 | 		/* Set the last descriptor in the ring to indicate wrap */ | 
 | 		txbdp--; | 
 | 		txbdp->status |= TXBD_WRAP; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < priv->num_rx_queues; i++) { | 
 | 		rx_queue = priv->rx_queue[i]; | 
 | 		rx_queue->cur_rx = rx_queue->rx_bd_base; | 
 | 		rx_queue->skb_currx = 0; | 
 | 		rxbdp = rx_queue->rx_bd_base; | 
 |  | 
 | 		for (j = 0; j < rx_queue->rx_ring_size; j++) { | 
 | 			struct sk_buff *skb = rx_queue->rx_skbuff[j]; | 
 |  | 
 | 			if (skb) { | 
 | 				gfar_init_rxbdp(rx_queue, rxbdp, | 
 | 						rxbdp->bufPtr); | 
 | 			} else { | 
 | 				skb = gfar_new_skb(ndev); | 
 | 				if (!skb) { | 
 | 					pr_err("%s: Can't allocate RX buffers\n", | 
 | 							ndev->name); | 
 | 					goto err_rxalloc_fail; | 
 | 				} | 
 | 				rx_queue->rx_skbuff[j] = skb; | 
 |  | 
 | 				gfar_new_rxbdp(rx_queue, rxbdp, skb); | 
 | 			} | 
 |  | 
 | 			rxbdp++; | 
 | 		} | 
 |  | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_rxalloc_fail: | 
 | 	free_skb_resources(priv); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static int gfar_alloc_skb_resources(struct net_device *ndev) | 
 | { | 
 | 	void *vaddr; | 
 | 	dma_addr_t addr; | 
 | 	int i, j, k; | 
 | 	struct gfar_private *priv = netdev_priv(ndev); | 
 | 	struct device *dev = &priv->ofdev->dev; | 
 | 	struct gfar_priv_tx_q *tx_queue = NULL; | 
 | 	struct gfar_priv_rx_q *rx_queue = NULL; | 
 |  | 
 | 	priv->total_tx_ring_size = 0; | 
 | 	for (i = 0; i < priv->num_tx_queues; i++) | 
 | 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size; | 
 |  | 
 | 	priv->total_rx_ring_size = 0; | 
 | 	for (i = 0; i < priv->num_rx_queues; i++) | 
 | 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size; | 
 |  | 
 | 	/* Allocate memory for the buffer descriptors */ | 
 | 	vaddr = dma_alloc_coherent(dev, | 
 | 			sizeof(struct txbd8) * priv->total_tx_ring_size + | 
 | 			sizeof(struct rxbd8) * priv->total_rx_ring_size, | 
 | 			&addr, GFP_KERNEL); | 
 | 	if (!vaddr) { | 
 | 		if (netif_msg_ifup(priv)) | 
 | 			pr_err("%s: Could not allocate buffer descriptors!\n", | 
 | 			       ndev->name); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < priv->num_tx_queues; i++) { | 
 | 		tx_queue = priv->tx_queue[i]; | 
 | 		tx_queue->tx_bd_base = (struct txbd8 *) vaddr; | 
 | 		tx_queue->tx_bd_dma_base = addr; | 
 | 		tx_queue->dev = ndev; | 
 | 		/* enet DMA only understands physical addresses */ | 
 | 		addr    += sizeof(struct txbd8) *tx_queue->tx_ring_size; | 
 | 		vaddr   += sizeof(struct txbd8) *tx_queue->tx_ring_size; | 
 | 	} | 
 |  | 
 | 	/* Start the rx descriptor ring where the tx ring leaves off */ | 
 | 	for (i = 0; i < priv->num_rx_queues; i++) { | 
 | 		rx_queue = priv->rx_queue[i]; | 
 | 		rx_queue->rx_bd_base = (struct rxbd8 *) vaddr; | 
 | 		rx_queue->rx_bd_dma_base = addr; | 
 | 		rx_queue->dev = ndev; | 
 | 		addr    += sizeof (struct rxbd8) * rx_queue->rx_ring_size; | 
 | 		vaddr   += sizeof (struct rxbd8) * rx_queue->rx_ring_size; | 
 | 	} | 
 |  | 
 | 	/* Setup the skbuff rings */ | 
 | 	for (i = 0; i < priv->num_tx_queues; i++) { | 
 | 		tx_queue = priv->tx_queue[i]; | 
 | 		tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) * | 
 | 				  tx_queue->tx_ring_size, GFP_KERNEL); | 
 | 		if (!tx_queue->tx_skbuff) { | 
 | 			if (netif_msg_ifup(priv)) | 
 | 				pr_err("%s: Could not allocate tx_skbuff\n", | 
 | 						ndev->name); | 
 | 			goto cleanup; | 
 | 		} | 
 |  | 
 | 		for (k = 0; k < tx_queue->tx_ring_size; k++) | 
 | 			tx_queue->tx_skbuff[k] = NULL; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < priv->num_rx_queues; i++) { | 
 | 		rx_queue = priv->rx_queue[i]; | 
 | 		rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) * | 
 | 				  rx_queue->rx_ring_size, GFP_KERNEL); | 
 |  | 
 | 		if (!rx_queue->rx_skbuff) { | 
 | 			if (netif_msg_ifup(priv)) | 
 | 				pr_err("%s: Could not allocate rx_skbuff\n", | 
 | 				       ndev->name); | 
 | 			goto cleanup; | 
 | 		} | 
 |  | 
 | 		for (j = 0; j < rx_queue->rx_ring_size; j++) | 
 | 			rx_queue->rx_skbuff[j] = NULL; | 
 | 	} | 
 |  | 
 | 	if (gfar_init_bds(ndev)) | 
 | 		goto cleanup; | 
 |  | 
 | 	return 0; | 
 |  | 
 | cleanup: | 
 | 	free_skb_resources(priv); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static void gfar_init_tx_rx_base(struct gfar_private *priv) | 
 | { | 
 | 	struct gfar __iomem *regs = priv->gfargrp[0].regs; | 
 | 	u32 __iomem *baddr; | 
 | 	int i; | 
 |  | 
 | 	baddr = ®s->tbase0; | 
 | 	for(i = 0; i < priv->num_tx_queues; i++) { | 
 | 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base); | 
 | 		baddr	+= 2; | 
 | 	} | 
 |  | 
 | 	baddr = ®s->rbase0; | 
 | 	for(i = 0; i < priv->num_rx_queues; i++) { | 
 | 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base); | 
 | 		baddr   += 2; | 
 | 	} | 
 | } | 
 |  | 
 | static void gfar_init_mac(struct net_device *ndev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(ndev); | 
 | 	struct gfar __iomem *regs = priv->gfargrp[0].regs; | 
 | 	u32 rctrl = 0; | 
 | 	u32 tctrl = 0; | 
 | 	u32 attrs = 0; | 
 |  | 
 | 	/* write the tx/rx base registers */ | 
 | 	gfar_init_tx_rx_base(priv); | 
 |  | 
 | 	/* Configure the coalescing support */ | 
 | 	gfar_configure_coalescing(priv, 0xFF, 0xFF); | 
 |  | 
 | 	if (priv->rx_filer_enable) { | 
 | 		rctrl |= RCTRL_FILREN; | 
 | 		/* Program the RIR0 reg with the required distribution */ | 
 | 		gfar_write(®s->rir0, DEFAULT_RIR0); | 
 | 	} | 
 |  | 
 | 	if (priv->rx_csum_enable) | 
 | 		rctrl |= RCTRL_CHECKSUMMING; | 
 |  | 
 | 	if (priv->extended_hash) { | 
 | 		rctrl |= RCTRL_EXTHASH; | 
 |  | 
 | 		gfar_clear_exact_match(ndev); | 
 | 		rctrl |= RCTRL_EMEN; | 
 | 	} | 
 |  | 
 | 	if (priv->padding) { | 
 | 		rctrl &= ~RCTRL_PAL_MASK; | 
 | 		rctrl |= RCTRL_PADDING(priv->padding); | 
 | 	} | 
 |  | 
 | 	/* Insert receive time stamps into padding alignment bytes */ | 
 | 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) { | 
 | 		rctrl &= ~RCTRL_PAL_MASK; | 
 | 		rctrl |= RCTRL_PADDING(8); | 
 | 		priv->padding = 8; | 
 | 	} | 
 |  | 
 | 	/* Enable HW time stamping if requested from user space */ | 
 | 	if (priv->hwts_rx_en) | 
 | 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE; | 
 |  | 
 | 	/* keep vlan related bits if it's enabled */ | 
 | 	if (priv->vlgrp) { | 
 | 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT; | 
 | 		tctrl |= TCTRL_VLINS; | 
 | 	} | 
 |  | 
 | 	/* Init rctrl based on our settings */ | 
 | 	gfar_write(®s->rctrl, rctrl); | 
 |  | 
 | 	if (ndev->features & NETIF_F_IP_CSUM) | 
 | 		tctrl |= TCTRL_INIT_CSUM; | 
 |  | 
 | 	tctrl |= TCTRL_TXSCHED_PRIO; | 
 |  | 
 | 	gfar_write(®s->tctrl, tctrl); | 
 |  | 
 | 	/* Set the extraction length and index */ | 
 | 	attrs = ATTRELI_EL(priv->rx_stash_size) | | 
 | 		ATTRELI_EI(priv->rx_stash_index); | 
 |  | 
 | 	gfar_write(®s->attreli, attrs); | 
 |  | 
 | 	/* Start with defaults, and add stashing or locking | 
 | 	 * depending on the approprate variables */ | 
 | 	attrs = ATTR_INIT_SETTINGS; | 
 |  | 
 | 	if (priv->bd_stash_en) | 
 | 		attrs |= ATTR_BDSTASH; | 
 |  | 
 | 	if (priv->rx_stash_size != 0) | 
 | 		attrs |= ATTR_BUFSTASH; | 
 |  | 
 | 	gfar_write(®s->attr, attrs); | 
 |  | 
 | 	gfar_write(®s->fifo_tx_thr, priv->fifo_threshold); | 
 | 	gfar_write(®s->fifo_tx_starve, priv->fifo_starve); | 
 | 	gfar_write(®s->fifo_tx_starve_shutoff, priv->fifo_starve_off); | 
 | } | 
 |  | 
 | static struct net_device_stats *gfar_get_stats(struct net_device *dev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	struct netdev_queue *txq; | 
 | 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0; | 
 | 	unsigned long tx_packets = 0, tx_bytes = 0; | 
 | 	int i = 0; | 
 |  | 
 | 	for (i = 0; i < priv->num_rx_queues; i++) { | 
 | 		rx_packets += priv->rx_queue[i]->stats.rx_packets; | 
 | 		rx_bytes += priv->rx_queue[i]->stats.rx_bytes; | 
 | 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped; | 
 | 	} | 
 |  | 
 | 	dev->stats.rx_packets = rx_packets; | 
 | 	dev->stats.rx_bytes = rx_bytes; | 
 | 	dev->stats.rx_dropped = rx_dropped; | 
 |  | 
 | 	for (i = 0; i < priv->num_tx_queues; i++) { | 
 | 		txq = netdev_get_tx_queue(dev, i); | 
 | 		tx_bytes += txq->tx_bytes; | 
 | 		tx_packets += txq->tx_packets; | 
 | 	} | 
 |  | 
 | 	dev->stats.tx_bytes = tx_bytes; | 
 | 	dev->stats.tx_packets = tx_packets; | 
 |  | 
 | 	return &dev->stats; | 
 | } | 
 |  | 
 | static const struct net_device_ops gfar_netdev_ops = { | 
 | 	.ndo_open = gfar_enet_open, | 
 | 	.ndo_start_xmit = gfar_start_xmit, | 
 | 	.ndo_stop = gfar_close, | 
 | 	.ndo_change_mtu = gfar_change_mtu, | 
 | 	.ndo_set_multicast_list = gfar_set_multi, | 
 | 	.ndo_tx_timeout = gfar_timeout, | 
 | 	.ndo_do_ioctl = gfar_ioctl, | 
 | 	.ndo_get_stats = gfar_get_stats, | 
 | 	.ndo_vlan_rx_register = gfar_vlan_rx_register, | 
 | 	.ndo_set_mac_address = eth_mac_addr, | 
 | 	.ndo_validate_addr = eth_validate_addr, | 
 | #ifdef CONFIG_NET_POLL_CONTROLLER | 
 | 	.ndo_poll_controller = gfar_netpoll, | 
 | #endif | 
 | }; | 
 |  | 
 | unsigned int ftp_rqfpr[MAX_FILER_IDX + 1]; | 
 | unsigned int ftp_rqfcr[MAX_FILER_IDX + 1]; | 
 |  | 
 | void lock_rx_qs(struct gfar_private *priv) | 
 | { | 
 | 	int i = 0x0; | 
 |  | 
 | 	for (i = 0; i < priv->num_rx_queues; i++) | 
 | 		spin_lock(&priv->rx_queue[i]->rxlock); | 
 | } | 
 |  | 
 | void lock_tx_qs(struct gfar_private *priv) | 
 | { | 
 | 	int i = 0x0; | 
 |  | 
 | 	for (i = 0; i < priv->num_tx_queues; i++) | 
 | 		spin_lock(&priv->tx_queue[i]->txlock); | 
 | } | 
 |  | 
 | void unlock_rx_qs(struct gfar_private *priv) | 
 | { | 
 | 	int i = 0x0; | 
 |  | 
 | 	for (i = 0; i < priv->num_rx_queues; i++) | 
 | 		spin_unlock(&priv->rx_queue[i]->rxlock); | 
 | } | 
 |  | 
 | void unlock_tx_qs(struct gfar_private *priv) | 
 | { | 
 | 	int i = 0x0; | 
 |  | 
 | 	for (i = 0; i < priv->num_tx_queues; i++) | 
 | 		spin_unlock(&priv->tx_queue[i]->txlock); | 
 | } | 
 |  | 
 | /* Returns 1 if incoming frames use an FCB */ | 
 | static inline int gfar_uses_fcb(struct gfar_private *priv) | 
 | { | 
 | 	return priv->vlgrp || priv->rx_csum_enable || | 
 | 		(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER); | 
 | } | 
 |  | 
 | static void free_tx_pointers(struct gfar_private *priv) | 
 | { | 
 | 	int i = 0; | 
 |  | 
 | 	for (i = 0; i < priv->num_tx_queues; i++) | 
 | 		kfree(priv->tx_queue[i]); | 
 | } | 
 |  | 
 | static void free_rx_pointers(struct gfar_private *priv) | 
 | { | 
 | 	int i = 0; | 
 |  | 
 | 	for (i = 0; i < priv->num_rx_queues; i++) | 
 | 		kfree(priv->rx_queue[i]); | 
 | } | 
 |  | 
 | static void unmap_group_regs(struct gfar_private *priv) | 
 | { | 
 | 	int i = 0; | 
 |  | 
 | 	for (i = 0; i < MAXGROUPS; i++) | 
 | 		if (priv->gfargrp[i].regs) | 
 | 			iounmap(priv->gfargrp[i].regs); | 
 | } | 
 |  | 
 | static void disable_napi(struct gfar_private *priv) | 
 | { | 
 | 	int i = 0; | 
 |  | 
 | 	for (i = 0; i < priv->num_grps; i++) | 
 | 		napi_disable(&priv->gfargrp[i].napi); | 
 | } | 
 |  | 
 | static void enable_napi(struct gfar_private *priv) | 
 | { | 
 | 	int i = 0; | 
 |  | 
 | 	for (i = 0; i < priv->num_grps; i++) | 
 | 		napi_enable(&priv->gfargrp[i].napi); | 
 | } | 
 |  | 
 | static int gfar_parse_group(struct device_node *np, | 
 | 		struct gfar_private *priv, const char *model) | 
 | { | 
 | 	u32 *queue_mask; | 
 |  | 
 | 	priv->gfargrp[priv->num_grps].regs = of_iomap(np, 0); | 
 | 	if (!priv->gfargrp[priv->num_grps].regs) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	priv->gfargrp[priv->num_grps].interruptTransmit = | 
 | 			irq_of_parse_and_map(np, 0); | 
 |  | 
 | 	/* If we aren't the FEC we have multiple interrupts */ | 
 | 	if (model && strcasecmp(model, "FEC")) { | 
 | 		priv->gfargrp[priv->num_grps].interruptReceive = | 
 | 			irq_of_parse_and_map(np, 1); | 
 | 		priv->gfargrp[priv->num_grps].interruptError = | 
 | 			irq_of_parse_and_map(np,2); | 
 | 		if (priv->gfargrp[priv->num_grps].interruptTransmit < 0 || | 
 | 			priv->gfargrp[priv->num_grps].interruptReceive < 0 || | 
 | 			priv->gfargrp[priv->num_grps].interruptError < 0) { | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	priv->gfargrp[priv->num_grps].grp_id = priv->num_grps; | 
 | 	priv->gfargrp[priv->num_grps].priv = priv; | 
 | 	spin_lock_init(&priv->gfargrp[priv->num_grps].grplock); | 
 | 	if(priv->mode == MQ_MG_MODE) { | 
 | 		queue_mask = (u32 *)of_get_property(np, | 
 | 					"fsl,rx-bit-map", NULL); | 
 | 		priv->gfargrp[priv->num_grps].rx_bit_map = | 
 | 			queue_mask ?  *queue_mask :(DEFAULT_MAPPING >> priv->num_grps); | 
 | 		queue_mask = (u32 *)of_get_property(np, | 
 | 					"fsl,tx-bit-map", NULL); | 
 | 		priv->gfargrp[priv->num_grps].tx_bit_map = | 
 | 			queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps); | 
 | 	} else { | 
 | 		priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF; | 
 | 		priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF; | 
 | 	} | 
 | 	priv->num_grps++; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev) | 
 | { | 
 | 	const char *model; | 
 | 	const char *ctype; | 
 | 	const void *mac_addr; | 
 | 	int err = 0, i; | 
 | 	struct net_device *dev = NULL; | 
 | 	struct gfar_private *priv = NULL; | 
 | 	struct device_node *np = ofdev->dev.of_node; | 
 | 	struct device_node *child = NULL; | 
 | 	const u32 *stash; | 
 | 	const u32 *stash_len; | 
 | 	const u32 *stash_idx; | 
 | 	unsigned int num_tx_qs, num_rx_qs; | 
 | 	u32 *tx_queues, *rx_queues; | 
 |  | 
 | 	if (!np || !of_device_is_available(np)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	/* parse the num of tx and rx queues */ | 
 | 	tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL); | 
 | 	num_tx_qs = tx_queues ? *tx_queues : 1; | 
 |  | 
 | 	if (num_tx_qs > MAX_TX_QS) { | 
 | 		printk(KERN_ERR "num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n", | 
 | 				num_tx_qs, MAX_TX_QS); | 
 | 		printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL); | 
 | 	num_rx_qs = rx_queues ? *rx_queues : 1; | 
 |  | 
 | 	if (num_rx_qs > MAX_RX_QS) { | 
 | 		printk(KERN_ERR "num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n", | 
 | 				num_tx_qs, MAX_TX_QS); | 
 | 		printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs); | 
 | 	dev = *pdev; | 
 | 	if (NULL == dev) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	priv = netdev_priv(dev); | 
 | 	priv->node = ofdev->dev.of_node; | 
 | 	priv->ndev = dev; | 
 |  | 
 | 	dev->num_tx_queues = num_tx_qs; | 
 | 	dev->real_num_tx_queues = num_tx_qs; | 
 | 	priv->num_tx_queues = num_tx_qs; | 
 | 	priv->num_rx_queues = num_rx_qs; | 
 | 	priv->num_grps = 0x0; | 
 |  | 
 | 	model = of_get_property(np, "model", NULL); | 
 |  | 
 | 	for (i = 0; i < MAXGROUPS; i++) | 
 | 		priv->gfargrp[i].regs = NULL; | 
 |  | 
 | 	/* Parse and initialize group specific information */ | 
 | 	if (of_device_is_compatible(np, "fsl,etsec2")) { | 
 | 		priv->mode = MQ_MG_MODE; | 
 | 		for_each_child_of_node(np, child) { | 
 | 			err = gfar_parse_group(child, priv, model); | 
 | 			if (err) | 
 | 				goto err_grp_init; | 
 | 		} | 
 | 	} else { | 
 | 		priv->mode = SQ_SG_MODE; | 
 | 		err = gfar_parse_group(np, priv, model); | 
 | 		if(err) | 
 | 			goto err_grp_init; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < priv->num_tx_queues; i++) | 
 | 	       priv->tx_queue[i] = NULL; | 
 | 	for (i = 0; i < priv->num_rx_queues; i++) | 
 | 		priv->rx_queue[i] = NULL; | 
 |  | 
 | 	for (i = 0; i < priv->num_tx_queues; i++) { | 
 | 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q), | 
 | 					    GFP_KERNEL); | 
 | 		if (!priv->tx_queue[i]) { | 
 | 			err = -ENOMEM; | 
 | 			goto tx_alloc_failed; | 
 | 		} | 
 | 		priv->tx_queue[i]->tx_skbuff = NULL; | 
 | 		priv->tx_queue[i]->qindex = i; | 
 | 		priv->tx_queue[i]->dev = dev; | 
 | 		spin_lock_init(&(priv->tx_queue[i]->txlock)); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < priv->num_rx_queues; i++) { | 
 | 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q), | 
 | 					    GFP_KERNEL); | 
 | 		if (!priv->rx_queue[i]) { | 
 | 			err = -ENOMEM; | 
 | 			goto rx_alloc_failed; | 
 | 		} | 
 | 		priv->rx_queue[i]->rx_skbuff = NULL; | 
 | 		priv->rx_queue[i]->qindex = i; | 
 | 		priv->rx_queue[i]->dev = dev; | 
 | 		spin_lock_init(&(priv->rx_queue[i]->rxlock)); | 
 | 	} | 
 |  | 
 |  | 
 | 	stash = of_get_property(np, "bd-stash", NULL); | 
 |  | 
 | 	if (stash) { | 
 | 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING; | 
 | 		priv->bd_stash_en = 1; | 
 | 	} | 
 |  | 
 | 	stash_len = of_get_property(np, "rx-stash-len", NULL); | 
 |  | 
 | 	if (stash_len) | 
 | 		priv->rx_stash_size = *stash_len; | 
 |  | 
 | 	stash_idx = of_get_property(np, "rx-stash-idx", NULL); | 
 |  | 
 | 	if (stash_idx) | 
 | 		priv->rx_stash_index = *stash_idx; | 
 |  | 
 | 	if (stash_len || stash_idx) | 
 | 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING; | 
 |  | 
 | 	mac_addr = of_get_mac_address(np); | 
 | 	if (mac_addr) | 
 | 		memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN); | 
 |  | 
 | 	if (model && !strcasecmp(model, "TSEC")) | 
 | 		priv->device_flags = | 
 | 			FSL_GIANFAR_DEV_HAS_GIGABIT | | 
 | 			FSL_GIANFAR_DEV_HAS_COALESCE | | 
 | 			FSL_GIANFAR_DEV_HAS_RMON | | 
 | 			FSL_GIANFAR_DEV_HAS_MULTI_INTR; | 
 | 	if (model && !strcasecmp(model, "eTSEC")) | 
 | 		priv->device_flags = | 
 | 			FSL_GIANFAR_DEV_HAS_GIGABIT | | 
 | 			FSL_GIANFAR_DEV_HAS_COALESCE | | 
 | 			FSL_GIANFAR_DEV_HAS_RMON | | 
 | 			FSL_GIANFAR_DEV_HAS_MULTI_INTR | | 
 | 			FSL_GIANFAR_DEV_HAS_PADDING | | 
 | 			FSL_GIANFAR_DEV_HAS_CSUM | | 
 | 			FSL_GIANFAR_DEV_HAS_VLAN | | 
 | 			FSL_GIANFAR_DEV_HAS_MAGIC_PACKET | | 
 | 			FSL_GIANFAR_DEV_HAS_EXTENDED_HASH | | 
 | 			FSL_GIANFAR_DEV_HAS_TIMER; | 
 |  | 
 | 	ctype = of_get_property(np, "phy-connection-type", NULL); | 
 |  | 
 | 	/* We only care about rgmii-id.  The rest are autodetected */ | 
 | 	if (ctype && !strcmp(ctype, "rgmii-id")) | 
 | 		priv->interface = PHY_INTERFACE_MODE_RGMII_ID; | 
 | 	else | 
 | 		priv->interface = PHY_INTERFACE_MODE_MII; | 
 |  | 
 | 	if (of_get_property(np, "fsl,magic-packet", NULL)) | 
 | 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET; | 
 |  | 
 | 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0); | 
 |  | 
 | 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */ | 
 | 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0); | 
 |  | 
 | 	return 0; | 
 |  | 
 | rx_alloc_failed: | 
 | 	free_rx_pointers(priv); | 
 | tx_alloc_failed: | 
 | 	free_tx_pointers(priv); | 
 | err_grp_init: | 
 | 	unmap_group_regs(priv); | 
 | 	free_netdev(dev); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int gfar_hwtstamp_ioctl(struct net_device *netdev, | 
 | 			struct ifreq *ifr, int cmd) | 
 | { | 
 | 	struct hwtstamp_config config; | 
 | 	struct gfar_private *priv = netdev_priv(netdev); | 
 |  | 
 | 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	/* reserved for future extensions */ | 
 | 	if (config.flags) | 
 | 		return -EINVAL; | 
 |  | 
 | 	switch (config.tx_type) { | 
 | 	case HWTSTAMP_TX_OFF: | 
 | 		priv->hwts_tx_en = 0; | 
 | 		break; | 
 | 	case HWTSTAMP_TX_ON: | 
 | 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) | 
 | 			return -ERANGE; | 
 | 		priv->hwts_tx_en = 1; | 
 | 		break; | 
 | 	default: | 
 | 		return -ERANGE; | 
 | 	} | 
 |  | 
 | 	switch (config.rx_filter) { | 
 | 	case HWTSTAMP_FILTER_NONE: | 
 | 		if (priv->hwts_rx_en) { | 
 | 			stop_gfar(netdev); | 
 | 			priv->hwts_rx_en = 0; | 
 | 			startup_gfar(netdev); | 
 | 		} | 
 | 		break; | 
 | 	default: | 
 | 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) | 
 | 			return -ERANGE; | 
 | 		if (!priv->hwts_rx_en) { | 
 | 			stop_gfar(netdev); | 
 | 			priv->hwts_rx_en = 1; | 
 | 			startup_gfar(netdev); | 
 | 		} | 
 | 		config.rx_filter = HWTSTAMP_FILTER_ALL; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? | 
 | 		-EFAULT : 0; | 
 | } | 
 |  | 
 | /* Ioctl MII Interface */ | 
 | static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 |  | 
 | 	if (!netif_running(dev)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (cmd == SIOCSHWTSTAMP) | 
 | 		return gfar_hwtstamp_ioctl(dev, rq, cmd); | 
 |  | 
 | 	if (!priv->phydev) | 
 | 		return -ENODEV; | 
 |  | 
 | 	return phy_mii_ioctl(priv->phydev, rq, cmd); | 
 | } | 
 |  | 
 | static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs) | 
 | { | 
 | 	unsigned int new_bit_map = 0x0; | 
 | 	int mask = 0x1 << (max_qs - 1), i; | 
 | 	for (i = 0; i < max_qs; i++) { | 
 | 		if (bit_map & mask) | 
 | 			new_bit_map = new_bit_map + (1 << i); | 
 | 		mask = mask >> 0x1; | 
 | 	} | 
 | 	return new_bit_map; | 
 | } | 
 |  | 
 | static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar, | 
 | 				   u32 class) | 
 | { | 
 | 	u32 rqfpr = FPR_FILER_MASK; | 
 | 	u32 rqfcr = 0x0; | 
 |  | 
 | 	rqfar--; | 
 | 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT; | 
 | 	ftp_rqfpr[rqfar] = rqfpr; | 
 | 	ftp_rqfcr[rqfar] = rqfcr; | 
 | 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr); | 
 |  | 
 | 	rqfar--; | 
 | 	rqfcr = RQFCR_CMP_NOMATCH; | 
 | 	ftp_rqfpr[rqfar] = rqfpr; | 
 | 	ftp_rqfcr[rqfar] = rqfcr; | 
 | 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr); | 
 |  | 
 | 	rqfar--; | 
 | 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND; | 
 | 	rqfpr = class; | 
 | 	ftp_rqfcr[rqfar] = rqfcr; | 
 | 	ftp_rqfpr[rqfar] = rqfpr; | 
 | 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr); | 
 |  | 
 | 	rqfar--; | 
 | 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND; | 
 | 	rqfpr = class; | 
 | 	ftp_rqfcr[rqfar] = rqfcr; | 
 | 	ftp_rqfpr[rqfar] = rqfpr; | 
 | 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr); | 
 |  | 
 | 	return rqfar; | 
 | } | 
 |  | 
 | static void gfar_init_filer_table(struct gfar_private *priv) | 
 | { | 
 | 	int i = 0x0; | 
 | 	u32 rqfar = MAX_FILER_IDX; | 
 | 	u32 rqfcr = 0x0; | 
 | 	u32 rqfpr = FPR_FILER_MASK; | 
 |  | 
 | 	/* Default rule */ | 
 | 	rqfcr = RQFCR_CMP_MATCH; | 
 | 	ftp_rqfcr[rqfar] = rqfcr; | 
 | 	ftp_rqfpr[rqfar] = rqfpr; | 
 | 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr); | 
 |  | 
 | 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6); | 
 | 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP); | 
 | 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP); | 
 | 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4); | 
 | 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP); | 
 | 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP); | 
 |  | 
 | 	/* cur_filer_idx indicated the first non-masked rule */ | 
 | 	priv->cur_filer_idx = rqfar; | 
 |  | 
 | 	/* Rest are masked rules */ | 
 | 	rqfcr = RQFCR_CMP_NOMATCH; | 
 | 	for (i = 0; i < rqfar; i++) { | 
 | 		ftp_rqfcr[i] = rqfcr; | 
 | 		ftp_rqfpr[i] = rqfpr; | 
 | 		gfar_write_filer(priv, i, rqfcr, rqfpr); | 
 | 	} | 
 | } | 
 |  | 
 | static void gfar_detect_errata(struct gfar_private *priv) | 
 | { | 
 | 	struct device *dev = &priv->ofdev->dev; | 
 | 	unsigned int pvr = mfspr(SPRN_PVR); | 
 | 	unsigned int svr = mfspr(SPRN_SVR); | 
 | 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */ | 
 | 	unsigned int rev = svr & 0xffff; | 
 |  | 
 | 	/* MPC8313 Rev 2.0 and higher; All MPC837x */ | 
 | 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) || | 
 | 			(pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) | 
 | 		priv->errata |= GFAR_ERRATA_74; | 
 |  | 
 | 	/* MPC8313 and MPC837x all rev */ | 
 | 	if ((pvr == 0x80850010 && mod == 0x80b0) || | 
 | 			(pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) | 
 | 		priv->errata |= GFAR_ERRATA_76; | 
 |  | 
 | 	/* MPC8313 and MPC837x all rev */ | 
 | 	if ((pvr == 0x80850010 && mod == 0x80b0) || | 
 | 			(pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) | 
 | 		priv->errata |= GFAR_ERRATA_A002; | 
 |  | 
 | 	if (priv->errata) | 
 | 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n", | 
 | 			 priv->errata); | 
 | } | 
 |  | 
 | /* Set up the ethernet device structure, private data, | 
 |  * and anything else we need before we start */ | 
 | static int gfar_probe(struct platform_device *ofdev, | 
 | 		const struct of_device_id *match) | 
 | { | 
 | 	u32 tempval; | 
 | 	struct net_device *dev = NULL; | 
 | 	struct gfar_private *priv = NULL; | 
 | 	struct gfar __iomem *regs = NULL; | 
 | 	int err = 0, i, grp_idx = 0; | 
 | 	int len_devname; | 
 | 	u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0; | 
 | 	u32 isrg = 0; | 
 | 	u32 __iomem *baddr; | 
 |  | 
 | 	err = gfar_of_init(ofdev, &dev); | 
 |  | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	priv = netdev_priv(dev); | 
 | 	priv->ndev = dev; | 
 | 	priv->ofdev = ofdev; | 
 | 	priv->node = ofdev->dev.of_node; | 
 | 	SET_NETDEV_DEV(dev, &ofdev->dev); | 
 |  | 
 | 	spin_lock_init(&priv->bflock); | 
 | 	INIT_WORK(&priv->reset_task, gfar_reset_task); | 
 |  | 
 | 	dev_set_drvdata(&ofdev->dev, priv); | 
 | 	regs = priv->gfargrp[0].regs; | 
 |  | 
 | 	gfar_detect_errata(priv); | 
 |  | 
 | 	/* Stop the DMA engine now, in case it was running before */ | 
 | 	/* (The firmware could have used it, and left it running). */ | 
 | 	gfar_halt(dev); | 
 |  | 
 | 	/* Reset MAC layer */ | 
 | 	gfar_write(®s->maccfg1, MACCFG1_SOFT_RESET); | 
 |  | 
 | 	/* We need to delay at least 3 TX clocks */ | 
 | 	udelay(2); | 
 |  | 
 | 	tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW); | 
 | 	gfar_write(®s->maccfg1, tempval); | 
 |  | 
 | 	/* Initialize MACCFG2. */ | 
 | 	tempval = MACCFG2_INIT_SETTINGS; | 
 | 	if (gfar_has_errata(priv, GFAR_ERRATA_74)) | 
 | 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK; | 
 | 	gfar_write(®s->maccfg2, tempval); | 
 |  | 
 | 	/* Initialize ECNTRL */ | 
 | 	gfar_write(®s->ecntrl, ECNTRL_INIT_SETTINGS); | 
 |  | 
 | 	/* Set the dev->base_addr to the gfar reg region */ | 
 | 	dev->base_addr = (unsigned long) regs; | 
 |  | 
 | 	SET_NETDEV_DEV(dev, &ofdev->dev); | 
 |  | 
 | 	/* Fill in the dev structure */ | 
 | 	dev->watchdog_timeo = TX_TIMEOUT; | 
 | 	dev->mtu = 1500; | 
 | 	dev->netdev_ops = &gfar_netdev_ops; | 
 | 	dev->ethtool_ops = &gfar_ethtool_ops; | 
 |  | 
 | 	/* Register for napi ...We are registering NAPI for each grp */ | 
 | 	for (i = 0; i < priv->num_grps; i++) | 
 | 		netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT); | 
 |  | 
 | 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) { | 
 | 		priv->rx_csum_enable = 1; | 
 | 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA; | 
 | 	} else | 
 | 		priv->rx_csum_enable = 0; | 
 |  | 
 | 	priv->vlgrp = NULL; | 
 |  | 
 | 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) | 
 | 		dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; | 
 |  | 
 | 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) { | 
 | 		priv->extended_hash = 1; | 
 | 		priv->hash_width = 9; | 
 |  | 
 | 		priv->hash_regs[0] = ®s->igaddr0; | 
 | 		priv->hash_regs[1] = ®s->igaddr1; | 
 | 		priv->hash_regs[2] = ®s->igaddr2; | 
 | 		priv->hash_regs[3] = ®s->igaddr3; | 
 | 		priv->hash_regs[4] = ®s->igaddr4; | 
 | 		priv->hash_regs[5] = ®s->igaddr5; | 
 | 		priv->hash_regs[6] = ®s->igaddr6; | 
 | 		priv->hash_regs[7] = ®s->igaddr7; | 
 | 		priv->hash_regs[8] = ®s->gaddr0; | 
 | 		priv->hash_regs[9] = ®s->gaddr1; | 
 | 		priv->hash_regs[10] = ®s->gaddr2; | 
 | 		priv->hash_regs[11] = ®s->gaddr3; | 
 | 		priv->hash_regs[12] = ®s->gaddr4; | 
 | 		priv->hash_regs[13] = ®s->gaddr5; | 
 | 		priv->hash_regs[14] = ®s->gaddr6; | 
 | 		priv->hash_regs[15] = ®s->gaddr7; | 
 |  | 
 | 	} else { | 
 | 		priv->extended_hash = 0; | 
 | 		priv->hash_width = 8; | 
 |  | 
 | 		priv->hash_regs[0] = ®s->gaddr0; | 
 | 		priv->hash_regs[1] = ®s->gaddr1; | 
 | 		priv->hash_regs[2] = ®s->gaddr2; | 
 | 		priv->hash_regs[3] = ®s->gaddr3; | 
 | 		priv->hash_regs[4] = ®s->gaddr4; | 
 | 		priv->hash_regs[5] = ®s->gaddr5; | 
 | 		priv->hash_regs[6] = ®s->gaddr6; | 
 | 		priv->hash_regs[7] = ®s->gaddr7; | 
 | 	} | 
 |  | 
 | 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING) | 
 | 		priv->padding = DEFAULT_PADDING; | 
 | 	else | 
 | 		priv->padding = 0; | 
 |  | 
 | 	if (dev->features & NETIF_F_IP_CSUM || | 
 | 			priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) | 
 | 		dev->hard_header_len += GMAC_FCB_LEN; | 
 |  | 
 | 	/* Program the isrg regs only if number of grps > 1 */ | 
 | 	if (priv->num_grps > 1) { | 
 | 		baddr = ®s->isrg0; | 
 | 		for (i = 0; i < priv->num_grps; i++) { | 
 | 			isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX); | 
 | 			isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX); | 
 | 			gfar_write(baddr, isrg); | 
 | 			baddr++; | 
 | 			isrg = 0x0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Need to reverse the bit maps as  bit_map's MSB is q0 | 
 | 	 * but, for_each_set_bit parses from right to left, which | 
 | 	 * basically reverses the queue numbers */ | 
 | 	for (i = 0; i< priv->num_grps; i++) { | 
 | 		priv->gfargrp[i].tx_bit_map = reverse_bitmap( | 
 | 				priv->gfargrp[i].tx_bit_map, MAX_TX_QS); | 
 | 		priv->gfargrp[i].rx_bit_map = reverse_bitmap( | 
 | 				priv->gfargrp[i].rx_bit_map, MAX_RX_QS); | 
 | 	} | 
 |  | 
 | 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values, | 
 | 	 * also assign queues to groups */ | 
 | 	for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) { | 
 | 		priv->gfargrp[grp_idx].num_rx_queues = 0x0; | 
 | 		for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map, | 
 | 				priv->num_rx_queues) { | 
 | 			priv->gfargrp[grp_idx].num_rx_queues++; | 
 | 			priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx]; | 
 | 			rstat = rstat | (RSTAT_CLEAR_RHALT >> i); | 
 | 			rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i); | 
 | 		} | 
 | 		priv->gfargrp[grp_idx].num_tx_queues = 0x0; | 
 | 		for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map, | 
 | 				priv->num_tx_queues) { | 
 | 			priv->gfargrp[grp_idx].num_tx_queues++; | 
 | 			priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx]; | 
 | 			tstat = tstat | (TSTAT_CLEAR_THALT >> i); | 
 | 			tqueue = tqueue | (TQUEUE_EN0 >> i); | 
 | 		} | 
 | 		priv->gfargrp[grp_idx].rstat = rstat; | 
 | 		priv->gfargrp[grp_idx].tstat = tstat; | 
 | 		rstat = tstat =0; | 
 | 	} | 
 |  | 
 | 	gfar_write(®s->rqueue, rqueue); | 
 | 	gfar_write(®s->tqueue, tqueue); | 
 |  | 
 | 	priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE; | 
 |  | 
 | 	/* Initializing some of the rx/tx queue level parameters */ | 
 | 	for (i = 0; i < priv->num_tx_queues; i++) { | 
 | 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE; | 
 | 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE; | 
 | 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE; | 
 | 		priv->tx_queue[i]->txic = DEFAULT_TXIC; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < priv->num_rx_queues; i++) { | 
 | 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE; | 
 | 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE; | 
 | 		priv->rx_queue[i]->rxic = DEFAULT_RXIC; | 
 | 	} | 
 |  | 
 | 	/* enable filer if using multiple RX queues*/ | 
 | 	if(priv->num_rx_queues > 1) | 
 | 		priv->rx_filer_enable = 1; | 
 | 	/* Enable most messages by default */ | 
 | 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1; | 
 |  | 
 | 	/* Carrier starts down, phylib will bring it up */ | 
 | 	netif_carrier_off(dev); | 
 |  | 
 | 	err = register_netdev(dev); | 
 |  | 
 | 	if (err) { | 
 | 		printk(KERN_ERR "%s: Cannot register net device, aborting.\n", | 
 | 				dev->name); | 
 | 		goto register_fail; | 
 | 	} | 
 |  | 
 | 	device_init_wakeup(&dev->dev, | 
 | 		priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET); | 
 |  | 
 | 	/* fill out IRQ number and name fields */ | 
 | 	len_devname = strlen(dev->name); | 
 | 	for (i = 0; i < priv->num_grps; i++) { | 
 | 		strncpy(&priv->gfargrp[i].int_name_tx[0], dev->name, | 
 | 				len_devname); | 
 | 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { | 
 | 			strncpy(&priv->gfargrp[i].int_name_tx[len_devname], | 
 | 				"_g", sizeof("_g")); | 
 | 			priv->gfargrp[i].int_name_tx[ | 
 | 				strlen(priv->gfargrp[i].int_name_tx)] = i+48; | 
 | 			strncpy(&priv->gfargrp[i].int_name_tx[strlen( | 
 | 				priv->gfargrp[i].int_name_tx)], | 
 | 				"_tx", sizeof("_tx") + 1); | 
 |  | 
 | 			strncpy(&priv->gfargrp[i].int_name_rx[0], dev->name, | 
 | 					len_devname); | 
 | 			strncpy(&priv->gfargrp[i].int_name_rx[len_devname], | 
 | 					"_g", sizeof("_g")); | 
 | 			priv->gfargrp[i].int_name_rx[ | 
 | 				strlen(priv->gfargrp[i].int_name_rx)] = i+48; | 
 | 			strncpy(&priv->gfargrp[i].int_name_rx[strlen( | 
 | 				priv->gfargrp[i].int_name_rx)], | 
 | 				"_rx", sizeof("_rx") + 1); | 
 |  | 
 | 			strncpy(&priv->gfargrp[i].int_name_er[0], dev->name, | 
 | 					len_devname); | 
 | 			strncpy(&priv->gfargrp[i].int_name_er[len_devname], | 
 | 				"_g", sizeof("_g")); | 
 | 			priv->gfargrp[i].int_name_er[strlen( | 
 | 					priv->gfargrp[i].int_name_er)] = i+48; | 
 | 			strncpy(&priv->gfargrp[i].int_name_er[strlen(\ | 
 | 				priv->gfargrp[i].int_name_er)], | 
 | 				"_er", sizeof("_er") + 1); | 
 | 		} else | 
 | 			priv->gfargrp[i].int_name_tx[len_devname] = '\0'; | 
 | 	} | 
 |  | 
 | 	/* Initialize the filer table */ | 
 | 	gfar_init_filer_table(priv); | 
 |  | 
 | 	/* Create all the sysfs files */ | 
 | 	gfar_init_sysfs(dev); | 
 |  | 
 | 	/* Print out the device info */ | 
 | 	printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr); | 
 |  | 
 | 	/* Even more device info helps when determining which kernel */ | 
 | 	/* provided which set of benchmarks. */ | 
 | 	printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name); | 
 | 	for (i = 0; i < priv->num_rx_queues; i++) | 
 | 		printk(KERN_INFO "%s: RX BD ring size for Q[%d]: %d\n", | 
 | 			dev->name, i, priv->rx_queue[i]->rx_ring_size); | 
 | 	for(i = 0; i < priv->num_tx_queues; i++) | 
 | 		 printk(KERN_INFO "%s: TX BD ring size for Q[%d]: %d\n", | 
 | 			dev->name, i, priv->tx_queue[i]->tx_ring_size); | 
 |  | 
 | 	return 0; | 
 |  | 
 | register_fail: | 
 | 	unmap_group_regs(priv); | 
 | 	free_tx_pointers(priv); | 
 | 	free_rx_pointers(priv); | 
 | 	if (priv->phy_node) | 
 | 		of_node_put(priv->phy_node); | 
 | 	if (priv->tbi_node) | 
 | 		of_node_put(priv->tbi_node); | 
 | 	free_netdev(dev); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int gfar_remove(struct platform_device *ofdev) | 
 | { | 
 | 	struct gfar_private *priv = dev_get_drvdata(&ofdev->dev); | 
 |  | 
 | 	if (priv->phy_node) | 
 | 		of_node_put(priv->phy_node); | 
 | 	if (priv->tbi_node) | 
 | 		of_node_put(priv->tbi_node); | 
 |  | 
 | 	dev_set_drvdata(&ofdev->dev, NULL); | 
 |  | 
 | 	unregister_netdev(priv->ndev); | 
 | 	unmap_group_regs(priv); | 
 | 	free_netdev(priv->ndev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PM | 
 |  | 
 | static int gfar_suspend(struct device *dev) | 
 | { | 
 | 	struct gfar_private *priv = dev_get_drvdata(dev); | 
 | 	struct net_device *ndev = priv->ndev; | 
 | 	struct gfar __iomem *regs = priv->gfargrp[0].regs; | 
 | 	unsigned long flags; | 
 | 	u32 tempval; | 
 |  | 
 | 	int magic_packet = priv->wol_en && | 
 | 		(priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET); | 
 |  | 
 | 	netif_device_detach(ndev); | 
 |  | 
 | 	if (netif_running(ndev)) { | 
 |  | 
 | 		local_irq_save(flags); | 
 | 		lock_tx_qs(priv); | 
 | 		lock_rx_qs(priv); | 
 |  | 
 | 		gfar_halt_nodisable(ndev); | 
 |  | 
 | 		/* Disable Tx, and Rx if wake-on-LAN is disabled. */ | 
 | 		tempval = gfar_read(®s->maccfg1); | 
 |  | 
 | 		tempval &= ~MACCFG1_TX_EN; | 
 |  | 
 | 		if (!magic_packet) | 
 | 			tempval &= ~MACCFG1_RX_EN; | 
 |  | 
 | 		gfar_write(®s->maccfg1, tempval); | 
 |  | 
 | 		unlock_rx_qs(priv); | 
 | 		unlock_tx_qs(priv); | 
 | 		local_irq_restore(flags); | 
 |  | 
 | 		disable_napi(priv); | 
 |  | 
 | 		if (magic_packet) { | 
 | 			/* Enable interrupt on Magic Packet */ | 
 | 			gfar_write(®s->imask, IMASK_MAG); | 
 |  | 
 | 			/* Enable Magic Packet mode */ | 
 | 			tempval = gfar_read(®s->maccfg2); | 
 | 			tempval |= MACCFG2_MPEN; | 
 | 			gfar_write(®s->maccfg2, tempval); | 
 | 		} else { | 
 | 			phy_stop(priv->phydev); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int gfar_resume(struct device *dev) | 
 | { | 
 | 	struct gfar_private *priv = dev_get_drvdata(dev); | 
 | 	struct net_device *ndev = priv->ndev; | 
 | 	struct gfar __iomem *regs = priv->gfargrp[0].regs; | 
 | 	unsigned long flags; | 
 | 	u32 tempval; | 
 | 	int magic_packet = priv->wol_en && | 
 | 		(priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET); | 
 |  | 
 | 	if (!netif_running(ndev)) { | 
 | 		netif_device_attach(ndev); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (!magic_packet && priv->phydev) | 
 | 		phy_start(priv->phydev); | 
 |  | 
 | 	/* Disable Magic Packet mode, in case something | 
 | 	 * else woke us up. | 
 | 	 */ | 
 | 	local_irq_save(flags); | 
 | 	lock_tx_qs(priv); | 
 | 	lock_rx_qs(priv); | 
 |  | 
 | 	tempval = gfar_read(®s->maccfg2); | 
 | 	tempval &= ~MACCFG2_MPEN; | 
 | 	gfar_write(®s->maccfg2, tempval); | 
 |  | 
 | 	gfar_start(ndev); | 
 |  | 
 | 	unlock_rx_qs(priv); | 
 | 	unlock_tx_qs(priv); | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	netif_device_attach(ndev); | 
 |  | 
 | 	enable_napi(priv); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int gfar_restore(struct device *dev) | 
 | { | 
 | 	struct gfar_private *priv = dev_get_drvdata(dev); | 
 | 	struct net_device *ndev = priv->ndev; | 
 |  | 
 | 	if (!netif_running(ndev)) | 
 | 		return 0; | 
 |  | 
 | 	gfar_init_bds(ndev); | 
 | 	init_registers(ndev); | 
 | 	gfar_set_mac_address(ndev); | 
 | 	gfar_init_mac(ndev); | 
 | 	gfar_start(ndev); | 
 |  | 
 | 	priv->oldlink = 0; | 
 | 	priv->oldspeed = 0; | 
 | 	priv->oldduplex = -1; | 
 |  | 
 | 	if (priv->phydev) | 
 | 		phy_start(priv->phydev); | 
 |  | 
 | 	netif_device_attach(ndev); | 
 | 	enable_napi(priv); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct dev_pm_ops gfar_pm_ops = { | 
 | 	.suspend = gfar_suspend, | 
 | 	.resume = gfar_resume, | 
 | 	.freeze = gfar_suspend, | 
 | 	.thaw = gfar_resume, | 
 | 	.restore = gfar_restore, | 
 | }; | 
 |  | 
 | #define GFAR_PM_OPS (&gfar_pm_ops) | 
 |  | 
 | #else | 
 |  | 
 | #define GFAR_PM_OPS NULL | 
 |  | 
 | #endif | 
 |  | 
 | /* Reads the controller's registers to determine what interface | 
 |  * connects it to the PHY. | 
 |  */ | 
 | static phy_interface_t gfar_get_interface(struct net_device *dev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	struct gfar __iomem *regs = priv->gfargrp[0].regs; | 
 | 	u32 ecntrl; | 
 |  | 
 | 	ecntrl = gfar_read(®s->ecntrl); | 
 |  | 
 | 	if (ecntrl & ECNTRL_SGMII_MODE) | 
 | 		return PHY_INTERFACE_MODE_SGMII; | 
 |  | 
 | 	if (ecntrl & ECNTRL_TBI_MODE) { | 
 | 		if (ecntrl & ECNTRL_REDUCED_MODE) | 
 | 			return PHY_INTERFACE_MODE_RTBI; | 
 | 		else | 
 | 			return PHY_INTERFACE_MODE_TBI; | 
 | 	} | 
 |  | 
 | 	if (ecntrl & ECNTRL_REDUCED_MODE) { | 
 | 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) | 
 | 			return PHY_INTERFACE_MODE_RMII; | 
 | 		else { | 
 | 			phy_interface_t interface = priv->interface; | 
 |  | 
 | 			/* | 
 | 			 * This isn't autodetected right now, so it must | 
 | 			 * be set by the device tree or platform code. | 
 | 			 */ | 
 | 			if (interface == PHY_INTERFACE_MODE_RGMII_ID) | 
 | 				return PHY_INTERFACE_MODE_RGMII_ID; | 
 |  | 
 | 			return PHY_INTERFACE_MODE_RGMII; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) | 
 | 		return PHY_INTERFACE_MODE_GMII; | 
 |  | 
 | 	return PHY_INTERFACE_MODE_MII; | 
 | } | 
 |  | 
 |  | 
 | /* Initializes driver's PHY state, and attaches to the PHY. | 
 |  * Returns 0 on success. | 
 |  */ | 
 | static int init_phy(struct net_device *dev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	uint gigabit_support = | 
 | 		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ? | 
 | 		SUPPORTED_1000baseT_Full : 0; | 
 | 	phy_interface_t interface; | 
 |  | 
 | 	priv->oldlink = 0; | 
 | 	priv->oldspeed = 0; | 
 | 	priv->oldduplex = -1; | 
 |  | 
 | 	interface = gfar_get_interface(dev); | 
 |  | 
 | 	priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0, | 
 | 				      interface); | 
 | 	if (!priv->phydev) | 
 | 		priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link, | 
 | 							 interface); | 
 | 	if (!priv->phydev) { | 
 | 		dev_err(&dev->dev, "could not attach to PHY\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	if (interface == PHY_INTERFACE_MODE_SGMII) | 
 | 		gfar_configure_serdes(dev); | 
 |  | 
 | 	/* Remove any features not supported by the controller */ | 
 | 	priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support); | 
 | 	priv->phydev->advertising = priv->phydev->supported; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize TBI PHY interface for communicating with the | 
 |  * SERDES lynx PHY on the chip.  We communicate with this PHY | 
 |  * through the MDIO bus on each controller, treating it as a | 
 |  * "normal" PHY at the address found in the TBIPA register.  We assume | 
 |  * that the TBIPA register is valid.  Either the MDIO bus code will set | 
 |  * it to a value that doesn't conflict with other PHYs on the bus, or the | 
 |  * value doesn't matter, as there are no other PHYs on the bus. | 
 |  */ | 
 | static void gfar_configure_serdes(struct net_device *dev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	struct phy_device *tbiphy; | 
 |  | 
 | 	if (!priv->tbi_node) { | 
 | 		dev_warn(&dev->dev, "error: SGMII mode requires that the " | 
 | 				    "device tree specify a tbi-handle\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	tbiphy = of_phy_find_device(priv->tbi_node); | 
 | 	if (!tbiphy) { | 
 | 		dev_err(&dev->dev, "error: Could not get TBI device\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the link is already up, we must already be ok, and don't need to | 
 | 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured | 
 | 	 * everything for us?  Resetting it takes the link down and requires | 
 | 	 * several seconds for it to come back. | 
 | 	 */ | 
 | 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) | 
 | 		return; | 
 |  | 
 | 	/* Single clk mode, mii mode off(for serdes communication) */ | 
 | 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT); | 
 |  | 
 | 	phy_write(tbiphy, MII_ADVERTISE, | 
 | 			ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | | 
 | 			ADVERTISE_1000XPSE_ASYM); | 
 |  | 
 | 	phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE | | 
 | 			BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000); | 
 | } | 
 |  | 
 | static void init_registers(struct net_device *dev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	struct gfar __iomem *regs = NULL; | 
 | 	int i = 0; | 
 |  | 
 | 	for (i = 0; i < priv->num_grps; i++) { | 
 | 		regs = priv->gfargrp[i].regs; | 
 | 		/* Clear IEVENT */ | 
 | 		gfar_write(®s->ievent, IEVENT_INIT_CLEAR); | 
 |  | 
 | 		/* Initialize IMASK */ | 
 | 		gfar_write(®s->imask, IMASK_INIT_CLEAR); | 
 | 	} | 
 |  | 
 | 	regs = priv->gfargrp[0].regs; | 
 | 	/* Init hash registers to zero */ | 
 | 	gfar_write(®s->igaddr0, 0); | 
 | 	gfar_write(®s->igaddr1, 0); | 
 | 	gfar_write(®s->igaddr2, 0); | 
 | 	gfar_write(®s->igaddr3, 0); | 
 | 	gfar_write(®s->igaddr4, 0); | 
 | 	gfar_write(®s->igaddr5, 0); | 
 | 	gfar_write(®s->igaddr6, 0); | 
 | 	gfar_write(®s->igaddr7, 0); | 
 |  | 
 | 	gfar_write(®s->gaddr0, 0); | 
 | 	gfar_write(®s->gaddr1, 0); | 
 | 	gfar_write(®s->gaddr2, 0); | 
 | 	gfar_write(®s->gaddr3, 0); | 
 | 	gfar_write(®s->gaddr4, 0); | 
 | 	gfar_write(®s->gaddr5, 0); | 
 | 	gfar_write(®s->gaddr6, 0); | 
 | 	gfar_write(®s->gaddr7, 0); | 
 |  | 
 | 	/* Zero out the rmon mib registers if it has them */ | 
 | 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { | 
 | 		memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib)); | 
 |  | 
 | 		/* Mask off the CAM interrupts */ | 
 | 		gfar_write(®s->rmon.cam1, 0xffffffff); | 
 | 		gfar_write(®s->rmon.cam2, 0xffffffff); | 
 | 	} | 
 |  | 
 | 	/* Initialize the max receive buffer length */ | 
 | 	gfar_write(®s->mrblr, priv->rx_buffer_size); | 
 |  | 
 | 	/* Initialize the Minimum Frame Length Register */ | 
 | 	gfar_write(®s->minflr, MINFLR_INIT_SETTINGS); | 
 | } | 
 |  | 
 | static int __gfar_is_rx_idle(struct gfar_private *priv) | 
 | { | 
 | 	u32 res; | 
 |  | 
 | 	/* | 
 | 	 * Normaly TSEC should not hang on GRS commands, so we should | 
 | 	 * actually wait for IEVENT_GRSC flag. | 
 | 	 */ | 
 | 	if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002))) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Read the eTSEC register at offset 0xD1C. If bits 7-14 are | 
 | 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle | 
 | 	 * and the Rx can be safely reset. | 
 | 	 */ | 
 | 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c); | 
 | 	res &= 0x7f807f80; | 
 | 	if ((res & 0xffff) == (res >> 16)) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Halt the receive and transmit queues */ | 
 | static void gfar_halt_nodisable(struct net_device *dev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	struct gfar __iomem *regs = NULL; | 
 | 	u32 tempval; | 
 | 	int i = 0; | 
 |  | 
 | 	for (i = 0; i < priv->num_grps; i++) { | 
 | 		regs = priv->gfargrp[i].regs; | 
 | 		/* Mask all interrupts */ | 
 | 		gfar_write(®s->imask, IMASK_INIT_CLEAR); | 
 |  | 
 | 		/* Clear all interrupts */ | 
 | 		gfar_write(®s->ievent, IEVENT_INIT_CLEAR); | 
 | 	} | 
 |  | 
 | 	regs = priv->gfargrp[0].regs; | 
 | 	/* Stop the DMA, and wait for it to stop */ | 
 | 	tempval = gfar_read(®s->dmactrl); | 
 | 	if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) | 
 | 	    != (DMACTRL_GRS | DMACTRL_GTS)) { | 
 | 		int ret; | 
 |  | 
 | 		tempval |= (DMACTRL_GRS | DMACTRL_GTS); | 
 | 		gfar_write(®s->dmactrl, tempval); | 
 |  | 
 | 		do { | 
 | 			ret = spin_event_timeout(((gfar_read(®s->ievent) & | 
 | 				 (IEVENT_GRSC | IEVENT_GTSC)) == | 
 | 				 (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0); | 
 | 			if (!ret && !(gfar_read(®s->ievent) & IEVENT_GRSC)) | 
 | 				ret = __gfar_is_rx_idle(priv); | 
 | 		} while (!ret); | 
 | 	} | 
 | } | 
 |  | 
 | /* Halt the receive and transmit queues */ | 
 | void gfar_halt(struct net_device *dev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	struct gfar __iomem *regs = priv->gfargrp[0].regs; | 
 | 	u32 tempval; | 
 |  | 
 | 	gfar_halt_nodisable(dev); | 
 |  | 
 | 	/* Disable Rx and Tx */ | 
 | 	tempval = gfar_read(®s->maccfg1); | 
 | 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN); | 
 | 	gfar_write(®s->maccfg1, tempval); | 
 | } | 
 |  | 
 | static void free_grp_irqs(struct gfar_priv_grp *grp) | 
 | { | 
 | 	free_irq(grp->interruptError, grp); | 
 | 	free_irq(grp->interruptTransmit, grp); | 
 | 	free_irq(grp->interruptReceive, grp); | 
 | } | 
 |  | 
 | void stop_gfar(struct net_device *dev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	unsigned long flags; | 
 | 	int i; | 
 |  | 
 | 	phy_stop(priv->phydev); | 
 |  | 
 |  | 
 | 	/* Lock it down */ | 
 | 	local_irq_save(flags); | 
 | 	lock_tx_qs(priv); | 
 | 	lock_rx_qs(priv); | 
 |  | 
 | 	gfar_halt(dev); | 
 |  | 
 | 	unlock_rx_qs(priv); | 
 | 	unlock_tx_qs(priv); | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	/* Free the IRQs */ | 
 | 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { | 
 | 		for (i = 0; i < priv->num_grps; i++) | 
 | 			free_grp_irqs(&priv->gfargrp[i]); | 
 | 	} else { | 
 | 		for (i = 0; i < priv->num_grps; i++) | 
 | 			free_irq(priv->gfargrp[i].interruptTransmit, | 
 | 					&priv->gfargrp[i]); | 
 | 	} | 
 |  | 
 | 	free_skb_resources(priv); | 
 | } | 
 |  | 
 | static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue) | 
 | { | 
 | 	struct txbd8 *txbdp; | 
 | 	struct gfar_private *priv = netdev_priv(tx_queue->dev); | 
 | 	int i, j; | 
 |  | 
 | 	txbdp = tx_queue->tx_bd_base; | 
 |  | 
 | 	for (i = 0; i < tx_queue->tx_ring_size; i++) { | 
 | 		if (!tx_queue->tx_skbuff[i]) | 
 | 			continue; | 
 |  | 
 | 		dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr, | 
 | 				txbdp->length, DMA_TO_DEVICE); | 
 | 		txbdp->lstatus = 0; | 
 | 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags; | 
 | 				j++) { | 
 | 			txbdp++; | 
 | 			dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr, | 
 | 					txbdp->length, DMA_TO_DEVICE); | 
 | 		} | 
 | 		txbdp++; | 
 | 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]); | 
 | 		tx_queue->tx_skbuff[i] = NULL; | 
 | 	} | 
 | 	kfree(tx_queue->tx_skbuff); | 
 | } | 
 |  | 
 | static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue) | 
 | { | 
 | 	struct rxbd8 *rxbdp; | 
 | 	struct gfar_private *priv = netdev_priv(rx_queue->dev); | 
 | 	int i; | 
 |  | 
 | 	rxbdp = rx_queue->rx_bd_base; | 
 |  | 
 | 	for (i = 0; i < rx_queue->rx_ring_size; i++) { | 
 | 		if (rx_queue->rx_skbuff[i]) { | 
 | 			dma_unmap_single(&priv->ofdev->dev, | 
 | 					rxbdp->bufPtr, priv->rx_buffer_size, | 
 | 					DMA_FROM_DEVICE); | 
 | 			dev_kfree_skb_any(rx_queue->rx_skbuff[i]); | 
 | 			rx_queue->rx_skbuff[i] = NULL; | 
 | 		} | 
 | 		rxbdp->lstatus = 0; | 
 | 		rxbdp->bufPtr = 0; | 
 | 		rxbdp++; | 
 | 	} | 
 | 	kfree(rx_queue->rx_skbuff); | 
 | } | 
 |  | 
 | /* If there are any tx skbs or rx skbs still around, free them. | 
 |  * Then free tx_skbuff and rx_skbuff */ | 
 | static void free_skb_resources(struct gfar_private *priv) | 
 | { | 
 | 	struct gfar_priv_tx_q *tx_queue = NULL; | 
 | 	struct gfar_priv_rx_q *rx_queue = NULL; | 
 | 	int i; | 
 |  | 
 | 	/* Go through all the buffer descriptors and free their data buffers */ | 
 | 	for (i = 0; i < priv->num_tx_queues; i++) { | 
 | 		tx_queue = priv->tx_queue[i]; | 
 | 		if(tx_queue->tx_skbuff) | 
 | 			free_skb_tx_queue(tx_queue); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < priv->num_rx_queues; i++) { | 
 | 		rx_queue = priv->rx_queue[i]; | 
 | 		if(rx_queue->rx_skbuff) | 
 | 			free_skb_rx_queue(rx_queue); | 
 | 	} | 
 |  | 
 | 	dma_free_coherent(&priv->ofdev->dev, | 
 | 			sizeof(struct txbd8) * priv->total_tx_ring_size + | 
 | 			sizeof(struct rxbd8) * priv->total_rx_ring_size, | 
 | 			priv->tx_queue[0]->tx_bd_base, | 
 | 			priv->tx_queue[0]->tx_bd_dma_base); | 
 | 	skb_queue_purge(&priv->rx_recycle); | 
 | } | 
 |  | 
 | void gfar_start(struct net_device *dev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	struct gfar __iomem *regs = priv->gfargrp[0].regs; | 
 | 	u32 tempval; | 
 | 	int i = 0; | 
 |  | 
 | 	/* Enable Rx and Tx in MACCFG1 */ | 
 | 	tempval = gfar_read(®s->maccfg1); | 
 | 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN); | 
 | 	gfar_write(®s->maccfg1, tempval); | 
 |  | 
 | 	/* Initialize DMACTRL to have WWR and WOP */ | 
 | 	tempval = gfar_read(®s->dmactrl); | 
 | 	tempval |= DMACTRL_INIT_SETTINGS; | 
 | 	gfar_write(®s->dmactrl, tempval); | 
 |  | 
 | 	/* Make sure we aren't stopped */ | 
 | 	tempval = gfar_read(®s->dmactrl); | 
 | 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS); | 
 | 	gfar_write(®s->dmactrl, tempval); | 
 |  | 
 | 	for (i = 0; i < priv->num_grps; i++) { | 
 | 		regs = priv->gfargrp[i].regs; | 
 | 		/* Clear THLT/RHLT, so that the DMA starts polling now */ | 
 | 		gfar_write(®s->tstat, priv->gfargrp[i].tstat); | 
 | 		gfar_write(®s->rstat, priv->gfargrp[i].rstat); | 
 | 		/* Unmask the interrupts we look for */ | 
 | 		gfar_write(®s->imask, IMASK_DEFAULT); | 
 | 	} | 
 |  | 
 | 	dev->trans_start = jiffies; /* prevent tx timeout */ | 
 | } | 
 |  | 
 | void gfar_configure_coalescing(struct gfar_private *priv, | 
 | 	unsigned long tx_mask, unsigned long rx_mask) | 
 | { | 
 | 	struct gfar __iomem *regs = priv->gfargrp[0].regs; | 
 | 	u32 __iomem *baddr; | 
 | 	int i = 0; | 
 |  | 
 | 	/* Backward compatible case ---- even if we enable | 
 | 	 * multiple queues, there's only single reg to program | 
 | 	 */ | 
 | 	gfar_write(®s->txic, 0); | 
 | 	if(likely(priv->tx_queue[0]->txcoalescing)) | 
 | 		gfar_write(®s->txic, priv->tx_queue[0]->txic); | 
 |  | 
 | 	gfar_write(®s->rxic, 0); | 
 | 	if(unlikely(priv->rx_queue[0]->rxcoalescing)) | 
 | 		gfar_write(®s->rxic, priv->rx_queue[0]->rxic); | 
 |  | 
 | 	if (priv->mode == MQ_MG_MODE) { | 
 | 		baddr = ®s->txic0; | 
 | 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) { | 
 | 			if (likely(priv->tx_queue[i]->txcoalescing)) { | 
 | 				gfar_write(baddr + i, 0); | 
 | 				gfar_write(baddr + i, priv->tx_queue[i]->txic); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		baddr = ®s->rxic0; | 
 | 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) { | 
 | 			if (likely(priv->rx_queue[i]->rxcoalescing)) { | 
 | 				gfar_write(baddr + i, 0); | 
 | 				gfar_write(baddr + i, priv->rx_queue[i]->rxic); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static int register_grp_irqs(struct gfar_priv_grp *grp) | 
 | { | 
 | 	struct gfar_private *priv = grp->priv; | 
 | 	struct net_device *dev = priv->ndev; | 
 | 	int err; | 
 |  | 
 | 	/* If the device has multiple interrupts, register for | 
 | 	 * them.  Otherwise, only register for the one */ | 
 | 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { | 
 | 		/* Install our interrupt handlers for Error, | 
 | 		 * Transmit, and Receive */ | 
 | 		if ((err = request_irq(grp->interruptError, gfar_error, 0, | 
 | 				grp->int_name_er,grp)) < 0) { | 
 | 			if (netif_msg_intr(priv)) | 
 | 				printk(KERN_ERR "%s: Can't get IRQ %d\n", | 
 | 					dev->name, grp->interruptError); | 
 |  | 
 | 				goto err_irq_fail; | 
 | 		} | 
 |  | 
 | 		if ((err = request_irq(grp->interruptTransmit, gfar_transmit, | 
 | 				0, grp->int_name_tx, grp)) < 0) { | 
 | 			if (netif_msg_intr(priv)) | 
 | 				printk(KERN_ERR "%s: Can't get IRQ %d\n", | 
 | 					dev->name, grp->interruptTransmit); | 
 | 			goto tx_irq_fail; | 
 | 		} | 
 |  | 
 | 		if ((err = request_irq(grp->interruptReceive, gfar_receive, 0, | 
 | 				grp->int_name_rx, grp)) < 0) { | 
 | 			if (netif_msg_intr(priv)) | 
 | 				printk(KERN_ERR "%s: Can't get IRQ %d\n", | 
 | 					dev->name, grp->interruptReceive); | 
 | 			goto rx_irq_fail; | 
 | 		} | 
 | 	} else { | 
 | 		if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0, | 
 | 				grp->int_name_tx, grp)) < 0) { | 
 | 			if (netif_msg_intr(priv)) | 
 | 				printk(KERN_ERR "%s: Can't get IRQ %d\n", | 
 | 					dev->name, grp->interruptTransmit); | 
 | 			goto err_irq_fail; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | rx_irq_fail: | 
 | 	free_irq(grp->interruptTransmit, grp); | 
 | tx_irq_fail: | 
 | 	free_irq(grp->interruptError, grp); | 
 | err_irq_fail: | 
 | 	return err; | 
 |  | 
 | } | 
 |  | 
 | /* Bring the controller up and running */ | 
 | int startup_gfar(struct net_device *ndev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(ndev); | 
 | 	struct gfar __iomem *regs = NULL; | 
 | 	int err, i, j; | 
 |  | 
 | 	for (i = 0; i < priv->num_grps; i++) { | 
 | 		regs= priv->gfargrp[i].regs; | 
 | 		gfar_write(®s->imask, IMASK_INIT_CLEAR); | 
 | 	} | 
 |  | 
 | 	regs= priv->gfargrp[0].regs; | 
 | 	err = gfar_alloc_skb_resources(ndev); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	gfar_init_mac(ndev); | 
 |  | 
 | 	for (i = 0; i < priv->num_grps; i++) { | 
 | 		err = register_grp_irqs(&priv->gfargrp[i]); | 
 | 		if (err) { | 
 | 			for (j = 0; j < i; j++) | 
 | 				free_grp_irqs(&priv->gfargrp[j]); | 
 | 				goto irq_fail; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Start the controller */ | 
 | 	gfar_start(ndev); | 
 |  | 
 | 	phy_start(priv->phydev); | 
 |  | 
 | 	gfar_configure_coalescing(priv, 0xFF, 0xFF); | 
 |  | 
 | 	return 0; | 
 |  | 
 | irq_fail: | 
 | 	free_skb_resources(priv); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* Called when something needs to use the ethernet device */ | 
 | /* Returns 0 for success. */ | 
 | static int gfar_enet_open(struct net_device *dev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	int err; | 
 |  | 
 | 	enable_napi(priv); | 
 |  | 
 | 	skb_queue_head_init(&priv->rx_recycle); | 
 |  | 
 | 	/* Initialize a bunch of registers */ | 
 | 	init_registers(dev); | 
 |  | 
 | 	gfar_set_mac_address(dev); | 
 |  | 
 | 	err = init_phy(dev); | 
 |  | 
 | 	if (err) { | 
 | 		disable_napi(priv); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	err = startup_gfar(dev); | 
 | 	if (err) { | 
 | 		disable_napi(priv); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	netif_tx_start_all_queues(dev); | 
 |  | 
 | 	device_set_wakeup_enable(&dev->dev, priv->wol_en); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb) | 
 | { | 
 | 	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN); | 
 |  | 
 | 	memset(fcb, 0, GMAC_FCB_LEN); | 
 |  | 
 | 	return fcb; | 
 | } | 
 |  | 
 | static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb) | 
 | { | 
 | 	u8 flags = 0; | 
 |  | 
 | 	/* If we're here, it's a IP packet with a TCP or UDP | 
 | 	 * payload.  We set it to checksum, using a pseudo-header | 
 | 	 * we provide | 
 | 	 */ | 
 | 	flags = TXFCB_DEFAULT; | 
 |  | 
 | 	/* Tell the controller what the protocol is */ | 
 | 	/* And provide the already calculated phcs */ | 
 | 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) { | 
 | 		flags |= TXFCB_UDP; | 
 | 		fcb->phcs = udp_hdr(skb)->check; | 
 | 	} else | 
 | 		fcb->phcs = tcp_hdr(skb)->check; | 
 |  | 
 | 	/* l3os is the distance between the start of the | 
 | 	 * frame (skb->data) and the start of the IP hdr. | 
 | 	 * l4os is the distance between the start of the | 
 | 	 * l3 hdr and the l4 hdr */ | 
 | 	fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN); | 
 | 	fcb->l4os = skb_network_header_len(skb); | 
 |  | 
 | 	fcb->flags = flags; | 
 | } | 
 |  | 
 | void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb) | 
 | { | 
 | 	fcb->flags |= TXFCB_VLN; | 
 | 	fcb->vlctl = vlan_tx_tag_get(skb); | 
 | } | 
 |  | 
 | static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride, | 
 | 			       struct txbd8 *base, int ring_size) | 
 | { | 
 | 	struct txbd8 *new_bd = bdp + stride; | 
 |  | 
 | 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd; | 
 | } | 
 |  | 
 | static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base, | 
 | 		int ring_size) | 
 | { | 
 | 	return skip_txbd(bdp, 1, base, ring_size); | 
 | } | 
 |  | 
 | /* This is called by the kernel when a frame is ready for transmission. */ | 
 | /* It is pointed to by the dev->hard_start_xmit function pointer */ | 
 | static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	struct gfar_priv_tx_q *tx_queue = NULL; | 
 | 	struct netdev_queue *txq; | 
 | 	struct gfar __iomem *regs = NULL; | 
 | 	struct txfcb *fcb = NULL; | 
 | 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL; | 
 | 	u32 lstatus; | 
 | 	int i, rq = 0, do_tstamp = 0; | 
 | 	u32 bufaddr; | 
 | 	unsigned long flags; | 
 | 	unsigned int nr_frags, nr_txbds, length; | 
 | 	union skb_shared_tx *shtx; | 
 |  | 
 | 	/* | 
 | 	 * TOE=1 frames larger than 2500 bytes may see excess delays | 
 | 	 * before start of transmission. | 
 | 	 */ | 
 | 	if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) && | 
 | 			skb->ip_summed == CHECKSUM_PARTIAL && | 
 | 			skb->len > 2500)) { | 
 | 		int ret; | 
 |  | 
 | 		ret = skb_checksum_help(skb); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	rq = skb->queue_mapping; | 
 | 	tx_queue = priv->tx_queue[rq]; | 
 | 	txq = netdev_get_tx_queue(dev, rq); | 
 | 	base = tx_queue->tx_bd_base; | 
 | 	regs = tx_queue->grp->regs; | 
 | 	shtx = skb_tx(skb); | 
 |  | 
 | 	/* check if time stamp should be generated */ | 
 | 	if (unlikely(shtx->hardware && priv->hwts_tx_en)) | 
 | 		do_tstamp = 1; | 
 |  | 
 | 	/* make space for additional header when fcb is needed */ | 
 | 	if (((skb->ip_summed == CHECKSUM_PARTIAL) || | 
 | 			(priv->vlgrp && vlan_tx_tag_present(skb)) || | 
 | 			unlikely(do_tstamp)) && | 
 | 			(skb_headroom(skb) < GMAC_FCB_LEN)) { | 
 | 		struct sk_buff *skb_new; | 
 |  | 
 | 		skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN); | 
 | 		if (!skb_new) { | 
 | 			dev->stats.tx_errors++; | 
 | 			kfree_skb(skb); | 
 | 			return NETDEV_TX_OK; | 
 | 		} | 
 | 		kfree_skb(skb); | 
 | 		skb = skb_new; | 
 | 	} | 
 |  | 
 | 	/* total number of fragments in the SKB */ | 
 | 	nr_frags = skb_shinfo(skb)->nr_frags; | 
 |  | 
 | 	/* calculate the required number of TxBDs for this skb */ | 
 | 	if (unlikely(do_tstamp)) | 
 | 		nr_txbds = nr_frags + 2; | 
 | 	else | 
 | 		nr_txbds = nr_frags + 1; | 
 |  | 
 | 	/* check if there is space to queue this packet */ | 
 | 	if (nr_txbds > tx_queue->num_txbdfree) { | 
 | 		/* no space, stop the queue */ | 
 | 		netif_tx_stop_queue(txq); | 
 | 		dev->stats.tx_fifo_errors++; | 
 | 		return NETDEV_TX_BUSY; | 
 | 	} | 
 |  | 
 | 	/* Update transmit stats */ | 
 | 	txq->tx_bytes += skb->len; | 
 | 	txq->tx_packets ++; | 
 |  | 
 | 	txbdp = txbdp_start = tx_queue->cur_tx; | 
 | 	lstatus = txbdp->lstatus; | 
 |  | 
 | 	/* Time stamp insertion requires one additional TxBD */ | 
 | 	if (unlikely(do_tstamp)) | 
 | 		txbdp_tstamp = txbdp = next_txbd(txbdp, base, | 
 | 				tx_queue->tx_ring_size); | 
 |  | 
 | 	if (nr_frags == 0) { | 
 | 		if (unlikely(do_tstamp)) | 
 | 			txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST | | 
 | 					TXBD_INTERRUPT); | 
 | 		else | 
 | 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); | 
 | 	} else { | 
 | 		/* Place the fragment addresses and lengths into the TxBDs */ | 
 | 		for (i = 0; i < nr_frags; i++) { | 
 | 			/* Point at the next BD, wrapping as needed */ | 
 | 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); | 
 |  | 
 | 			length = skb_shinfo(skb)->frags[i].size; | 
 |  | 
 | 			lstatus = txbdp->lstatus | length | | 
 | 				BD_LFLAG(TXBD_READY); | 
 |  | 
 | 			/* Handle the last BD specially */ | 
 | 			if (i == nr_frags - 1) | 
 | 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); | 
 |  | 
 | 			bufaddr = dma_map_page(&priv->ofdev->dev, | 
 | 					skb_shinfo(skb)->frags[i].page, | 
 | 					skb_shinfo(skb)->frags[i].page_offset, | 
 | 					length, | 
 | 					DMA_TO_DEVICE); | 
 |  | 
 | 			/* set the TxBD length and buffer pointer */ | 
 | 			txbdp->bufPtr = bufaddr; | 
 | 			txbdp->lstatus = lstatus; | 
 | 		} | 
 |  | 
 | 		lstatus = txbdp_start->lstatus; | 
 | 	} | 
 |  | 
 | 	/* Set up checksumming */ | 
 | 	if (CHECKSUM_PARTIAL == skb->ip_summed) { | 
 | 		fcb = gfar_add_fcb(skb); | 
 | 		lstatus |= BD_LFLAG(TXBD_TOE); | 
 | 		gfar_tx_checksum(skb, fcb); | 
 | 	} | 
 |  | 
 | 	if (priv->vlgrp && vlan_tx_tag_present(skb)) { | 
 | 		if (unlikely(NULL == fcb)) { | 
 | 			fcb = gfar_add_fcb(skb); | 
 | 			lstatus |= BD_LFLAG(TXBD_TOE); | 
 | 		} | 
 |  | 
 | 		gfar_tx_vlan(skb, fcb); | 
 | 	} | 
 |  | 
 | 	/* Setup tx hardware time stamping if requested */ | 
 | 	if (unlikely(do_tstamp)) { | 
 | 		shtx->in_progress = 1; | 
 | 		if (fcb == NULL) | 
 | 			fcb = gfar_add_fcb(skb); | 
 | 		fcb->ptp = 1; | 
 | 		lstatus |= BD_LFLAG(TXBD_TOE); | 
 | 	} | 
 |  | 
 | 	txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data, | 
 | 			skb_headlen(skb), DMA_TO_DEVICE); | 
 |  | 
 | 	/* | 
 | 	 * If time stamping is requested one additional TxBD must be set up. The | 
 | 	 * first TxBD points to the FCB and must have a data length of | 
 | 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with | 
 | 	 * the full frame length. | 
 | 	 */ | 
 | 	if (unlikely(do_tstamp)) { | 
 | 		txbdp_tstamp->bufPtr = txbdp_start->bufPtr + GMAC_FCB_LEN; | 
 | 		txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) | | 
 | 				(skb_headlen(skb) - GMAC_FCB_LEN); | 
 | 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN; | 
 | 	} else { | 
 | 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We can work in parallel with gfar_clean_tx_ring(), except | 
 | 	 * when modifying num_txbdfree. Note that we didn't grab the lock | 
 | 	 * when we were reading the num_txbdfree and checking for available | 
 | 	 * space, that's because outside of this function it can only grow, | 
 | 	 * and once we've got needed space, it cannot suddenly disappear. | 
 | 	 * | 
 | 	 * The lock also protects us from gfar_error(), which can modify | 
 | 	 * regs->tstat and thus retrigger the transfers, which is why we | 
 | 	 * also must grab the lock before setting ready bit for the first | 
 | 	 * to be transmitted BD. | 
 | 	 */ | 
 | 	spin_lock_irqsave(&tx_queue->txlock, flags); | 
 |  | 
 | 	/* | 
 | 	 * The powerpc-specific eieio() is used, as wmb() has too strong | 
 | 	 * semantics (it requires synchronization between cacheable and | 
 | 	 * uncacheable mappings, which eieio doesn't provide and which we | 
 | 	 * don't need), thus requiring a more expensive sync instruction.  At | 
 | 	 * some point, the set of architecture-independent barrier functions | 
 | 	 * should be expanded to include weaker barriers. | 
 | 	 */ | 
 | 	eieio(); | 
 |  | 
 | 	txbdp_start->lstatus = lstatus; | 
 |  | 
 | 	eieio(); /* force lstatus write before tx_skbuff */ | 
 |  | 
 | 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb; | 
 |  | 
 | 	/* Update the current skb pointer to the next entry we will use | 
 | 	 * (wrapping if necessary) */ | 
 | 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) & | 
 | 		TX_RING_MOD_MASK(tx_queue->tx_ring_size); | 
 |  | 
 | 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size); | 
 |  | 
 | 	/* reduce TxBD free count */ | 
 | 	tx_queue->num_txbdfree -= (nr_txbds); | 
 |  | 
 | 	/* If the next BD still needs to be cleaned up, then the bds | 
 | 	   are full.  We need to tell the kernel to stop sending us stuff. */ | 
 | 	if (!tx_queue->num_txbdfree) { | 
 | 		netif_tx_stop_queue(txq); | 
 |  | 
 | 		dev->stats.tx_fifo_errors++; | 
 | 	} | 
 |  | 
 | 	/* Tell the DMA to go go go */ | 
 | 	gfar_write(®s->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex); | 
 |  | 
 | 	/* Unlock priv */ | 
 | 	spin_unlock_irqrestore(&tx_queue->txlock, flags); | 
 |  | 
 | 	return NETDEV_TX_OK; | 
 | } | 
 |  | 
 | /* Stops the kernel queue, and halts the controller */ | 
 | static int gfar_close(struct net_device *dev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 |  | 
 | 	disable_napi(priv); | 
 |  | 
 | 	cancel_work_sync(&priv->reset_task); | 
 | 	stop_gfar(dev); | 
 |  | 
 | 	/* Disconnect from the PHY */ | 
 | 	phy_disconnect(priv->phydev); | 
 | 	priv->phydev = NULL; | 
 |  | 
 | 	netif_tx_stop_all_queues(dev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Changes the mac address if the controller is not running. */ | 
 | static int gfar_set_mac_address(struct net_device *dev) | 
 | { | 
 | 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* Enables and disables VLAN insertion/extraction */ | 
 | static void gfar_vlan_rx_register(struct net_device *dev, | 
 | 		struct vlan_group *grp) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	struct gfar __iomem *regs = NULL; | 
 | 	unsigned long flags; | 
 | 	u32 tempval; | 
 |  | 
 | 	regs = priv->gfargrp[0].regs; | 
 | 	local_irq_save(flags); | 
 | 	lock_rx_qs(priv); | 
 |  | 
 | 	priv->vlgrp = grp; | 
 |  | 
 | 	if (grp) { | 
 | 		/* Enable VLAN tag insertion */ | 
 | 		tempval = gfar_read(®s->tctrl); | 
 | 		tempval |= TCTRL_VLINS; | 
 |  | 
 | 		gfar_write(®s->tctrl, tempval); | 
 |  | 
 | 		/* Enable VLAN tag extraction */ | 
 | 		tempval = gfar_read(®s->rctrl); | 
 | 		tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT); | 
 | 		gfar_write(®s->rctrl, tempval); | 
 | 	} else { | 
 | 		/* Disable VLAN tag insertion */ | 
 | 		tempval = gfar_read(®s->tctrl); | 
 | 		tempval &= ~TCTRL_VLINS; | 
 | 		gfar_write(®s->tctrl, tempval); | 
 |  | 
 | 		/* Disable VLAN tag extraction */ | 
 | 		tempval = gfar_read(®s->rctrl); | 
 | 		tempval &= ~RCTRL_VLEX; | 
 | 		/* If parse is no longer required, then disable parser */ | 
 | 		if (tempval & RCTRL_REQ_PARSER) | 
 | 			tempval |= RCTRL_PRSDEP_INIT; | 
 | 		else | 
 | 			tempval &= ~RCTRL_PRSDEP_INIT; | 
 | 		gfar_write(®s->rctrl, tempval); | 
 | 	} | 
 |  | 
 | 	gfar_change_mtu(dev, dev->mtu); | 
 |  | 
 | 	unlock_rx_qs(priv); | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | static int gfar_change_mtu(struct net_device *dev, int new_mtu) | 
 | { | 
 | 	int tempsize, tempval; | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	struct gfar __iomem *regs = priv->gfargrp[0].regs; | 
 | 	int oldsize = priv->rx_buffer_size; | 
 | 	int frame_size = new_mtu + ETH_HLEN; | 
 |  | 
 | 	if (priv->vlgrp) | 
 | 		frame_size += VLAN_HLEN; | 
 |  | 
 | 	if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) { | 
 | 		if (netif_msg_drv(priv)) | 
 | 			printk(KERN_ERR "%s: Invalid MTU setting\n", | 
 | 					dev->name); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (gfar_uses_fcb(priv)) | 
 | 		frame_size += GMAC_FCB_LEN; | 
 |  | 
 | 	frame_size += priv->padding; | 
 |  | 
 | 	tempsize = | 
 | 	    (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) + | 
 | 	    INCREMENTAL_BUFFER_SIZE; | 
 |  | 
 | 	/* Only stop and start the controller if it isn't already | 
 | 	 * stopped, and we changed something */ | 
 | 	if ((oldsize != tempsize) && (dev->flags & IFF_UP)) | 
 | 		stop_gfar(dev); | 
 |  | 
 | 	priv->rx_buffer_size = tempsize; | 
 |  | 
 | 	dev->mtu = new_mtu; | 
 |  | 
 | 	gfar_write(®s->mrblr, priv->rx_buffer_size); | 
 | 	gfar_write(®s->maxfrm, priv->rx_buffer_size); | 
 |  | 
 | 	/* If the mtu is larger than the max size for standard | 
 | 	 * ethernet frames (ie, a jumbo frame), then set maccfg2 | 
 | 	 * to allow huge frames, and to check the length */ | 
 | 	tempval = gfar_read(®s->maccfg2); | 
 |  | 
 | 	if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE || | 
 | 			gfar_has_errata(priv, GFAR_ERRATA_74)) | 
 | 		tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK); | 
 | 	else | 
 | 		tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK); | 
 |  | 
 | 	gfar_write(®s->maccfg2, tempval); | 
 |  | 
 | 	if ((oldsize != tempsize) && (dev->flags & IFF_UP)) | 
 | 		startup_gfar(dev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* gfar_reset_task gets scheduled when a packet has not been | 
 |  * transmitted after a set amount of time. | 
 |  * For now, assume that clearing out all the structures, and | 
 |  * starting over will fix the problem. | 
 |  */ | 
 | static void gfar_reset_task(struct work_struct *work) | 
 | { | 
 | 	struct gfar_private *priv = container_of(work, struct gfar_private, | 
 | 			reset_task); | 
 | 	struct net_device *dev = priv->ndev; | 
 |  | 
 | 	if (dev->flags & IFF_UP) { | 
 | 		netif_tx_stop_all_queues(dev); | 
 | 		stop_gfar(dev); | 
 | 		startup_gfar(dev); | 
 | 		netif_tx_start_all_queues(dev); | 
 | 	} | 
 |  | 
 | 	netif_tx_schedule_all(dev); | 
 | } | 
 |  | 
 | static void gfar_timeout(struct net_device *dev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 |  | 
 | 	dev->stats.tx_errors++; | 
 | 	schedule_work(&priv->reset_task); | 
 | } | 
 |  | 
 | static void gfar_align_skb(struct sk_buff *skb) | 
 | { | 
 | 	/* We need the data buffer to be aligned properly.  We will reserve | 
 | 	 * as many bytes as needed to align the data properly | 
 | 	 */ | 
 | 	skb_reserve(skb, RXBUF_ALIGNMENT - | 
 | 		(((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1))); | 
 | } | 
 |  | 
 | /* Interrupt Handler for Transmit complete */ | 
 | static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue) | 
 | { | 
 | 	struct net_device *dev = tx_queue->dev; | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	struct gfar_priv_rx_q *rx_queue = NULL; | 
 | 	struct txbd8 *bdp, *next = NULL; | 
 | 	struct txbd8 *lbdp = NULL; | 
 | 	struct txbd8 *base = tx_queue->tx_bd_base; | 
 | 	struct sk_buff *skb; | 
 | 	int skb_dirtytx; | 
 | 	int tx_ring_size = tx_queue->tx_ring_size; | 
 | 	int frags = 0, nr_txbds = 0; | 
 | 	int i; | 
 | 	int howmany = 0; | 
 | 	u32 lstatus; | 
 | 	size_t buflen; | 
 | 	union skb_shared_tx *shtx; | 
 |  | 
 | 	rx_queue = priv->rx_queue[tx_queue->qindex]; | 
 | 	bdp = tx_queue->dirty_tx; | 
 | 	skb_dirtytx = tx_queue->skb_dirtytx; | 
 |  | 
 | 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) { | 
 | 		unsigned long flags; | 
 |  | 
 | 		frags = skb_shinfo(skb)->nr_frags; | 
 |  | 
 | 		/* | 
 | 		 * When time stamping, one additional TxBD must be freed. | 
 | 		 * Also, we need to dma_unmap_single() the TxPAL. | 
 | 		 */ | 
 | 		shtx = skb_tx(skb); | 
 | 		if (unlikely(shtx->in_progress)) | 
 | 			nr_txbds = frags + 2; | 
 | 		else | 
 | 			nr_txbds = frags + 1; | 
 |  | 
 | 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size); | 
 |  | 
 | 		lstatus = lbdp->lstatus; | 
 |  | 
 | 		/* Only clean completed frames */ | 
 | 		if ((lstatus & BD_LFLAG(TXBD_READY)) && | 
 | 				(lstatus & BD_LENGTH_MASK)) | 
 | 			break; | 
 |  | 
 | 		if (unlikely(shtx->in_progress)) { | 
 | 			next = next_txbd(bdp, base, tx_ring_size); | 
 | 			buflen = next->length + GMAC_FCB_LEN; | 
 | 		} else | 
 | 			buflen = bdp->length; | 
 |  | 
 | 		dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr, | 
 | 				buflen, DMA_TO_DEVICE); | 
 |  | 
 | 		if (unlikely(shtx->in_progress)) { | 
 | 			struct skb_shared_hwtstamps shhwtstamps; | 
 | 			u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7); | 
 | 			memset(&shhwtstamps, 0, sizeof(shhwtstamps)); | 
 | 			shhwtstamps.hwtstamp = ns_to_ktime(*ns); | 
 | 			skb_tstamp_tx(skb, &shhwtstamps); | 
 | 			bdp->lstatus &= BD_LFLAG(TXBD_WRAP); | 
 | 			bdp = next; | 
 | 		} | 
 |  | 
 | 		bdp->lstatus &= BD_LFLAG(TXBD_WRAP); | 
 | 		bdp = next_txbd(bdp, base, tx_ring_size); | 
 |  | 
 | 		for (i = 0; i < frags; i++) { | 
 | 			dma_unmap_page(&priv->ofdev->dev, | 
 | 					bdp->bufPtr, | 
 | 					bdp->length, | 
 | 					DMA_TO_DEVICE); | 
 | 			bdp->lstatus &= BD_LFLAG(TXBD_WRAP); | 
 | 			bdp = next_txbd(bdp, base, tx_ring_size); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If there's room in the queue (limit it to rx_buffer_size) | 
 | 		 * we add this skb back into the pool, if it's the right size | 
 | 		 */ | 
 | 		if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size && | 
 | 				skb_recycle_check(skb, priv->rx_buffer_size + | 
 | 					RXBUF_ALIGNMENT)) { | 
 | 			gfar_align_skb(skb); | 
 | 			__skb_queue_head(&priv->rx_recycle, skb); | 
 | 		} else | 
 | 			dev_kfree_skb_any(skb); | 
 |  | 
 | 		tx_queue->tx_skbuff[skb_dirtytx] = NULL; | 
 |  | 
 | 		skb_dirtytx = (skb_dirtytx + 1) & | 
 | 			TX_RING_MOD_MASK(tx_ring_size); | 
 |  | 
 | 		howmany++; | 
 | 		spin_lock_irqsave(&tx_queue->txlock, flags); | 
 | 		tx_queue->num_txbdfree += nr_txbds; | 
 | 		spin_unlock_irqrestore(&tx_queue->txlock, flags); | 
 | 	} | 
 |  | 
 | 	/* If we freed a buffer, we can restart transmission, if necessary */ | 
 | 	if (__netif_subqueue_stopped(dev, tx_queue->qindex) && tx_queue->num_txbdfree) | 
 | 		netif_wake_subqueue(dev, tx_queue->qindex); | 
 |  | 
 | 	/* Update dirty indicators */ | 
 | 	tx_queue->skb_dirtytx = skb_dirtytx; | 
 | 	tx_queue->dirty_tx = bdp; | 
 |  | 
 | 	return howmany; | 
 | } | 
 |  | 
 | static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&gfargrp->grplock, flags); | 
 | 	if (napi_schedule_prep(&gfargrp->napi)) { | 
 | 		gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED); | 
 | 		__napi_schedule(&gfargrp->napi); | 
 | 	} else { | 
 | 		/* | 
 | 		 * Clear IEVENT, so interrupts aren't called again | 
 | 		 * because of the packets that have already arrived. | 
 | 		 */ | 
 | 		gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&gfargrp->grplock, flags); | 
 |  | 
 | } | 
 |  | 
 | /* Interrupt Handler for Transmit complete */ | 
 | static irqreturn_t gfar_transmit(int irq, void *grp_id) | 
 | { | 
 | 	gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id); | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, | 
 | 		struct sk_buff *skb) | 
 | { | 
 | 	struct net_device *dev = rx_queue->dev; | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	dma_addr_t buf; | 
 |  | 
 | 	buf = dma_map_single(&priv->ofdev->dev, skb->data, | 
 | 			     priv->rx_buffer_size, DMA_FROM_DEVICE); | 
 | 	gfar_init_rxbdp(rx_queue, bdp, buf); | 
 | } | 
 |  | 
 | static struct sk_buff * gfar_alloc_skb(struct net_device *dev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	struct sk_buff *skb = NULL; | 
 |  | 
 | 	skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT); | 
 | 	if (!skb) | 
 | 		return NULL; | 
 |  | 
 | 	gfar_align_skb(skb); | 
 |  | 
 | 	return skb; | 
 | } | 
 |  | 
 | struct sk_buff * gfar_new_skb(struct net_device *dev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	struct sk_buff *skb = NULL; | 
 |  | 
 | 	skb = __skb_dequeue(&priv->rx_recycle); | 
 | 	if (!skb) | 
 | 		skb = gfar_alloc_skb(dev); | 
 |  | 
 | 	return skb; | 
 | } | 
 |  | 
 | static inline void count_errors(unsigned short status, struct net_device *dev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	struct net_device_stats *stats = &dev->stats; | 
 | 	struct gfar_extra_stats *estats = &priv->extra_stats; | 
 |  | 
 | 	/* If the packet was truncated, none of the other errors | 
 | 	 * matter */ | 
 | 	if (status & RXBD_TRUNCATED) { | 
 | 		stats->rx_length_errors++; | 
 |  | 
 | 		estats->rx_trunc++; | 
 |  | 
 | 		return; | 
 | 	} | 
 | 	/* Count the errors, if there were any */ | 
 | 	if (status & (RXBD_LARGE | RXBD_SHORT)) { | 
 | 		stats->rx_length_errors++; | 
 |  | 
 | 		if (status & RXBD_LARGE) | 
 | 			estats->rx_large++; | 
 | 		else | 
 | 			estats->rx_short++; | 
 | 	} | 
 | 	if (status & RXBD_NONOCTET) { | 
 | 		stats->rx_frame_errors++; | 
 | 		estats->rx_nonoctet++; | 
 | 	} | 
 | 	if (status & RXBD_CRCERR) { | 
 | 		estats->rx_crcerr++; | 
 | 		stats->rx_crc_errors++; | 
 | 	} | 
 | 	if (status & RXBD_OVERRUN) { | 
 | 		estats->rx_overrun++; | 
 | 		stats->rx_crc_errors++; | 
 | 	} | 
 | } | 
 |  | 
 | irqreturn_t gfar_receive(int irq, void *grp_id) | 
 | { | 
 | 	gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id); | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb) | 
 | { | 
 | 	/* If valid headers were found, and valid sums | 
 | 	 * were verified, then we tell the kernel that no | 
 | 	 * checksumming is necessary.  Otherwise, it is */ | 
 | 	if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU)) | 
 | 		skb->ip_summed = CHECKSUM_UNNECESSARY; | 
 | 	else | 
 | 		skb->ip_summed = CHECKSUM_NONE; | 
 | } | 
 |  | 
 |  | 
 | /* gfar_process_frame() -- handle one incoming packet if skb | 
 |  * isn't NULL.  */ | 
 | static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, | 
 | 			      int amount_pull) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	struct rxfcb *fcb = NULL; | 
 |  | 
 | 	int ret; | 
 |  | 
 | 	/* fcb is at the beginning if exists */ | 
 | 	fcb = (struct rxfcb *)skb->data; | 
 |  | 
 | 	/* Remove the FCB from the skb */ | 
 | 	/* Remove the padded bytes, if there are any */ | 
 | 	if (amount_pull) { | 
 | 		skb_record_rx_queue(skb, fcb->rq); | 
 | 		skb_pull(skb, amount_pull); | 
 | 	} | 
 |  | 
 | 	/* Get receive timestamp from the skb */ | 
 | 	if (priv->hwts_rx_en) { | 
 | 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); | 
 | 		u64 *ns = (u64 *) skb->data; | 
 | 		memset(shhwtstamps, 0, sizeof(*shhwtstamps)); | 
 | 		shhwtstamps->hwtstamp = ns_to_ktime(*ns); | 
 | 	} | 
 |  | 
 | 	if (priv->padding) | 
 | 		skb_pull(skb, priv->padding); | 
 |  | 
 | 	if (priv->rx_csum_enable) | 
 | 		gfar_rx_checksum(skb, fcb); | 
 |  | 
 | 	/* Tell the skb what kind of packet this is */ | 
 | 	skb->protocol = eth_type_trans(skb, dev); | 
 |  | 
 | 	/* Send the packet up the stack */ | 
 | 	if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN))) | 
 | 		ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl); | 
 | 	else | 
 | 		ret = netif_receive_skb(skb); | 
 |  | 
 | 	if (NET_RX_DROP == ret) | 
 | 		priv->extra_stats.kernel_dropped++; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* gfar_clean_rx_ring() -- Processes each frame in the rx ring | 
 |  *   until the budget/quota has been reached. Returns the number | 
 |  *   of frames handled | 
 |  */ | 
 | int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit) | 
 | { | 
 | 	struct net_device *dev = rx_queue->dev; | 
 | 	struct rxbd8 *bdp, *base; | 
 | 	struct sk_buff *skb; | 
 | 	int pkt_len; | 
 | 	int amount_pull; | 
 | 	int howmany = 0; | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 |  | 
 | 	/* Get the first full descriptor */ | 
 | 	bdp = rx_queue->cur_rx; | 
 | 	base = rx_queue->rx_bd_base; | 
 |  | 
 | 	amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0); | 
 |  | 
 | 	while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) { | 
 | 		struct sk_buff *newskb; | 
 | 		rmb(); | 
 |  | 
 | 		/* Add another skb for the future */ | 
 | 		newskb = gfar_new_skb(dev); | 
 |  | 
 | 		skb = rx_queue->rx_skbuff[rx_queue->skb_currx]; | 
 |  | 
 | 		dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr, | 
 | 				priv->rx_buffer_size, DMA_FROM_DEVICE); | 
 |  | 
 | 		if (unlikely(!(bdp->status & RXBD_ERR) && | 
 | 				bdp->length > priv->rx_buffer_size)) | 
 | 			bdp->status = RXBD_LARGE; | 
 |  | 
 | 		/* We drop the frame if we failed to allocate a new buffer */ | 
 | 		if (unlikely(!newskb || !(bdp->status & RXBD_LAST) || | 
 | 				 bdp->status & RXBD_ERR)) { | 
 | 			count_errors(bdp->status, dev); | 
 |  | 
 | 			if (unlikely(!newskb)) | 
 | 				newskb = skb; | 
 | 			else if (skb) | 
 | 				__skb_queue_head(&priv->rx_recycle, skb); | 
 | 		} else { | 
 | 			/* Increment the number of packets */ | 
 | 			rx_queue->stats.rx_packets++; | 
 | 			howmany++; | 
 |  | 
 | 			if (likely(skb)) { | 
 | 				pkt_len = bdp->length - ETH_FCS_LEN; | 
 | 				/* Remove the FCS from the packet length */ | 
 | 				skb_put(skb, pkt_len); | 
 | 				rx_queue->stats.rx_bytes += pkt_len; | 
 | 				skb_record_rx_queue(skb, rx_queue->qindex); | 
 | 				gfar_process_frame(dev, skb, amount_pull); | 
 |  | 
 | 			} else { | 
 | 				if (netif_msg_rx_err(priv)) | 
 | 					printk(KERN_WARNING | 
 | 					       "%s: Missing skb!\n", dev->name); | 
 | 				rx_queue->stats.rx_dropped++; | 
 | 				priv->extra_stats.rx_skbmissing++; | 
 | 			} | 
 |  | 
 | 		} | 
 |  | 
 | 		rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb; | 
 |  | 
 | 		/* Setup the new bdp */ | 
 | 		gfar_new_rxbdp(rx_queue, bdp, newskb); | 
 |  | 
 | 		/* Update to the next pointer */ | 
 | 		bdp = next_bd(bdp, base, rx_queue->rx_ring_size); | 
 |  | 
 | 		/* update to point at the next skb */ | 
 | 		rx_queue->skb_currx = | 
 | 		    (rx_queue->skb_currx + 1) & | 
 | 		    RX_RING_MOD_MASK(rx_queue->rx_ring_size); | 
 | 	} | 
 |  | 
 | 	/* Update the current rxbd pointer to be the next one */ | 
 | 	rx_queue->cur_rx = bdp; | 
 |  | 
 | 	return howmany; | 
 | } | 
 |  | 
 | static int gfar_poll(struct napi_struct *napi, int budget) | 
 | { | 
 | 	struct gfar_priv_grp *gfargrp = container_of(napi, | 
 | 			struct gfar_priv_grp, napi); | 
 | 	struct gfar_private *priv = gfargrp->priv; | 
 | 	struct gfar __iomem *regs = gfargrp->regs; | 
 | 	struct gfar_priv_tx_q *tx_queue = NULL; | 
 | 	struct gfar_priv_rx_q *rx_queue = NULL; | 
 | 	int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0; | 
 | 	int tx_cleaned = 0, i, left_over_budget = budget; | 
 | 	unsigned long serviced_queues = 0; | 
 | 	int num_queues = 0; | 
 |  | 
 | 	num_queues = gfargrp->num_rx_queues; | 
 | 	budget_per_queue = budget/num_queues; | 
 |  | 
 | 	/* Clear IEVENT, so interrupts aren't called again | 
 | 	 * because of the packets that have already arrived */ | 
 | 	gfar_write(®s->ievent, IEVENT_RTX_MASK); | 
 |  | 
 | 	while (num_queues && left_over_budget) { | 
 |  | 
 | 		budget_per_queue = left_over_budget/num_queues; | 
 | 		left_over_budget = 0; | 
 |  | 
 | 		for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) { | 
 | 			if (test_bit(i, &serviced_queues)) | 
 | 				continue; | 
 | 			rx_queue = priv->rx_queue[i]; | 
 | 			tx_queue = priv->tx_queue[rx_queue->qindex]; | 
 |  | 
 | 			tx_cleaned += gfar_clean_tx_ring(tx_queue); | 
 | 			rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue, | 
 | 							budget_per_queue); | 
 | 			rx_cleaned += rx_cleaned_per_queue; | 
 | 			if(rx_cleaned_per_queue < budget_per_queue) { | 
 | 				left_over_budget = left_over_budget + | 
 | 					(budget_per_queue - rx_cleaned_per_queue); | 
 | 				set_bit(i, &serviced_queues); | 
 | 				num_queues--; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (tx_cleaned) | 
 | 		return budget; | 
 |  | 
 | 	if (rx_cleaned < budget) { | 
 | 		napi_complete(napi); | 
 |  | 
 | 		/* Clear the halt bit in RSTAT */ | 
 | 		gfar_write(®s->rstat, gfargrp->rstat); | 
 |  | 
 | 		gfar_write(®s->imask, IMASK_DEFAULT); | 
 |  | 
 | 		/* If we are coalescing interrupts, update the timer */ | 
 | 		/* Otherwise, clear it */ | 
 | 		gfar_configure_coalescing(priv, | 
 | 				gfargrp->rx_bit_map, gfargrp->tx_bit_map); | 
 | 	} | 
 |  | 
 | 	return rx_cleaned; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NET_POLL_CONTROLLER | 
 | /* | 
 |  * Polling 'interrupt' - used by things like netconsole to send skbs | 
 |  * without having to re-enable interrupts. It's not called while | 
 |  * the interrupt routine is executing. | 
 |  */ | 
 | static void gfar_netpoll(struct net_device *dev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	int i = 0; | 
 |  | 
 | 	/* If the device has multiple interrupts, run tx/rx */ | 
 | 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { | 
 | 		for (i = 0; i < priv->num_grps; i++) { | 
 | 			disable_irq(priv->gfargrp[i].interruptTransmit); | 
 | 			disable_irq(priv->gfargrp[i].interruptReceive); | 
 | 			disable_irq(priv->gfargrp[i].interruptError); | 
 | 			gfar_interrupt(priv->gfargrp[i].interruptTransmit, | 
 | 						&priv->gfargrp[i]); | 
 | 			enable_irq(priv->gfargrp[i].interruptError); | 
 | 			enable_irq(priv->gfargrp[i].interruptReceive); | 
 | 			enable_irq(priv->gfargrp[i].interruptTransmit); | 
 | 		} | 
 | 	} else { | 
 | 		for (i = 0; i < priv->num_grps; i++) { | 
 | 			disable_irq(priv->gfargrp[i].interruptTransmit); | 
 | 			gfar_interrupt(priv->gfargrp[i].interruptTransmit, | 
 | 						&priv->gfargrp[i]); | 
 | 			enable_irq(priv->gfargrp[i].interruptTransmit); | 
 | 		} | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | /* The interrupt handler for devices with one interrupt */ | 
 | static irqreturn_t gfar_interrupt(int irq, void *grp_id) | 
 | { | 
 | 	struct gfar_priv_grp *gfargrp = grp_id; | 
 |  | 
 | 	/* Save ievent for future reference */ | 
 | 	u32 events = gfar_read(&gfargrp->regs->ievent); | 
 |  | 
 | 	/* Check for reception */ | 
 | 	if (events & IEVENT_RX_MASK) | 
 | 		gfar_receive(irq, grp_id); | 
 |  | 
 | 	/* Check for transmit completion */ | 
 | 	if (events & IEVENT_TX_MASK) | 
 | 		gfar_transmit(irq, grp_id); | 
 |  | 
 | 	/* Check for errors */ | 
 | 	if (events & IEVENT_ERR_MASK) | 
 | 		gfar_error(irq, grp_id); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /* Called every time the controller might need to be made | 
 |  * aware of new link state.  The PHY code conveys this | 
 |  * information through variables in the phydev structure, and this | 
 |  * function converts those variables into the appropriate | 
 |  * register values, and can bring down the device if needed. | 
 |  */ | 
 | static void adjust_link(struct net_device *dev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	struct gfar __iomem *regs = priv->gfargrp[0].regs; | 
 | 	unsigned long flags; | 
 | 	struct phy_device *phydev = priv->phydev; | 
 | 	int new_state = 0; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	lock_tx_qs(priv); | 
 |  | 
 | 	if (phydev->link) { | 
 | 		u32 tempval = gfar_read(®s->maccfg2); | 
 | 		u32 ecntrl = gfar_read(®s->ecntrl); | 
 |  | 
 | 		/* Now we make sure that we can be in full duplex mode. | 
 | 		 * If not, we operate in half-duplex mode. */ | 
 | 		if (phydev->duplex != priv->oldduplex) { | 
 | 			new_state = 1; | 
 | 			if (!(phydev->duplex)) | 
 | 				tempval &= ~(MACCFG2_FULL_DUPLEX); | 
 | 			else | 
 | 				tempval |= MACCFG2_FULL_DUPLEX; | 
 |  | 
 | 			priv->oldduplex = phydev->duplex; | 
 | 		} | 
 |  | 
 | 		if (phydev->speed != priv->oldspeed) { | 
 | 			new_state = 1; | 
 | 			switch (phydev->speed) { | 
 | 			case 1000: | 
 | 				tempval = | 
 | 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII); | 
 |  | 
 | 				ecntrl &= ~(ECNTRL_R100); | 
 | 				break; | 
 | 			case 100: | 
 | 			case 10: | 
 | 				tempval = | 
 | 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII); | 
 |  | 
 | 				/* Reduced mode distinguishes | 
 | 				 * between 10 and 100 */ | 
 | 				if (phydev->speed == SPEED_100) | 
 | 					ecntrl |= ECNTRL_R100; | 
 | 				else | 
 | 					ecntrl &= ~(ECNTRL_R100); | 
 | 				break; | 
 | 			default: | 
 | 				if (netif_msg_link(priv)) | 
 | 					printk(KERN_WARNING | 
 | 						"%s: Ack!  Speed (%d) is not 10/100/1000!\n", | 
 | 						dev->name, phydev->speed); | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			priv->oldspeed = phydev->speed; | 
 | 		} | 
 |  | 
 | 		gfar_write(®s->maccfg2, tempval); | 
 | 		gfar_write(®s->ecntrl, ecntrl); | 
 |  | 
 | 		if (!priv->oldlink) { | 
 | 			new_state = 1; | 
 | 			priv->oldlink = 1; | 
 | 		} | 
 | 	} else if (priv->oldlink) { | 
 | 		new_state = 1; | 
 | 		priv->oldlink = 0; | 
 | 		priv->oldspeed = 0; | 
 | 		priv->oldduplex = -1; | 
 | 	} | 
 |  | 
 | 	if (new_state && netif_msg_link(priv)) | 
 | 		phy_print_status(phydev); | 
 | 	unlock_tx_qs(priv); | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | /* Update the hash table based on the current list of multicast | 
 |  * addresses we subscribe to.  Also, change the promiscuity of | 
 |  * the device based on the flags (this function is called | 
 |  * whenever dev->flags is changed */ | 
 | static void gfar_set_multi(struct net_device *dev) | 
 | { | 
 | 	struct netdev_hw_addr *ha; | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	struct gfar __iomem *regs = priv->gfargrp[0].regs; | 
 | 	u32 tempval; | 
 |  | 
 | 	if (dev->flags & IFF_PROMISC) { | 
 | 		/* Set RCTRL to PROM */ | 
 | 		tempval = gfar_read(®s->rctrl); | 
 | 		tempval |= RCTRL_PROM; | 
 | 		gfar_write(®s->rctrl, tempval); | 
 | 	} else { | 
 | 		/* Set RCTRL to not PROM */ | 
 | 		tempval = gfar_read(®s->rctrl); | 
 | 		tempval &= ~(RCTRL_PROM); | 
 | 		gfar_write(®s->rctrl, tempval); | 
 | 	} | 
 |  | 
 | 	if (dev->flags & IFF_ALLMULTI) { | 
 | 		/* Set the hash to rx all multicast frames */ | 
 | 		gfar_write(®s->igaddr0, 0xffffffff); | 
 | 		gfar_write(®s->igaddr1, 0xffffffff); | 
 | 		gfar_write(®s->igaddr2, 0xffffffff); | 
 | 		gfar_write(®s->igaddr3, 0xffffffff); | 
 | 		gfar_write(®s->igaddr4, 0xffffffff); | 
 | 		gfar_write(®s->igaddr5, 0xffffffff); | 
 | 		gfar_write(®s->igaddr6, 0xffffffff); | 
 | 		gfar_write(®s->igaddr7, 0xffffffff); | 
 | 		gfar_write(®s->gaddr0, 0xffffffff); | 
 | 		gfar_write(®s->gaddr1, 0xffffffff); | 
 | 		gfar_write(®s->gaddr2, 0xffffffff); | 
 | 		gfar_write(®s->gaddr3, 0xffffffff); | 
 | 		gfar_write(®s->gaddr4, 0xffffffff); | 
 | 		gfar_write(®s->gaddr5, 0xffffffff); | 
 | 		gfar_write(®s->gaddr6, 0xffffffff); | 
 | 		gfar_write(®s->gaddr7, 0xffffffff); | 
 | 	} else { | 
 | 		int em_num; | 
 | 		int idx; | 
 |  | 
 | 		/* zero out the hash */ | 
 | 		gfar_write(®s->igaddr0, 0x0); | 
 | 		gfar_write(®s->igaddr1, 0x0); | 
 | 		gfar_write(®s->igaddr2, 0x0); | 
 | 		gfar_write(®s->igaddr3, 0x0); | 
 | 		gfar_write(®s->igaddr4, 0x0); | 
 | 		gfar_write(®s->igaddr5, 0x0); | 
 | 		gfar_write(®s->igaddr6, 0x0); | 
 | 		gfar_write(®s->igaddr7, 0x0); | 
 | 		gfar_write(®s->gaddr0, 0x0); | 
 | 		gfar_write(®s->gaddr1, 0x0); | 
 | 		gfar_write(®s->gaddr2, 0x0); | 
 | 		gfar_write(®s->gaddr3, 0x0); | 
 | 		gfar_write(®s->gaddr4, 0x0); | 
 | 		gfar_write(®s->gaddr5, 0x0); | 
 | 		gfar_write(®s->gaddr6, 0x0); | 
 | 		gfar_write(®s->gaddr7, 0x0); | 
 |  | 
 | 		/* If we have extended hash tables, we need to | 
 | 		 * clear the exact match registers to prepare for | 
 | 		 * setting them */ | 
 | 		if (priv->extended_hash) { | 
 | 			em_num = GFAR_EM_NUM + 1; | 
 | 			gfar_clear_exact_match(dev); | 
 | 			idx = 1; | 
 | 		} else { | 
 | 			idx = 0; | 
 | 			em_num = 0; | 
 | 		} | 
 |  | 
 | 		if (netdev_mc_empty(dev)) | 
 | 			return; | 
 |  | 
 | 		/* Parse the list, and set the appropriate bits */ | 
 | 		netdev_for_each_mc_addr(ha, dev) { | 
 | 			if (idx < em_num) { | 
 | 				gfar_set_mac_for_addr(dev, idx, ha->addr); | 
 | 				idx++; | 
 | 			} else | 
 | 				gfar_set_hash_for_addr(dev, ha->addr); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | /* Clears each of the exact match registers to zero, so they | 
 |  * don't interfere with normal reception */ | 
 | static void gfar_clear_exact_match(struct net_device *dev) | 
 | { | 
 | 	int idx; | 
 | 	u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0}; | 
 |  | 
 | 	for(idx = 1;idx < GFAR_EM_NUM + 1;idx++) | 
 | 		gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr); | 
 | } | 
 |  | 
 | /* Set the appropriate hash bit for the given addr */ | 
 | /* The algorithm works like so: | 
 |  * 1) Take the Destination Address (ie the multicast address), and | 
 |  * do a CRC on it (little endian), and reverse the bits of the | 
 |  * result. | 
 |  * 2) Use the 8 most significant bits as a hash into a 256-entry | 
 |  * table.  The table is controlled through 8 32-bit registers: | 
 |  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is | 
 |  * gaddr7.  This means that the 3 most significant bits in the | 
 |  * hash index which gaddr register to use, and the 5 other bits | 
 |  * indicate which bit (assuming an IBM numbering scheme, which | 
 |  * for PowerPC (tm) is usually the case) in the register holds | 
 |  * the entry. */ | 
 | static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr) | 
 | { | 
 | 	u32 tempval; | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	u32 result = ether_crc(MAC_ADDR_LEN, addr); | 
 | 	int width = priv->hash_width; | 
 | 	u8 whichbit = (result >> (32 - width)) & 0x1f; | 
 | 	u8 whichreg = result >> (32 - width + 5); | 
 | 	u32 value = (1 << (31-whichbit)); | 
 |  | 
 | 	tempval = gfar_read(priv->hash_regs[whichreg]); | 
 | 	tempval |= value; | 
 | 	gfar_write(priv->hash_regs[whichreg], tempval); | 
 | } | 
 |  | 
 |  | 
 | /* There are multiple MAC Address register pairs on some controllers | 
 |  * This function sets the numth pair to a given address | 
 |  */ | 
 | static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	struct gfar __iomem *regs = priv->gfargrp[0].regs; | 
 | 	int idx; | 
 | 	char tmpbuf[MAC_ADDR_LEN]; | 
 | 	u32 tempval; | 
 | 	u32 __iomem *macptr = ®s->macstnaddr1; | 
 |  | 
 | 	macptr += num*2; | 
 |  | 
 | 	/* Now copy it into the mac registers backwards, cuz */ | 
 | 	/* little endian is silly */ | 
 | 	for (idx = 0; idx < MAC_ADDR_LEN; idx++) | 
 | 		tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx]; | 
 |  | 
 | 	gfar_write(macptr, *((u32 *) (tmpbuf))); | 
 |  | 
 | 	tempval = *((u32 *) (tmpbuf + 4)); | 
 |  | 
 | 	gfar_write(macptr+1, tempval); | 
 | } | 
 |  | 
 | /* GFAR error interrupt handler */ | 
 | static irqreturn_t gfar_error(int irq, void *grp_id) | 
 | { | 
 | 	struct gfar_priv_grp *gfargrp = grp_id; | 
 | 	struct gfar __iomem *regs = gfargrp->regs; | 
 | 	struct gfar_private *priv= gfargrp->priv; | 
 | 	struct net_device *dev = priv->ndev; | 
 |  | 
 | 	/* Save ievent for future reference */ | 
 | 	u32 events = gfar_read(®s->ievent); | 
 |  | 
 | 	/* Clear IEVENT */ | 
 | 	gfar_write(®s->ievent, events & IEVENT_ERR_MASK); | 
 |  | 
 | 	/* Magic Packet is not an error. */ | 
 | 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) && | 
 | 	    (events & IEVENT_MAG)) | 
 | 		events &= ~IEVENT_MAG; | 
 |  | 
 | 	/* Hmm... */ | 
 | 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv)) | 
 | 		printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n", | 
 | 		       dev->name, events, gfar_read(®s->imask)); | 
 |  | 
 | 	/* Update the error counters */ | 
 | 	if (events & IEVENT_TXE) { | 
 | 		dev->stats.tx_errors++; | 
 |  | 
 | 		if (events & IEVENT_LC) | 
 | 			dev->stats.tx_window_errors++; | 
 | 		if (events & IEVENT_CRL) | 
 | 			dev->stats.tx_aborted_errors++; | 
 | 		if (events & IEVENT_XFUN) { | 
 | 			unsigned long flags; | 
 |  | 
 | 			if (netif_msg_tx_err(priv)) | 
 | 				printk(KERN_DEBUG "%s: TX FIFO underrun, " | 
 | 				       "packet dropped.\n", dev->name); | 
 | 			dev->stats.tx_dropped++; | 
 | 			priv->extra_stats.tx_underrun++; | 
 |  | 
 | 			local_irq_save(flags); | 
 | 			lock_tx_qs(priv); | 
 |  | 
 | 			/* Reactivate the Tx Queues */ | 
 | 			gfar_write(®s->tstat, gfargrp->tstat); | 
 |  | 
 | 			unlock_tx_qs(priv); | 
 | 			local_irq_restore(flags); | 
 | 		} | 
 | 		if (netif_msg_tx_err(priv)) | 
 | 			printk(KERN_DEBUG "%s: Transmit Error\n", dev->name); | 
 | 	} | 
 | 	if (events & IEVENT_BSY) { | 
 | 		dev->stats.rx_errors++; | 
 | 		priv->extra_stats.rx_bsy++; | 
 |  | 
 | 		gfar_receive(irq, grp_id); | 
 |  | 
 | 		if (netif_msg_rx_err(priv)) | 
 | 			printk(KERN_DEBUG "%s: busy error (rstat: %x)\n", | 
 | 			       dev->name, gfar_read(®s->rstat)); | 
 | 	} | 
 | 	if (events & IEVENT_BABR) { | 
 | 		dev->stats.rx_errors++; | 
 | 		priv->extra_stats.rx_babr++; | 
 |  | 
 | 		if (netif_msg_rx_err(priv)) | 
 | 			printk(KERN_DEBUG "%s: babbling RX error\n", dev->name); | 
 | 	} | 
 | 	if (events & IEVENT_EBERR) { | 
 | 		priv->extra_stats.eberr++; | 
 | 		if (netif_msg_rx_err(priv)) | 
 | 			printk(KERN_DEBUG "%s: bus error\n", dev->name); | 
 | 	} | 
 | 	if ((events & IEVENT_RXC) && netif_msg_rx_status(priv)) | 
 | 		printk(KERN_DEBUG "%s: control frame\n", dev->name); | 
 |  | 
 | 	if (events & IEVENT_BABT) { | 
 | 		priv->extra_stats.tx_babt++; | 
 | 		if (netif_msg_tx_err(priv)) | 
 | 			printk(KERN_DEBUG "%s: babbling TX error\n", dev->name); | 
 | 	} | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static struct of_device_id gfar_match[] = | 
 | { | 
 | 	{ | 
 | 		.type = "network", | 
 | 		.compatible = "gianfar", | 
 | 	}, | 
 | 	{ | 
 | 		.compatible = "fsl,etsec2", | 
 | 	}, | 
 | 	{}, | 
 | }; | 
 | MODULE_DEVICE_TABLE(of, gfar_match); | 
 |  | 
 | /* Structure for a device driver */ | 
 | static struct of_platform_driver gfar_driver = { | 
 | 	.driver = { | 
 | 		.name = "fsl-gianfar", | 
 | 		.owner = THIS_MODULE, | 
 | 		.pm = GFAR_PM_OPS, | 
 | 		.of_match_table = gfar_match, | 
 | 	}, | 
 | 	.probe = gfar_probe, | 
 | 	.remove = gfar_remove, | 
 | }; | 
 |  | 
 | static int __init gfar_init(void) | 
 | { | 
 | 	return of_register_platform_driver(&gfar_driver); | 
 | } | 
 |  | 
 | static void __exit gfar_exit(void) | 
 | { | 
 | 	of_unregister_platform_driver(&gfar_driver); | 
 | } | 
 |  | 
 | module_init(gfar_init); | 
 | module_exit(gfar_exit); | 
 |  |