| #ifndef _I386_PGTABLE_H | 
 | #define _I386_PGTABLE_H | 
 |  | 
 | #include <linux/config.h> | 
 |  | 
 | /* | 
 |  * The Linux memory management assumes a three-level page table setup. On | 
 |  * the i386, we use that, but "fold" the mid level into the top-level page | 
 |  * table, so that we physically have the same two-level page table as the | 
 |  * i386 mmu expects. | 
 |  * | 
 |  * This file contains the functions and defines necessary to modify and use | 
 |  * the i386 page table tree. | 
 |  */ | 
 | #ifndef __ASSEMBLY__ | 
 | #include <asm/processor.h> | 
 | #include <asm/fixmap.h> | 
 | #include <linux/threads.h> | 
 |  | 
 | #ifndef _I386_BITOPS_H | 
 | #include <asm/bitops.h> | 
 | #endif | 
 |  | 
 | #include <linux/slab.h> | 
 | #include <linux/list.h> | 
 | #include <linux/spinlock.h> | 
 |  | 
 | struct mm_struct; | 
 | struct vm_area_struct; | 
 |  | 
 | /* | 
 |  * ZERO_PAGE is a global shared page that is always zero: used | 
 |  * for zero-mapped memory areas etc.. | 
 |  */ | 
 | #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) | 
 | extern unsigned long empty_zero_page[1024]; | 
 | extern pgd_t swapper_pg_dir[1024]; | 
 | extern kmem_cache_t *pgd_cache; | 
 | extern kmem_cache_t *pmd_cache; | 
 | extern spinlock_t pgd_lock; | 
 | extern struct page *pgd_list; | 
 |  | 
 | void pmd_ctor(void *, kmem_cache_t *, unsigned long); | 
 | void pgd_ctor(void *, kmem_cache_t *, unsigned long); | 
 | void pgd_dtor(void *, kmem_cache_t *, unsigned long); | 
 | void pgtable_cache_init(void); | 
 | void paging_init(void); | 
 |  | 
 | /* | 
 |  * The Linux x86 paging architecture is 'compile-time dual-mode', it | 
 |  * implements both the traditional 2-level x86 page tables and the | 
 |  * newer 3-level PAE-mode page tables. | 
 |  */ | 
 | #ifdef CONFIG_X86_PAE | 
 | # include <asm/pgtable-3level-defs.h> | 
 | # define PMD_SIZE	(1UL << PMD_SHIFT) | 
 | # define PMD_MASK	(~(PMD_SIZE-1)) | 
 | #else | 
 | # include <asm/pgtable-2level-defs.h> | 
 | #endif | 
 |  | 
 | #define PGDIR_SIZE	(1UL << PGDIR_SHIFT) | 
 | #define PGDIR_MASK	(~(PGDIR_SIZE-1)) | 
 |  | 
 | #define USER_PTRS_PER_PGD	(TASK_SIZE/PGDIR_SIZE) | 
 | #define FIRST_USER_ADDRESS	0 | 
 |  | 
 | #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT) | 
 | #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS) | 
 |  | 
 | #define TWOLEVEL_PGDIR_SHIFT	22 | 
 | #define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT) | 
 | #define BOOT_KERNEL_PGD_PTRS (1024-BOOT_USER_PGD_PTRS) | 
 |  | 
 | /* Just any arbitrary offset to the start of the vmalloc VM area: the | 
 |  * current 8MB value just means that there will be a 8MB "hole" after the | 
 |  * physical memory until the kernel virtual memory starts.  That means that | 
 |  * any out-of-bounds memory accesses will hopefully be caught. | 
 |  * The vmalloc() routines leaves a hole of 4kB between each vmalloced | 
 |  * area for the same reason. ;) | 
 |  */ | 
 | #define VMALLOC_OFFSET	(8*1024*1024) | 
 | #define VMALLOC_START	(((unsigned long) high_memory + vmalloc_earlyreserve + \ | 
 | 			2*VMALLOC_OFFSET-1) & ~(VMALLOC_OFFSET-1)) | 
 | #ifdef CONFIG_HIGHMEM | 
 | # define VMALLOC_END	(PKMAP_BASE-2*PAGE_SIZE) | 
 | #else | 
 | # define VMALLOC_END	(FIXADDR_START-2*PAGE_SIZE) | 
 | #endif | 
 |  | 
 | /* | 
 |  * _PAGE_PSE set in the page directory entry just means that | 
 |  * the page directory entry points directly to a 4MB-aligned block of | 
 |  * memory.  | 
 |  */ | 
 | #define _PAGE_BIT_PRESENT	0 | 
 | #define _PAGE_BIT_RW		1 | 
 | #define _PAGE_BIT_USER		2 | 
 | #define _PAGE_BIT_PWT		3 | 
 | #define _PAGE_BIT_PCD		4 | 
 | #define _PAGE_BIT_ACCESSED	5 | 
 | #define _PAGE_BIT_DIRTY		6 | 
 | #define _PAGE_BIT_PSE		7	/* 4 MB (or 2MB) page, Pentium+, if present.. */ | 
 | #define _PAGE_BIT_GLOBAL	8	/* Global TLB entry PPro+ */ | 
 | #define _PAGE_BIT_UNUSED1	9	/* available for programmer */ | 
 | #define _PAGE_BIT_UNUSED2	10 | 
 | #define _PAGE_BIT_UNUSED3	11 | 
 | #define _PAGE_BIT_NX		63 | 
 |  | 
 | #define _PAGE_PRESENT	0x001 | 
 | #define _PAGE_RW	0x002 | 
 | #define _PAGE_USER	0x004 | 
 | #define _PAGE_PWT	0x008 | 
 | #define _PAGE_PCD	0x010 | 
 | #define _PAGE_ACCESSED	0x020 | 
 | #define _PAGE_DIRTY	0x040 | 
 | #define _PAGE_PSE	0x080	/* 4 MB (or 2MB) page, Pentium+, if present.. */ | 
 | #define _PAGE_GLOBAL	0x100	/* Global TLB entry PPro+ */ | 
 | #define _PAGE_UNUSED1	0x200	/* available for programmer */ | 
 | #define _PAGE_UNUSED2	0x400 | 
 | #define _PAGE_UNUSED3	0x800 | 
 |  | 
 | /* If _PAGE_PRESENT is clear, we use these: */ | 
 | #define _PAGE_FILE	0x040	/* nonlinear file mapping, saved PTE; unset:swap */ | 
 | #define _PAGE_PROTNONE	0x080	/* if the user mapped it with PROT_NONE; | 
 | 				   pte_present gives true */ | 
 | #ifdef CONFIG_X86_PAE | 
 | #define _PAGE_NX	(1ULL<<_PAGE_BIT_NX) | 
 | #else | 
 | #define _PAGE_NX	0 | 
 | #endif | 
 |  | 
 | #define _PAGE_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY) | 
 | #define _KERNPG_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY) | 
 | #define _PAGE_CHG_MASK	(PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) | 
 |  | 
 | #define PAGE_NONE \ | 
 | 	__pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED) | 
 | #define PAGE_SHARED \ | 
 | 	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED) | 
 |  | 
 | #define PAGE_SHARED_EXEC \ | 
 | 	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED) | 
 | #define PAGE_COPY_NOEXEC \ | 
 | 	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX) | 
 | #define PAGE_COPY_EXEC \ | 
 | 	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) | 
 | #define PAGE_COPY \ | 
 | 	PAGE_COPY_NOEXEC | 
 | #define PAGE_READONLY \ | 
 | 	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX) | 
 | #define PAGE_READONLY_EXEC \ | 
 | 	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) | 
 |  | 
 | #define _PAGE_KERNEL \ | 
 | 	(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_NX) | 
 | #define _PAGE_KERNEL_EXEC \ | 
 | 	(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED) | 
 |  | 
 | extern unsigned long long __PAGE_KERNEL, __PAGE_KERNEL_EXEC; | 
 | #define __PAGE_KERNEL_RO		(__PAGE_KERNEL & ~_PAGE_RW) | 
 | #define __PAGE_KERNEL_NOCACHE		(__PAGE_KERNEL | _PAGE_PCD) | 
 | #define __PAGE_KERNEL_LARGE		(__PAGE_KERNEL | _PAGE_PSE) | 
 | #define __PAGE_KERNEL_LARGE_EXEC	(__PAGE_KERNEL_EXEC | _PAGE_PSE) | 
 |  | 
 | #define PAGE_KERNEL		__pgprot(__PAGE_KERNEL) | 
 | #define PAGE_KERNEL_RO		__pgprot(__PAGE_KERNEL_RO) | 
 | #define PAGE_KERNEL_EXEC	__pgprot(__PAGE_KERNEL_EXEC) | 
 | #define PAGE_KERNEL_NOCACHE	__pgprot(__PAGE_KERNEL_NOCACHE) | 
 | #define PAGE_KERNEL_LARGE	__pgprot(__PAGE_KERNEL_LARGE) | 
 | #define PAGE_KERNEL_LARGE_EXEC	__pgprot(__PAGE_KERNEL_LARGE_EXEC) | 
 |  | 
 | /* | 
 |  * The i386 can't do page protection for execute, and considers that | 
 |  * the same are read. Also, write permissions imply read permissions. | 
 |  * This is the closest we can get.. | 
 |  */ | 
 | #define __P000	PAGE_NONE | 
 | #define __P001	PAGE_READONLY | 
 | #define __P010	PAGE_COPY | 
 | #define __P011	PAGE_COPY | 
 | #define __P100	PAGE_READONLY_EXEC | 
 | #define __P101	PAGE_READONLY_EXEC | 
 | #define __P110	PAGE_COPY_EXEC | 
 | #define __P111	PAGE_COPY_EXEC | 
 |  | 
 | #define __S000	PAGE_NONE | 
 | #define __S001	PAGE_READONLY | 
 | #define __S010	PAGE_SHARED | 
 | #define __S011	PAGE_SHARED | 
 | #define __S100	PAGE_READONLY_EXEC | 
 | #define __S101	PAGE_READONLY_EXEC | 
 | #define __S110	PAGE_SHARED_EXEC | 
 | #define __S111	PAGE_SHARED_EXEC | 
 |  | 
 | /* | 
 |  * Define this if things work differently on an i386 and an i486: | 
 |  * it will (on an i486) warn about kernel memory accesses that are | 
 |  * done without a 'access_ok(VERIFY_WRITE,..)' | 
 |  */ | 
 | #undef TEST_ACCESS_OK | 
 |  | 
 | /* The boot page tables (all created as a single array) */ | 
 | extern unsigned long pg0[]; | 
 |  | 
 | #define pte_present(x)	((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE)) | 
 | #define pte_clear(mm,addr,xp)	do { set_pte_at(mm, addr, xp, __pte(0)); } while (0) | 
 |  | 
 | /* To avoid harmful races, pmd_none(x) should check only the lower when PAE */ | 
 | #define pmd_none(x)	(!(unsigned long)pmd_val(x)) | 
 | #define pmd_present(x)	(pmd_val(x) & _PAGE_PRESENT) | 
 | #define pmd_clear(xp)	do { set_pmd(xp, __pmd(0)); } while (0) | 
 | #define	pmd_bad(x)	((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE) | 
 |  | 
 |  | 
 | #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT)) | 
 |  | 
 | /* | 
 |  * The following only work if pte_present() is true. | 
 |  * Undefined behaviour if not.. | 
 |  */ | 
 | #define __LARGE_PTE (_PAGE_PSE | _PAGE_PRESENT) | 
 | static inline int pte_user(pte_t pte)		{ return (pte).pte_low & _PAGE_USER; } | 
 | static inline int pte_read(pte_t pte)		{ return (pte).pte_low & _PAGE_USER; } | 
 | static inline int pte_dirty(pte_t pte)		{ return (pte).pte_low & _PAGE_DIRTY; } | 
 | static inline int pte_young(pte_t pte)		{ return (pte).pte_low & _PAGE_ACCESSED; } | 
 | static inline int pte_write(pte_t pte)		{ return (pte).pte_low & _PAGE_RW; } | 
 | static inline int pte_huge(pte_t pte)		{ return ((pte).pte_low & __LARGE_PTE) == __LARGE_PTE; } | 
 |  | 
 | /* | 
 |  * The following only works if pte_present() is not true. | 
 |  */ | 
 | static inline int pte_file(pte_t pte)		{ return (pte).pte_low & _PAGE_FILE; } | 
 |  | 
 | static inline pte_t pte_rdprotect(pte_t pte)	{ (pte).pte_low &= ~_PAGE_USER; return pte; } | 
 | static inline pte_t pte_exprotect(pte_t pte)	{ (pte).pte_low &= ~_PAGE_USER; return pte; } | 
 | static inline pte_t pte_mkclean(pte_t pte)	{ (pte).pte_low &= ~_PAGE_DIRTY; return pte; } | 
 | static inline pte_t pte_mkold(pte_t pte)	{ (pte).pte_low &= ~_PAGE_ACCESSED; return pte; } | 
 | static inline pte_t pte_wrprotect(pte_t pte)	{ (pte).pte_low &= ~_PAGE_RW; return pte; } | 
 | static inline pte_t pte_mkread(pte_t pte)	{ (pte).pte_low |= _PAGE_USER; return pte; } | 
 | static inline pte_t pte_mkexec(pte_t pte)	{ (pte).pte_low |= _PAGE_USER; return pte; } | 
 | static inline pte_t pte_mkdirty(pte_t pte)	{ (pte).pte_low |= _PAGE_DIRTY; return pte; } | 
 | static inline pte_t pte_mkyoung(pte_t pte)	{ (pte).pte_low |= _PAGE_ACCESSED; return pte; } | 
 | static inline pte_t pte_mkwrite(pte_t pte)	{ (pte).pte_low |= _PAGE_RW; return pte; } | 
 | static inline pte_t pte_mkhuge(pte_t pte)	{ (pte).pte_low |= __LARGE_PTE; return pte; } | 
 |  | 
 | #ifdef CONFIG_X86_PAE | 
 | # include <asm/pgtable-3level.h> | 
 | #else | 
 | # include <asm/pgtable-2level.h> | 
 | #endif | 
 |  | 
 | static inline int ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) | 
 | { | 
 | 	if (!pte_dirty(*ptep)) | 
 | 		return 0; | 
 | 	return test_and_clear_bit(_PAGE_BIT_DIRTY, &ptep->pte_low); | 
 | } | 
 |  | 
 | static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) | 
 | { | 
 | 	if (!pte_young(*ptep)) | 
 | 		return 0; | 
 | 	return test_and_clear_bit(_PAGE_BIT_ACCESSED, &ptep->pte_low); | 
 | } | 
 |  | 
 | static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long addr, pte_t *ptep, int full) | 
 | { | 
 | 	pte_t pte; | 
 | 	if (full) { | 
 | 		pte = *ptep; | 
 | 		*ptep = __pte(0); | 
 | 	} else { | 
 | 		pte = ptep_get_and_clear(mm, addr, ptep); | 
 | 	} | 
 | 	return pte; | 
 | } | 
 |  | 
 | static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) | 
 | { | 
 | 	clear_bit(_PAGE_BIT_RW, &ptep->pte_low); | 
 | } | 
 |  | 
 | /* | 
 |  * clone_pgd_range(pgd_t *dst, pgd_t *src, int count); | 
 |  * | 
 |  *  dst - pointer to pgd range anwhere on a pgd page | 
 |  *  src - "" | 
 |  *  count - the number of pgds to copy. | 
 |  * | 
 |  * dst and src can be on the same page, but the range must not overlap, | 
 |  * and must not cross a page boundary. | 
 |  */ | 
 | static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count) | 
 | { | 
 |        memcpy(dst, src, count * sizeof(pgd_t)); | 
 | } | 
 |  | 
 | /* | 
 |  * Macro to mark a page protection value as "uncacheable".  On processors which do not support | 
 |  * it, this is a no-op. | 
 |  */ | 
 | #define pgprot_noncached(prot)	((boot_cpu_data.x86 > 3)					  \ | 
 | 				 ? (__pgprot(pgprot_val(prot) | _PAGE_PCD | _PAGE_PWT)) : (prot)) | 
 |  | 
 | /* | 
 |  * Conversion functions: convert a page and protection to a page entry, | 
 |  * and a page entry and page directory to the page they refer to. | 
 |  */ | 
 |  | 
 | #define mk_pte(page, pgprot)	pfn_pte(page_to_pfn(page), (pgprot)) | 
 |  | 
 | static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) | 
 | { | 
 | 	pte.pte_low &= _PAGE_CHG_MASK; | 
 | 	pte.pte_low |= pgprot_val(newprot); | 
 | #ifdef CONFIG_X86_PAE | 
 | 	/* | 
 | 	 * Chop off the NX bit (if present), and add the NX portion of | 
 | 	 * the newprot (if present): | 
 | 	 */ | 
 | 	pte.pte_high &= ~(1 << (_PAGE_BIT_NX - 32)); | 
 | 	pte.pte_high |= (pgprot_val(newprot) >> 32) & \ | 
 | 					(__supported_pte_mask >> 32); | 
 | #endif | 
 | 	return pte; | 
 | } | 
 |  | 
 | #define pmd_large(pmd) \ | 
 | ((pmd_val(pmd) & (_PAGE_PSE|_PAGE_PRESENT)) == (_PAGE_PSE|_PAGE_PRESENT)) | 
 |  | 
 | /* | 
 |  * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] | 
 |  * | 
 |  * this macro returns the index of the entry in the pgd page which would | 
 |  * control the given virtual address | 
 |  */ | 
 | #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) | 
 | #define pgd_index_k(addr) pgd_index(addr) | 
 |  | 
 | /* | 
 |  * pgd_offset() returns a (pgd_t *) | 
 |  * pgd_index() is used get the offset into the pgd page's array of pgd_t's; | 
 |  */ | 
 | #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) | 
 |  | 
 | /* | 
 |  * a shortcut which implies the use of the kernel's pgd, instead | 
 |  * of a process's | 
 |  */ | 
 | #define pgd_offset_k(address) pgd_offset(&init_mm, address) | 
 |  | 
 | /* | 
 |  * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD] | 
 |  * | 
 |  * this macro returns the index of the entry in the pmd page which would | 
 |  * control the given virtual address | 
 |  */ | 
 | #define pmd_index(address) \ | 
 | 		(((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) | 
 |  | 
 | /* | 
 |  * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] | 
 |  * | 
 |  * this macro returns the index of the entry in the pte page which would | 
 |  * control the given virtual address | 
 |  */ | 
 | #define pte_index(address) \ | 
 | 		(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) | 
 | #define pte_offset_kernel(dir, address) \ | 
 | 	((pte_t *) pmd_page_kernel(*(dir)) +  pte_index(address)) | 
 |  | 
 | #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)) | 
 |  | 
 | #define pmd_page_kernel(pmd) \ | 
 | 		((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) | 
 |  | 
 | /* | 
 |  * Helper function that returns the kernel pagetable entry controlling | 
 |  * the virtual address 'address'. NULL means no pagetable entry present. | 
 |  * NOTE: the return type is pte_t but if the pmd is PSE then we return it | 
 |  * as a pte too. | 
 |  */ | 
 | extern pte_t *lookup_address(unsigned long address); | 
 |  | 
 | /* | 
 |  * Make a given kernel text page executable/non-executable. | 
 |  * Returns the previous executability setting of that page (which | 
 |  * is used to restore the previous state). Used by the SMP bootup code. | 
 |  * NOTE: this is an __init function for security reasons. | 
 |  */ | 
 | #ifdef CONFIG_X86_PAE | 
 |  extern int set_kernel_exec(unsigned long vaddr, int enable); | 
 | #else | 
 |  static inline int set_kernel_exec(unsigned long vaddr, int enable) { return 0;} | 
 | #endif | 
 |  | 
 | extern void noexec_setup(const char *str); | 
 |  | 
 | #if defined(CONFIG_HIGHPTE) | 
 | #define pte_offset_map(dir, address) \ | 
 | 	((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE0) + pte_index(address)) | 
 | #define pte_offset_map_nested(dir, address) \ | 
 | 	((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE1) + pte_index(address)) | 
 | #define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0) | 
 | #define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1) | 
 | #else | 
 | #define pte_offset_map(dir, address) \ | 
 | 	((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address)) | 
 | #define pte_offset_map_nested(dir, address) pte_offset_map(dir, address) | 
 | #define pte_unmap(pte) do { } while (0) | 
 | #define pte_unmap_nested(pte) do { } while (0) | 
 | #endif | 
 |  | 
 | /* | 
 |  * The i386 doesn't have any external MMU info: the kernel page | 
 |  * tables contain all the necessary information. | 
 |  * | 
 |  * Also, we only update the dirty/accessed state if we set | 
 |  * the dirty bit by hand in the kernel, since the hardware | 
 |  * will do the accessed bit for us, and we don't want to | 
 |  * race with other CPU's that might be updating the dirty | 
 |  * bit at the same time. | 
 |  */ | 
 | #define update_mmu_cache(vma,address,pte) do { } while (0) | 
 | #define  __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS | 
 | #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \ | 
 | 	do {								  \ | 
 | 		if (__dirty) {						  \ | 
 | 			(__ptep)->pte_low = (__entry).pte_low;	  	  \ | 
 | 			flush_tlb_page(__vma, __address);		  \ | 
 | 		}							  \ | 
 | 	} while (0) | 
 |  | 
 | #endif /* !__ASSEMBLY__ */ | 
 |  | 
 | #ifdef CONFIG_FLATMEM | 
 | #define kern_addr_valid(addr)	(1) | 
 | #endif /* CONFIG_FLATMEM */ | 
 |  | 
 | #define io_remap_pfn_range(vma, vaddr, pfn, size, prot)		\ | 
 | 		remap_pfn_range(vma, vaddr, pfn, size, prot) | 
 |  | 
 | #define MK_IOSPACE_PFN(space, pfn)	(pfn) | 
 | #define GET_IOSPACE(pfn)		0 | 
 | #define GET_PFN(pfn)			(pfn) | 
 |  | 
 | #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG | 
 | #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY | 
 | #define __HAVE_ARCH_PTEP_GET_AND_CLEAR | 
 | #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL | 
 | #define __HAVE_ARCH_PTEP_SET_WRPROTECT | 
 | #define __HAVE_ARCH_PTE_SAME | 
 | #include <asm-generic/pgtable.h> | 
 |  | 
 | #endif /* _I386_PGTABLE_H */ |