|  | /* | 
|  | Copyright (C) 1996  Digi International. | 
|  |  | 
|  | For technical support please email digiLinux@dgii.com or | 
|  | call Digi tech support at (612) 912-3456 | 
|  |  | 
|  | ** This driver is no longer supported by Digi ** | 
|  |  | 
|  | Much of this design and code came from epca.c which was | 
|  | copyright (C) 1994, 1995 Troy De Jongh, and subsquently | 
|  | modified by David Nugent, Christoph Lameter, Mike McLagan. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 2 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program; if not, write to the Free Software | 
|  | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | */ | 
|  | /* See README.epca for change history --DAT*/ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/serial.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/ctype.h> | 
|  | #include <linux/tty.h> | 
|  | #include <linux/tty_flip.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/pci.h> | 
|  | #include "digiPCI.h" | 
|  |  | 
|  |  | 
|  | #include "digi1.h" | 
|  | #include "digiFep1.h" | 
|  | #include "epca.h" | 
|  | #include "epcaconfig.h" | 
|  |  | 
|  | #define VERSION            "1.3.0.1-LK2.6" | 
|  |  | 
|  | /* This major needs to be submitted to Linux to join the majors list */ | 
|  | #define DIGIINFOMAJOR       35  /* For Digi specific ioctl */ | 
|  |  | 
|  |  | 
|  | #define MAXCARDS 7 | 
|  | #define epcaassert(x, msg)  if (!(x)) epca_error(__LINE__, msg) | 
|  |  | 
|  | #define PFX "epca: " | 
|  |  | 
|  | static int nbdevs, num_cards, liloconfig; | 
|  | static int digi_poller_inhibited = 1 ; | 
|  |  | 
|  | static int setup_error_code; | 
|  | static int invalid_lilo_config; | 
|  |  | 
|  | /* | 
|  | * The ISA boards do window flipping into the same spaces so its only sane with | 
|  | * a single lock. It's still pretty efficient. | 
|  | */ | 
|  | static DEFINE_SPINLOCK(epca_lock); | 
|  |  | 
|  | /* MAXBOARDS is typically 12, but ISA and EISA cards are restricted | 
|  | to 7 below. */ | 
|  | static struct board_info boards[MAXBOARDS]; | 
|  |  | 
|  | static struct tty_driver *pc_driver; | 
|  | static struct tty_driver *pc_info; | 
|  |  | 
|  | /* ------------------ Begin Digi specific structures -------------------- */ | 
|  |  | 
|  | /* | 
|  | * digi_channels represents an array of structures that keep track of each | 
|  | * channel of the Digi product. Information such as transmit and receive | 
|  | * pointers, termio data, and signal definitions (DTR, CTS, etc ...) are stored | 
|  | * here. This structure is NOT used to overlay the cards physical channel | 
|  | * structure. | 
|  | */ | 
|  | static struct channel digi_channels[MAX_ALLOC]; | 
|  |  | 
|  | /* | 
|  | * card_ptr is an array used to hold the address of the first channel structure | 
|  | * of each card. This array will hold the addresses of various channels located | 
|  | * in digi_channels. | 
|  | */ | 
|  | static struct channel *card_ptr[MAXCARDS]; | 
|  |  | 
|  | static struct timer_list epca_timer; | 
|  |  | 
|  | /* | 
|  | * Begin generic memory functions. These functions will be alias (point at) | 
|  | * more specific functions dependent on the board being configured. | 
|  | */ | 
|  | static void memwinon(struct board_info *b, unsigned int win); | 
|  | static void memwinoff(struct board_info *b, unsigned int win); | 
|  | static void globalwinon(struct channel *ch); | 
|  | static void rxwinon(struct channel *ch); | 
|  | static void txwinon(struct channel *ch); | 
|  | static void memoff(struct channel *ch); | 
|  | static void assertgwinon(struct channel *ch); | 
|  | static void assertmemoff(struct channel *ch); | 
|  |  | 
|  | /* ---- Begin more 'specific' memory functions for cx_like products --- */ | 
|  |  | 
|  | static void pcxem_memwinon(struct board_info *b, unsigned int win); | 
|  | static void pcxem_memwinoff(struct board_info *b, unsigned int win); | 
|  | static void pcxem_globalwinon(struct channel *ch); | 
|  | static void pcxem_rxwinon(struct channel *ch); | 
|  | static void pcxem_txwinon(struct channel *ch); | 
|  | static void pcxem_memoff(struct channel *ch); | 
|  |  | 
|  | /* ------ Begin more 'specific' memory functions for the pcxe ------- */ | 
|  |  | 
|  | static void pcxe_memwinon(struct board_info *b, unsigned int win); | 
|  | static void pcxe_memwinoff(struct board_info *b, unsigned int win); | 
|  | static void pcxe_globalwinon(struct channel *ch); | 
|  | static void pcxe_rxwinon(struct channel *ch); | 
|  | static void pcxe_txwinon(struct channel *ch); | 
|  | static void pcxe_memoff(struct channel *ch); | 
|  |  | 
|  | /* ---- Begin more 'specific' memory functions for the pc64xe and pcxi ---- */ | 
|  | /* Note : pc64xe and pcxi share the same windowing routines */ | 
|  |  | 
|  | static void pcxi_memwinon(struct board_info *b, unsigned int win); | 
|  | static void pcxi_memwinoff(struct board_info *b, unsigned int win); | 
|  | static void pcxi_globalwinon(struct channel *ch); | 
|  | static void pcxi_rxwinon(struct channel *ch); | 
|  | static void pcxi_txwinon(struct channel *ch); | 
|  | static void pcxi_memoff(struct channel *ch); | 
|  |  | 
|  | /* - Begin 'specific' do nothing memory functions needed for some cards - */ | 
|  |  | 
|  | static void dummy_memwinon(struct board_info *b, unsigned int win); | 
|  | static void dummy_memwinoff(struct board_info *b, unsigned int win); | 
|  | static void dummy_globalwinon(struct channel *ch); | 
|  | static void dummy_rxwinon(struct channel *ch); | 
|  | static void dummy_txwinon(struct channel *ch); | 
|  | static void dummy_memoff(struct channel *ch); | 
|  | static void dummy_assertgwinon(struct channel *ch); | 
|  | static void dummy_assertmemoff(struct channel *ch); | 
|  |  | 
|  | static struct channel *verifyChannel(struct tty_struct *); | 
|  | static void pc_sched_event(struct channel *, int); | 
|  | static void epca_error(int, char *); | 
|  | static void pc_close(struct tty_struct *, struct file *); | 
|  | static void shutdown(struct channel *); | 
|  | static void pc_hangup(struct tty_struct *); | 
|  | static int pc_write_room(struct tty_struct *); | 
|  | static int pc_chars_in_buffer(struct tty_struct *); | 
|  | static void pc_flush_buffer(struct tty_struct *); | 
|  | static void pc_flush_chars(struct tty_struct *); | 
|  | static int block_til_ready(struct tty_struct *, struct file *, | 
|  | struct channel *); | 
|  | static int pc_open(struct tty_struct *, struct file *); | 
|  | static void post_fep_init(unsigned int crd); | 
|  | static void epcapoll(unsigned long); | 
|  | static void doevent(int); | 
|  | static void fepcmd(struct channel *, int, int, int, int, int); | 
|  | static unsigned termios2digi_h(struct channel *ch, unsigned); | 
|  | static unsigned termios2digi_i(struct channel *ch, unsigned); | 
|  | static unsigned termios2digi_c(struct channel *ch, unsigned); | 
|  | static void epcaparam(struct tty_struct *, struct channel *); | 
|  | static void receive_data(struct channel *); | 
|  | static int pc_ioctl(struct tty_struct *, struct file *, | 
|  | unsigned int, unsigned long); | 
|  | static int info_ioctl(struct tty_struct *, struct file *, | 
|  | unsigned int, unsigned long); | 
|  | static void pc_set_termios(struct tty_struct *, struct ktermios *); | 
|  | static void do_softint(struct work_struct *work); | 
|  | static void pc_stop(struct tty_struct *); | 
|  | static void pc_start(struct tty_struct *); | 
|  | static void pc_throttle(struct tty_struct *tty); | 
|  | static void pc_unthrottle(struct tty_struct *tty); | 
|  | static int pc_send_break(struct tty_struct *tty, int msec); | 
|  | static void setup_empty_event(struct tty_struct *tty, struct channel *ch); | 
|  |  | 
|  | static int pc_write(struct tty_struct *, const unsigned char *, int); | 
|  | static int pc_init(void); | 
|  | static int init_PCI(void); | 
|  |  | 
|  | /* | 
|  | * Table of functions for each board to handle memory. Mantaining parallelism | 
|  | * is a *very* good idea here. The idea is for the runtime code to blindly call | 
|  | * these functions, not knowing/caring about the underlying hardware. This | 
|  | * stuff should contain no conditionals; if more functionality is needed a | 
|  | * different entry should be established. These calls are the interface calls | 
|  | * and are the only functions that should be accessed. Anyone caught making | 
|  | * direct calls deserves what they get. | 
|  | */ | 
|  | static void memwinon(struct board_info *b, unsigned int win) | 
|  | { | 
|  | b->memwinon(b, win); | 
|  | } | 
|  |  | 
|  | static void memwinoff(struct board_info *b, unsigned int win) | 
|  | { | 
|  | b->memwinoff(b, win); | 
|  | } | 
|  |  | 
|  | static void globalwinon(struct channel *ch) | 
|  | { | 
|  | ch->board->globalwinon(ch); | 
|  | } | 
|  |  | 
|  | static void rxwinon(struct channel *ch) | 
|  | { | 
|  | ch->board->rxwinon(ch); | 
|  | } | 
|  |  | 
|  | static void txwinon(struct channel *ch) | 
|  | { | 
|  | ch->board->txwinon(ch); | 
|  | } | 
|  |  | 
|  | static void memoff(struct channel *ch) | 
|  | { | 
|  | ch->board->memoff(ch); | 
|  | } | 
|  | static void assertgwinon(struct channel *ch) | 
|  | { | 
|  | ch->board->assertgwinon(ch); | 
|  | } | 
|  |  | 
|  | static void assertmemoff(struct channel *ch) | 
|  | { | 
|  | ch->board->assertmemoff(ch); | 
|  | } | 
|  |  | 
|  | /* PCXEM windowing is the same as that used in the PCXR and CX series cards. */ | 
|  | static void pcxem_memwinon(struct board_info *b, unsigned int win) | 
|  | { | 
|  | outb_p(FEPWIN | win, b->port + 1); | 
|  | } | 
|  |  | 
|  | static void pcxem_memwinoff(struct board_info *b, unsigned int win) | 
|  | { | 
|  | outb_p(0, b->port + 1); | 
|  | } | 
|  |  | 
|  | static void pcxem_globalwinon(struct channel *ch) | 
|  | { | 
|  | outb_p(FEPWIN, (int)ch->board->port + 1); | 
|  | } | 
|  |  | 
|  | static void pcxem_rxwinon(struct channel *ch) | 
|  | { | 
|  | outb_p(ch->rxwin, (int)ch->board->port + 1); | 
|  | } | 
|  |  | 
|  | static void pcxem_txwinon(struct channel *ch) | 
|  | { | 
|  | outb_p(ch->txwin, (int)ch->board->port + 1); | 
|  | } | 
|  |  | 
|  | static void pcxem_memoff(struct channel *ch) | 
|  | { | 
|  | outb_p(0, (int)ch->board->port + 1); | 
|  | } | 
|  |  | 
|  | /* ----------------- Begin pcxe memory window stuff ------------------ */ | 
|  | static void pcxe_memwinon(struct board_info *b, unsigned int win) | 
|  | { | 
|  | outb_p(FEPWIN | win, b->port + 1); | 
|  | } | 
|  |  | 
|  | static void pcxe_memwinoff(struct board_info *b, unsigned int win) | 
|  | { | 
|  | outb_p(inb(b->port) & ~FEPMEM, b->port + 1); | 
|  | outb_p(0, b->port + 1); | 
|  | } | 
|  |  | 
|  | static void pcxe_globalwinon(struct channel *ch) | 
|  | { | 
|  | outb_p(FEPWIN, (int)ch->board->port + 1); | 
|  | } | 
|  |  | 
|  | static void pcxe_rxwinon(struct channel *ch) | 
|  | { | 
|  | outb_p(ch->rxwin, (int)ch->board->port + 1); | 
|  | } | 
|  |  | 
|  | static void pcxe_txwinon(struct channel *ch) | 
|  | { | 
|  | outb_p(ch->txwin, (int)ch->board->port + 1); | 
|  | } | 
|  |  | 
|  | static void pcxe_memoff(struct channel *ch) | 
|  | { | 
|  | outb_p(0, (int)ch->board->port); | 
|  | outb_p(0, (int)ch->board->port + 1); | 
|  | } | 
|  |  | 
|  | /* ------------- Begin pc64xe and pcxi memory window stuff -------------- */ | 
|  | static void pcxi_memwinon(struct board_info *b, unsigned int win) | 
|  | { | 
|  | outb_p(inb(b->port) | FEPMEM, b->port); | 
|  | } | 
|  |  | 
|  | static void pcxi_memwinoff(struct board_info *b, unsigned int win) | 
|  | { | 
|  | outb_p(inb(b->port) & ~FEPMEM, b->port); | 
|  | } | 
|  |  | 
|  | static void pcxi_globalwinon(struct channel *ch) | 
|  | { | 
|  | outb_p(FEPMEM, ch->board->port); | 
|  | } | 
|  |  | 
|  | static void pcxi_rxwinon(struct channel *ch) | 
|  | { | 
|  | outb_p(FEPMEM, ch->board->port); | 
|  | } | 
|  |  | 
|  | static void pcxi_txwinon(struct channel *ch) | 
|  | { | 
|  | outb_p(FEPMEM, ch->board->port); | 
|  | } | 
|  |  | 
|  | static void pcxi_memoff(struct channel *ch) | 
|  | { | 
|  | outb_p(0, ch->board->port); | 
|  | } | 
|  |  | 
|  | static void pcxi_assertgwinon(struct channel *ch) | 
|  | { | 
|  | epcaassert(inb(ch->board->port) & FEPMEM, "Global memory off"); | 
|  | } | 
|  |  | 
|  | static void pcxi_assertmemoff(struct channel *ch) | 
|  | { | 
|  | epcaassert(!(inb(ch->board->port) & FEPMEM), "Memory on"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Not all of the cards need specific memory windowing routines. Some cards | 
|  | * (Such as PCI) needs no windowing routines at all. We provide these do | 
|  | * nothing routines so that the same code base can be used. The driver will | 
|  | * ALWAYS call a windowing routine if it thinks it needs to; regardless of the | 
|  | * card. However, dependent on the card the routine may or may not do anything. | 
|  | */ | 
|  | static void dummy_memwinon(struct board_info *b, unsigned int win) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void dummy_memwinoff(struct board_info *b, unsigned int win) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void dummy_globalwinon(struct channel *ch) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void dummy_rxwinon(struct channel *ch) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void dummy_txwinon(struct channel *ch) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void dummy_memoff(struct channel *ch) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void dummy_assertgwinon(struct channel *ch) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void dummy_assertmemoff(struct channel *ch) | 
|  | { | 
|  | } | 
|  |  | 
|  | static struct channel *verifyChannel(struct tty_struct *tty) | 
|  | { | 
|  | /* | 
|  | * This routine basically provides a sanity check. It insures that the | 
|  | * channel returned is within the proper range of addresses as well as | 
|  | * properly initialized. If some bogus info gets passed in | 
|  | * through tty->driver_data this should catch it. | 
|  | */ | 
|  | if (tty) { | 
|  | struct channel *ch = (struct channel *)tty->driver_data; | 
|  | if (ch >= &digi_channels[0] && ch < &digi_channels[nbdevs]) { | 
|  | if (ch->magic == EPCA_MAGIC) | 
|  | return ch; | 
|  | } | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void pc_sched_event(struct channel *ch, int event) | 
|  | { | 
|  | /* | 
|  | * We call this to schedule interrupt processing on some event. The | 
|  | * kernel sees our request and calls the related routine in OUR driver. | 
|  | */ | 
|  | ch->event |= 1 << event; | 
|  | schedule_work(&ch->tqueue); | 
|  | } | 
|  |  | 
|  | static void epca_error(int line, char *msg) | 
|  | { | 
|  | printk(KERN_ERR "epca_error (Digi): line = %d %s\n", line, msg); | 
|  | } | 
|  |  | 
|  | static void pc_close(struct tty_struct *tty, struct file *filp) | 
|  | { | 
|  | struct channel *ch; | 
|  | unsigned long flags; | 
|  | /* | 
|  | * verifyChannel returns the channel from the tty struct if it is | 
|  | * valid. This serves as a sanity check. | 
|  | */ | 
|  | ch = verifyChannel(tty); | 
|  | if (ch != NULL) { | 
|  | spin_lock_irqsave(&epca_lock, flags); | 
|  | if (tty_hung_up_p(filp)) { | 
|  | spin_unlock_irqrestore(&epca_lock, flags); | 
|  | return; | 
|  | } | 
|  | if (ch->port.count-- > 1)  { | 
|  | /* Begin channel is open more than once */ | 
|  | /* | 
|  | * Return without doing anything. Someone might still | 
|  | * be using the channel. | 
|  | */ | 
|  | spin_unlock_irqrestore(&epca_lock, flags); | 
|  | return; | 
|  | } | 
|  | /* Port open only once go ahead with shutdown & reset */ | 
|  | BUG_ON(ch->port.count < 0); | 
|  |  | 
|  | /* | 
|  | * Let the rest of the driver know the channel is being closed. | 
|  | * This becomes important if an open is attempted before close | 
|  | * is finished. | 
|  | */ | 
|  | ch->port.flags |= ASYNC_CLOSING; | 
|  | tty->closing = 1; | 
|  |  | 
|  | spin_unlock_irqrestore(&epca_lock, flags); | 
|  |  | 
|  | if (ch->port.flags & ASYNC_INITIALIZED)  { | 
|  | /* Setup an event to indicate when the | 
|  | transmit buffer empties */ | 
|  | setup_empty_event(tty, ch); | 
|  | /* 30 seconds timeout */ | 
|  | tty_wait_until_sent(tty, 3000); | 
|  | } | 
|  | pc_flush_buffer(tty); | 
|  |  | 
|  | tty_ldisc_flush(tty); | 
|  | shutdown(ch); | 
|  |  | 
|  | spin_lock_irqsave(&epca_lock, flags); | 
|  | tty->closing = 0; | 
|  | ch->event = 0; | 
|  | ch->port.tty = NULL; | 
|  | spin_unlock_irqrestore(&epca_lock, flags); | 
|  |  | 
|  | if (ch->port.blocked_open) { | 
|  | if (ch->close_delay) | 
|  | msleep_interruptible(jiffies_to_msecs(ch->close_delay)); | 
|  | wake_up_interruptible(&ch->port.open_wait); | 
|  | } | 
|  | ch->port.flags &= ~(ASYNC_NORMAL_ACTIVE | ASYNC_INITIALIZED | | 
|  | ASYNC_CLOSING); | 
|  | wake_up_interruptible(&ch->port.close_wait); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void shutdown(struct channel *ch) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct tty_struct *tty; | 
|  | struct board_chan __iomem *bc; | 
|  |  | 
|  | if (!(ch->port.flags & ASYNC_INITIALIZED)) | 
|  | return; | 
|  |  | 
|  | spin_lock_irqsave(&epca_lock, flags); | 
|  |  | 
|  | globalwinon(ch); | 
|  | bc = ch->brdchan; | 
|  |  | 
|  | /* | 
|  | * In order for an event to be generated on the receipt of data the | 
|  | * idata flag must be set. Since we are shutting down, this is not | 
|  | * necessary clear this flag. | 
|  | */ | 
|  | if (bc) | 
|  | writeb(0, &bc->idata); | 
|  | tty = ch->port.tty; | 
|  |  | 
|  | /* If we're a modem control device and HUPCL is on, drop RTS & DTR. */ | 
|  | if (tty->termios->c_cflag & HUPCL)  { | 
|  | ch->omodem &= ~(ch->m_rts | ch->m_dtr); | 
|  | fepcmd(ch, SETMODEM, 0, ch->m_dtr | ch->m_rts, 10, 1); | 
|  | } | 
|  | memoff(ch); | 
|  |  | 
|  | /* | 
|  | * The channel has officialy been closed. The next time it is opened it | 
|  | * will have to reinitialized. Set a flag to indicate this. | 
|  | */ | 
|  | /* Prevent future Digi programmed interrupts from coming active */ | 
|  | ch->port.flags &= ~ASYNC_INITIALIZED; | 
|  | spin_unlock_irqrestore(&epca_lock, flags); | 
|  | } | 
|  |  | 
|  | static void pc_hangup(struct tty_struct *tty) | 
|  | { | 
|  | struct channel *ch; | 
|  | /* | 
|  | * verifyChannel returns the channel from the tty struct if it is | 
|  | * valid. This serves as a sanity check. | 
|  | */ | 
|  | ch = verifyChannel(tty); | 
|  | if (ch != NULL) { | 
|  | unsigned long flags; | 
|  |  | 
|  | pc_flush_buffer(tty); | 
|  | tty_ldisc_flush(tty); | 
|  | shutdown(ch); | 
|  |  | 
|  | spin_lock_irqsave(&epca_lock, flags); | 
|  | ch->port.tty   = NULL; | 
|  | ch->event = 0; | 
|  | ch->port.count = 0; | 
|  | ch->port.flags &= ~(ASYNC_NORMAL_ACTIVE | ASYNC_INITIALIZED); | 
|  | spin_unlock_irqrestore(&epca_lock, flags); | 
|  | wake_up_interruptible(&ch->port.open_wait); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int pc_write(struct tty_struct *tty, | 
|  | const unsigned char *buf, int bytesAvailable) | 
|  | { | 
|  | unsigned int head, tail; | 
|  | int dataLen; | 
|  | int size; | 
|  | int amountCopied; | 
|  | struct channel *ch; | 
|  | unsigned long flags; | 
|  | int remain; | 
|  | struct board_chan __iomem *bc; | 
|  |  | 
|  | /* | 
|  | * pc_write is primarily called directly by the kernel routine | 
|  | * tty_write (Though it can also be called by put_char) found in | 
|  | * tty_io.c. pc_write is passed a line discipline buffer where the data | 
|  | * to be written out is stored. The line discipline implementation | 
|  | * itself is done at the kernel level and is not brought into the | 
|  | * driver. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * verifyChannel returns the channel from the tty struct if it is | 
|  | * valid. This serves as a sanity check. | 
|  | */ | 
|  | ch = verifyChannel(tty); | 
|  | if (ch == NULL) | 
|  | return 0; | 
|  |  | 
|  | /* Make a pointer to the channel data structure found on the board. */ | 
|  | bc   = ch->brdchan; | 
|  | size = ch->txbufsize; | 
|  | amountCopied = 0; | 
|  |  | 
|  | spin_lock_irqsave(&epca_lock, flags); | 
|  | globalwinon(ch); | 
|  |  | 
|  | head = readw(&bc->tin) & (size - 1); | 
|  | tail = readw(&bc->tout); | 
|  |  | 
|  | if (tail != readw(&bc->tout)) | 
|  | tail = readw(&bc->tout); | 
|  | tail &= (size - 1); | 
|  |  | 
|  | if (head >= tail) { | 
|  | /* head has not wrapped */ | 
|  | /* | 
|  | * remain (much like dataLen above) represents the total amount | 
|  | * of space available on the card for data. Here dataLen | 
|  | * represents the space existing between the head pointer and | 
|  | * the end of buffer. This is important because a memcpy cannot | 
|  | * be told to automatically wrap around when it hits the buffer | 
|  | * end. | 
|  | */ | 
|  | dataLen = size - head; | 
|  | remain = size - (head - tail) - 1; | 
|  | } else { | 
|  | /* head has wrapped around */ | 
|  | remain = tail - head - 1; | 
|  | dataLen = remain; | 
|  | } | 
|  | /* | 
|  | * Check the space on the card. If we have more data than space; reduce | 
|  | * the amount of data to fit the space. | 
|  | */ | 
|  | bytesAvailable = min(remain, bytesAvailable); | 
|  | txwinon(ch); | 
|  | while (bytesAvailable > 0) { | 
|  | /* there is data to copy onto card */ | 
|  |  | 
|  | /* | 
|  | * If head is not wrapped, the below will make sure the first | 
|  | * data copy fills to the end of card buffer. | 
|  | */ | 
|  | dataLen = min(bytesAvailable, dataLen); | 
|  | memcpy_toio(ch->txptr + head, buf, dataLen); | 
|  | buf += dataLen; | 
|  | head += dataLen; | 
|  | amountCopied += dataLen; | 
|  | bytesAvailable -= dataLen; | 
|  |  | 
|  | if (head >= size) { | 
|  | head = 0; | 
|  | dataLen = tail; | 
|  | } | 
|  | } | 
|  | ch->statusflags |= TXBUSY; | 
|  | globalwinon(ch); | 
|  | writew(head, &bc->tin); | 
|  |  | 
|  | if ((ch->statusflags & LOWWAIT) == 0)  { | 
|  | ch->statusflags |= LOWWAIT; | 
|  | writeb(1, &bc->ilow); | 
|  | } | 
|  | memoff(ch); | 
|  | spin_unlock_irqrestore(&epca_lock, flags); | 
|  | return amountCopied; | 
|  | } | 
|  |  | 
|  | static int pc_write_room(struct tty_struct *tty) | 
|  | { | 
|  | int remain = 0; | 
|  | struct channel *ch; | 
|  | unsigned long flags; | 
|  | unsigned int head, tail; | 
|  | struct board_chan __iomem *bc; | 
|  | /* | 
|  | * verifyChannel returns the channel from the tty struct if it is | 
|  | * valid. This serves as a sanity check. | 
|  | */ | 
|  | ch = verifyChannel(tty); | 
|  | if (ch != NULL) { | 
|  | spin_lock_irqsave(&epca_lock, flags); | 
|  | globalwinon(ch); | 
|  |  | 
|  | bc   = ch->brdchan; | 
|  | head = readw(&bc->tin) & (ch->txbufsize - 1); | 
|  | tail = readw(&bc->tout); | 
|  |  | 
|  | if (tail != readw(&bc->tout)) | 
|  | tail = readw(&bc->tout); | 
|  | /* Wrap tail if necessary */ | 
|  | tail &= (ch->txbufsize - 1); | 
|  | remain = tail - head - 1; | 
|  | if (remain < 0) | 
|  | remain += ch->txbufsize; | 
|  |  | 
|  | if (remain && (ch->statusflags & LOWWAIT) == 0) { | 
|  | ch->statusflags |= LOWWAIT; | 
|  | writeb(1, &bc->ilow); | 
|  | } | 
|  | memoff(ch); | 
|  | spin_unlock_irqrestore(&epca_lock, flags); | 
|  | } | 
|  | /* Return how much room is left on card */ | 
|  | return remain; | 
|  | } | 
|  |  | 
|  | static int pc_chars_in_buffer(struct tty_struct *tty) | 
|  | { | 
|  | int chars; | 
|  | unsigned int ctail, head, tail; | 
|  | int remain; | 
|  | unsigned long flags; | 
|  | struct channel *ch; | 
|  | struct board_chan __iomem *bc; | 
|  | /* | 
|  | * verifyChannel returns the channel from the tty struct if it is | 
|  | * valid. This serves as a sanity check. | 
|  | */ | 
|  | ch = verifyChannel(tty); | 
|  | if (ch == NULL) | 
|  | return 0; | 
|  |  | 
|  | spin_lock_irqsave(&epca_lock, flags); | 
|  | globalwinon(ch); | 
|  |  | 
|  | bc = ch->brdchan; | 
|  | tail = readw(&bc->tout); | 
|  | head = readw(&bc->tin); | 
|  | ctail = readw(&ch->mailbox->cout); | 
|  |  | 
|  | if (tail == head && readw(&ch->mailbox->cin) == ctail && | 
|  | readb(&bc->tbusy) == 0) | 
|  | chars = 0; | 
|  | else  { /* Begin if some space on the card has been used */ | 
|  | head = readw(&bc->tin) & (ch->txbufsize - 1); | 
|  | tail &= (ch->txbufsize - 1); | 
|  | /* | 
|  | * The logic here is basically opposite of the above | 
|  | * pc_write_room here we are finding the amount of bytes in the | 
|  | * buffer filled. Not the amount of bytes empty. | 
|  | */ | 
|  | remain = tail - head - 1; | 
|  | if (remain < 0) | 
|  | remain += ch->txbufsize; | 
|  | chars = (int)(ch->txbufsize - remain); | 
|  | /* | 
|  | * Make it possible to wakeup anything waiting for output in | 
|  | * tty_ioctl.c, etc. | 
|  | * | 
|  | * If not already set. Setup an event to indicate when the | 
|  | * transmit buffer empties. | 
|  | */ | 
|  | if (!(ch->statusflags & EMPTYWAIT)) | 
|  | setup_empty_event(tty, ch); | 
|  | } /* End if some space on the card has been used */ | 
|  | memoff(ch); | 
|  | spin_unlock_irqrestore(&epca_lock, flags); | 
|  | /* Return number of characters residing on card. */ | 
|  | return chars; | 
|  | } | 
|  |  | 
|  | static void pc_flush_buffer(struct tty_struct *tty) | 
|  | { | 
|  | unsigned int tail; | 
|  | unsigned long flags; | 
|  | struct channel *ch; | 
|  | struct board_chan __iomem *bc; | 
|  | /* | 
|  | * verifyChannel returns the channel from the tty struct if it is | 
|  | * valid. This serves as a sanity check. | 
|  | */ | 
|  | ch = verifyChannel(tty); | 
|  | if (ch == NULL) | 
|  | return; | 
|  |  | 
|  | spin_lock_irqsave(&epca_lock, flags); | 
|  | globalwinon(ch); | 
|  | bc   = ch->brdchan; | 
|  | tail = readw(&bc->tout); | 
|  | /* Have FEP move tout pointer; effectively flushing transmit buffer */ | 
|  | fepcmd(ch, STOUT, (unsigned) tail, 0, 0, 0); | 
|  | memoff(ch); | 
|  | spin_unlock_irqrestore(&epca_lock, flags); | 
|  | tty_wakeup(tty); | 
|  | } | 
|  |  | 
|  | static void pc_flush_chars(struct tty_struct *tty) | 
|  | { | 
|  | struct channel *ch; | 
|  | /* | 
|  | * verifyChannel returns the channel from the tty struct if it is | 
|  | * valid. This serves as a sanity check. | 
|  | */ | 
|  | ch = verifyChannel(tty); | 
|  | if (ch != NULL) { | 
|  | unsigned long flags; | 
|  | spin_lock_irqsave(&epca_lock, flags); | 
|  | /* | 
|  | * If not already set and the transmitter is busy setup an | 
|  | * event to indicate when the transmit empties. | 
|  | */ | 
|  | if ((ch->statusflags & TXBUSY) && | 
|  | !(ch->statusflags & EMPTYWAIT)) | 
|  | setup_empty_event(tty, ch); | 
|  | spin_unlock_irqrestore(&epca_lock, flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int block_til_ready(struct tty_struct *tty, | 
|  | struct file *filp, struct channel *ch) | 
|  | { | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  | int retval, do_clocal = 0; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (tty_hung_up_p(filp)) { | 
|  | if (ch->port.flags & ASYNC_HUP_NOTIFY) | 
|  | retval = -EAGAIN; | 
|  | else | 
|  | retval = -ERESTARTSYS; | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the device is in the middle of being closed, then block until | 
|  | * it's done, and then try again. | 
|  | */ | 
|  | if (ch->port.flags & ASYNC_CLOSING) { | 
|  | interruptible_sleep_on(&ch->port.close_wait); | 
|  |  | 
|  | if (ch->port.flags & ASYNC_HUP_NOTIFY) | 
|  | return -EAGAIN; | 
|  | else | 
|  | return -ERESTARTSYS; | 
|  | } | 
|  |  | 
|  | if (filp->f_flags & O_NONBLOCK)  { | 
|  | /* | 
|  | * If non-blocking mode is set, then make the check up front | 
|  | * and then exit. | 
|  | */ | 
|  | ch->port.flags |= ASYNC_NORMAL_ACTIVE; | 
|  | return 0; | 
|  | } | 
|  | if (tty->termios->c_cflag & CLOCAL) | 
|  | do_clocal = 1; | 
|  | /* Block waiting for the carrier detect and the line to become free */ | 
|  |  | 
|  | retval = 0; | 
|  | add_wait_queue(&ch->port.open_wait, &wait); | 
|  |  | 
|  | spin_lock_irqsave(&epca_lock, flags); | 
|  | /* We dec count so that pc_close will know when to free things */ | 
|  | if (!tty_hung_up_p(filp)) | 
|  | ch->port.count--; | 
|  | ch->port.blocked_open++; | 
|  | while (1) { | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | if (tty_hung_up_p(filp) || | 
|  | !(ch->port.flags & ASYNC_INITIALIZED)) { | 
|  | if (ch->port.flags & ASYNC_HUP_NOTIFY) | 
|  | retval = -EAGAIN; | 
|  | else | 
|  | retval = -ERESTARTSYS; | 
|  | break; | 
|  | } | 
|  | if (!(ch->port.flags & ASYNC_CLOSING) && | 
|  | (do_clocal || (ch->imodem & ch->dcd))) | 
|  | break; | 
|  | if (signal_pending(current)) { | 
|  | retval = -ERESTARTSYS; | 
|  | break; | 
|  | } | 
|  | spin_unlock_irqrestore(&epca_lock, flags); | 
|  | /* | 
|  | * Allow someone else to be scheduled. We will occasionally go | 
|  | * through this loop until one of the above conditions change. | 
|  | * The below schedule call will allow other processes to enter | 
|  | * and prevent this loop from hogging the cpu. | 
|  | */ | 
|  | schedule(); | 
|  | spin_lock_irqsave(&epca_lock, flags); | 
|  | } | 
|  |  | 
|  | __set_current_state(TASK_RUNNING); | 
|  | remove_wait_queue(&ch->port.open_wait, &wait); | 
|  | if (!tty_hung_up_p(filp)) | 
|  | ch->port.count++; | 
|  | ch->port.blocked_open--; | 
|  |  | 
|  | spin_unlock_irqrestore(&epca_lock, flags); | 
|  |  | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | ch->port.flags |= ASYNC_NORMAL_ACTIVE; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pc_open(struct tty_struct *tty, struct file *filp) | 
|  | { | 
|  | struct channel *ch; | 
|  | unsigned long flags; | 
|  | int line, retval, boardnum; | 
|  | struct board_chan __iomem *bc; | 
|  | unsigned int head; | 
|  |  | 
|  | line = tty->index; | 
|  | if (line < 0 || line >= nbdevs) | 
|  | return -ENODEV; | 
|  |  | 
|  | ch = &digi_channels[line]; | 
|  | boardnum = ch->boardnum; | 
|  |  | 
|  | /* Check status of board configured in system.  */ | 
|  |  | 
|  | /* | 
|  | * I check to see if the epca_setup routine detected an user error. It | 
|  | * might be better to put this in pc_init, but for the moment it goes | 
|  | * here. | 
|  | */ | 
|  | if (invalid_lilo_config) { | 
|  | if (setup_error_code & INVALID_BOARD_TYPE) | 
|  | printk(KERN_ERR "epca: pc_open: Invalid board type specified in kernel options.\n"); | 
|  | if (setup_error_code & INVALID_NUM_PORTS) | 
|  | printk(KERN_ERR "epca: pc_open: Invalid number of ports specified in kernel options.\n"); | 
|  | if (setup_error_code & INVALID_MEM_BASE) | 
|  | printk(KERN_ERR "epca: pc_open: Invalid board memory address specified in kernel options.\n"); | 
|  | if (setup_error_code & INVALID_PORT_BASE) | 
|  | printk(KERN_ERR "epca; pc_open: Invalid board port address specified in kernel options.\n"); | 
|  | if (setup_error_code & INVALID_BOARD_STATUS) | 
|  | printk(KERN_ERR "epca: pc_open: Invalid board status specified in kernel options.\n"); | 
|  | if (setup_error_code & INVALID_ALTPIN) | 
|  | printk(KERN_ERR "epca: pc_open: Invalid board altpin specified in kernel options;\n"); | 
|  | tty->driver_data = NULL;   /* Mark this device as 'down' */ | 
|  | return -ENODEV; | 
|  | } | 
|  | if (boardnum >= num_cards || boards[boardnum].status == DISABLED)  { | 
|  | tty->driver_data = NULL;   /* Mark this device as 'down' */ | 
|  | return(-ENODEV); | 
|  | } | 
|  |  | 
|  | bc = ch->brdchan; | 
|  | if (bc == NULL) { | 
|  | tty->driver_data = NULL; | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&epca_lock, flags); | 
|  | /* | 
|  | * Every time a channel is opened, increment a counter. This is | 
|  | * necessary because we do not wish to flush and shutdown the channel | 
|  | * until the last app holding the channel open, closes it. | 
|  | */ | 
|  | ch->port.count++; | 
|  | /* | 
|  | * Set a kernel structures pointer to our local channel structure. This | 
|  | * way we can get to it when passed only a tty struct. | 
|  | */ | 
|  | tty->driver_data = ch; | 
|  | /* | 
|  | * If this is the first time the channel has been opened, initialize | 
|  | * the tty->termios struct otherwise let pc_close handle it. | 
|  | */ | 
|  | globalwinon(ch); | 
|  | ch->statusflags = 0; | 
|  |  | 
|  | /* Save boards current modem status */ | 
|  | ch->imodem = readb(&bc->mstat); | 
|  |  | 
|  | /* | 
|  | * Set receive head and tail ptrs to each other. This indicates no data | 
|  | * available to read. | 
|  | */ | 
|  | head = readw(&bc->rin); | 
|  | writew(head, &bc->rout); | 
|  |  | 
|  | /* Set the channels associated tty structure */ | 
|  | ch->port.tty = tty; | 
|  |  | 
|  | /* | 
|  | * The below routine generally sets up parity, baud, flow control | 
|  | * issues, etc.... It effect both control flags and input flags. | 
|  | */ | 
|  | epcaparam(tty, ch); | 
|  | ch->port.flags |= ASYNC_INITIALIZED; | 
|  | memoff(ch); | 
|  | spin_unlock_irqrestore(&epca_lock, flags); | 
|  |  | 
|  | retval = block_til_ready(tty, filp, ch); | 
|  | if (retval) | 
|  | return retval; | 
|  | /* | 
|  | * Set this again in case a hangup set it to zero while this open() was | 
|  | * waiting for the line... | 
|  | */ | 
|  | spin_lock_irqsave(&epca_lock, flags); | 
|  | ch->port.tty = tty; | 
|  | globalwinon(ch); | 
|  | /* Enable Digi Data events */ | 
|  | writeb(1, &bc->idata); | 
|  | memoff(ch); | 
|  | spin_unlock_irqrestore(&epca_lock, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init epca_module_init(void) | 
|  | { | 
|  | return pc_init(); | 
|  | } | 
|  | module_init(epca_module_init); | 
|  |  | 
|  | static struct pci_driver epca_driver; | 
|  |  | 
|  | static void __exit epca_module_exit(void) | 
|  | { | 
|  | int               count, crd; | 
|  | struct board_info *bd; | 
|  | struct channel    *ch; | 
|  |  | 
|  | del_timer_sync(&epca_timer); | 
|  |  | 
|  | if (tty_unregister_driver(pc_driver) || | 
|  | tty_unregister_driver(pc_info)) { | 
|  | printk(KERN_WARNING "epca: cleanup_module failed to un-register tty driver\n"); | 
|  | return; | 
|  | } | 
|  | put_tty_driver(pc_driver); | 
|  | put_tty_driver(pc_info); | 
|  |  | 
|  | for (crd = 0; crd < num_cards; crd++) { | 
|  | bd = &boards[crd]; | 
|  | if (!bd) { /* sanity check */ | 
|  | printk(KERN_ERR "<Error> - Digi : cleanup_module failed\n"); | 
|  | return; | 
|  | } | 
|  | ch = card_ptr[crd]; | 
|  | for (count = 0; count < bd->numports; count++, ch++) { | 
|  | if (ch && ch->port.tty) | 
|  | tty_hangup(ch->port.tty); | 
|  | } | 
|  | } | 
|  | pci_unregister_driver(&epca_driver); | 
|  | } | 
|  | module_exit(epca_module_exit); | 
|  |  | 
|  | static const struct tty_operations pc_ops = { | 
|  | .open = pc_open, | 
|  | .close = pc_close, | 
|  | .write = pc_write, | 
|  | .write_room = pc_write_room, | 
|  | .flush_buffer = pc_flush_buffer, | 
|  | .chars_in_buffer = pc_chars_in_buffer, | 
|  | .flush_chars = pc_flush_chars, | 
|  | .ioctl = pc_ioctl, | 
|  | .set_termios = pc_set_termios, | 
|  | .stop = pc_stop, | 
|  | .start = pc_start, | 
|  | .throttle = pc_throttle, | 
|  | .unthrottle = pc_unthrottle, | 
|  | .hangup = pc_hangup, | 
|  | .break_ctl = pc_send_break | 
|  | }; | 
|  |  | 
|  | static int info_open(struct tty_struct *tty, struct file *filp) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct tty_operations info_ops = { | 
|  | .open = info_open, | 
|  | .ioctl = info_ioctl, | 
|  | }; | 
|  |  | 
|  | static int __init pc_init(void) | 
|  | { | 
|  | int crd; | 
|  | struct board_info *bd; | 
|  | unsigned char board_id = 0; | 
|  | int err = -ENOMEM; | 
|  |  | 
|  | int pci_boards_found, pci_count; | 
|  |  | 
|  | pci_count = 0; | 
|  |  | 
|  | pc_driver = alloc_tty_driver(MAX_ALLOC); | 
|  | if (!pc_driver) | 
|  | goto out1; | 
|  |  | 
|  | pc_info = alloc_tty_driver(MAX_ALLOC); | 
|  | if (!pc_info) | 
|  | goto out2; | 
|  |  | 
|  | /* | 
|  | * If epca_setup has not been ran by LILO set num_cards to defaults; | 
|  | * copy board structure defined by digiConfig into drivers board | 
|  | * structure. Note : If LILO has ran epca_setup then epca_setup will | 
|  | * handle defining num_cards as well as copying the data into the board | 
|  | * structure. | 
|  | */ | 
|  | if (!liloconfig) { | 
|  | /* driver has been configured via. epcaconfig */ | 
|  | nbdevs = NBDEVS; | 
|  | num_cards = NUMCARDS; | 
|  | memcpy(&boards, &static_boards, | 
|  | sizeof(struct board_info) * NUMCARDS); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note : If lilo was used to configure the driver and the ignore | 
|  | * epcaconfig option was choosen (digiepca=2) then nbdevs and num_cards | 
|  | * will equal 0 at this point. This is okay; PCI cards will still be | 
|  | * picked up if detected. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Set up interrupt, we will worry about memory allocation in | 
|  | * post_fep_init. | 
|  | */ | 
|  | printk(KERN_INFO "DIGI epca driver version %s loaded.\n", VERSION); | 
|  |  | 
|  | /* | 
|  | * NOTE : This code assumes that the number of ports found in the | 
|  | * boards array is correct. This could be wrong if the card in question | 
|  | * is PCI (And therefore has no ports entry in the boards structure.) | 
|  | * The rest of the information will be valid for PCI because the | 
|  | * beginning of pc_init scans for PCI and determines i/o and base | 
|  | * memory addresses. I am not sure if it is possible to read the number | 
|  | * of ports supported by the card prior to it being booted (Since that | 
|  | * is the state it is in when pc_init is run). Because it is not | 
|  | * possible to query the number of supported ports until after the card | 
|  | * has booted; we are required to calculate the card_ptrs as the card | 
|  | * is initialized (Inside post_fep_init). The negative thing about this | 
|  | * approach is that digiDload's call to GET_INFO will have a bad port | 
|  | * value. (Since this is called prior to post_fep_init.) | 
|  | */ | 
|  | pci_boards_found = 0; | 
|  | if (num_cards < MAXBOARDS) | 
|  | pci_boards_found += init_PCI(); | 
|  | num_cards += pci_boards_found; | 
|  |  | 
|  | pc_driver->owner = THIS_MODULE; | 
|  | pc_driver->name = "ttyD"; | 
|  | pc_driver->major = DIGI_MAJOR; | 
|  | pc_driver->minor_start = 0; | 
|  | pc_driver->type = TTY_DRIVER_TYPE_SERIAL; | 
|  | pc_driver->subtype = SERIAL_TYPE_NORMAL; | 
|  | pc_driver->init_termios = tty_std_termios; | 
|  | pc_driver->init_termios.c_iflag = 0; | 
|  | pc_driver->init_termios.c_oflag = 0; | 
|  | pc_driver->init_termios.c_cflag = B9600 | CS8 | CREAD | CLOCAL | HUPCL; | 
|  | pc_driver->init_termios.c_lflag = 0; | 
|  | pc_driver->init_termios.c_ispeed = 9600; | 
|  | pc_driver->init_termios.c_ospeed = 9600; | 
|  | pc_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_HARDWARE_BREAK; | 
|  | tty_set_operations(pc_driver, &pc_ops); | 
|  |  | 
|  | pc_info->owner = THIS_MODULE; | 
|  | pc_info->name = "digi_ctl"; | 
|  | pc_info->major = DIGIINFOMAJOR; | 
|  | pc_info->minor_start = 0; | 
|  | pc_info->type = TTY_DRIVER_TYPE_SERIAL; | 
|  | pc_info->subtype = SERIAL_TYPE_INFO; | 
|  | pc_info->init_termios = tty_std_termios; | 
|  | pc_info->init_termios.c_iflag = 0; | 
|  | pc_info->init_termios.c_oflag = 0; | 
|  | pc_info->init_termios.c_lflag = 0; | 
|  | pc_info->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL; | 
|  | pc_info->init_termios.c_ispeed = 9600; | 
|  | pc_info->init_termios.c_ospeed = 9600; | 
|  | pc_info->flags = TTY_DRIVER_REAL_RAW; | 
|  | tty_set_operations(pc_info, &info_ops); | 
|  |  | 
|  |  | 
|  | for (crd = 0; crd < num_cards; crd++) { | 
|  | /* | 
|  | * This is where the appropriate memory handlers for the | 
|  | * hardware is set. Everything at runtime blindly jumps through | 
|  | * these vectors. | 
|  | */ | 
|  |  | 
|  | /* defined in epcaconfig.h */ | 
|  | bd = &boards[crd]; | 
|  |  | 
|  | switch (bd->type) { | 
|  | case PCXEM: | 
|  | case EISAXEM: | 
|  | bd->memwinon     = pcxem_memwinon; | 
|  | bd->memwinoff    = pcxem_memwinoff; | 
|  | bd->globalwinon  = pcxem_globalwinon; | 
|  | bd->txwinon      = pcxem_txwinon; | 
|  | bd->rxwinon      = pcxem_rxwinon; | 
|  | bd->memoff       = pcxem_memoff; | 
|  | bd->assertgwinon = dummy_assertgwinon; | 
|  | bd->assertmemoff = dummy_assertmemoff; | 
|  | break; | 
|  |  | 
|  | case PCIXEM: | 
|  | case PCIXRJ: | 
|  | case PCIXR: | 
|  | bd->memwinon     = dummy_memwinon; | 
|  | bd->memwinoff    = dummy_memwinoff; | 
|  | bd->globalwinon  = dummy_globalwinon; | 
|  | bd->txwinon      = dummy_txwinon; | 
|  | bd->rxwinon      = dummy_rxwinon; | 
|  | bd->memoff       = dummy_memoff; | 
|  | bd->assertgwinon = dummy_assertgwinon; | 
|  | bd->assertmemoff = dummy_assertmemoff; | 
|  | break; | 
|  |  | 
|  | case PCXE: | 
|  | case PCXEVE: | 
|  | bd->memwinon     = pcxe_memwinon; | 
|  | bd->memwinoff    = pcxe_memwinoff; | 
|  | bd->globalwinon  = pcxe_globalwinon; | 
|  | bd->txwinon      = pcxe_txwinon; | 
|  | bd->rxwinon      = pcxe_rxwinon; | 
|  | bd->memoff       = pcxe_memoff; | 
|  | bd->assertgwinon = dummy_assertgwinon; | 
|  | bd->assertmemoff = dummy_assertmemoff; | 
|  | break; | 
|  |  | 
|  | case PCXI: | 
|  | case PC64XE: | 
|  | bd->memwinon     = pcxi_memwinon; | 
|  | bd->memwinoff    = pcxi_memwinoff; | 
|  | bd->globalwinon  = pcxi_globalwinon; | 
|  | bd->txwinon      = pcxi_txwinon; | 
|  | bd->rxwinon      = pcxi_rxwinon; | 
|  | bd->memoff       = pcxi_memoff; | 
|  | bd->assertgwinon = pcxi_assertgwinon; | 
|  | bd->assertmemoff = pcxi_assertmemoff; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Some cards need a memory segment to be defined for use in | 
|  | * transmit and receive windowing operations. These boards are | 
|  | * listed in the below switch. In the case of the XI the amount | 
|  | * of memory on the board is variable so the memory_seg is also | 
|  | * variable. This code determines what they segment should be. | 
|  | */ | 
|  | switch (bd->type) { | 
|  | case PCXE: | 
|  | case PCXEVE: | 
|  | case PC64XE: | 
|  | bd->memory_seg = 0xf000; | 
|  | break; | 
|  |  | 
|  | case PCXI: | 
|  | board_id = inb((int)bd->port); | 
|  | if ((board_id & 0x1) == 0x1) { | 
|  | /* it's an XI card */ | 
|  | /* Is it a 64K board */ | 
|  | if ((board_id & 0x30) == 0) | 
|  | bd->memory_seg = 0xf000; | 
|  |  | 
|  | /* Is it a 128K board */ | 
|  | if ((board_id & 0x30) == 0x10) | 
|  | bd->memory_seg = 0xe000; | 
|  |  | 
|  | /* Is is a 256K board */ | 
|  | if ((board_id & 0x30) == 0x20) | 
|  | bd->memory_seg = 0xc000; | 
|  |  | 
|  | /* Is it a 512K board */ | 
|  | if ((board_id & 0x30) == 0x30) | 
|  | bd->memory_seg = 0x8000; | 
|  | } else | 
|  | printk(KERN_ERR "epca: Board at 0x%x doesn't appear to be an XI\n", (int)bd->port); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | err = tty_register_driver(pc_driver); | 
|  | if (err) { | 
|  | printk(KERN_ERR "Couldn't register Digi PC/ driver"); | 
|  | goto out3; | 
|  | } | 
|  |  | 
|  | err = tty_register_driver(pc_info); | 
|  | if (err) { | 
|  | printk(KERN_ERR "Couldn't register Digi PC/ info "); | 
|  | goto out4; | 
|  | } | 
|  |  | 
|  | /* Start up the poller to check for events on all enabled boards */ | 
|  | init_timer(&epca_timer); | 
|  | epca_timer.function = epcapoll; | 
|  | mod_timer(&epca_timer, jiffies + HZ/25); | 
|  | return 0; | 
|  |  | 
|  | out4: | 
|  | tty_unregister_driver(pc_driver); | 
|  | out3: | 
|  | put_tty_driver(pc_info); | 
|  | out2: | 
|  | put_tty_driver(pc_driver); | 
|  | out1: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void post_fep_init(unsigned int crd) | 
|  | { | 
|  | int i; | 
|  | void __iomem *memaddr; | 
|  | struct global_data __iomem *gd; | 
|  | struct board_info *bd; | 
|  | struct board_chan __iomem *bc; | 
|  | struct channel *ch; | 
|  | int shrinkmem = 0, lowwater; | 
|  |  | 
|  | /* | 
|  | * This call is made by the user via. the ioctl call DIGI_INIT. It is | 
|  | * responsible for setting up all the card specific stuff. | 
|  | */ | 
|  | bd = &boards[crd]; | 
|  |  | 
|  | /* | 
|  | * If this is a PCI board, get the port info. Remember PCI cards do not | 
|  | * have entries into the epcaconfig.h file, so we can't get the number | 
|  | * of ports from it. Unfortunetly, this means that anyone doing a | 
|  | * DIGI_GETINFO before the board has booted will get an invalid number | 
|  | * of ports returned (It should return 0). Calls to DIGI_GETINFO after | 
|  | * DIGI_INIT has been called will return the proper values. | 
|  | */ | 
|  | if (bd->type >= PCIXEM) { /* Begin get PCI number of ports */ | 
|  | /* | 
|  | * Below we use XEMPORTS as a memory offset regardless of which | 
|  | * PCI card it is. This is because all of the supported PCI | 
|  | * cards have the same memory offset for the channel data. This | 
|  | * will have to be changed if we ever develop a PCI/XE card. | 
|  | * NOTE : The FEP manual states that the port offset is 0xC22 | 
|  | * as opposed to 0xC02. This is only true for PC/XE, and PC/XI | 
|  | * cards; not for the XEM, or CX series. On the PCI cards the | 
|  | * number of ports is determined by reading a ID PROM located | 
|  | * in the box attached to the card. The card can then determine | 
|  | * the index the id to determine the number of ports available. | 
|  | * (FYI - The id should be located at 0x1ac (And may use up to | 
|  | * 4 bytes if the box in question is a XEM or CX)). | 
|  | */ | 
|  | /* PCI cards are already remapped at this point ISA are not */ | 
|  | bd->numports = readw(bd->re_map_membase + XEMPORTS); | 
|  | epcaassert(bd->numports <= 64, "PCI returned a invalid number of ports"); | 
|  | nbdevs += (bd->numports); | 
|  | } else { | 
|  | /* Fix up the mappings for ISA/EISA etc */ | 
|  | /* FIXME: 64K - can we be smarter ? */ | 
|  | bd->re_map_membase = ioremap_nocache(bd->membase, 0x10000); | 
|  | } | 
|  |  | 
|  | if (crd != 0) | 
|  | card_ptr[crd] = card_ptr[crd-1] + boards[crd-1].numports; | 
|  | else | 
|  | card_ptr[crd] = &digi_channels[crd]; /* <- For card 0 only */ | 
|  |  | 
|  | ch = card_ptr[crd]; | 
|  | epcaassert(ch <= &digi_channels[nbdevs - 1], "ch out of range"); | 
|  |  | 
|  | memaddr = bd->re_map_membase; | 
|  |  | 
|  | /* | 
|  | * The below assignment will set bc to point at the BEGINING of the | 
|  | * cards channel structures. For 1 card there will be between 8 and 64 | 
|  | * of these structures. | 
|  | */ | 
|  | bc = memaddr + CHANSTRUCT; | 
|  |  | 
|  | /* | 
|  | * The below assignment will set gd to point at the BEGINING of global | 
|  | * memory address 0xc00. The first data in that global memory actually | 
|  | * starts at address 0xc1a. The command in pointer begins at 0xd10. | 
|  | */ | 
|  | gd = memaddr + GLOBAL; | 
|  |  | 
|  | /* | 
|  | * XEPORTS (address 0xc22) points at the number of channels the card | 
|  | * supports. (For 64XE, XI, XEM, and XR use 0xc02) | 
|  | */ | 
|  | if ((bd->type == PCXEVE || bd->type == PCXE) && | 
|  | (readw(memaddr + XEPORTS) < 3)) | 
|  | shrinkmem = 1; | 
|  | if (bd->type < PCIXEM) | 
|  | if (!request_region((int)bd->port, 4, board_desc[bd->type])) | 
|  | return; | 
|  | memwinon(bd, 0); | 
|  |  | 
|  | /* | 
|  | * Remember ch is the main drivers channels structure, while bc is the | 
|  | * cards channel structure. | 
|  | */ | 
|  | for (i = 0; i < bd->numports; i++, ch++, bc++) { | 
|  | unsigned long flags; | 
|  | u16 tseg, rseg; | 
|  |  | 
|  | ch->brdchan = bc; | 
|  | ch->mailbox = gd; | 
|  | INIT_WORK(&ch->tqueue, do_softint); | 
|  | ch->board = &boards[crd]; | 
|  |  | 
|  | spin_lock_irqsave(&epca_lock, flags); | 
|  | switch (bd->type) { | 
|  | /* | 
|  | * Since some of the boards use different bitmaps for | 
|  | * their control signals we cannot hard code these | 
|  | * values and retain portability. We virtualize this | 
|  | * data here. | 
|  | */ | 
|  | case EISAXEM: | 
|  | case PCXEM: | 
|  | case PCIXEM: | 
|  | case PCIXRJ: | 
|  | case PCIXR: | 
|  | ch->m_rts = 0x02; | 
|  | ch->m_dcd = 0x80; | 
|  | ch->m_dsr = 0x20; | 
|  | ch->m_cts = 0x10; | 
|  | ch->m_ri  = 0x40; | 
|  | ch->m_dtr = 0x01; | 
|  | break; | 
|  |  | 
|  | case PCXE: | 
|  | case PCXEVE: | 
|  | case PCXI: | 
|  | case PC64XE: | 
|  | ch->m_rts = 0x02; | 
|  | ch->m_dcd = 0x08; | 
|  | ch->m_dsr = 0x10; | 
|  | ch->m_cts = 0x20; | 
|  | ch->m_ri  = 0x40; | 
|  | ch->m_dtr = 0x80; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (boards[crd].altpin) { | 
|  | ch->dsr = ch->m_dcd; | 
|  | ch->dcd = ch->m_dsr; | 
|  | ch->digiext.digi_flags |= DIGI_ALTPIN; | 
|  | } else { | 
|  | ch->dcd = ch->m_dcd; | 
|  | ch->dsr = ch->m_dsr; | 
|  | } | 
|  |  | 
|  | ch->boardnum   = crd; | 
|  | ch->channelnum = i; | 
|  | ch->magic      = EPCA_MAGIC; | 
|  | ch->port.tty        = NULL; | 
|  |  | 
|  | if (shrinkmem) { | 
|  | fepcmd(ch, SETBUFFER, 32, 0, 0, 0); | 
|  | shrinkmem = 0; | 
|  | } | 
|  |  | 
|  | tseg = readw(&bc->tseg); | 
|  | rseg = readw(&bc->rseg); | 
|  |  | 
|  | switch (bd->type) { | 
|  | case PCIXEM: | 
|  | case PCIXRJ: | 
|  | case PCIXR: | 
|  | /* Cover all the 2MEG cards */ | 
|  | ch->txptr = memaddr + ((tseg << 4) & 0x1fffff); | 
|  | ch->rxptr = memaddr + ((rseg << 4) & 0x1fffff); | 
|  | ch->txwin = FEPWIN | (tseg >> 11); | 
|  | ch->rxwin = FEPWIN | (rseg >> 11); | 
|  | break; | 
|  |  | 
|  | case PCXEM: | 
|  | case EISAXEM: | 
|  | /* Cover all the 32K windowed cards */ | 
|  | /* Mask equal to window size - 1 */ | 
|  | ch->txptr = memaddr + ((tseg << 4) & 0x7fff); | 
|  | ch->rxptr = memaddr + ((rseg << 4) & 0x7fff); | 
|  | ch->txwin = FEPWIN | (tseg >> 11); | 
|  | ch->rxwin = FEPWIN | (rseg >> 11); | 
|  | break; | 
|  |  | 
|  | case PCXEVE: | 
|  | case PCXE: | 
|  | ch->txptr = memaddr + (((tseg - bd->memory_seg) << 4) | 
|  | & 0x1fff); | 
|  | ch->txwin = FEPWIN | ((tseg - bd->memory_seg) >> 9); | 
|  | ch->rxptr = memaddr + (((rseg - bd->memory_seg) << 4) | 
|  | & 0x1fff); | 
|  | ch->rxwin = FEPWIN | ((rseg - bd->memory_seg) >> 9); | 
|  | break; | 
|  |  | 
|  | case PCXI: | 
|  | case PC64XE: | 
|  | ch->txptr = memaddr + ((tseg - bd->memory_seg) << 4); | 
|  | ch->rxptr = memaddr + ((rseg - bd->memory_seg) << 4); | 
|  | ch->txwin = ch->rxwin = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ch->txbufhead = 0; | 
|  | ch->txbufsize = readw(&bc->tmax) + 1; | 
|  |  | 
|  | ch->rxbufhead = 0; | 
|  | ch->rxbufsize = readw(&bc->rmax) + 1; | 
|  |  | 
|  | lowwater = ch->txbufsize >= 2000 ? 1024 : (ch->txbufsize / 2); | 
|  |  | 
|  | /* Set transmitter low water mark */ | 
|  | fepcmd(ch, STXLWATER, lowwater, 0, 10, 0); | 
|  |  | 
|  | /* Set receiver low water mark */ | 
|  | fepcmd(ch, SRXLWATER, (ch->rxbufsize / 4), 0, 10, 0); | 
|  |  | 
|  | /* Set receiver high water mark */ | 
|  | fepcmd(ch, SRXHWATER, (3 * ch->rxbufsize / 4), 0, 10, 0); | 
|  |  | 
|  | writew(100, &bc->edelay); | 
|  | writeb(1, &bc->idata); | 
|  |  | 
|  | ch->startc  = readb(&bc->startc); | 
|  | ch->stopc   = readb(&bc->stopc); | 
|  | ch->startca = readb(&bc->startca); | 
|  | ch->stopca  = readb(&bc->stopca); | 
|  |  | 
|  | ch->fepcflag = 0; | 
|  | ch->fepiflag = 0; | 
|  | ch->fepoflag = 0; | 
|  | ch->fepstartc = 0; | 
|  | ch->fepstopc = 0; | 
|  | ch->fepstartca = 0; | 
|  | ch->fepstopca = 0; | 
|  |  | 
|  | ch->close_delay = 50; | 
|  | ch->port.count = 0; | 
|  | ch->port.blocked_open = 0; | 
|  | init_waitqueue_head(&ch->port.open_wait); | 
|  | init_waitqueue_head(&ch->port.close_wait); | 
|  |  | 
|  | spin_unlock_irqrestore(&epca_lock, flags); | 
|  | } | 
|  |  | 
|  | printk(KERN_INFO | 
|  | "Digi PC/Xx Driver V%s:  %s I/O = 0x%lx Mem = 0x%lx Ports = %d\n", | 
|  | VERSION, board_desc[bd->type], (long)bd->port, | 
|  | (long)bd->membase, bd->numports); | 
|  | memwinoff(bd, 0); | 
|  | } | 
|  |  | 
|  | static void epcapoll(unsigned long ignored) | 
|  | { | 
|  | unsigned long flags; | 
|  | int crd; | 
|  | unsigned int head, tail; | 
|  | struct channel *ch; | 
|  | struct board_info *bd; | 
|  |  | 
|  | /* | 
|  | * This routine is called upon every timer interrupt. Even though the | 
|  | * Digi series cards are capable of generating interrupts this method | 
|  | * of non-looping polling is more efficient. This routine checks for | 
|  | * card generated events (Such as receive data, are transmit buffer | 
|  | * empty) and acts on those events. | 
|  | */ | 
|  | for (crd = 0; crd < num_cards; crd++) { | 
|  | bd = &boards[crd]; | 
|  | ch = card_ptr[crd]; | 
|  |  | 
|  | if ((bd->status == DISABLED) || digi_poller_inhibited) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * assertmemoff is not needed here; indeed it is an empty | 
|  | * subroutine. It is being kept because future boards may need | 
|  | * this as well as some legacy boards. | 
|  | */ | 
|  | spin_lock_irqsave(&epca_lock, flags); | 
|  |  | 
|  | assertmemoff(ch); | 
|  |  | 
|  | globalwinon(ch); | 
|  |  | 
|  | /* | 
|  | * In this case head and tail actually refer to the event queue | 
|  | * not the transmit or receive queue. | 
|  | */ | 
|  | head = readw(&ch->mailbox->ein); | 
|  | tail = readw(&ch->mailbox->eout); | 
|  |  | 
|  | /* If head isn't equal to tail we have an event */ | 
|  | if (head != tail) | 
|  | doevent(crd); | 
|  | memoff(ch); | 
|  |  | 
|  | spin_unlock_irqrestore(&epca_lock, flags); | 
|  | } /* End for each card */ | 
|  | mod_timer(&epca_timer, jiffies + (HZ / 25)); | 
|  | } | 
|  |  | 
|  | static void doevent(int crd) | 
|  | { | 
|  | void __iomem *eventbuf; | 
|  | struct channel *ch, *chan0; | 
|  | static struct tty_struct *tty; | 
|  | struct board_info *bd; | 
|  | struct board_chan __iomem *bc; | 
|  | unsigned int tail, head; | 
|  | int event, channel; | 
|  | int mstat, lstat; | 
|  |  | 
|  | /* | 
|  | * This subroutine is called by epcapoll when an event is detected | 
|  | * in the event queue. This routine responds to those events. | 
|  | */ | 
|  | bd = &boards[crd]; | 
|  |  | 
|  | chan0 = card_ptr[crd]; | 
|  | epcaassert(chan0 <= &digi_channels[nbdevs - 1], "ch out of range"); | 
|  | assertgwinon(chan0); | 
|  | while ((tail = readw(&chan0->mailbox->eout)) != | 
|  | (head = readw(&chan0->mailbox->ein))) { | 
|  | /* Begin while something in event queue */ | 
|  | assertgwinon(chan0); | 
|  | eventbuf = bd->re_map_membase + tail + ISTART; | 
|  | /* Get the channel the event occurred on */ | 
|  | channel = readb(eventbuf); | 
|  | /* Get the actual event code that occurred */ | 
|  | event = readb(eventbuf + 1); | 
|  | /* | 
|  | * The two assignments below get the current modem status | 
|  | * (mstat) and the previous modem status (lstat). These are | 
|  | * useful becuase an event could signal a change in modem | 
|  | * signals itself. | 
|  | */ | 
|  | mstat = readb(eventbuf + 2); | 
|  | lstat = readb(eventbuf + 3); | 
|  |  | 
|  | ch = chan0 + channel; | 
|  | if ((unsigned)channel >= bd->numports || !ch)  { | 
|  | if (channel >= bd->numports) | 
|  | ch = chan0; | 
|  | bc = ch->brdchan; | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | bc = ch->brdchan; | 
|  | if (bc == NULL) | 
|  | goto next; | 
|  |  | 
|  | if (event & DATA_IND)  { /* Begin DATA_IND */ | 
|  | receive_data(ch); | 
|  | assertgwinon(ch); | 
|  | } /* End DATA_IND */ | 
|  | /* else *//* Fix for DCD transition missed bug */ | 
|  | if (event & MODEMCHG_IND) { | 
|  | /* A modem signal change has been indicated */ | 
|  | ch->imodem = mstat; | 
|  | if (ch->port.flags & ASYNC_CHECK_CD) { | 
|  | /* We are now receiving dcd */ | 
|  | if (mstat & ch->dcd) | 
|  | wake_up_interruptible(&ch->port.open_wait); | 
|  | else	/* No dcd; hangup */ | 
|  | pc_sched_event(ch, EPCA_EVENT_HANGUP); | 
|  | } | 
|  | } | 
|  | tty = ch->port.tty; | 
|  | if (tty) { | 
|  | if (event & BREAK_IND) { | 
|  | /* A break has been indicated */ | 
|  | tty_insert_flip_char(tty, 0, TTY_BREAK); | 
|  | tty_schedule_flip(tty); | 
|  | } else if (event & LOWTX_IND)  { | 
|  | if (ch->statusflags & LOWWAIT) { | 
|  | ch->statusflags &= ~LOWWAIT; | 
|  | tty_wakeup(tty); | 
|  | } | 
|  | } else if (event & EMPTYTX_IND) { | 
|  | /* This event is generated by | 
|  | setup_empty_event */ | 
|  | ch->statusflags &= ~TXBUSY; | 
|  | if (ch->statusflags & EMPTYWAIT) { | 
|  | ch->statusflags &= ~EMPTYWAIT; | 
|  | tty_wakeup(tty); | 
|  | } | 
|  | } | 
|  | } | 
|  | next: | 
|  | globalwinon(ch); | 
|  | BUG_ON(!bc); | 
|  | writew(1, &bc->idata); | 
|  | writew((tail + 4) & (IMAX - ISTART - 4), &chan0->mailbox->eout); | 
|  | globalwinon(chan0); | 
|  | } /* End while something in event queue */ | 
|  | } | 
|  |  | 
|  | static void fepcmd(struct channel *ch, int cmd, int word_or_byte, | 
|  | int byte2, int ncmds, int bytecmd) | 
|  | { | 
|  | unchar __iomem *memaddr; | 
|  | unsigned int head, cmdTail, cmdStart, cmdMax; | 
|  | long count; | 
|  | int n; | 
|  |  | 
|  | /* This is the routine in which commands may be passed to the card. */ | 
|  |  | 
|  | if (ch->board->status == DISABLED) | 
|  | return; | 
|  | assertgwinon(ch); | 
|  | /* Remember head (As well as max) is just an offset not a base addr */ | 
|  | head = readw(&ch->mailbox->cin); | 
|  | /* cmdStart is a base address */ | 
|  | cmdStart = readw(&ch->mailbox->cstart); | 
|  | /* | 
|  | * We do the addition below because we do not want a max pointer | 
|  | * relative to cmdStart. We want a max pointer that points at the | 
|  | * physical end of the command queue. | 
|  | */ | 
|  | cmdMax = (cmdStart + 4 + readw(&ch->mailbox->cmax)); | 
|  | memaddr = ch->board->re_map_membase; | 
|  |  | 
|  | if (head >= (cmdMax - cmdStart) || (head & 03))  { | 
|  | printk(KERN_ERR "line %d: Out of range, cmd = %x, head = %x\n", | 
|  | __LINE__,  cmd, head); | 
|  | printk(KERN_ERR "line %d: Out of range, cmdMax = %x, cmdStart = %x\n", | 
|  | __LINE__,  cmdMax, cmdStart); | 
|  | return; | 
|  | } | 
|  | if (bytecmd)  { | 
|  | writeb(cmd, memaddr + head + cmdStart + 0); | 
|  | writeb(ch->channelnum,  memaddr + head + cmdStart + 1); | 
|  | /* Below word_or_byte is bits to set */ | 
|  | writeb(word_or_byte,  memaddr + head + cmdStart + 2); | 
|  | /* Below byte2 is bits to reset */ | 
|  | writeb(byte2, memaddr + head + cmdStart + 3); | 
|  | }  else { | 
|  | writeb(cmd, memaddr + head + cmdStart + 0); | 
|  | writeb(ch->channelnum,  memaddr + head + cmdStart + 1); | 
|  | writeb(word_or_byte,  memaddr + head + cmdStart + 2); | 
|  | } | 
|  | head = (head + 4) & (cmdMax - cmdStart - 4); | 
|  | writew(head, &ch->mailbox->cin); | 
|  | count = FEPTIMEOUT; | 
|  |  | 
|  | for (;;) { | 
|  | count--; | 
|  | if (count == 0)  { | 
|  | printk(KERN_ERR "<Error> - Fep not responding in fepcmd()\n"); | 
|  | return; | 
|  | } | 
|  | head = readw(&ch->mailbox->cin); | 
|  | cmdTail = readw(&ch->mailbox->cout); | 
|  | n = (head - cmdTail) & (cmdMax - cmdStart - 4); | 
|  | /* | 
|  | * Basically this will break when the FEP acknowledges the | 
|  | * command by incrementing cmdTail (Making it equal to head). | 
|  | */ | 
|  | if (n <= ncmds * (sizeof(short) * 4)) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Digi products use fields in their channels structures that are very similar | 
|  | * to the c_cflag and c_iflag fields typically found in UNIX termios | 
|  | * structures. The below three routines allow mappings between these hardware | 
|  | * "flags" and their respective Linux flags. | 
|  | */ | 
|  | static unsigned termios2digi_h(struct channel *ch, unsigned cflag) | 
|  | { | 
|  | unsigned res = 0; | 
|  |  | 
|  | if (cflag & CRTSCTS) { | 
|  | ch->digiext.digi_flags |= (RTSPACE | CTSPACE); | 
|  | res |= ((ch->m_cts) | (ch->m_rts)); | 
|  | } | 
|  |  | 
|  | if (ch->digiext.digi_flags & RTSPACE) | 
|  | res |= ch->m_rts; | 
|  |  | 
|  | if (ch->digiext.digi_flags & DTRPACE) | 
|  | res |= ch->m_dtr; | 
|  |  | 
|  | if (ch->digiext.digi_flags & CTSPACE) | 
|  | res |= ch->m_cts; | 
|  |  | 
|  | if (ch->digiext.digi_flags & DSRPACE) | 
|  | res |= ch->dsr; | 
|  |  | 
|  | if (ch->digiext.digi_flags & DCDPACE) | 
|  | res |= ch->dcd; | 
|  |  | 
|  | if (res & (ch->m_rts)) | 
|  | ch->digiext.digi_flags |= RTSPACE; | 
|  |  | 
|  | if (res & (ch->m_cts)) | 
|  | ch->digiext.digi_flags |= CTSPACE; | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static unsigned termios2digi_i(struct channel *ch, unsigned iflag) | 
|  | { | 
|  | unsigned res = iflag & (IGNBRK | BRKINT | IGNPAR | PARMRK | | 
|  | INPCK | ISTRIP | IXON | IXANY | IXOFF); | 
|  | if (ch->digiext.digi_flags & DIGI_AIXON) | 
|  | res |= IAIXON; | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static unsigned termios2digi_c(struct channel *ch, unsigned cflag) | 
|  | { | 
|  | unsigned res = 0; | 
|  | if (cflag & CBAUDEX) { | 
|  | ch->digiext.digi_flags |= DIGI_FAST; | 
|  | /* | 
|  | * HUPCL bit is used by FEP to indicate fast baud table is to | 
|  | * be used. | 
|  | */ | 
|  | res |= FEP_HUPCL; | 
|  | } else | 
|  | ch->digiext.digi_flags &= ~DIGI_FAST; | 
|  | /* | 
|  | * CBAUD has bit position 0x1000 set these days to indicate Linux | 
|  | * baud rate remap. Digi hardware can't handle the bit assignment. | 
|  | * (We use a different bit assignment for high speed.). Clear this | 
|  | * bit out. | 
|  | */ | 
|  | res |= cflag & ((CBAUD ^ CBAUDEX) | PARODD | PARENB | CSTOPB | CSIZE); | 
|  | /* | 
|  | * This gets a little confusing. The Digi cards have their own | 
|  | * representation of c_cflags controlling baud rate. For the most part | 
|  | * this is identical to the Linux implementation. However; Digi | 
|  | * supports one rate (76800) that Linux doesn't. This means that the | 
|  | * c_cflag entry that would normally mean 76800 for Digi actually means | 
|  | * 115200 under Linux. Without the below mapping, a stty 115200 would | 
|  | * only drive the board at 76800. Since the rate 230400 is also found | 
|  | * after 76800, the same problem afflicts us when we choose a rate of | 
|  | * 230400. Without the below modificiation stty 230400 would actually | 
|  | * give us 115200. | 
|  | * | 
|  | * There are two additional differences. The Linux value for CLOCAL | 
|  | * (0x800; 0004000) has no meaning to the Digi hardware. Also in later | 
|  | * releases of Linux; the CBAUD define has CBAUDEX (0x1000; 0010000) | 
|  | * ored into it (CBAUD = 0x100f as opposed to 0xf). CBAUDEX should be | 
|  | * checked for a screened out prior to termios2digi_c returning. Since | 
|  | * CLOCAL isn't used by the board this can be ignored as long as the | 
|  | * returned value is used only by Digi hardware. | 
|  | */ | 
|  | if (cflag & CBAUDEX) { | 
|  | /* | 
|  | * The below code is trying to guarantee that only baud rates | 
|  | * 115200 and 230400 are remapped. We use exclusive or because | 
|  | * the various baud rates share common bit positions and | 
|  | * therefore can't be tested for easily. | 
|  | */ | 
|  | if ((!((cflag & 0x7) ^ (B115200 & ~CBAUDEX))) || | 
|  | (!((cflag & 0x7) ^ (B230400 & ~CBAUDEX)))) | 
|  | res += 1; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* Caller must hold the locks */ | 
|  | static void epcaparam(struct tty_struct *tty, struct channel *ch) | 
|  | { | 
|  | unsigned int cmdHead; | 
|  | struct ktermios *ts; | 
|  | struct board_chan __iomem *bc; | 
|  | unsigned mval, hflow, cflag, iflag; | 
|  |  | 
|  | bc = ch->brdchan; | 
|  | epcaassert(bc != NULL, "bc out of range"); | 
|  |  | 
|  | assertgwinon(ch); | 
|  | ts = tty->termios; | 
|  | if ((ts->c_cflag & CBAUD) == 0)  { /* Begin CBAUD detected */ | 
|  | cmdHead = readw(&bc->rin); | 
|  | writew(cmdHead, &bc->rout); | 
|  | cmdHead = readw(&bc->tin); | 
|  | /* Changing baud in mid-stream transmission can be wonderful */ | 
|  | /* | 
|  | * Flush current transmit buffer by setting cmdTail pointer | 
|  | * (tout) to cmdHead pointer (tin). Hopefully the transmit | 
|  | * buffer is empty. | 
|  | */ | 
|  | fepcmd(ch, STOUT, (unsigned) cmdHead, 0, 0, 0); | 
|  | mval = 0; | 
|  | } else { /* Begin CBAUD not detected */ | 
|  | /* | 
|  | * c_cflags have changed but that change had nothing to do with | 
|  | * BAUD. Propagate the change to the card. | 
|  | */ | 
|  | cflag = termios2digi_c(ch, ts->c_cflag); | 
|  | if (cflag != ch->fepcflag)  { | 
|  | ch->fepcflag = cflag; | 
|  | /* Set baud rate, char size, stop bits, parity */ | 
|  | fepcmd(ch, SETCTRLFLAGS, (unsigned) cflag, 0, 0, 0); | 
|  | } | 
|  | /* | 
|  | * If the user has not forced CLOCAL and if the device is not a | 
|  | * CALLOUT device (Which is always CLOCAL) we set flags such | 
|  | * that the driver will wait on carrier detect. | 
|  | */ | 
|  | if (ts->c_cflag & CLOCAL) | 
|  | ch->port.flags &= ~ASYNC_CHECK_CD; | 
|  | else | 
|  | ch->port.flags |= ASYNC_CHECK_CD; | 
|  | mval = ch->m_dtr | ch->m_rts; | 
|  | } /* End CBAUD not detected */ | 
|  | iflag = termios2digi_i(ch, ts->c_iflag); | 
|  | /* Check input mode flags */ | 
|  | if (iflag != ch->fepiflag)  { | 
|  | ch->fepiflag = iflag; | 
|  | /* | 
|  | * Command sets channels iflag structure on the board. Such | 
|  | * things as input soft flow control, handling of parity | 
|  | * errors, and break handling are all set here. | 
|  | * | 
|  | * break handling, parity handling, input stripping, | 
|  | * flow control chars | 
|  | */ | 
|  | fepcmd(ch, SETIFLAGS, (unsigned int) ch->fepiflag, 0, 0, 0); | 
|  | } | 
|  | /* | 
|  | * Set the board mint value for this channel. This will cause hardware | 
|  | * events to be generated each time the DCD signal (Described in mint) | 
|  | * changes. | 
|  | */ | 
|  | writeb(ch->dcd, &bc->mint); | 
|  | if ((ts->c_cflag & CLOCAL) || (ch->digiext.digi_flags & DIGI_FORCEDCD)) | 
|  | if (ch->digiext.digi_flags & DIGI_FORCEDCD) | 
|  | writeb(0, &bc->mint); | 
|  | ch->imodem = readb(&bc->mstat); | 
|  | hflow = termios2digi_h(ch, ts->c_cflag); | 
|  | if (hflow != ch->hflow)  { | 
|  | ch->hflow = hflow; | 
|  | /* | 
|  | * Hard flow control has been selected but the board is not | 
|  | * using it. Activate hard flow control now. | 
|  | */ | 
|  | fepcmd(ch, SETHFLOW, hflow, 0xff, 0, 1); | 
|  | } | 
|  | mval ^= ch->modemfake & (mval ^ ch->modem); | 
|  |  | 
|  | if (ch->omodem ^ mval)  { | 
|  | ch->omodem = mval; | 
|  | /* | 
|  | * The below command sets the DTR and RTS mstat structure. If | 
|  | * hard flow control is NOT active these changes will drive the | 
|  | * output of the actual DTR and RTS lines. If hard flow control | 
|  | * is active, the changes will be saved in the mstat structure | 
|  | * and only asserted when hard flow control is turned off. | 
|  | */ | 
|  |  | 
|  | /* First reset DTR & RTS; then set them */ | 
|  | fepcmd(ch, SETMODEM, 0, ((ch->m_dtr)|(ch->m_rts)), 0, 1); | 
|  | fepcmd(ch, SETMODEM, mval, 0, 0, 1); | 
|  | } | 
|  | if (ch->startc != ch->fepstartc || ch->stopc != ch->fepstopc)  { | 
|  | ch->fepstartc = ch->startc; | 
|  | ch->fepstopc = ch->stopc; | 
|  | /* | 
|  | * The XON / XOFF characters have changed; propagate these | 
|  | * changes to the card. | 
|  | */ | 
|  | fepcmd(ch, SONOFFC, ch->fepstartc, ch->fepstopc, 0, 1); | 
|  | } | 
|  | if (ch->startca != ch->fepstartca || ch->stopca != ch->fepstopca)  { | 
|  | ch->fepstartca = ch->startca; | 
|  | ch->fepstopca = ch->stopca; | 
|  | /* | 
|  | * Similar to the above, this time the auxilarly XON / XOFF | 
|  | * characters have changed; propagate these changes to the card. | 
|  | */ | 
|  | fepcmd(ch, SAUXONOFFC, ch->fepstartca, ch->fepstopca, 0, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Caller holds lock */ | 
|  | static void receive_data(struct channel *ch) | 
|  | { | 
|  | unchar *rptr; | 
|  | struct ktermios *ts = NULL; | 
|  | struct tty_struct *tty; | 
|  | struct board_chan __iomem *bc; | 
|  | int dataToRead, wrapgap, bytesAvailable; | 
|  | unsigned int tail, head; | 
|  | unsigned int wrapmask; | 
|  |  | 
|  | /* | 
|  | * This routine is called by doint when a receive data event has taken | 
|  | * place. | 
|  | */ | 
|  | globalwinon(ch); | 
|  | if (ch->statusflags & RXSTOPPED) | 
|  | return; | 
|  | tty = ch->port.tty; | 
|  | if (tty) | 
|  | ts = tty->termios; | 
|  | bc = ch->brdchan; | 
|  | BUG_ON(!bc); | 
|  | wrapmask = ch->rxbufsize - 1; | 
|  |  | 
|  | /* | 
|  | * Get the head and tail pointers to the receiver queue. Wrap the head | 
|  | * pointer if it has reached the end of the buffer. | 
|  | */ | 
|  | head = readw(&bc->rin); | 
|  | head &= wrapmask; | 
|  | tail = readw(&bc->rout) & wrapmask; | 
|  |  | 
|  | bytesAvailable = (head - tail) & wrapmask; | 
|  | if (bytesAvailable == 0) | 
|  | return; | 
|  |  | 
|  | /* If CREAD bit is off or device not open, set TX tail to head */ | 
|  | if (!tty || !ts || !(ts->c_cflag & CREAD)) { | 
|  | writew(head, &bc->rout); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (tty_buffer_request_room(tty, bytesAvailable + 1) == 0) | 
|  | return; | 
|  |  | 
|  | if (readb(&bc->orun)) { | 
|  | writeb(0, &bc->orun); | 
|  | printk(KERN_WARNING "epca; overrun! DigiBoard device %s\n", | 
|  | tty->name); | 
|  | tty_insert_flip_char(tty, 0, TTY_OVERRUN); | 
|  | } | 
|  | rxwinon(ch); | 
|  | while (bytesAvailable > 0) { | 
|  | /* Begin while there is data on the card */ | 
|  | wrapgap = (head >= tail) ? head - tail : ch->rxbufsize - tail; | 
|  | /* | 
|  | * Even if head has wrapped around only report the amount of | 
|  | * data to be equal to the size - tail. Remember memcpy can't | 
|  | * automaticly wrap around the receive buffer. | 
|  | */ | 
|  | dataToRead = (wrapgap < bytesAvailable) ? wrapgap | 
|  | : bytesAvailable; | 
|  | /* Make sure we don't overflow the buffer */ | 
|  | dataToRead = tty_prepare_flip_string(tty, &rptr, dataToRead); | 
|  | if (dataToRead == 0) | 
|  | break; | 
|  | /* | 
|  | * Move data read from our card into the line disciplines | 
|  | * buffer for translation if necessary. | 
|  | */ | 
|  | memcpy_fromio(rptr, ch->rxptr + tail, dataToRead); | 
|  | tail = (tail + dataToRead) & wrapmask; | 
|  | bytesAvailable -= dataToRead; | 
|  | } /* End while there is data on the card */ | 
|  | globalwinon(ch); | 
|  | writew(tail, &bc->rout); | 
|  | /* Must be called with global data */ | 
|  | tty_schedule_flip(ch->port.tty); | 
|  | } | 
|  |  | 
|  | static int info_ioctl(struct tty_struct *tty, struct file *file, | 
|  | unsigned int cmd, unsigned long arg) | 
|  | { | 
|  | switch (cmd) { | 
|  | case DIGI_GETINFO: | 
|  | { | 
|  | struct digi_info di; | 
|  | int brd; | 
|  |  | 
|  | if (get_user(brd, (unsigned int __user *)arg)) | 
|  | return -EFAULT; | 
|  | if (brd < 0 || brd >= num_cards || num_cards == 0) | 
|  | return -ENODEV; | 
|  |  | 
|  | memset(&di, 0, sizeof(di)); | 
|  |  | 
|  | di.board = brd; | 
|  | di.status = boards[brd].status; | 
|  | di.type = boards[brd].type ; | 
|  | di.numports = boards[brd].numports ; | 
|  | /* Legacy fixups - just move along nothing to see */ | 
|  | di.port = (unsigned char *)boards[brd].port ; | 
|  | di.membase = (unsigned char *)boards[brd].membase ; | 
|  |  | 
|  | if (copy_to_user((void __user *)arg, &di, sizeof(di))) | 
|  | return -EFAULT; | 
|  | break; | 
|  |  | 
|  | } | 
|  |  | 
|  | case DIGI_POLLER: | 
|  | { | 
|  | int brd = arg & 0xff000000 >> 16; | 
|  | unsigned char state = arg & 0xff; | 
|  |  | 
|  | if (brd < 0 || brd >= num_cards) { | 
|  | printk(KERN_ERR "epca: DIGI POLLER : brd not valid!\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  | digi_poller_inhibited = state; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case DIGI_INIT: | 
|  | { | 
|  | /* | 
|  | * This call is made by the apps to complete the | 
|  | * initialization of the board(s). This routine is | 
|  | * responsible for setting the card to its initial | 
|  | * state and setting the drivers control fields to the | 
|  | * sutianle settings for the card in question. | 
|  | */ | 
|  | int crd; | 
|  | for (crd = 0; crd < num_cards; crd++) | 
|  | post_fep_init(crd); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | return -ENOTTY; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pc_tiocmget(struct tty_struct *tty, struct file *file) | 
|  | { | 
|  | struct channel *ch = (struct channel *) tty->driver_data; | 
|  | struct board_chan __iomem *bc; | 
|  | unsigned int mstat, mflag = 0; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (ch) | 
|  | bc = ch->brdchan; | 
|  | else | 
|  | return -EINVAL; | 
|  |  | 
|  | spin_lock_irqsave(&epca_lock, flags); | 
|  | globalwinon(ch); | 
|  | mstat = readb(&bc->mstat); | 
|  | memoff(ch); | 
|  | spin_unlock_irqrestore(&epca_lock, flags); | 
|  |  | 
|  | if (mstat & ch->m_dtr) | 
|  | mflag |= TIOCM_DTR; | 
|  | if (mstat & ch->m_rts) | 
|  | mflag |= TIOCM_RTS; | 
|  | if (mstat & ch->m_cts) | 
|  | mflag |= TIOCM_CTS; | 
|  | if (mstat & ch->dsr) | 
|  | mflag |= TIOCM_DSR; | 
|  | if (mstat & ch->m_ri) | 
|  | mflag |= TIOCM_RI; | 
|  | if (mstat & ch->dcd) | 
|  | mflag |= TIOCM_CD; | 
|  | return mflag; | 
|  | } | 
|  |  | 
|  | static int pc_tiocmset(struct tty_struct *tty, struct file *file, | 
|  | unsigned int set, unsigned int clear) | 
|  | { | 
|  | struct channel *ch = (struct channel *) tty->driver_data; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!ch) | 
|  | return -EINVAL; | 
|  |  | 
|  | spin_lock_irqsave(&epca_lock, flags); | 
|  | /* | 
|  | * I think this modemfake stuff is broken. It doesn't correctly reflect | 
|  | * the behaviour desired by the TIOCM* ioctls. Therefore this is | 
|  | * probably broken. | 
|  | */ | 
|  | if (set & TIOCM_RTS) { | 
|  | ch->modemfake |= ch->m_rts; | 
|  | ch->modem |= ch->m_rts; | 
|  | } | 
|  | if (set & TIOCM_DTR) { | 
|  | ch->modemfake |= ch->m_dtr; | 
|  | ch->modem |= ch->m_dtr; | 
|  | } | 
|  | if (clear & TIOCM_RTS) { | 
|  | ch->modemfake |= ch->m_rts; | 
|  | ch->modem &= ~ch->m_rts; | 
|  | } | 
|  | if (clear & TIOCM_DTR) { | 
|  | ch->modemfake |= ch->m_dtr; | 
|  | ch->modem &= ~ch->m_dtr; | 
|  | } | 
|  | globalwinon(ch); | 
|  | /* | 
|  | * The below routine generally sets up parity, baud, flow control | 
|  | * issues, etc.... It effect both control flags and input flags. | 
|  | */ | 
|  | epcaparam(tty, ch); | 
|  | memoff(ch); | 
|  | spin_unlock_irqrestore(&epca_lock, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pc_ioctl(struct tty_struct *tty, struct file *file, | 
|  | unsigned int cmd, unsigned long arg) | 
|  | { | 
|  | digiflow_t dflow; | 
|  | unsigned long flags; | 
|  | unsigned int mflag, mstat; | 
|  | unsigned char startc, stopc; | 
|  | struct board_chan __iomem *bc; | 
|  | struct channel *ch = (struct channel *) tty->driver_data; | 
|  | void __user *argp = (void __user *)arg; | 
|  |  | 
|  | if (ch) | 
|  | bc = ch->brdchan; | 
|  | else | 
|  | return -EINVAL; | 
|  | switch (cmd) { | 
|  | case TIOCMODG: | 
|  | mflag = pc_tiocmget(tty, file); | 
|  | if (put_user(mflag, (unsigned long __user *)argp)) | 
|  | return -EFAULT; | 
|  | break; | 
|  | case TIOCMODS: | 
|  | if (get_user(mstat, (unsigned __user *)argp)) | 
|  | return -EFAULT; | 
|  | return pc_tiocmset(tty, file, mstat, ~mstat); | 
|  | case TIOCSDTR: | 
|  | spin_lock_irqsave(&epca_lock, flags); | 
|  | ch->omodem |= ch->m_dtr; | 
|  | globalwinon(ch); | 
|  | fepcmd(ch, SETMODEM, ch->m_dtr, 0, 10, 1); | 
|  | memoff(ch); | 
|  | spin_unlock_irqrestore(&epca_lock, flags); | 
|  | break; | 
|  |  | 
|  | case TIOCCDTR: | 
|  | spin_lock_irqsave(&epca_lock, flags); | 
|  | ch->omodem &= ~ch->m_dtr; | 
|  | globalwinon(ch); | 
|  | fepcmd(ch, SETMODEM, 0, ch->m_dtr, 10, 1); | 
|  | memoff(ch); | 
|  | spin_unlock_irqrestore(&epca_lock, flags); | 
|  | break; | 
|  | case DIGI_GETA: | 
|  | if (copy_to_user(argp, &ch->digiext, sizeof(digi_t))) | 
|  | return -EFAULT; | 
|  | break; | 
|  | case DIGI_SETAW: | 
|  | case DIGI_SETAF: | 
|  | lock_kernel(); | 
|  | if (cmd == DIGI_SETAW) { | 
|  | /* Setup an event to indicate when the transmit | 
|  | buffer empties */ | 
|  | spin_lock_irqsave(&epca_lock, flags); | 
|  | setup_empty_event(tty, ch); | 
|  | spin_unlock_irqrestore(&epca_lock, flags); | 
|  | tty_wait_until_sent(tty, 0); | 
|  | } else { | 
|  | /* ldisc lock already held in ioctl */ | 
|  | if (tty->ldisc.ops->flush_buffer) | 
|  | tty->ldisc.ops->flush_buffer(tty); | 
|  | } | 
|  | unlock_kernel(); | 
|  | /* Fall Thru */ | 
|  | case DIGI_SETA: | 
|  | if (copy_from_user(&ch->digiext, argp, sizeof(digi_t))) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (ch->digiext.digi_flags & DIGI_ALTPIN)  { | 
|  | ch->dcd = ch->m_dsr; | 
|  | ch->dsr = ch->m_dcd; | 
|  | } else { | 
|  | ch->dcd = ch->m_dcd; | 
|  | ch->dsr = ch->m_dsr; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&epca_lock, flags); | 
|  | globalwinon(ch); | 
|  |  | 
|  | /* | 
|  | * The below routine generally sets up parity, baud, flow | 
|  | * control issues, etc.... It effect both control flags and | 
|  | * input flags. | 
|  | */ | 
|  | epcaparam(tty, ch); | 
|  | memoff(ch); | 
|  | spin_unlock_irqrestore(&epca_lock, flags); | 
|  | break; | 
|  |  | 
|  | case DIGI_GETFLOW: | 
|  | case DIGI_GETAFLOW: | 
|  | spin_lock_irqsave(&epca_lock, flags); | 
|  | globalwinon(ch); | 
|  | if (cmd == DIGI_GETFLOW) { | 
|  | dflow.startc = readb(&bc->startc); | 
|  | dflow.stopc = readb(&bc->stopc); | 
|  | } else { | 
|  | dflow.startc = readb(&bc->startca); | 
|  | dflow.stopc = readb(&bc->stopca); | 
|  | } | 
|  | memoff(ch); | 
|  | spin_unlock_irqrestore(&epca_lock, flags); | 
|  |  | 
|  | if (copy_to_user(argp, &dflow, sizeof(dflow))) | 
|  | return -EFAULT; | 
|  | break; | 
|  |  | 
|  | case DIGI_SETAFLOW: | 
|  | case DIGI_SETFLOW: | 
|  | if (cmd == DIGI_SETFLOW) { | 
|  | startc = ch->startc; | 
|  | stopc = ch->stopc; | 
|  | } else { | 
|  | startc = ch->startca; | 
|  | stopc = ch->stopca; | 
|  | } | 
|  |  | 
|  | if (copy_from_user(&dflow, argp, sizeof(dflow))) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (dflow.startc != startc || dflow.stopc != stopc) { | 
|  | /* Begin  if setflow toggled */ | 
|  | spin_lock_irqsave(&epca_lock, flags); | 
|  | globalwinon(ch); | 
|  |  | 
|  | if (cmd == DIGI_SETFLOW) { | 
|  | ch->fepstartc = ch->startc = dflow.startc; | 
|  | ch->fepstopc = ch->stopc = dflow.stopc; | 
|  | fepcmd(ch, SONOFFC, ch->fepstartc, | 
|  | ch->fepstopc, 0, 1); | 
|  | } else { | 
|  | ch->fepstartca = ch->startca = dflow.startc; | 
|  | ch->fepstopca  = ch->stopca = dflow.stopc; | 
|  | fepcmd(ch, SAUXONOFFC, ch->fepstartca, | 
|  | ch->fepstopca, 0, 1); | 
|  | } | 
|  |  | 
|  | if (ch->statusflags & TXSTOPPED) | 
|  | pc_start(tty); | 
|  |  | 
|  | memoff(ch); | 
|  | spin_unlock_irqrestore(&epca_lock, flags); | 
|  | } /* End if setflow toggled */ | 
|  | break; | 
|  | default: | 
|  | return -ENOIOCTLCMD; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void pc_set_termios(struct tty_struct *tty, struct ktermios *old_termios) | 
|  | { | 
|  | struct channel *ch; | 
|  | unsigned long flags; | 
|  | /* | 
|  | * verifyChannel returns the channel from the tty struct if it is | 
|  | * valid. This serves as a sanity check. | 
|  | */ | 
|  | ch = verifyChannel(tty); | 
|  |  | 
|  | if (ch != NULL)  { /* Begin if channel valid */ | 
|  | spin_lock_irqsave(&epca_lock, flags); | 
|  | globalwinon(ch); | 
|  | epcaparam(tty, ch); | 
|  | memoff(ch); | 
|  | spin_unlock_irqrestore(&epca_lock, flags); | 
|  |  | 
|  | if ((old_termios->c_cflag & CRTSCTS) && | 
|  | ((tty->termios->c_cflag & CRTSCTS) == 0)) | 
|  | tty->hw_stopped = 0; | 
|  |  | 
|  | if (!(old_termios->c_cflag & CLOCAL) && | 
|  | (tty->termios->c_cflag & CLOCAL)) | 
|  | wake_up_interruptible(&ch->port.open_wait); | 
|  |  | 
|  | } /* End if channel valid */ | 
|  | } | 
|  |  | 
|  | static void do_softint(struct work_struct *work) | 
|  | { | 
|  | struct channel *ch = container_of(work, struct channel, tqueue); | 
|  | /* Called in response to a modem change event */ | 
|  | if (ch && ch->magic == EPCA_MAGIC) { | 
|  | struct tty_struct *tty = ch->port.tty; | 
|  |  | 
|  | if (tty && tty->driver_data) { | 
|  | if (test_and_clear_bit(EPCA_EVENT_HANGUP, &ch->event)) { | 
|  | tty_hangup(tty); | 
|  | wake_up_interruptible(&ch->port.open_wait); | 
|  | ch->port.flags &= ~ASYNC_NORMAL_ACTIVE; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * pc_stop and pc_start provide software flow control to the routine and the | 
|  | * pc_ioctl routine. | 
|  | */ | 
|  | static void pc_stop(struct tty_struct *tty) | 
|  | { | 
|  | struct channel *ch; | 
|  | unsigned long flags; | 
|  | /* | 
|  | * verifyChannel returns the channel from the tty struct if it is | 
|  | * valid. This serves as a sanity check. | 
|  | */ | 
|  | ch = verifyChannel(tty); | 
|  | if (ch != NULL) { | 
|  | spin_lock_irqsave(&epca_lock, flags); | 
|  | if ((ch->statusflags & TXSTOPPED) == 0) { | 
|  | /* Begin if transmit stop requested */ | 
|  | globalwinon(ch); | 
|  | /* STOP transmitting now !! */ | 
|  | fepcmd(ch, PAUSETX, 0, 0, 0, 0); | 
|  | ch->statusflags |= TXSTOPPED; | 
|  | memoff(ch); | 
|  | } /* End if transmit stop requested */ | 
|  | spin_unlock_irqrestore(&epca_lock, flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void pc_start(struct tty_struct *tty) | 
|  | { | 
|  | struct channel *ch; | 
|  | /* | 
|  | * verifyChannel returns the channel from the tty struct if it is | 
|  | * valid. This serves as a sanity check. | 
|  | */ | 
|  | ch = verifyChannel(tty); | 
|  | if (ch != NULL) { | 
|  | unsigned long flags; | 
|  | spin_lock_irqsave(&epca_lock, flags); | 
|  | /* Just in case output was resumed because of a change | 
|  | in Digi-flow */ | 
|  | if (ch->statusflags & TXSTOPPED)  { | 
|  | /* Begin transmit resume requested */ | 
|  | struct board_chan __iomem *bc; | 
|  | globalwinon(ch); | 
|  | bc = ch->brdchan; | 
|  | if (ch->statusflags & LOWWAIT) | 
|  | writeb(1, &bc->ilow); | 
|  | /* Okay, you can start transmitting again... */ | 
|  | fepcmd(ch, RESUMETX, 0, 0, 0, 0); | 
|  | ch->statusflags &= ~TXSTOPPED; | 
|  | memoff(ch); | 
|  | } /* End transmit resume requested */ | 
|  | spin_unlock_irqrestore(&epca_lock, flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The below routines pc_throttle and pc_unthrottle are used to slow (And | 
|  | * resume) the receipt of data into the kernels receive buffers. The exact | 
|  | * occurrence of this depends on the size of the kernels receive buffer and | 
|  | * what the 'watermarks' are set to for that buffer. See the n_ttys.c file for | 
|  | * more details. | 
|  | */ | 
|  | static void pc_throttle(struct tty_struct *tty) | 
|  | { | 
|  | struct channel *ch; | 
|  | unsigned long flags; | 
|  | /* | 
|  | * verifyChannel returns the channel from the tty struct if it is | 
|  | * valid. This serves as a sanity check. | 
|  | */ | 
|  | ch = verifyChannel(tty); | 
|  | if (ch != NULL) { | 
|  | spin_lock_irqsave(&epca_lock, flags); | 
|  | if ((ch->statusflags & RXSTOPPED) == 0) { | 
|  | globalwinon(ch); | 
|  | fepcmd(ch, PAUSERX, 0, 0, 0, 0); | 
|  | ch->statusflags |= RXSTOPPED; | 
|  | memoff(ch); | 
|  | } | 
|  | spin_unlock_irqrestore(&epca_lock, flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void pc_unthrottle(struct tty_struct *tty) | 
|  | { | 
|  | struct channel *ch; | 
|  | unsigned long flags; | 
|  | /* | 
|  | * verifyChannel returns the channel from the tty struct if it is | 
|  | * valid. This serves as a sanity check. | 
|  | */ | 
|  | ch = verifyChannel(tty); | 
|  | if (ch != NULL) { | 
|  | /* Just in case output was resumed because of a change | 
|  | in Digi-flow */ | 
|  | spin_lock_irqsave(&epca_lock, flags); | 
|  | if (ch->statusflags & RXSTOPPED) { | 
|  | globalwinon(ch); | 
|  | fepcmd(ch, RESUMERX, 0, 0, 0, 0); | 
|  | ch->statusflags &= ~RXSTOPPED; | 
|  | memoff(ch); | 
|  | } | 
|  | spin_unlock_irqrestore(&epca_lock, flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int pc_send_break(struct tty_struct *tty, int msec) | 
|  | { | 
|  | struct channel *ch = (struct channel *) tty->driver_data; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (msec == -1) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | spin_lock_irqsave(&epca_lock, flags); | 
|  | globalwinon(ch); | 
|  | /* | 
|  | * Maybe I should send an infinite break here, schedule() for msec | 
|  | * amount of time, and then stop the break. This way, the user can't | 
|  | * screw up the FEP by causing digi_send_break() to be called (i.e. via | 
|  | * an ioctl()) more than once in msec amount of time. | 
|  | * Try this for now... | 
|  | */ | 
|  | fepcmd(ch, SENDBREAK, msec, 0, 10, 0); | 
|  | memoff(ch); | 
|  | spin_unlock_irqrestore(&epca_lock, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Caller MUST hold the lock */ | 
|  | static void setup_empty_event(struct tty_struct *tty, struct channel *ch) | 
|  | { | 
|  | struct board_chan __iomem *bc = ch->brdchan; | 
|  |  | 
|  | globalwinon(ch); | 
|  | ch->statusflags |= EMPTYWAIT; | 
|  | /* | 
|  | * When set the iempty flag request a event to be generated when the | 
|  | * transmit buffer is empty (If there is no BREAK in progress). | 
|  | */ | 
|  | writeb(1, &bc->iempty); | 
|  | memoff(ch); | 
|  | } | 
|  |  | 
|  | #ifndef MODULE | 
|  | static void __init epca_setup(char *str, int *ints) | 
|  | { | 
|  | struct board_info board; | 
|  | int               index, loop, last; | 
|  | char              *temp, *t2; | 
|  | unsigned          len; | 
|  |  | 
|  | /* | 
|  | * If this routine looks a little strange it is because it is only | 
|  | * called if a LILO append command is given to boot the kernel with | 
|  | * parameters. In this way, we can provide the user a method of | 
|  | * changing his board configuration without rebuilding the kernel. | 
|  | */ | 
|  | if (!liloconfig) | 
|  | liloconfig = 1; | 
|  |  | 
|  | memset(&board, 0, sizeof(board)); | 
|  |  | 
|  | /* Assume the data is int first, later we can change it */ | 
|  | /* I think that array position 0 of ints holds the number of args */ | 
|  | for (last = 0, index = 1; index <= ints[0]; index++) | 
|  | switch (index) { /* Begin parse switch */ | 
|  | case 1: | 
|  | board.status = ints[index]; | 
|  | /* | 
|  | * We check for 2 (As opposed to 1; because 2 is a flag | 
|  | * instructing the driver to ignore epcaconfig.) For | 
|  | * this reason we check for 2. | 
|  | */ | 
|  | if (board.status == 2) { | 
|  | /* Begin ignore epcaconfig as well as lilo cmd line */ | 
|  | nbdevs = 0; | 
|  | num_cards = 0; | 
|  | return; | 
|  | } /* End ignore epcaconfig as well as lilo cmd line */ | 
|  |  | 
|  | if (board.status > 2) { | 
|  | printk(KERN_ERR "epca_setup: Invalid board status 0x%x\n", | 
|  | board.status); | 
|  | invalid_lilo_config = 1; | 
|  | setup_error_code |= INVALID_BOARD_STATUS; | 
|  | return; | 
|  | } | 
|  | last = index; | 
|  | break; | 
|  | case 2: | 
|  | board.type = ints[index]; | 
|  | if (board.type >= PCIXEM)  { | 
|  | printk(KERN_ERR "epca_setup: Invalid board type 0x%x\n", board.type); | 
|  | invalid_lilo_config = 1; | 
|  | setup_error_code |= INVALID_BOARD_TYPE; | 
|  | return; | 
|  | } | 
|  | last = index; | 
|  | break; | 
|  | case 3: | 
|  | board.altpin = ints[index]; | 
|  | if (board.altpin > 1) { | 
|  | printk(KERN_ERR "epca_setup: Invalid board altpin 0x%x\n", board.altpin); | 
|  | invalid_lilo_config = 1; | 
|  | setup_error_code |= INVALID_ALTPIN; | 
|  | return; | 
|  | } | 
|  | last = index; | 
|  | break; | 
|  |  | 
|  | case 4: | 
|  | board.numports = ints[index]; | 
|  | if (board.numports < 2 || board.numports > 256) { | 
|  | printk(KERN_ERR "epca_setup: Invalid board numports 0x%x\n", board.numports); | 
|  | invalid_lilo_config = 1; | 
|  | setup_error_code |= INVALID_NUM_PORTS; | 
|  | return; | 
|  | } | 
|  | nbdevs += board.numports; | 
|  | last = index; | 
|  | break; | 
|  |  | 
|  | case 5: | 
|  | board.port = ints[index]; | 
|  | if (ints[index] <= 0) { | 
|  | printk(KERN_ERR "epca_setup: Invalid io port 0x%x\n", (unsigned int)board.port); | 
|  | invalid_lilo_config = 1; | 
|  | setup_error_code |= INVALID_PORT_BASE; | 
|  | return; | 
|  | } | 
|  | last = index; | 
|  | break; | 
|  |  | 
|  | case 6: | 
|  | board.membase = ints[index]; | 
|  | if (ints[index] <= 0) { | 
|  | printk(KERN_ERR "epca_setup: Invalid memory base 0x%x\n", | 
|  | (unsigned int)board.membase); | 
|  | invalid_lilo_config = 1; | 
|  | setup_error_code |= INVALID_MEM_BASE; | 
|  | return; | 
|  | } | 
|  | last = index; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | printk(KERN_ERR "<Error> - epca_setup: Too many integer parms\n"); | 
|  | return; | 
|  |  | 
|  | } /* End parse switch */ | 
|  |  | 
|  | while (str && *str)  { /* Begin while there is a string arg */ | 
|  | /* find the next comma or terminator */ | 
|  | temp = str; | 
|  | /* While string is not null, and a comma hasn't been found */ | 
|  | while (*temp && (*temp != ',')) | 
|  | temp++; | 
|  | if (!*temp) | 
|  | temp = NULL; | 
|  | else | 
|  | *temp++ = 0; | 
|  | /* Set index to the number of args + 1 */ | 
|  | index = last + 1; | 
|  |  | 
|  | switch (index) { | 
|  | case 1: | 
|  | len = strlen(str); | 
|  | if (strncmp("Disable", str, len) == 0) | 
|  | board.status = 0; | 
|  | else if (strncmp("Enable", str, len) == 0) | 
|  | board.status = 1; | 
|  | else { | 
|  | printk(KERN_ERR "epca_setup: Invalid status %s\n", str); | 
|  | invalid_lilo_config = 1; | 
|  | setup_error_code |= INVALID_BOARD_STATUS; | 
|  | return; | 
|  | } | 
|  | last = index; | 
|  | break; | 
|  |  | 
|  | case 2: | 
|  | for (loop = 0; loop < EPCA_NUM_TYPES; loop++) | 
|  | if (strcmp(board_desc[loop], str) == 0) | 
|  | break; | 
|  | /* | 
|  | * If the index incremented above refers to a | 
|  | * legitamate board type set it here. | 
|  | */ | 
|  | if (index < EPCA_NUM_TYPES) | 
|  | board.type = loop; | 
|  | else { | 
|  | printk(KERN_ERR "epca_setup: Invalid board type: %s\n", str); | 
|  | invalid_lilo_config = 1; | 
|  | setup_error_code |= INVALID_BOARD_TYPE; | 
|  | return; | 
|  | } | 
|  | last = index; | 
|  | break; | 
|  |  | 
|  | case 3: | 
|  | len = strlen(str); | 
|  | if (strncmp("Disable", str, len) == 0) | 
|  | board.altpin = 0; | 
|  | else if (strncmp("Enable", str, len) == 0) | 
|  | board.altpin = 1; | 
|  | else { | 
|  | printk(KERN_ERR "epca_setup: Invalid altpin %s\n", str); | 
|  | invalid_lilo_config = 1; | 
|  | setup_error_code |= INVALID_ALTPIN; | 
|  | return; | 
|  | } | 
|  | last = index; | 
|  | break; | 
|  |  | 
|  | case 4: | 
|  | t2 = str; | 
|  | while (isdigit(*t2)) | 
|  | t2++; | 
|  |  | 
|  | if (*t2) { | 
|  | printk(KERN_ERR "epca_setup: Invalid port count %s\n", str); | 
|  | invalid_lilo_config = 1; | 
|  | setup_error_code |= INVALID_NUM_PORTS; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There is not a man page for simple_strtoul but the | 
|  | * code can be found in vsprintf.c. The first argument | 
|  | * is the string to translate (To an unsigned long | 
|  | * obviously), the second argument can be the address | 
|  | * of any character variable or a NULL. If a variable | 
|  | * is given, the end pointer of the string will be | 
|  | * stored in that variable; if a NULL is given the end | 
|  | * pointer will not be returned. The last argument is | 
|  | * the base to use. If a 0 is indicated, the routine | 
|  | * will attempt to determine the proper base by looking | 
|  | * at the values prefix (A '0' for octal, a 'x' for | 
|  | * hex, etc ... If a value is given it will use that | 
|  | * value as the base. | 
|  | */ | 
|  | board.numports = simple_strtoul(str, NULL, 0); | 
|  | nbdevs += board.numports; | 
|  | last = index; | 
|  | break; | 
|  |  | 
|  | case 5: | 
|  | t2 = str; | 
|  | while (isxdigit(*t2)) | 
|  | t2++; | 
|  |  | 
|  | if (*t2) { | 
|  | printk(KERN_ERR "epca_setup: Invalid i/o address %s\n", str); | 
|  | invalid_lilo_config = 1; | 
|  | setup_error_code |= INVALID_PORT_BASE; | 
|  | return; | 
|  | } | 
|  |  | 
|  | board.port = simple_strtoul(str, NULL, 16); | 
|  | last = index; | 
|  | break; | 
|  |  | 
|  | case 6: | 
|  | t2 = str; | 
|  | while (isxdigit(*t2)) | 
|  | t2++; | 
|  |  | 
|  | if (*t2) { | 
|  | printk(KERN_ERR "epca_setup: Invalid memory base %s\n", str); | 
|  | invalid_lilo_config = 1; | 
|  | setup_error_code |= INVALID_MEM_BASE; | 
|  | return; | 
|  | } | 
|  | board.membase = simple_strtoul(str, NULL, 16); | 
|  | last = index; | 
|  | break; | 
|  | default: | 
|  | printk(KERN_ERR "epca: Too many string parms\n"); | 
|  | return; | 
|  | } | 
|  | str = temp; | 
|  | } /* End while there is a string arg */ | 
|  |  | 
|  | if (last < 6) { | 
|  | printk(KERN_ERR "epca: Insufficient parms specified\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* I should REALLY validate the stuff here */ | 
|  | /* Copies our local copy of board into boards */ | 
|  | memcpy((void *)&boards[num_cards], (void *)&board, sizeof(board)); | 
|  | /* Does this get called once per lilo arg are what ? */ | 
|  | printk(KERN_INFO "PC/Xx: Added board %i, %s %i ports at 0x%4.4X base 0x%6.6X\n", | 
|  | num_cards, board_desc[board.type], | 
|  | board.numports, (int)board.port, (unsigned int) board.membase); | 
|  | num_cards++; | 
|  | } | 
|  |  | 
|  | static int __init epca_real_setup(char *str) | 
|  | { | 
|  | int ints[11]; | 
|  |  | 
|  | epca_setup(get_options(str, 11, ints), ints); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("digiepca", epca_real_setup); | 
|  | #endif | 
|  |  | 
|  | enum epic_board_types { | 
|  | brd_xr = 0, | 
|  | brd_xem, | 
|  | brd_cx, | 
|  | brd_xrj, | 
|  | }; | 
|  |  | 
|  | /* indexed directly by epic_board_types enum */ | 
|  | static struct { | 
|  | unsigned char board_type; | 
|  | unsigned bar_idx;		/* PCI base address region */ | 
|  | } epca_info_tbl[] = { | 
|  | { PCIXR, 0, }, | 
|  | { PCIXEM, 0, }, | 
|  | { PCICX, 0, }, | 
|  | { PCIXRJ, 2, }, | 
|  | }; | 
|  |  | 
|  | static int __devinit epca_init_one(struct pci_dev *pdev, | 
|  | const struct pci_device_id *ent) | 
|  | { | 
|  | static int board_num = -1; | 
|  | int board_idx, info_idx = ent->driver_data; | 
|  | unsigned long addr; | 
|  |  | 
|  | if (pci_enable_device(pdev)) | 
|  | return -EIO; | 
|  |  | 
|  | board_num++; | 
|  | board_idx = board_num + num_cards; | 
|  | if (board_idx >= MAXBOARDS) | 
|  | goto err_out; | 
|  |  | 
|  | addr = pci_resource_start(pdev, epca_info_tbl[info_idx].bar_idx); | 
|  | if (!addr) { | 
|  | printk(KERN_ERR PFX "PCI region #%d not available (size 0)\n", | 
|  | epca_info_tbl[info_idx].bar_idx); | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | boards[board_idx].status = ENABLED; | 
|  | boards[board_idx].type = epca_info_tbl[info_idx].board_type; | 
|  | boards[board_idx].numports = 0x0; | 
|  | boards[board_idx].port = addr + PCI_IO_OFFSET; | 
|  | boards[board_idx].membase = addr; | 
|  |  | 
|  | if (!request_mem_region(addr + PCI_IO_OFFSET, 0x200000, "epca")) { | 
|  | printk(KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n", | 
|  | 0x200000, addr + PCI_IO_OFFSET); | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | boards[board_idx].re_map_port = ioremap_nocache(addr + PCI_IO_OFFSET, | 
|  | 0x200000); | 
|  | if (!boards[board_idx].re_map_port) { | 
|  | printk(KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n", | 
|  | 0x200000, addr + PCI_IO_OFFSET); | 
|  | goto err_out_free_pciio; | 
|  | } | 
|  |  | 
|  | if (!request_mem_region(addr, 0x200000, "epca")) { | 
|  | printk(KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n", | 
|  | 0x200000, addr); | 
|  | goto err_out_free_iounmap; | 
|  | } | 
|  |  | 
|  | boards[board_idx].re_map_membase = ioremap_nocache(addr, 0x200000); | 
|  | if (!boards[board_idx].re_map_membase) { | 
|  | printk(KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n", | 
|  | 0x200000, addr + PCI_IO_OFFSET); | 
|  | goto err_out_free_memregion; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * I don't know what the below does, but the hardware guys say its | 
|  | * required on everything except PLX (In this case XRJ). | 
|  | */ | 
|  | if (info_idx != brd_xrj) { | 
|  | pci_write_config_byte(pdev, 0x40, 0); | 
|  | pci_write_config_byte(pdev, 0x46, 0); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_out_free_memregion: | 
|  | release_mem_region(addr, 0x200000); | 
|  | err_out_free_iounmap: | 
|  | iounmap(boards[board_idx].re_map_port); | 
|  | err_out_free_pciio: | 
|  | release_mem_region(addr + PCI_IO_OFFSET, 0x200000); | 
|  | err_out: | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct pci_device_id epca_pci_tbl[] = { | 
|  | { PCI_VENDOR_DIGI, PCI_DEVICE_XR, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xr }, | 
|  | { PCI_VENDOR_DIGI, PCI_DEVICE_XEM, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xem }, | 
|  | { PCI_VENDOR_DIGI, PCI_DEVICE_CX, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_cx }, | 
|  | { PCI_VENDOR_DIGI, PCI_DEVICE_XRJ, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xrj }, | 
|  | { 0, } | 
|  | }; | 
|  |  | 
|  | MODULE_DEVICE_TABLE(pci, epca_pci_tbl); | 
|  |  | 
|  | static int __init init_PCI(void) | 
|  | { | 
|  | memset(&epca_driver, 0, sizeof(epca_driver)); | 
|  | epca_driver.name = "epca"; | 
|  | epca_driver.id_table = epca_pci_tbl; | 
|  | epca_driver.probe = epca_init_one; | 
|  |  | 
|  | return pci_register_driver(&epca_driver); | 
|  | } | 
|  |  | 
|  | MODULE_LICENSE("GPL"); |