| /* | 
 |  * NTP state machine interfaces and logic. | 
 |  * | 
 |  * This code was mainly moved from kernel/timer.c and kernel/time.c | 
 |  * Please see those files for relevant copyright info and historical | 
 |  * changelogs. | 
 |  */ | 
 | #include <linux/capability.h> | 
 | #include <linux/clocksource.h> | 
 | #include <linux/workqueue.h> | 
 | #include <linux/hrtimer.h> | 
 | #include <linux/jiffies.h> | 
 | #include <linux/math64.h> | 
 | #include <linux/timex.h> | 
 | #include <linux/time.h> | 
 | #include <linux/mm.h> | 
 |  | 
 | /* | 
 |  * NTP timekeeping variables: | 
 |  */ | 
 |  | 
 | /* USER_HZ period (usecs): */ | 
 | unsigned long			tick_usec = TICK_USEC; | 
 |  | 
 | /* ACTHZ period (nsecs): */ | 
 | unsigned long			tick_nsec; | 
 |  | 
 | u64				tick_length; | 
 | static u64			tick_length_base; | 
 |  | 
 | static struct hrtimer		leap_timer; | 
 |  | 
 | #define MAX_TICKADJ		500LL		/* usecs */ | 
 | #define MAX_TICKADJ_SCALED \ | 
 | 	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ) | 
 |  | 
 | /* | 
 |  * phase-lock loop variables | 
 |  */ | 
 |  | 
 | /* | 
 |  * clock synchronization status | 
 |  * | 
 |  * (TIME_ERROR prevents overwriting the CMOS clock) | 
 |  */ | 
 | static int			time_state = TIME_OK; | 
 |  | 
 | /* clock status bits:							*/ | 
 | int				time_status = STA_UNSYNC; | 
 |  | 
 | /* TAI offset (secs):							*/ | 
 | static long			time_tai; | 
 |  | 
 | /* time adjustment (nsecs):						*/ | 
 | static s64			time_offset; | 
 |  | 
 | /* pll time constant:							*/ | 
 | static long			time_constant = 2; | 
 |  | 
 | /* maximum error (usecs):						*/ | 
 | long				time_maxerror = NTP_PHASE_LIMIT; | 
 |  | 
 | /* estimated error (usecs):						*/ | 
 | long				time_esterror = NTP_PHASE_LIMIT; | 
 |  | 
 | /* frequency offset (scaled nsecs/secs):				*/ | 
 | static s64			time_freq; | 
 |  | 
 | /* time at last adjustment (secs):					*/ | 
 | static long			time_reftime; | 
 |  | 
 | long				time_adjust; | 
 |  | 
 | /* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/ | 
 | static s64			ntp_tick_adj; | 
 |  | 
 | /* | 
 |  * NTP methods: | 
 |  */ | 
 |  | 
 | /* | 
 |  * Update (tick_length, tick_length_base, tick_nsec), based | 
 |  * on (tick_usec, ntp_tick_adj, time_freq): | 
 |  */ | 
 | static void ntp_update_frequency(void) | 
 | { | 
 | 	u64 second_length; | 
 | 	u64 new_base; | 
 |  | 
 | 	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) | 
 | 						<< NTP_SCALE_SHIFT; | 
 |  | 
 | 	second_length		+= ntp_tick_adj; | 
 | 	second_length		+= time_freq; | 
 |  | 
 | 	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT; | 
 | 	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ); | 
 |  | 
 | 	/* | 
 | 	 * Don't wait for the next second_overflow, apply | 
 | 	 * the change to the tick length immediately: | 
 | 	 */ | 
 | 	tick_length		+= new_base - tick_length_base; | 
 | 	tick_length_base	 = new_base; | 
 | } | 
 |  | 
 | static inline s64 ntp_update_offset_fll(s64 offset64, long secs) | 
 | { | 
 | 	time_status &= ~STA_MODE; | 
 |  | 
 | 	if (secs < MINSEC) | 
 | 		return 0; | 
 |  | 
 | 	if (!(time_status & STA_FLL) && (secs <= MAXSEC)) | 
 | 		return 0; | 
 |  | 
 | 	time_status |= STA_MODE; | 
 |  | 
 | 	return div_s64(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs); | 
 | } | 
 |  | 
 | static void ntp_update_offset(long offset) | 
 | { | 
 | 	s64 freq_adj; | 
 | 	s64 offset64; | 
 | 	long secs; | 
 |  | 
 | 	if (!(time_status & STA_PLL)) | 
 | 		return; | 
 |  | 
 | 	if (!(time_status & STA_NANO)) | 
 | 		offset *= NSEC_PER_USEC; | 
 |  | 
 | 	/* | 
 | 	 * Scale the phase adjustment and | 
 | 	 * clamp to the operating range. | 
 | 	 */ | 
 | 	offset = min(offset, MAXPHASE); | 
 | 	offset = max(offset, -MAXPHASE); | 
 |  | 
 | 	/* | 
 | 	 * Select how the frequency is to be controlled | 
 | 	 * and in which mode (PLL or FLL). | 
 | 	 */ | 
 | 	secs = xtime.tv_sec - time_reftime; | 
 | 	if (unlikely(time_status & STA_FREQHOLD)) | 
 | 		secs = 0; | 
 |  | 
 | 	time_reftime = xtime.tv_sec; | 
 |  | 
 | 	offset64    = offset; | 
 | 	freq_adj    = (offset64 * secs) << | 
 | 			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant)); | 
 |  | 
 | 	freq_adj    += ntp_update_offset_fll(offset64, secs); | 
 |  | 
 | 	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED); | 
 |  | 
 | 	time_freq   = max(freq_adj, -MAXFREQ_SCALED); | 
 |  | 
 | 	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ); | 
 | } | 
 |  | 
 | /** | 
 |  * ntp_clear - Clears the NTP state variables | 
 |  * | 
 |  * Must be called while holding a write on the xtime_lock | 
 |  */ | 
 | void ntp_clear(void) | 
 | { | 
 | 	time_adjust	= 0;		/* stop active adjtime() */ | 
 | 	time_status	|= STA_UNSYNC; | 
 | 	time_maxerror	= NTP_PHASE_LIMIT; | 
 | 	time_esterror	= NTP_PHASE_LIMIT; | 
 |  | 
 | 	ntp_update_frequency(); | 
 |  | 
 | 	tick_length	= tick_length_base; | 
 | 	time_offset	= 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Leap second processing. If in leap-insert state at the end of the | 
 |  * day, the system clock is set back one second; if in leap-delete | 
 |  * state, the system clock is set ahead one second. | 
 |  */ | 
 | static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) | 
 | { | 
 | 	enum hrtimer_restart res = HRTIMER_NORESTART; | 
 |  | 
 | 	write_seqlock(&xtime_lock); | 
 |  | 
 | 	switch (time_state) { | 
 | 	case TIME_OK: | 
 | 		break; | 
 | 	case TIME_INS: | 
 | 		timekeeping_leap_insert(-1); | 
 | 		time_state = TIME_OOP; | 
 | 		printk(KERN_NOTICE | 
 | 			"Clock: inserting leap second 23:59:60 UTC\n"); | 
 | 		hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC); | 
 | 		res = HRTIMER_RESTART; | 
 | 		break; | 
 | 	case TIME_DEL: | 
 | 		timekeeping_leap_insert(1); | 
 | 		time_tai--; | 
 | 		time_state = TIME_WAIT; | 
 | 		printk(KERN_NOTICE | 
 | 			"Clock: deleting leap second 23:59:59 UTC\n"); | 
 | 		break; | 
 | 	case TIME_OOP: | 
 | 		time_tai++; | 
 | 		time_state = TIME_WAIT; | 
 | 		/* fall through */ | 
 | 	case TIME_WAIT: | 
 | 		if (!(time_status & (STA_INS | STA_DEL))) | 
 | 			time_state = TIME_OK; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	write_sequnlock(&xtime_lock); | 
 |  | 
 | 	return res; | 
 | } | 
 |  | 
 | /* | 
 |  * this routine handles the overflow of the microsecond field | 
 |  * | 
 |  * The tricky bits of code to handle the accurate clock support | 
 |  * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. | 
 |  * They were originally developed for SUN and DEC kernels. | 
 |  * All the kudos should go to Dave for this stuff. | 
 |  */ | 
 | void second_overflow(void) | 
 | { | 
 | 	s64 delta; | 
 |  | 
 | 	/* Bump the maxerror field */ | 
 | 	time_maxerror += MAXFREQ / NSEC_PER_USEC; | 
 | 	if (time_maxerror > NTP_PHASE_LIMIT) { | 
 | 		time_maxerror = NTP_PHASE_LIMIT; | 
 | 		time_status |= STA_UNSYNC; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Compute the phase adjustment for the next second. The offset is | 
 | 	 * reduced by a fixed factor times the time constant. | 
 | 	 */ | 
 | 	tick_length	 = tick_length_base; | 
 |  | 
 | 	delta		 = shift_right(time_offset, SHIFT_PLL + time_constant); | 
 | 	time_offset	-= delta; | 
 | 	tick_length	+= delta; | 
 |  | 
 | 	if (!time_adjust) | 
 | 		return; | 
 |  | 
 | 	if (time_adjust > MAX_TICKADJ) { | 
 | 		time_adjust -= MAX_TICKADJ; | 
 | 		tick_length += MAX_TICKADJ_SCALED; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (time_adjust < -MAX_TICKADJ) { | 
 | 		time_adjust += MAX_TICKADJ; | 
 | 		tick_length -= MAX_TICKADJ_SCALED; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ) | 
 | 							 << NTP_SCALE_SHIFT; | 
 | 	time_adjust = 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_GENERIC_CMOS_UPDATE | 
 |  | 
 | /* Disable the cmos update - used by virtualization and embedded */ | 
 | int no_sync_cmos_clock  __read_mostly; | 
 |  | 
 | static void sync_cmos_clock(struct work_struct *work); | 
 |  | 
 | static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock); | 
 |  | 
 | static void sync_cmos_clock(struct work_struct *work) | 
 | { | 
 | 	struct timespec now, next; | 
 | 	int fail = 1; | 
 |  | 
 | 	/* | 
 | 	 * If we have an externally synchronized Linux clock, then update | 
 | 	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be | 
 | 	 * called as close as possible to 500 ms before the new second starts. | 
 | 	 * This code is run on a timer.  If the clock is set, that timer | 
 | 	 * may not expire at the correct time.  Thus, we adjust... | 
 | 	 */ | 
 | 	if (!ntp_synced()) { | 
 | 		/* | 
 | 		 * Not synced, exit, do not restart a timer (if one is | 
 | 		 * running, let it run out). | 
 | 		 */ | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	getnstimeofday(&now); | 
 | 	if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2) | 
 | 		fail = update_persistent_clock(now); | 
 |  | 
 | 	next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2); | 
 | 	if (next.tv_nsec <= 0) | 
 | 		next.tv_nsec += NSEC_PER_SEC; | 
 |  | 
 | 	if (!fail) | 
 | 		next.tv_sec = 659; | 
 | 	else | 
 | 		next.tv_sec = 0; | 
 |  | 
 | 	if (next.tv_nsec >= NSEC_PER_SEC) { | 
 | 		next.tv_sec++; | 
 | 		next.tv_nsec -= NSEC_PER_SEC; | 
 | 	} | 
 | 	schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next)); | 
 | } | 
 |  | 
 | static void notify_cmos_timer(void) | 
 | { | 
 | 	if (!no_sync_cmos_clock) | 
 | 		schedule_delayed_work(&sync_cmos_work, 0); | 
 | } | 
 |  | 
 | #else | 
 | static inline void notify_cmos_timer(void) { } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Start the leap seconds timer: | 
 |  */ | 
 | static inline void ntp_start_leap_timer(struct timespec *ts) | 
 | { | 
 | 	long now = ts->tv_sec; | 
 |  | 
 | 	if (time_status & STA_INS) { | 
 | 		time_state = TIME_INS; | 
 | 		now += 86400 - now % 86400; | 
 | 		hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS); | 
 |  | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (time_status & STA_DEL) { | 
 | 		time_state = TIME_DEL; | 
 | 		now += 86400 - (now + 1) % 86400; | 
 | 		hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Propagate a new txc->status value into the NTP state: | 
 |  */ | 
 | static inline void process_adj_status(struct timex *txc, struct timespec *ts) | 
 | { | 
 | 	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) { | 
 | 		time_state = TIME_OK; | 
 | 		time_status = STA_UNSYNC; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we turn on PLL adjustments then reset the | 
 | 	 * reference time to current time. | 
 | 	 */ | 
 | 	if (!(time_status & STA_PLL) && (txc->status & STA_PLL)) | 
 | 		time_reftime = xtime.tv_sec; | 
 |  | 
 | 	/* only set allowed bits */ | 
 | 	time_status &= STA_RONLY; | 
 | 	time_status |= txc->status & ~STA_RONLY; | 
 |  | 
 | 	switch (time_state) { | 
 | 	case TIME_OK: | 
 | 		ntp_start_leap_timer(ts); | 
 | 		break; | 
 | 	case TIME_INS: | 
 | 	case TIME_DEL: | 
 | 		time_state = TIME_OK; | 
 | 		ntp_start_leap_timer(ts); | 
 | 	case TIME_WAIT: | 
 | 		if (!(time_status & (STA_INS | STA_DEL))) | 
 | 			time_state = TIME_OK; | 
 | 		break; | 
 | 	case TIME_OOP: | 
 | 		hrtimer_restart(&leap_timer); | 
 | 		break; | 
 | 	} | 
 | } | 
 | /* | 
 |  * Called with the xtime lock held, so we can access and modify | 
 |  * all the global NTP state: | 
 |  */ | 
 | static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts) | 
 | { | 
 | 	if (txc->modes & ADJ_STATUS) | 
 | 		process_adj_status(txc, ts); | 
 |  | 
 | 	if (txc->modes & ADJ_NANO) | 
 | 		time_status |= STA_NANO; | 
 |  | 
 | 	if (txc->modes & ADJ_MICRO) | 
 | 		time_status &= ~STA_NANO; | 
 |  | 
 | 	if (txc->modes & ADJ_FREQUENCY) { | 
 | 		time_freq = txc->freq * PPM_SCALE; | 
 | 		time_freq = min(time_freq, MAXFREQ_SCALED); | 
 | 		time_freq = max(time_freq, -MAXFREQ_SCALED); | 
 | 	} | 
 |  | 
 | 	if (txc->modes & ADJ_MAXERROR) | 
 | 		time_maxerror = txc->maxerror; | 
 |  | 
 | 	if (txc->modes & ADJ_ESTERROR) | 
 | 		time_esterror = txc->esterror; | 
 |  | 
 | 	if (txc->modes & ADJ_TIMECONST) { | 
 | 		time_constant = txc->constant; | 
 | 		if (!(time_status & STA_NANO)) | 
 | 			time_constant += 4; | 
 | 		time_constant = min(time_constant, (long)MAXTC); | 
 | 		time_constant = max(time_constant, 0l); | 
 | 	} | 
 |  | 
 | 	if (txc->modes & ADJ_TAI && txc->constant > 0) | 
 | 		time_tai = txc->constant; | 
 |  | 
 | 	if (txc->modes & ADJ_OFFSET) | 
 | 		ntp_update_offset(txc->offset); | 
 |  | 
 | 	if (txc->modes & ADJ_TICK) | 
 | 		tick_usec = txc->tick; | 
 |  | 
 | 	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET)) | 
 | 		ntp_update_frequency(); | 
 | } | 
 |  | 
 | /* | 
 |  * adjtimex mainly allows reading (and writing, if superuser) of | 
 |  * kernel time-keeping variables. used by xntpd. | 
 |  */ | 
 | int do_adjtimex(struct timex *txc) | 
 | { | 
 | 	struct timespec ts; | 
 | 	int result; | 
 |  | 
 | 	/* Validate the data before disabling interrupts */ | 
 | 	if (txc->modes & ADJ_ADJTIME) { | 
 | 		/* singleshot must not be used with any other mode bits */ | 
 | 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) | 
 | 			return -EINVAL; | 
 | 		if (!(txc->modes & ADJ_OFFSET_READONLY) && | 
 | 		    !capable(CAP_SYS_TIME)) | 
 | 			return -EPERM; | 
 | 	} else { | 
 | 		/* In order to modify anything, you gotta be super-user! */ | 
 | 		 if (txc->modes && !capable(CAP_SYS_TIME)) | 
 | 			return -EPERM; | 
 |  | 
 | 		/* | 
 | 		 * if the quartz is off by more than 10% then | 
 | 		 * something is VERY wrong! | 
 | 		 */ | 
 | 		if (txc->modes & ADJ_TICK && | 
 | 		    (txc->tick <  900000/USER_HZ || | 
 | 		     txc->tick > 1100000/USER_HZ)) | 
 | 			return -EINVAL; | 
 |  | 
 | 		if (txc->modes & ADJ_STATUS && time_state != TIME_OK) | 
 | 			hrtimer_cancel(&leap_timer); | 
 | 	} | 
 |  | 
 | 	getnstimeofday(&ts); | 
 |  | 
 | 	write_seqlock_irq(&xtime_lock); | 
 |  | 
 | 	if (txc->modes & ADJ_ADJTIME) { | 
 | 		long save_adjust = time_adjust; | 
 |  | 
 | 		if (!(txc->modes & ADJ_OFFSET_READONLY)) { | 
 | 			/* adjtime() is independent from ntp_adjtime() */ | 
 | 			time_adjust = txc->offset; | 
 | 			ntp_update_frequency(); | 
 | 		} | 
 | 		txc->offset = save_adjust; | 
 | 	} else { | 
 |  | 
 | 		/* If there are input parameters, then process them: */ | 
 | 		if (txc->modes) | 
 | 			process_adjtimex_modes(txc, &ts); | 
 |  | 
 | 		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ, | 
 | 				  NTP_SCALE_SHIFT); | 
 | 		if (!(time_status & STA_NANO)) | 
 | 			txc->offset /= NSEC_PER_USEC; | 
 | 	} | 
 |  | 
 | 	result = time_state;	/* mostly `TIME_OK' */ | 
 | 	if (time_status & (STA_UNSYNC|STA_CLOCKERR)) | 
 | 		result = TIME_ERROR; | 
 |  | 
 | 	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) * | 
 | 					 PPM_SCALE_INV, NTP_SCALE_SHIFT); | 
 | 	txc->maxerror	   = time_maxerror; | 
 | 	txc->esterror	   = time_esterror; | 
 | 	txc->status	   = time_status; | 
 | 	txc->constant	   = time_constant; | 
 | 	txc->precision	   = 1; | 
 | 	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE; | 
 | 	txc->tick	   = tick_usec; | 
 | 	txc->tai	   = time_tai; | 
 |  | 
 | 	/* PPS is not implemented, so these are zero */ | 
 | 	txc->ppsfreq	   = 0; | 
 | 	txc->jitter	   = 0; | 
 | 	txc->shift	   = 0; | 
 | 	txc->stabil	   = 0; | 
 | 	txc->jitcnt	   = 0; | 
 | 	txc->calcnt	   = 0; | 
 | 	txc->errcnt	   = 0; | 
 | 	txc->stbcnt	   = 0; | 
 |  | 
 | 	write_sequnlock_irq(&xtime_lock); | 
 |  | 
 | 	txc->time.tv_sec = ts.tv_sec; | 
 | 	txc->time.tv_usec = ts.tv_nsec; | 
 | 	if (!(time_status & STA_NANO)) | 
 | 		txc->time.tv_usec /= NSEC_PER_USEC; | 
 |  | 
 | 	notify_cmos_timer(); | 
 |  | 
 | 	return result; | 
 | } | 
 |  | 
 | static int __init ntp_tick_adj_setup(char *str) | 
 | { | 
 | 	ntp_tick_adj = simple_strtol(str, NULL, 0); | 
 | 	ntp_tick_adj <<= NTP_SCALE_SHIFT; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | __setup("ntp_tick_adj=", ntp_tick_adj_setup); | 
 |  | 
 | void __init ntp_init(void) | 
 | { | 
 | 	ntp_clear(); | 
 | 	hrtimer_init(&leap_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); | 
 | 	leap_timer.function = ntp_leap_second; | 
 | } |