|  | /******************************************************************************* | 
|  |  | 
|  | Intel(R) Gigabit Ethernet Linux driver | 
|  | Copyright(c) 2007 Intel Corporation. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify it | 
|  | under the terms and conditions of the GNU General Public License, | 
|  | version 2, as published by the Free Software Foundation. | 
|  |  | 
|  | This program is distributed in the hope it will be useful, but WITHOUT | 
|  | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License along with | 
|  | this program; if not, write to the Free Software Foundation, Inc., | 
|  | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | 
|  |  | 
|  | The full GNU General Public License is included in this distribution in | 
|  | the file called "COPYING". | 
|  |  | 
|  | Contact Information: | 
|  | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | 
|  | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
|  |  | 
|  | *******************************************************************************/ | 
|  |  | 
|  | #include <linux/if_ether.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/netdevice.h> | 
|  |  | 
|  | #include "e1000_mac.h" | 
|  |  | 
|  | #include "igb.h" | 
|  |  | 
|  | static s32 igb_set_default_fc(struct e1000_hw *hw); | 
|  | static s32 igb_set_fc_watermarks(struct e1000_hw *hw); | 
|  |  | 
|  | /** | 
|  | *  igb_remove_device - Free device specific structure | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  If a device specific structure was allocated, this function will | 
|  | *  free it. | 
|  | **/ | 
|  | void igb_remove_device(struct e1000_hw *hw) | 
|  | { | 
|  | /* Freeing the dev_spec member of e1000_hw structure */ | 
|  | kfree(hw->dev_spec); | 
|  | } | 
|  |  | 
|  | static s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) | 
|  | { | 
|  | struct igb_adapter *adapter = hw->back; | 
|  | u16 cap_offset; | 
|  |  | 
|  | cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); | 
|  | if (!cap_offset) | 
|  | return -E1000_ERR_CONFIG; | 
|  |  | 
|  | pci_read_config_word(adapter->pdev, cap_offset + reg, value); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_get_bus_info_pcie - Get PCIe bus information | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Determines and stores the system bus information for a particular | 
|  | *  network interface.  The following bus information is determined and stored: | 
|  | *  bus speed, bus width, type (PCIe), and PCIe function. | 
|  | **/ | 
|  | s32 igb_get_bus_info_pcie(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_bus_info *bus = &hw->bus; | 
|  | s32 ret_val; | 
|  | u32 reg; | 
|  | u16 pcie_link_status; | 
|  |  | 
|  | bus->type = e1000_bus_type_pci_express; | 
|  | bus->speed = e1000_bus_speed_2500; | 
|  |  | 
|  | ret_val = igb_read_pcie_cap_reg(hw, | 
|  | PCIE_LINK_STATUS, | 
|  | &pcie_link_status); | 
|  | if (ret_val) | 
|  | bus->width = e1000_bus_width_unknown; | 
|  | else | 
|  | bus->width = (enum e1000_bus_width)((pcie_link_status & | 
|  | PCIE_LINK_WIDTH_MASK) >> | 
|  | PCIE_LINK_WIDTH_SHIFT); | 
|  |  | 
|  | reg = rd32(E1000_STATUS); | 
|  | bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_clear_vfta - Clear VLAN filter table | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Clears the register array which contains the VLAN filter table by | 
|  | *  setting all the values to 0. | 
|  | **/ | 
|  | void igb_clear_vfta(struct e1000_hw *hw) | 
|  | { | 
|  | u32 offset; | 
|  |  | 
|  | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { | 
|  | array_wr32(E1000_VFTA, offset, 0); | 
|  | wrfl(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_write_vfta - Write value to VLAN filter table | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset in VLAN filter table | 
|  | *  @value: register value written to VLAN filter table | 
|  | * | 
|  | *  Writes value at the given offset in the register array which stores | 
|  | *  the VLAN filter table. | 
|  | **/ | 
|  | void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) | 
|  | { | 
|  | array_wr32(E1000_VFTA, offset, value); | 
|  | wrfl(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_check_alt_mac_addr - Check for alternate MAC addr | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Checks the nvm for an alternate MAC address.  An alternate MAC address | 
|  | *  can be setup by pre-boot software and must be treated like a permanent | 
|  | *  address and must override the actual permanent MAC address.  If an | 
|  | *  alternate MAC address is fopund it is saved in the hw struct and | 
|  | *  prgrammed into RAR0 and the cuntion returns success, otherwise the | 
|  | *  fucntion returns an error. | 
|  | **/ | 
|  | s32 igb_check_alt_mac_addr(struct e1000_hw *hw) | 
|  | { | 
|  | u32 i; | 
|  | s32 ret_val = 0; | 
|  | u16 offset, nvm_alt_mac_addr_offset, nvm_data; | 
|  | u8 alt_mac_addr[ETH_ALEN]; | 
|  |  | 
|  | ret_val = hw->nvm.ops.read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1, | 
|  | &nvm_alt_mac_addr_offset); | 
|  | if (ret_val) { | 
|  | hw_dbg("NVM Read Error\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (nvm_alt_mac_addr_offset == 0xFFFF) { | 
|  | ret_val = -(E1000_NOT_IMPLEMENTED); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (hw->bus.func == E1000_FUNC_1) | 
|  | nvm_alt_mac_addr_offset += ETH_ALEN/sizeof(u16); | 
|  |  | 
|  | for (i = 0; i < ETH_ALEN; i += 2) { | 
|  | offset = nvm_alt_mac_addr_offset + (i >> 1); | 
|  | ret_val = hw->nvm.ops.read_nvm(hw, offset, 1, &nvm_data); | 
|  | if (ret_val) { | 
|  | hw_dbg("NVM Read Error\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | alt_mac_addr[i] = (u8)(nvm_data & 0xFF); | 
|  | alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); | 
|  | } | 
|  |  | 
|  | /* if multicast bit is set, the alternate address will not be used */ | 
|  | if (alt_mac_addr[0] & 0x01) { | 
|  | ret_val = -(E1000_NOT_IMPLEMENTED); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < ETH_ALEN; i++) | 
|  | hw->mac.addr[i] = hw->mac.perm_addr[i] = alt_mac_addr[i]; | 
|  |  | 
|  | hw->mac.ops.rar_set(hw, hw->mac.perm_addr, 0); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_rar_set - Set receive address register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @addr: pointer to the receive address | 
|  | *  @index: receive address array register | 
|  | * | 
|  | *  Sets the receive address array register at index to the address passed | 
|  | *  in by addr. | 
|  | **/ | 
|  | void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) | 
|  | { | 
|  | u32 rar_low, rar_high; | 
|  |  | 
|  | /* | 
|  | * HW expects these in little endian so we reverse the byte order | 
|  | * from network order (big endian) to little endian | 
|  | */ | 
|  | rar_low = ((u32) addr[0] | | 
|  | ((u32) addr[1] << 8) | | 
|  | ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); | 
|  |  | 
|  | rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); | 
|  |  | 
|  | if (!hw->mac.disable_av) | 
|  | rar_high |= E1000_RAH_AV; | 
|  |  | 
|  | wr32(E1000_RAL(index), rar_low); | 
|  | wr32(E1000_RAH(index), rar_high); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_mta_set - Set multicast filter table address | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @hash_value: determines the MTA register and bit to set | 
|  | * | 
|  | *  The multicast table address is a register array of 32-bit registers. | 
|  | *  The hash_value is used to determine what register the bit is in, the | 
|  | *  current value is read, the new bit is OR'd in and the new value is | 
|  | *  written back into the register. | 
|  | **/ | 
|  | void igb_mta_set(struct e1000_hw *hw, u32 hash_value) | 
|  | { | 
|  | u32 hash_bit, hash_reg, mta; | 
|  |  | 
|  | /* | 
|  | * The MTA is a register array of 32-bit registers. It is | 
|  | * treated like an array of (32*mta_reg_count) bits.  We want to | 
|  | * set bit BitArray[hash_value]. So we figure out what register | 
|  | * the bit is in, read it, OR in the new bit, then write | 
|  | * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a | 
|  | * mask to bits 31:5 of the hash value which gives us the | 
|  | * register we're modifying.  The hash bit within that register | 
|  | * is determined by the lower 5 bits of the hash value. | 
|  | */ | 
|  | hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); | 
|  | hash_bit = hash_value & 0x1F; | 
|  |  | 
|  | mta = array_rd32(E1000_MTA, hash_reg); | 
|  |  | 
|  | mta |= (1 << hash_bit); | 
|  |  | 
|  | array_wr32(E1000_MTA, hash_reg, mta); | 
|  | wrfl(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_hash_mc_addr - Generate a multicast hash value | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @mc_addr: pointer to a multicast address | 
|  | * | 
|  | *  Generates a multicast address hash value which is used to determine | 
|  | *  the multicast filter table array address and new table value.  See | 
|  | *  igb_mta_set() | 
|  | **/ | 
|  | u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) | 
|  | { | 
|  | u32 hash_value, hash_mask; | 
|  | u8 bit_shift = 0; | 
|  |  | 
|  | /* Register count multiplied by bits per register */ | 
|  | hash_mask = (hw->mac.mta_reg_count * 32) - 1; | 
|  |  | 
|  | /* | 
|  | * For a mc_filter_type of 0, bit_shift is the number of left-shifts | 
|  | * where 0xFF would still fall within the hash mask. | 
|  | */ | 
|  | while (hash_mask >> bit_shift != 0xFF) | 
|  | bit_shift++; | 
|  |  | 
|  | /* | 
|  | * The portion of the address that is used for the hash table | 
|  | * is determined by the mc_filter_type setting. | 
|  | * The algorithm is such that there is a total of 8 bits of shifting. | 
|  | * The bit_shift for a mc_filter_type of 0 represents the number of | 
|  | * left-shifts where the MSB of mc_addr[5] would still fall within | 
|  | * the hash_mask.  Case 0 does this exactly.  Since there are a total | 
|  | * of 8 bits of shifting, then mc_addr[4] will shift right the | 
|  | * remaining number of bits. Thus 8 - bit_shift.  The rest of the | 
|  | * cases are a variation of this algorithm...essentially raising the | 
|  | * number of bits to shift mc_addr[5] left, while still keeping the | 
|  | * 8-bit shifting total. | 
|  | * | 
|  | * For example, given the following Destination MAC Address and an | 
|  | * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), | 
|  | * we can see that the bit_shift for case 0 is 4.  These are the hash | 
|  | * values resulting from each mc_filter_type... | 
|  | * [0] [1] [2] [3] [4] [5] | 
|  | * 01  AA  00  12  34  56 | 
|  | * LSB                 MSB | 
|  | * | 
|  | * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 | 
|  | * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 | 
|  | * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 | 
|  | * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 | 
|  | */ | 
|  | switch (hw->mac.mc_filter_type) { | 
|  | default: | 
|  | case 0: | 
|  | break; | 
|  | case 1: | 
|  | bit_shift += 1; | 
|  | break; | 
|  | case 2: | 
|  | bit_shift += 2; | 
|  | break; | 
|  | case 3: | 
|  | bit_shift += 4; | 
|  | break; | 
|  | } | 
|  |  | 
|  | hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | | 
|  | (((u16) mc_addr[5]) << bit_shift))); | 
|  |  | 
|  | return hash_value; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_clear_hw_cntrs_base - Clear base hardware counters | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Clears the base hardware counters by reading the counter registers. | 
|  | **/ | 
|  | void igb_clear_hw_cntrs_base(struct e1000_hw *hw) | 
|  | { | 
|  | u32 temp; | 
|  |  | 
|  | temp = rd32(E1000_CRCERRS); | 
|  | temp = rd32(E1000_SYMERRS); | 
|  | temp = rd32(E1000_MPC); | 
|  | temp = rd32(E1000_SCC); | 
|  | temp = rd32(E1000_ECOL); | 
|  | temp = rd32(E1000_MCC); | 
|  | temp = rd32(E1000_LATECOL); | 
|  | temp = rd32(E1000_COLC); | 
|  | temp = rd32(E1000_DC); | 
|  | temp = rd32(E1000_SEC); | 
|  | temp = rd32(E1000_RLEC); | 
|  | temp = rd32(E1000_XONRXC); | 
|  | temp = rd32(E1000_XONTXC); | 
|  | temp = rd32(E1000_XOFFRXC); | 
|  | temp = rd32(E1000_XOFFTXC); | 
|  | temp = rd32(E1000_FCRUC); | 
|  | temp = rd32(E1000_GPRC); | 
|  | temp = rd32(E1000_BPRC); | 
|  | temp = rd32(E1000_MPRC); | 
|  | temp = rd32(E1000_GPTC); | 
|  | temp = rd32(E1000_GORCL); | 
|  | temp = rd32(E1000_GORCH); | 
|  | temp = rd32(E1000_GOTCL); | 
|  | temp = rd32(E1000_GOTCH); | 
|  | temp = rd32(E1000_RNBC); | 
|  | temp = rd32(E1000_RUC); | 
|  | temp = rd32(E1000_RFC); | 
|  | temp = rd32(E1000_ROC); | 
|  | temp = rd32(E1000_RJC); | 
|  | temp = rd32(E1000_TORL); | 
|  | temp = rd32(E1000_TORH); | 
|  | temp = rd32(E1000_TOTL); | 
|  | temp = rd32(E1000_TOTH); | 
|  | temp = rd32(E1000_TPR); | 
|  | temp = rd32(E1000_TPT); | 
|  | temp = rd32(E1000_MPTC); | 
|  | temp = rd32(E1000_BPTC); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_check_for_copper_link - Check for link (Copper) | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Checks to see of the link status of the hardware has changed.  If a | 
|  | *  change in link status has been detected, then we read the PHY registers | 
|  | *  to get the current speed/duplex if link exists. | 
|  | **/ | 
|  | s32 igb_check_for_copper_link(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_mac_info *mac = &hw->mac; | 
|  | s32 ret_val; | 
|  | bool link; | 
|  |  | 
|  | /* | 
|  | * We only want to go out to the PHY registers to see if Auto-Neg | 
|  | * has completed and/or if our link status has changed.  The | 
|  | * get_link_status flag is set upon receiving a Link Status | 
|  | * Change or Rx Sequence Error interrupt. | 
|  | */ | 
|  | if (!mac->get_link_status) { | 
|  | ret_val = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * First we want to see if the MII Status Register reports | 
|  | * link.  If so, then we want to get the current speed/duplex | 
|  | * of the PHY. | 
|  | */ | 
|  | ret_val = igb_phy_has_link(hw, 1, 0, &link); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | if (!link) | 
|  | goto out; /* No link detected */ | 
|  |  | 
|  | mac->get_link_status = false; | 
|  |  | 
|  | /* | 
|  | * Check if there was DownShift, must be checked | 
|  | * immediately after link-up | 
|  | */ | 
|  | igb_check_downshift(hw); | 
|  |  | 
|  | /* | 
|  | * If we are forcing speed/duplex, then we simply return since | 
|  | * we have already determined whether we have link or not. | 
|  | */ | 
|  | if (!mac->autoneg) { | 
|  | ret_val = -E1000_ERR_CONFIG; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Auto-Neg is enabled.  Auto Speed Detection takes care | 
|  | * of MAC speed/duplex configuration.  So we only need to | 
|  | * configure Collision Distance in the MAC. | 
|  | */ | 
|  | igb_config_collision_dist(hw); | 
|  |  | 
|  | /* | 
|  | * Configure Flow Control now that Auto-Neg has completed. | 
|  | * First, we need to restore the desired flow control | 
|  | * settings because we may have had to re-autoneg with a | 
|  | * different link partner. | 
|  | */ | 
|  | ret_val = igb_config_fc_after_link_up(hw); | 
|  | if (ret_val) | 
|  | hw_dbg("Error configuring flow control\n"); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_setup_link - Setup flow control and link settings | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Determines which flow control settings to use, then configures flow | 
|  | *  control.  Calls the appropriate media-specific link configuration | 
|  | *  function.  Assuming the adapter has a valid link partner, a valid link | 
|  | *  should be established.  Assumes the hardware has previously been reset | 
|  | *  and the transmitter and receiver are not enabled. | 
|  | **/ | 
|  | s32 igb_setup_link(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  |  | 
|  | /* | 
|  | * In the case of the phy reset being blocked, we already have a link. | 
|  | * We do not need to set it up again. | 
|  | */ | 
|  | if (igb_check_reset_block(hw)) | 
|  | goto out; | 
|  |  | 
|  | ret_val = igb_set_default_fc(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * We want to save off the original Flow Control configuration just | 
|  | * in case we get disconnected and then reconnected into a different | 
|  | * hub or switch with different Flow Control capabilities. | 
|  | */ | 
|  | hw->fc.original_type = hw->fc.type; | 
|  |  | 
|  | hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.type); | 
|  |  | 
|  | /* Call the necessary media_type subroutine to configure the link. */ | 
|  | ret_val = hw->mac.ops.setup_physical_interface(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Initialize the flow control address, type, and PAUSE timer | 
|  | * registers to their default values.  This is done even if flow | 
|  | * control is disabled, because it does not hurt anything to | 
|  | * initialize these registers. | 
|  | */ | 
|  | hw_dbg("Initializing the Flow Control address, type and timer regs\n"); | 
|  | wr32(E1000_FCT, FLOW_CONTROL_TYPE); | 
|  | wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH); | 
|  | wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW); | 
|  |  | 
|  | wr32(E1000_FCTTV, hw->fc.pause_time); | 
|  |  | 
|  | ret_val = igb_set_fc_watermarks(hw); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_config_collision_dist - Configure collision distance | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Configures the collision distance to the default value and is used | 
|  | *  during link setup. Currently no func pointer exists and all | 
|  | *  implementations are handled in the generic version of this function. | 
|  | **/ | 
|  | void igb_config_collision_dist(struct e1000_hw *hw) | 
|  | { | 
|  | u32 tctl; | 
|  |  | 
|  | tctl = rd32(E1000_TCTL); | 
|  |  | 
|  | tctl &= ~E1000_TCTL_COLD; | 
|  | tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; | 
|  |  | 
|  | wr32(E1000_TCTL, tctl); | 
|  | wrfl(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_set_fc_watermarks - Set flow control high/low watermarks | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Sets the flow control high/low threshold (watermark) registers.  If | 
|  | *  flow control XON frame transmission is enabled, then set XON frame | 
|  | *  tansmission as well. | 
|  | **/ | 
|  | static s32 igb_set_fc_watermarks(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  | u32 fcrtl = 0, fcrth = 0; | 
|  |  | 
|  | /* | 
|  | * Set the flow control receive threshold registers.  Normally, | 
|  | * these registers will be set to a default threshold that may be | 
|  | * adjusted later by the driver's runtime code.  However, if the | 
|  | * ability to transmit pause frames is not enabled, then these | 
|  | * registers will be set to 0. | 
|  | */ | 
|  | if (hw->fc.type & e1000_fc_tx_pause) { | 
|  | /* | 
|  | * We need to set up the Receive Threshold high and low water | 
|  | * marks as well as (optionally) enabling the transmission of | 
|  | * XON frames. | 
|  | */ | 
|  | fcrtl = hw->fc.low_water; | 
|  | if (hw->fc.send_xon) | 
|  | fcrtl |= E1000_FCRTL_XONE; | 
|  |  | 
|  | fcrth = hw->fc.high_water; | 
|  | } | 
|  | wr32(E1000_FCRTL, fcrtl); | 
|  | wr32(E1000_FCRTH, fcrth); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_set_default_fc - Set flow control default values | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Read the EEPROM for the default values for flow control and store the | 
|  | *  values. | 
|  | **/ | 
|  | static s32 igb_set_default_fc(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  | u16 nvm_data; | 
|  |  | 
|  | /* | 
|  | * Read and store word 0x0F of the EEPROM. This word contains bits | 
|  | * that determine the hardware's default PAUSE (flow control) mode, | 
|  | * a bit that determines whether the HW defaults to enabling or | 
|  | * disabling auto-negotiation, and the direction of the | 
|  | * SW defined pins. If there is no SW over-ride of the flow | 
|  | * control setting, then the variable hw->fc will | 
|  | * be initialized based on a value in the EEPROM. | 
|  | */ | 
|  | ret_val = hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, | 
|  | &nvm_data); | 
|  |  | 
|  | if (ret_val) { | 
|  | hw_dbg("NVM Read Error\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) | 
|  | hw->fc.type = e1000_fc_none; | 
|  | else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == | 
|  | NVM_WORD0F_ASM_DIR) | 
|  | hw->fc.type = e1000_fc_tx_pause; | 
|  | else | 
|  | hw->fc.type = e1000_fc_full; | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_force_mac_fc - Force the MAC's flow control settings | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the | 
|  | *  device control register to reflect the adapter settings.  TFCE and RFCE | 
|  | *  need to be explicitly set by software when a copper PHY is used because | 
|  | *  autonegotiation is managed by the PHY rather than the MAC.  Software must | 
|  | *  also configure these bits when link is forced on a fiber connection. | 
|  | **/ | 
|  | s32 igb_force_mac_fc(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl; | 
|  | s32 ret_val = 0; | 
|  |  | 
|  | ctrl = rd32(E1000_CTRL); | 
|  |  | 
|  | /* | 
|  | * Because we didn't get link via the internal auto-negotiation | 
|  | * mechanism (we either forced link or we got link via PHY | 
|  | * auto-neg), we have to manually enable/disable transmit an | 
|  | * receive flow control. | 
|  | * | 
|  | * The "Case" statement below enables/disable flow control | 
|  | * according to the "hw->fc.type" parameter. | 
|  | * | 
|  | * The possible values of the "fc" parameter are: | 
|  | *      0:  Flow control is completely disabled | 
|  | *      1:  Rx flow control is enabled (we can receive pause | 
|  | *          frames but not send pause frames). | 
|  | *      2:  Tx flow control is enabled (we can send pause frames | 
|  | *          frames but we do not receive pause frames). | 
|  | *      3:  Both Rx and TX flow control (symmetric) is enabled. | 
|  | *  other:  No other values should be possible at this point. | 
|  | */ | 
|  | hw_dbg("hw->fc.type = %u\n", hw->fc.type); | 
|  |  | 
|  | switch (hw->fc.type) { | 
|  | case e1000_fc_none: | 
|  | ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); | 
|  | break; | 
|  | case e1000_fc_rx_pause: | 
|  | ctrl &= (~E1000_CTRL_TFCE); | 
|  | ctrl |= E1000_CTRL_RFCE; | 
|  | break; | 
|  | case e1000_fc_tx_pause: | 
|  | ctrl &= (~E1000_CTRL_RFCE); | 
|  | ctrl |= E1000_CTRL_TFCE; | 
|  | break; | 
|  | case e1000_fc_full: | 
|  | ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); | 
|  | break; | 
|  | default: | 
|  | hw_dbg("Flow control param set incorrectly\n"); | 
|  | ret_val = -E1000_ERR_CONFIG; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | wr32(E1000_CTRL, ctrl); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_config_fc_after_link_up - Configures flow control after link | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Checks the status of auto-negotiation after link up to ensure that the | 
|  | *  speed and duplex were not forced.  If the link needed to be forced, then | 
|  | *  flow control needs to be forced also.  If auto-negotiation is enabled | 
|  | *  and did not fail, then we configure flow control based on our link | 
|  | *  partner. | 
|  | **/ | 
|  | s32 igb_config_fc_after_link_up(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_mac_info *mac = &hw->mac; | 
|  | s32 ret_val = 0; | 
|  | u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; | 
|  | u16 speed, duplex; | 
|  |  | 
|  | /* | 
|  | * Check for the case where we have fiber media and auto-neg failed | 
|  | * so we had to force link.  In this case, we need to force the | 
|  | * configuration of the MAC to match the "fc" parameter. | 
|  | */ | 
|  | if (mac->autoneg_failed) { | 
|  | if (hw->phy.media_type == e1000_media_type_fiber || | 
|  | hw->phy.media_type == e1000_media_type_internal_serdes) | 
|  | ret_val = igb_force_mac_fc(hw); | 
|  | } else { | 
|  | if (hw->phy.media_type == e1000_media_type_copper) | 
|  | ret_val = igb_force_mac_fc(hw); | 
|  | } | 
|  |  | 
|  | if (ret_val) { | 
|  | hw_dbg("Error forcing flow control settings\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check for the case where we have copper media and auto-neg is | 
|  | * enabled.  In this case, we need to check and see if Auto-Neg | 
|  | * has completed, and if so, how the PHY and link partner has | 
|  | * flow control configured. | 
|  | */ | 
|  | if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { | 
|  | /* | 
|  | * Read the MII Status Register and check to see if AutoNeg | 
|  | * has completed.  We read this twice because this reg has | 
|  | * some "sticky" (latched) bits. | 
|  | */ | 
|  | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS, | 
|  | &mii_status_reg); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS, | 
|  | &mii_status_reg); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { | 
|  | hw_dbg("Copper PHY and Auto Neg " | 
|  | "has not completed.\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The AutoNeg process has completed, so we now need to | 
|  | * read both the Auto Negotiation Advertisement | 
|  | * Register (Address 4) and the Auto_Negotiation Base | 
|  | * Page Ability Register (Address 5) to determine how | 
|  | * flow control was negotiated. | 
|  | */ | 
|  | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_AUTONEG_ADV, | 
|  | &mii_nway_adv_reg); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_LP_ABILITY, | 
|  | &mii_nway_lp_ability_reg); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Two bits in the Auto Negotiation Advertisement Register | 
|  | * (Address 4) and two bits in the Auto Negotiation Base | 
|  | * Page Ability Register (Address 5) determine flow control | 
|  | * for both the PHY and the link partner.  The following | 
|  | * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, | 
|  | * 1999, describes these PAUSE resolution bits and how flow | 
|  | * control is determined based upon these settings. | 
|  | * NOTE:  DC = Don't Care | 
|  | * | 
|  | *   LOCAL DEVICE  |   LINK PARTNER | 
|  | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution | 
|  | *-------|---------|-------|---------|-------------------- | 
|  | *   0   |    0    |  DC   |   DC    | e1000_fc_none | 
|  | *   0   |    1    |   0   |   DC    | e1000_fc_none | 
|  | *   0   |    1    |   1   |    0    | e1000_fc_none | 
|  | *   0   |    1    |   1   |    1    | e1000_fc_tx_pause | 
|  | *   1   |    0    |   0   |   DC    | e1000_fc_none | 
|  | *   1   |   DC    |   1   |   DC    | e1000_fc_full | 
|  | *   1   |    1    |   0   |    0    | e1000_fc_none | 
|  | *   1   |    1    |   0   |    1    | e1000_fc_rx_pause | 
|  | * | 
|  | * Are both PAUSE bits set to 1?  If so, this implies | 
|  | * Symmetric Flow Control is enabled at both ends.  The | 
|  | * ASM_DIR bits are irrelevant per the spec. | 
|  | * | 
|  | * For Symmetric Flow Control: | 
|  | * | 
|  | *   LOCAL DEVICE  |   LINK PARTNER | 
|  | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
|  | *-------|---------|-------|---------|-------------------- | 
|  | *   1   |   DC    |   1   |   DC    | E1000_fc_full | 
|  | * | 
|  | */ | 
|  | if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | 
|  | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { | 
|  | /* | 
|  | * Now we need to check if the user selected RX ONLY | 
|  | * of pause frames.  In this case, we had to advertise | 
|  | * FULL flow control because we could not advertise RX | 
|  | * ONLY. Hence, we must now check to see if we need to | 
|  | * turn OFF  the TRANSMISSION of PAUSE frames. | 
|  | */ | 
|  | if (hw->fc.original_type == e1000_fc_full) { | 
|  | hw->fc.type = e1000_fc_full; | 
|  | hw_dbg("Flow Control = FULL.\r\n"); | 
|  | } else { | 
|  | hw->fc.type = e1000_fc_rx_pause; | 
|  | hw_dbg("Flow Control = " | 
|  | "RX PAUSE frames only.\r\n"); | 
|  | } | 
|  | } | 
|  | /* | 
|  | * For receiving PAUSE frames ONLY. | 
|  | * | 
|  | *   LOCAL DEVICE  |   LINK PARTNER | 
|  | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
|  | *-------|---------|-------|---------|-------------------- | 
|  | *   0   |    1    |   1   |    1    | e1000_fc_tx_pause | 
|  | */ | 
|  | else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && | 
|  | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | 
|  | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | 
|  | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | 
|  | hw->fc.type = e1000_fc_tx_pause; | 
|  | hw_dbg("Flow Control = TX PAUSE frames only.\r\n"); | 
|  | } | 
|  | /* | 
|  | * For transmitting PAUSE frames ONLY. | 
|  | * | 
|  | *   LOCAL DEVICE  |   LINK PARTNER | 
|  | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
|  | *-------|---------|-------|---------|-------------------- | 
|  | *   1   |    1    |   0   |    1    | e1000_fc_rx_pause | 
|  | */ | 
|  | else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | 
|  | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | 
|  | !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | 
|  | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | 
|  | hw->fc.type = e1000_fc_rx_pause; | 
|  | hw_dbg("Flow Control = RX PAUSE frames only.\r\n"); | 
|  | } | 
|  | /* | 
|  | * Per the IEEE spec, at this point flow control should be | 
|  | * disabled.  However, we want to consider that we could | 
|  | * be connected to a legacy switch that doesn't advertise | 
|  | * desired flow control, but can be forced on the link | 
|  | * partner.  So if we advertised no flow control, that is | 
|  | * what we will resolve to.  If we advertised some kind of | 
|  | * receive capability (Rx Pause Only or Full Flow Control) | 
|  | * and the link partner advertised none, we will configure | 
|  | * ourselves to enable Rx Flow Control only.  We can do | 
|  | * this safely for two reasons:  If the link partner really | 
|  | * didn't want flow control enabled, and we enable Rx, no | 
|  | * harm done since we won't be receiving any PAUSE frames | 
|  | * anyway.  If the intent on the link partner was to have | 
|  | * flow control enabled, then by us enabling RX only, we | 
|  | * can at least receive pause frames and process them. | 
|  | * This is a good idea because in most cases, since we are | 
|  | * predominantly a server NIC, more times than not we will | 
|  | * be asked to delay transmission of packets than asking | 
|  | * our link partner to pause transmission of frames. | 
|  | */ | 
|  | else if ((hw->fc.original_type == e1000_fc_none || | 
|  | hw->fc.original_type == e1000_fc_tx_pause) || | 
|  | hw->fc.strict_ieee) { | 
|  | hw->fc.type = e1000_fc_none; | 
|  | hw_dbg("Flow Control = NONE.\r\n"); | 
|  | } else { | 
|  | hw->fc.type = e1000_fc_rx_pause; | 
|  | hw_dbg("Flow Control = RX PAUSE frames only.\r\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now we need to do one last check...  If we auto- | 
|  | * negotiated to HALF DUPLEX, flow control should not be | 
|  | * enabled per IEEE 802.3 spec. | 
|  | */ | 
|  | ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex); | 
|  | if (ret_val) { | 
|  | hw_dbg("Error getting link speed and duplex\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (duplex == HALF_DUPLEX) | 
|  | hw->fc.type = e1000_fc_none; | 
|  |  | 
|  | /* | 
|  | * Now we call a subroutine to actually force the MAC | 
|  | * controller to use the correct flow control settings. | 
|  | */ | 
|  | ret_val = igb_force_mac_fc(hw); | 
|  | if (ret_val) { | 
|  | hw_dbg("Error forcing flow control settings\n"); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_get_speed_and_duplex_copper - Retreive current speed/duplex | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @speed: stores the current speed | 
|  | *  @duplex: stores the current duplex | 
|  | * | 
|  | *  Read the status register for the current speed/duplex and store the current | 
|  | *  speed and duplex for copper connections. | 
|  | **/ | 
|  | s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, | 
|  | u16 *duplex) | 
|  | { | 
|  | u32 status; | 
|  |  | 
|  | status = rd32(E1000_STATUS); | 
|  | if (status & E1000_STATUS_SPEED_1000) { | 
|  | *speed = SPEED_1000; | 
|  | hw_dbg("1000 Mbs, "); | 
|  | } else if (status & E1000_STATUS_SPEED_100) { | 
|  | *speed = SPEED_100; | 
|  | hw_dbg("100 Mbs, "); | 
|  | } else { | 
|  | *speed = SPEED_10; | 
|  | hw_dbg("10 Mbs, "); | 
|  | } | 
|  |  | 
|  | if (status & E1000_STATUS_FD) { | 
|  | *duplex = FULL_DUPLEX; | 
|  | hw_dbg("Full Duplex\n"); | 
|  | } else { | 
|  | *duplex = HALF_DUPLEX; | 
|  | hw_dbg("Half Duplex\n"); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_get_hw_semaphore - Acquire hardware semaphore | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Acquire the HW semaphore to access the PHY or NVM | 
|  | **/ | 
|  | s32 igb_get_hw_semaphore(struct e1000_hw *hw) | 
|  | { | 
|  | u32 swsm; | 
|  | s32 ret_val = 0; | 
|  | s32 timeout = hw->nvm.word_size + 1; | 
|  | s32 i = 0; | 
|  |  | 
|  | /* Get the SW semaphore */ | 
|  | while (i < timeout) { | 
|  | swsm = rd32(E1000_SWSM); | 
|  | if (!(swsm & E1000_SWSM_SMBI)) | 
|  | break; | 
|  |  | 
|  | udelay(50); | 
|  | i++; | 
|  | } | 
|  |  | 
|  | if (i == timeout) { | 
|  | hw_dbg("Driver can't access device - SMBI bit is set.\n"); | 
|  | ret_val = -E1000_ERR_NVM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Get the FW semaphore. */ | 
|  | for (i = 0; i < timeout; i++) { | 
|  | swsm = rd32(E1000_SWSM); | 
|  | wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI); | 
|  |  | 
|  | /* Semaphore acquired if bit latched */ | 
|  | if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI) | 
|  | break; | 
|  |  | 
|  | udelay(50); | 
|  | } | 
|  |  | 
|  | if (i == timeout) { | 
|  | /* Release semaphores */ | 
|  | igb_put_hw_semaphore(hw); | 
|  | hw_dbg("Driver can't access the NVM\n"); | 
|  | ret_val = -E1000_ERR_NVM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_put_hw_semaphore - Release hardware semaphore | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Release hardware semaphore used to access the PHY or NVM | 
|  | **/ | 
|  | void igb_put_hw_semaphore(struct e1000_hw *hw) | 
|  | { | 
|  | u32 swsm; | 
|  |  | 
|  | swsm = rd32(E1000_SWSM); | 
|  |  | 
|  | swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); | 
|  |  | 
|  | wr32(E1000_SWSM, swsm); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_get_auto_rd_done - Check for auto read completion | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Check EEPROM for Auto Read done bit. | 
|  | **/ | 
|  | s32 igb_get_auto_rd_done(struct e1000_hw *hw) | 
|  | { | 
|  | s32 i = 0; | 
|  | s32 ret_val = 0; | 
|  |  | 
|  |  | 
|  | while (i < AUTO_READ_DONE_TIMEOUT) { | 
|  | if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD) | 
|  | break; | 
|  | msleep(1); | 
|  | i++; | 
|  | } | 
|  |  | 
|  | if (i == AUTO_READ_DONE_TIMEOUT) { | 
|  | hw_dbg("Auto read by HW from NVM has not completed.\n"); | 
|  | ret_val = -E1000_ERR_RESET; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_valid_led_default - Verify a valid default LED config | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @data: pointer to the NVM (EEPROM) | 
|  | * | 
|  | *  Read the EEPROM for the current default LED configuration.  If the | 
|  | *  LED configuration is not valid, set to a valid LED configuration. | 
|  | **/ | 
|  | static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data) | 
|  | { | 
|  | s32 ret_val; | 
|  |  | 
|  | ret_val = hw->nvm.ops.read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); | 
|  | if (ret_val) { | 
|  | hw_dbg("NVM Read Error\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) | 
|  | *data = ID_LED_DEFAULT; | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_id_led_init - | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | **/ | 
|  | s32 igb_id_led_init(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_mac_info *mac = &hw->mac; | 
|  | s32 ret_val; | 
|  | const u32 ledctl_mask = 0x000000FF; | 
|  | const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; | 
|  | const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; | 
|  | u16 data, i, temp; | 
|  | const u16 led_mask = 0x0F; | 
|  |  | 
|  | ret_val = igb_valid_led_default(hw, &data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | mac->ledctl_default = rd32(E1000_LEDCTL); | 
|  | mac->ledctl_mode1 = mac->ledctl_default; | 
|  | mac->ledctl_mode2 = mac->ledctl_default; | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | temp = (data >> (i << 2)) & led_mask; | 
|  | switch (temp) { | 
|  | case ID_LED_ON1_DEF2: | 
|  | case ID_LED_ON1_ON2: | 
|  | case ID_LED_ON1_OFF2: | 
|  | mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | 
|  | mac->ledctl_mode1 |= ledctl_on << (i << 3); | 
|  | break; | 
|  | case ID_LED_OFF1_DEF2: | 
|  | case ID_LED_OFF1_ON2: | 
|  | case ID_LED_OFF1_OFF2: | 
|  | mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | 
|  | mac->ledctl_mode1 |= ledctl_off << (i << 3); | 
|  | break; | 
|  | default: | 
|  | /* Do nothing */ | 
|  | break; | 
|  | } | 
|  | switch (temp) { | 
|  | case ID_LED_DEF1_ON2: | 
|  | case ID_LED_ON1_ON2: | 
|  | case ID_LED_OFF1_ON2: | 
|  | mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | 
|  | mac->ledctl_mode2 |= ledctl_on << (i << 3); | 
|  | break; | 
|  | case ID_LED_DEF1_OFF2: | 
|  | case ID_LED_ON1_OFF2: | 
|  | case ID_LED_OFF1_OFF2: | 
|  | mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | 
|  | mac->ledctl_mode2 |= ledctl_off << (i << 3); | 
|  | break; | 
|  | default: | 
|  | /* Do nothing */ | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_cleanup_led - Set LED config to default operation | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Remove the current LED configuration and set the LED configuration | 
|  | *  to the default value, saved from the EEPROM. | 
|  | **/ | 
|  | s32 igb_cleanup_led(struct e1000_hw *hw) | 
|  | { | 
|  | wr32(E1000_LEDCTL, hw->mac.ledctl_default); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_blink_led - Blink LED | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Blink the led's which are set to be on. | 
|  | **/ | 
|  | s32 igb_blink_led(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ledctl_blink = 0; | 
|  | u32 i; | 
|  |  | 
|  | if (hw->phy.media_type == e1000_media_type_fiber) { | 
|  | /* always blink LED0 for PCI-E fiber */ | 
|  | ledctl_blink = E1000_LEDCTL_LED0_BLINK | | 
|  | (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); | 
|  | } else { | 
|  | /* | 
|  | * set the blink bit for each LED that's "on" (0x0E) | 
|  | * in ledctl_mode2 | 
|  | */ | 
|  | ledctl_blink = hw->mac.ledctl_mode2; | 
|  | for (i = 0; i < 4; i++) | 
|  | if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == | 
|  | E1000_LEDCTL_MODE_LED_ON) | 
|  | ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << | 
|  | (i * 8)); | 
|  | } | 
|  |  | 
|  | wr32(E1000_LEDCTL, ledctl_blink); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_led_off - Turn LED off | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Turn LED off. | 
|  | **/ | 
|  | s32 igb_led_off(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl; | 
|  |  | 
|  | switch (hw->phy.media_type) { | 
|  | case e1000_media_type_fiber: | 
|  | ctrl = rd32(E1000_CTRL); | 
|  | ctrl |= E1000_CTRL_SWDPIN0; | 
|  | ctrl |= E1000_CTRL_SWDPIO0; | 
|  | wr32(E1000_CTRL, ctrl); | 
|  | break; | 
|  | case e1000_media_type_copper: | 
|  | wr32(E1000_LEDCTL, hw->mac.ledctl_mode1); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_disable_pcie_master - Disables PCI-express master access | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Returns 0 (0) if successful, else returns -10 | 
|  | *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued | 
|  | *  the master requests to be disabled. | 
|  | * | 
|  | *  Disables PCI-Express master access and verifies there are no pending | 
|  | *  requests. | 
|  | **/ | 
|  | s32 igb_disable_pcie_master(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl; | 
|  | s32 timeout = MASTER_DISABLE_TIMEOUT; | 
|  | s32 ret_val = 0; | 
|  |  | 
|  | if (hw->bus.type != e1000_bus_type_pci_express) | 
|  | goto out; | 
|  |  | 
|  | ctrl = rd32(E1000_CTRL); | 
|  | ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; | 
|  | wr32(E1000_CTRL, ctrl); | 
|  |  | 
|  | while (timeout) { | 
|  | if (!(rd32(E1000_STATUS) & | 
|  | E1000_STATUS_GIO_MASTER_ENABLE)) | 
|  | break; | 
|  | udelay(100); | 
|  | timeout--; | 
|  | } | 
|  |  | 
|  | if (!timeout) { | 
|  | hw_dbg("Master requests are pending.\n"); | 
|  | ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_reset_adaptive - Reset Adaptive Interframe Spacing | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Reset the Adaptive Interframe Spacing throttle to default values. | 
|  | **/ | 
|  | void igb_reset_adaptive(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_mac_info *mac = &hw->mac; | 
|  |  | 
|  | if (!mac->adaptive_ifs) { | 
|  | hw_dbg("Not in Adaptive IFS mode!\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!mac->ifs_params_forced) { | 
|  | mac->current_ifs_val = 0; | 
|  | mac->ifs_min_val = IFS_MIN; | 
|  | mac->ifs_max_val = IFS_MAX; | 
|  | mac->ifs_step_size = IFS_STEP; | 
|  | mac->ifs_ratio = IFS_RATIO; | 
|  | } | 
|  |  | 
|  | mac->in_ifs_mode = false; | 
|  | wr32(E1000_AIT, 0); | 
|  | out: | 
|  | return; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_update_adaptive - Update Adaptive Interframe Spacing | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Update the Adaptive Interframe Spacing Throttle value based on the | 
|  | *  time between transmitted packets and time between collisions. | 
|  | **/ | 
|  | void igb_update_adaptive(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_mac_info *mac = &hw->mac; | 
|  |  | 
|  | if (!mac->adaptive_ifs) { | 
|  | hw_dbg("Not in Adaptive IFS mode!\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { | 
|  | if (mac->tx_packet_delta > MIN_NUM_XMITS) { | 
|  | mac->in_ifs_mode = true; | 
|  | if (mac->current_ifs_val < mac->ifs_max_val) { | 
|  | if (!mac->current_ifs_val) | 
|  | mac->current_ifs_val = mac->ifs_min_val; | 
|  | else | 
|  | mac->current_ifs_val += | 
|  | mac->ifs_step_size; | 
|  | wr32(E1000_AIT, | 
|  | mac->current_ifs_val); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (mac->in_ifs_mode && | 
|  | (mac->tx_packet_delta <= MIN_NUM_XMITS)) { | 
|  | mac->current_ifs_val = 0; | 
|  | mac->in_ifs_mode = false; | 
|  | wr32(E1000_AIT, 0); | 
|  | } | 
|  | } | 
|  | out: | 
|  | return; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_validate_mdi_setting - Verify MDI/MDIx settings | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Verify that when not using auto-negotitation that MDI/MDIx is correctly | 
|  | *  set, which is forced to MDI mode only. | 
|  | **/ | 
|  | s32 igb_validate_mdi_setting(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  |  | 
|  | if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) { | 
|  | hw_dbg("Invalid MDI setting detected\n"); | 
|  | hw->phy.mdix = 1; | 
|  | ret_val = -E1000_ERR_CONFIG; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_write_8bit_ctrl_reg - Write a 8bit CTRL register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @reg: 32bit register offset such as E1000_SCTL | 
|  | *  @offset: register offset to write to | 
|  | *  @data: data to write at register offset | 
|  | * | 
|  | *  Writes an address/data control type register.  There are several of these | 
|  | *  and they all have the format address << 8 | data and bit 31 is polled for | 
|  | *  completion. | 
|  | **/ | 
|  | s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, | 
|  | u32 offset, u8 data) | 
|  | { | 
|  | u32 i, regvalue = 0; | 
|  | s32 ret_val = 0; | 
|  |  | 
|  | /* Set up the address and data */ | 
|  | regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT); | 
|  | wr32(reg, regvalue); | 
|  |  | 
|  | /* Poll the ready bit to see if the MDI read completed */ | 
|  | for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) { | 
|  | udelay(5); | 
|  | regvalue = rd32(reg); | 
|  | if (regvalue & E1000_GEN_CTL_READY) | 
|  | break; | 
|  | } | 
|  | if (!(regvalue & E1000_GEN_CTL_READY)) { | 
|  | hw_dbg("Reg %08x did not indicate ready\n", reg); | 
|  | ret_val = -E1000_ERR_PHY; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_enable_mng_pass_thru - Enable processing of ARP's | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Verifies the hardware needs to allow ARPs to be processed by the host. | 
|  | **/ | 
|  | bool igb_enable_mng_pass_thru(struct e1000_hw *hw) | 
|  | { | 
|  | u32 manc; | 
|  | u32 fwsm, factps; | 
|  | bool ret_val = false; | 
|  |  | 
|  | if (!hw->mac.asf_firmware_present) | 
|  | goto out; | 
|  |  | 
|  | manc = rd32(E1000_MANC); | 
|  |  | 
|  | if (!(manc & E1000_MANC_RCV_TCO_EN) || | 
|  | !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) | 
|  | goto out; | 
|  |  | 
|  | if (hw->mac.arc_subsystem_valid) { | 
|  | fwsm = rd32(E1000_FWSM); | 
|  | factps = rd32(E1000_FACTPS); | 
|  |  | 
|  | if (!(factps & E1000_FACTPS_MNGCG) && | 
|  | ((fwsm & E1000_FWSM_MODE_MASK) == | 
|  | (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) { | 
|  | ret_val = true; | 
|  | goto out; | 
|  | } | 
|  | } else { | 
|  | if ((manc & E1000_MANC_SMBUS_EN) && | 
|  | !(manc & E1000_MANC_ASF_EN)) { | 
|  | ret_val = true; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } |