|  | /* | 
|  | *  linux/fs/ext4/ialloc.c | 
|  | * | 
|  | * Copyright (C) 1992, 1993, 1994, 1995 | 
|  | * Remy Card (card@masi.ibp.fr) | 
|  | * Laboratoire MASI - Institut Blaise Pascal | 
|  | * Universite Pierre et Marie Curie (Paris VI) | 
|  | * | 
|  | *  BSD ufs-inspired inode and directory allocation by | 
|  | *  Stephen Tweedie (sct@redhat.com), 1993 | 
|  | *  Big-endian to little-endian byte-swapping/bitmaps by | 
|  | *        David S. Miller (davem@caip.rutgers.edu), 1995 | 
|  | */ | 
|  |  | 
|  | #include <linux/time.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/jbd2.h> | 
|  | #include <linux/stat.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/quotaops.h> | 
|  | #include <linux/buffer_head.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <asm/byteorder.h> | 
|  | #include "ext4.h" | 
|  | #include "ext4_jbd2.h" | 
|  | #include "xattr.h" | 
|  | #include "acl.h" | 
|  |  | 
|  | /* | 
|  | * ialloc.c contains the inodes allocation and deallocation routines | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * The free inodes are managed by bitmaps.  A file system contains several | 
|  | * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap | 
|  | * block for inodes, N blocks for the inode table and data blocks. | 
|  | * | 
|  | * The file system contains group descriptors which are located after the | 
|  | * super block.  Each descriptor contains the number of the bitmap block and | 
|  | * the free blocks count in the block. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * To avoid calling the atomic setbit hundreds or thousands of times, we only | 
|  | * need to use it within a single byte (to ensure we get endianness right). | 
|  | * We can use memset for the rest of the bitmap as there are no other users. | 
|  | */ | 
|  | void mark_bitmap_end(int start_bit, int end_bit, char *bitmap) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (start_bit >= end_bit) | 
|  | return; | 
|  |  | 
|  | ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit); | 
|  | for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++) | 
|  | ext4_set_bit(i, bitmap); | 
|  | if (i < end_bit) | 
|  | memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3); | 
|  | } | 
|  |  | 
|  | /* Initializes an uninitialized inode bitmap */ | 
|  | unsigned ext4_init_inode_bitmap(struct super_block *sb, struct buffer_head *bh, | 
|  | ext4_group_t block_group, | 
|  | struct ext4_group_desc *gdp) | 
|  | { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(sb); | 
|  |  | 
|  | J_ASSERT_BH(bh, buffer_locked(bh)); | 
|  |  | 
|  | /* If checksum is bad mark all blocks and inodes use to prevent | 
|  | * allocation, essentially implementing a per-group read-only flag. */ | 
|  | if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) { | 
|  | ext4_error(sb, __func__, "Checksum bad for group %u", | 
|  | block_group); | 
|  | ext4_free_blks_set(sb, gdp, 0); | 
|  | ext4_free_inodes_set(sb, gdp, 0); | 
|  | ext4_itable_unused_set(sb, gdp, 0); | 
|  | memset(bh->b_data, 0xff, sb->s_blocksize); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8); | 
|  | mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8, | 
|  | bh->b_data); | 
|  |  | 
|  | return EXT4_INODES_PER_GROUP(sb); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read the inode allocation bitmap for a given block_group, reading | 
|  | * into the specified slot in the superblock's bitmap cache. | 
|  | * | 
|  | * Return buffer_head of bitmap on success or NULL. | 
|  | */ | 
|  | static struct buffer_head * | 
|  | ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group) | 
|  | { | 
|  | struct ext4_group_desc *desc; | 
|  | struct buffer_head *bh = NULL; | 
|  | ext4_fsblk_t bitmap_blk; | 
|  |  | 
|  | desc = ext4_get_group_desc(sb, block_group, NULL); | 
|  | if (!desc) | 
|  | return NULL; | 
|  | bitmap_blk = ext4_inode_bitmap(sb, desc); | 
|  | bh = sb_getblk(sb, bitmap_blk); | 
|  | if (unlikely(!bh)) { | 
|  | ext4_error(sb, __func__, | 
|  | "Cannot read inode bitmap - " | 
|  | "block_group = %u, inode_bitmap = %llu", | 
|  | block_group, bitmap_blk); | 
|  | return NULL; | 
|  | } | 
|  | if (bitmap_uptodate(bh)) | 
|  | return bh; | 
|  |  | 
|  | lock_buffer(bh); | 
|  | if (bitmap_uptodate(bh)) { | 
|  | unlock_buffer(bh); | 
|  | return bh; | 
|  | } | 
|  | ext4_lock_group(sb, block_group); | 
|  | if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { | 
|  | ext4_init_inode_bitmap(sb, bh, block_group, desc); | 
|  | set_bitmap_uptodate(bh); | 
|  | set_buffer_uptodate(bh); | 
|  | ext4_unlock_group(sb, block_group); | 
|  | unlock_buffer(bh); | 
|  | return bh; | 
|  | } | 
|  | ext4_unlock_group(sb, block_group); | 
|  | if (buffer_uptodate(bh)) { | 
|  | /* | 
|  | * if not uninit if bh is uptodate, | 
|  | * bitmap is also uptodate | 
|  | */ | 
|  | set_bitmap_uptodate(bh); | 
|  | unlock_buffer(bh); | 
|  | return bh; | 
|  | } | 
|  | /* | 
|  | * submit the buffer_head for read. We can | 
|  | * safely mark the bitmap as uptodate now. | 
|  | * We do it here so the bitmap uptodate bit | 
|  | * get set with buffer lock held. | 
|  | */ | 
|  | set_bitmap_uptodate(bh); | 
|  | if (bh_submit_read(bh) < 0) { | 
|  | put_bh(bh); | 
|  | ext4_error(sb, __func__, | 
|  | "Cannot read inode bitmap - " | 
|  | "block_group = %u, inode_bitmap = %llu", | 
|  | block_group, bitmap_blk); | 
|  | return NULL; | 
|  | } | 
|  | return bh; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * NOTE! When we get the inode, we're the only people | 
|  | * that have access to it, and as such there are no | 
|  | * race conditions we have to worry about. The inode | 
|  | * is not on the hash-lists, and it cannot be reached | 
|  | * through the filesystem because the directory entry | 
|  | * has been deleted earlier. | 
|  | * | 
|  | * HOWEVER: we must make sure that we get no aliases, | 
|  | * which means that we have to call "clear_inode()" | 
|  | * _before_ we mark the inode not in use in the inode | 
|  | * bitmaps. Otherwise a newly created file might use | 
|  | * the same inode number (not actually the same pointer | 
|  | * though), and then we'd have two inodes sharing the | 
|  | * same inode number and space on the harddisk. | 
|  | */ | 
|  | void ext4_free_inode(handle_t *handle, struct inode *inode) | 
|  | { | 
|  | struct super_block *sb = inode->i_sb; | 
|  | int is_directory; | 
|  | unsigned long ino; | 
|  | struct buffer_head *bitmap_bh = NULL; | 
|  | struct buffer_head *bh2; | 
|  | ext4_group_t block_group; | 
|  | unsigned long bit; | 
|  | struct ext4_group_desc *gdp; | 
|  | struct ext4_super_block *es; | 
|  | struct ext4_sb_info *sbi; | 
|  | int fatal = 0, err, count, cleared; | 
|  |  | 
|  | if (atomic_read(&inode->i_count) > 1) { | 
|  | printk(KERN_ERR "ext4_free_inode: inode has count=%d\n", | 
|  | atomic_read(&inode->i_count)); | 
|  | return; | 
|  | } | 
|  | if (inode->i_nlink) { | 
|  | printk(KERN_ERR "ext4_free_inode: inode has nlink=%d\n", | 
|  | inode->i_nlink); | 
|  | return; | 
|  | } | 
|  | if (!sb) { | 
|  | printk(KERN_ERR "ext4_free_inode: inode on " | 
|  | "nonexistent device\n"); | 
|  | return; | 
|  | } | 
|  | sbi = EXT4_SB(sb); | 
|  |  | 
|  | ino = inode->i_ino; | 
|  | ext4_debug("freeing inode %lu\n", ino); | 
|  | trace_mark(ext4_free_inode, | 
|  | "dev %s ino %lu mode %d uid %lu gid %lu bocks %llu", | 
|  | sb->s_id, inode->i_ino, inode->i_mode, | 
|  | (unsigned long) inode->i_uid, (unsigned long) inode->i_gid, | 
|  | (unsigned long long) inode->i_blocks); | 
|  |  | 
|  | /* | 
|  | * Note: we must free any quota before locking the superblock, | 
|  | * as writing the quota to disk may need the lock as well. | 
|  | */ | 
|  | vfs_dq_init(inode); | 
|  | ext4_xattr_delete_inode(handle, inode); | 
|  | vfs_dq_free_inode(inode); | 
|  | vfs_dq_drop(inode); | 
|  |  | 
|  | is_directory = S_ISDIR(inode->i_mode); | 
|  |  | 
|  | /* Do this BEFORE marking the inode not in use or returning an error */ | 
|  | clear_inode(inode); | 
|  |  | 
|  | es = EXT4_SB(sb)->s_es; | 
|  | if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { | 
|  | ext4_error(sb, "ext4_free_inode", | 
|  | "reserved or nonexistent inode %lu", ino); | 
|  | goto error_return; | 
|  | } | 
|  | block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); | 
|  | bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); | 
|  | bitmap_bh = ext4_read_inode_bitmap(sb, block_group); | 
|  | if (!bitmap_bh) | 
|  | goto error_return; | 
|  |  | 
|  | BUFFER_TRACE(bitmap_bh, "get_write_access"); | 
|  | fatal = ext4_journal_get_write_access(handle, bitmap_bh); | 
|  | if (fatal) | 
|  | goto error_return; | 
|  |  | 
|  | /* Ok, now we can actually update the inode bitmaps.. */ | 
|  | cleared = ext4_clear_bit_atomic(ext4_group_lock_ptr(sb, block_group), | 
|  | bit, bitmap_bh->b_data); | 
|  | if (!cleared) | 
|  | ext4_error(sb, "ext4_free_inode", | 
|  | "bit already cleared for inode %lu", ino); | 
|  | else { | 
|  | gdp = ext4_get_group_desc(sb, block_group, &bh2); | 
|  |  | 
|  | BUFFER_TRACE(bh2, "get_write_access"); | 
|  | fatal = ext4_journal_get_write_access(handle, bh2); | 
|  | if (fatal) goto error_return; | 
|  |  | 
|  | if (gdp) { | 
|  | ext4_lock_group(sb, block_group); | 
|  | count = ext4_free_inodes_count(sb, gdp) + 1; | 
|  | ext4_free_inodes_set(sb, gdp, count); | 
|  | if (is_directory) { | 
|  | count = ext4_used_dirs_count(sb, gdp) - 1; | 
|  | ext4_used_dirs_set(sb, gdp, count); | 
|  | if (sbi->s_log_groups_per_flex) { | 
|  | ext4_group_t f; | 
|  |  | 
|  | f = ext4_flex_group(sbi, block_group); | 
|  | atomic_dec(&sbi->s_flex_groups[f].free_inodes); | 
|  | } | 
|  |  | 
|  | } | 
|  | gdp->bg_checksum = ext4_group_desc_csum(sbi, | 
|  | block_group, gdp); | 
|  | ext4_unlock_group(sb, block_group); | 
|  | percpu_counter_inc(&sbi->s_freeinodes_counter); | 
|  | if (is_directory) | 
|  | percpu_counter_dec(&sbi->s_dirs_counter); | 
|  |  | 
|  | if (sbi->s_log_groups_per_flex) { | 
|  | ext4_group_t f; | 
|  |  | 
|  | f = ext4_flex_group(sbi, block_group); | 
|  | atomic_inc(&sbi->s_flex_groups[f].free_inodes); | 
|  | } | 
|  | } | 
|  | BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata"); | 
|  | err = ext4_handle_dirty_metadata(handle, NULL, bh2); | 
|  | if (!fatal) fatal = err; | 
|  | } | 
|  | BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata"); | 
|  | err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); | 
|  | if (!fatal) | 
|  | fatal = err; | 
|  | sb->s_dirt = 1; | 
|  | error_return: | 
|  | brelse(bitmap_bh); | 
|  | ext4_std_error(sb, fatal); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There are two policies for allocating an inode.  If the new inode is | 
|  | * a directory, then a forward search is made for a block group with both | 
|  | * free space and a low directory-to-inode ratio; if that fails, then of | 
|  | * the groups with above-average free space, that group with the fewest | 
|  | * directories already is chosen. | 
|  | * | 
|  | * For other inodes, search forward from the parent directory\'s block | 
|  | * group to find a free inode. | 
|  | */ | 
|  | static int find_group_dir(struct super_block *sb, struct inode *parent, | 
|  | ext4_group_t *best_group) | 
|  | { | 
|  | ext4_group_t ngroups = ext4_get_groups_count(sb); | 
|  | unsigned int freei, avefreei; | 
|  | struct ext4_group_desc *desc, *best_desc = NULL; | 
|  | ext4_group_t group; | 
|  | int ret = -1; | 
|  |  | 
|  | freei = percpu_counter_read_positive(&EXT4_SB(sb)->s_freeinodes_counter); | 
|  | avefreei = freei / ngroups; | 
|  |  | 
|  | for (group = 0; group < ngroups; group++) { | 
|  | desc = ext4_get_group_desc(sb, group, NULL); | 
|  | if (!desc || !ext4_free_inodes_count(sb, desc)) | 
|  | continue; | 
|  | if (ext4_free_inodes_count(sb, desc) < avefreei) | 
|  | continue; | 
|  | if (!best_desc || | 
|  | (ext4_free_blks_count(sb, desc) > | 
|  | ext4_free_blks_count(sb, best_desc))) { | 
|  | *best_group = group; | 
|  | best_desc = desc; | 
|  | ret = 0; | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define free_block_ratio 10 | 
|  |  | 
|  | static int find_group_flex(struct super_block *sb, struct inode *parent, | 
|  | ext4_group_t *best_group) | 
|  | { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(sb); | 
|  | struct ext4_group_desc *desc; | 
|  | struct flex_groups *flex_group = sbi->s_flex_groups; | 
|  | ext4_group_t parent_group = EXT4_I(parent)->i_block_group; | 
|  | ext4_group_t parent_fbg_group = ext4_flex_group(sbi, parent_group); | 
|  | ext4_group_t ngroups = ext4_get_groups_count(sb); | 
|  | int flex_size = ext4_flex_bg_size(sbi); | 
|  | ext4_group_t best_flex = parent_fbg_group; | 
|  | int blocks_per_flex = sbi->s_blocks_per_group * flex_size; | 
|  | int flexbg_free_blocks; | 
|  | int flex_freeb_ratio; | 
|  | ext4_group_t n_fbg_groups; | 
|  | ext4_group_t i; | 
|  |  | 
|  | n_fbg_groups = (ngroups + flex_size - 1) >> | 
|  | sbi->s_log_groups_per_flex; | 
|  |  | 
|  | find_close_to_parent: | 
|  | flexbg_free_blocks = atomic_read(&flex_group[best_flex].free_blocks); | 
|  | flex_freeb_ratio = flexbg_free_blocks * 100 / blocks_per_flex; | 
|  | if (atomic_read(&flex_group[best_flex].free_inodes) && | 
|  | flex_freeb_ratio > free_block_ratio) | 
|  | goto found_flexbg; | 
|  |  | 
|  | if (best_flex && best_flex == parent_fbg_group) { | 
|  | best_flex--; | 
|  | goto find_close_to_parent; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < n_fbg_groups; i++) { | 
|  | if (i == parent_fbg_group || i == parent_fbg_group - 1) | 
|  | continue; | 
|  |  | 
|  | flexbg_free_blocks = atomic_read(&flex_group[i].free_blocks); | 
|  | flex_freeb_ratio = flexbg_free_blocks * 100 / blocks_per_flex; | 
|  |  | 
|  | if (flex_freeb_ratio > free_block_ratio && | 
|  | (atomic_read(&flex_group[i].free_inodes))) { | 
|  | best_flex = i; | 
|  | goto found_flexbg; | 
|  | } | 
|  |  | 
|  | if ((atomic_read(&flex_group[best_flex].free_inodes) == 0) || | 
|  | ((atomic_read(&flex_group[i].free_blocks) > | 
|  | atomic_read(&flex_group[best_flex].free_blocks)) && | 
|  | atomic_read(&flex_group[i].free_inodes))) | 
|  | best_flex = i; | 
|  | } | 
|  |  | 
|  | if (!atomic_read(&flex_group[best_flex].free_inodes) || | 
|  | !atomic_read(&flex_group[best_flex].free_blocks)) | 
|  | return -1; | 
|  |  | 
|  | found_flexbg: | 
|  | for (i = best_flex * flex_size; i < ngroups && | 
|  | i < (best_flex + 1) * flex_size; i++) { | 
|  | desc = ext4_get_group_desc(sb, i, NULL); | 
|  | if (ext4_free_inodes_count(sb, desc)) { | 
|  | *best_group = i; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | out: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct orlov_stats { | 
|  | __u32 free_inodes; | 
|  | __u32 free_blocks; | 
|  | __u32 used_dirs; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Helper function for Orlov's allocator; returns critical information | 
|  | * for a particular block group or flex_bg.  If flex_size is 1, then g | 
|  | * is a block group number; otherwise it is flex_bg number. | 
|  | */ | 
|  | void get_orlov_stats(struct super_block *sb, ext4_group_t g, | 
|  | int flex_size, struct orlov_stats *stats) | 
|  | { | 
|  | struct ext4_group_desc *desc; | 
|  | struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups; | 
|  |  | 
|  | if (flex_size > 1) { | 
|  | stats->free_inodes = atomic_read(&flex_group[g].free_inodes); | 
|  | stats->free_blocks = atomic_read(&flex_group[g].free_blocks); | 
|  | stats->used_dirs = atomic_read(&flex_group[g].used_dirs); | 
|  | return; | 
|  | } | 
|  |  | 
|  | desc = ext4_get_group_desc(sb, g, NULL); | 
|  | if (desc) { | 
|  | stats->free_inodes = ext4_free_inodes_count(sb, desc); | 
|  | stats->free_blocks = ext4_free_blks_count(sb, desc); | 
|  | stats->used_dirs = ext4_used_dirs_count(sb, desc); | 
|  | } else { | 
|  | stats->free_inodes = 0; | 
|  | stats->free_blocks = 0; | 
|  | stats->used_dirs = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Orlov's allocator for directories. | 
|  | * | 
|  | * We always try to spread first-level directories. | 
|  | * | 
|  | * If there are blockgroups with both free inodes and free blocks counts | 
|  | * not worse than average we return one with smallest directory count. | 
|  | * Otherwise we simply return a random group. | 
|  | * | 
|  | * For the rest rules look so: | 
|  | * | 
|  | * It's OK to put directory into a group unless | 
|  | * it has too many directories already (max_dirs) or | 
|  | * it has too few free inodes left (min_inodes) or | 
|  | * it has too few free blocks left (min_blocks) or | 
|  | * Parent's group is preferred, if it doesn't satisfy these | 
|  | * conditions we search cyclically through the rest. If none | 
|  | * of the groups look good we just look for a group with more | 
|  | * free inodes than average (starting at parent's group). | 
|  | */ | 
|  |  | 
|  | static int find_group_orlov(struct super_block *sb, struct inode *parent, | 
|  | ext4_group_t *group, int mode) | 
|  | { | 
|  | ext4_group_t parent_group = EXT4_I(parent)->i_block_group; | 
|  | struct ext4_sb_info *sbi = EXT4_SB(sb); | 
|  | ext4_group_t real_ngroups = ext4_get_groups_count(sb); | 
|  | int inodes_per_group = EXT4_INODES_PER_GROUP(sb); | 
|  | unsigned int freei, avefreei; | 
|  | ext4_fsblk_t freeb, avefreeb; | 
|  | unsigned int ndirs; | 
|  | int max_dirs, min_inodes; | 
|  | ext4_grpblk_t min_blocks; | 
|  | ext4_group_t i, grp, g, ngroups; | 
|  | struct ext4_group_desc *desc; | 
|  | struct orlov_stats stats; | 
|  | int flex_size = ext4_flex_bg_size(sbi); | 
|  |  | 
|  | ngroups = real_ngroups; | 
|  | if (flex_size > 1) { | 
|  | ngroups = (real_ngroups + flex_size - 1) >> | 
|  | sbi->s_log_groups_per_flex; | 
|  | parent_group >>= sbi->s_log_groups_per_flex; | 
|  | } | 
|  |  | 
|  | freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter); | 
|  | avefreei = freei / ngroups; | 
|  | freeb = percpu_counter_read_positive(&sbi->s_freeblocks_counter); | 
|  | avefreeb = freeb; | 
|  | do_div(avefreeb, ngroups); | 
|  | ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter); | 
|  |  | 
|  | if (S_ISDIR(mode) && | 
|  | ((parent == sb->s_root->d_inode) || | 
|  | (EXT4_I(parent)->i_flags & EXT4_TOPDIR_FL))) { | 
|  | int best_ndir = inodes_per_group; | 
|  | int ret = -1; | 
|  |  | 
|  | get_random_bytes(&grp, sizeof(grp)); | 
|  | parent_group = (unsigned)grp % ngroups; | 
|  | for (i = 0; i < ngroups; i++) { | 
|  | g = (parent_group + i) % ngroups; | 
|  | get_orlov_stats(sb, g, flex_size, &stats); | 
|  | if (!stats.free_inodes) | 
|  | continue; | 
|  | if (stats.used_dirs >= best_ndir) | 
|  | continue; | 
|  | if (stats.free_inodes < avefreei) | 
|  | continue; | 
|  | if (stats.free_blocks < avefreeb) | 
|  | continue; | 
|  | grp = g; | 
|  | ret = 0; | 
|  | best_ndir = stats.used_dirs; | 
|  | } | 
|  | if (ret) | 
|  | goto fallback; | 
|  | found_flex_bg: | 
|  | if (flex_size == 1) { | 
|  | *group = grp; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We pack inodes at the beginning of the flexgroup's | 
|  | * inode tables.  Block allocation decisions will do | 
|  | * something similar, although regular files will | 
|  | * start at 2nd block group of the flexgroup.  See | 
|  | * ext4_ext_find_goal() and ext4_find_near(). | 
|  | */ | 
|  | grp *= flex_size; | 
|  | for (i = 0; i < flex_size; i++) { | 
|  | if (grp+i >= real_ngroups) | 
|  | break; | 
|  | desc = ext4_get_group_desc(sb, grp+i, NULL); | 
|  | if (desc && ext4_free_inodes_count(sb, desc)) { | 
|  | *group = grp+i; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | goto fallback; | 
|  | } | 
|  |  | 
|  | max_dirs = ndirs / ngroups + inodes_per_group / 16; | 
|  | min_inodes = avefreei - inodes_per_group*flex_size / 4; | 
|  | if (min_inodes < 1) | 
|  | min_inodes = 1; | 
|  | min_blocks = avefreeb - EXT4_BLOCKS_PER_GROUP(sb)*flex_size / 4; | 
|  |  | 
|  | /* | 
|  | * Start looking in the flex group where we last allocated an | 
|  | * inode for this parent directory | 
|  | */ | 
|  | if (EXT4_I(parent)->i_last_alloc_group != ~0) { | 
|  | parent_group = EXT4_I(parent)->i_last_alloc_group; | 
|  | if (flex_size > 1) | 
|  | parent_group >>= sbi->s_log_groups_per_flex; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < ngroups; i++) { | 
|  | grp = (parent_group + i) % ngroups; | 
|  | get_orlov_stats(sb, grp, flex_size, &stats); | 
|  | if (stats.used_dirs >= max_dirs) | 
|  | continue; | 
|  | if (stats.free_inodes < min_inodes) | 
|  | continue; | 
|  | if (stats.free_blocks < min_blocks) | 
|  | continue; | 
|  | goto found_flex_bg; | 
|  | } | 
|  |  | 
|  | fallback: | 
|  | ngroups = real_ngroups; | 
|  | avefreei = freei / ngroups; | 
|  | fallback_retry: | 
|  | parent_group = EXT4_I(parent)->i_block_group; | 
|  | for (i = 0; i < ngroups; i++) { | 
|  | grp = (parent_group + i) % ngroups; | 
|  | desc = ext4_get_group_desc(sb, grp, NULL); | 
|  | if (desc && ext4_free_inodes_count(sb, desc) && | 
|  | ext4_free_inodes_count(sb, desc) >= avefreei) { | 
|  | *group = grp; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (avefreei) { | 
|  | /* | 
|  | * The free-inodes counter is approximate, and for really small | 
|  | * filesystems the above test can fail to find any blockgroups | 
|  | */ | 
|  | avefreei = 0; | 
|  | goto fallback_retry; | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static int find_group_other(struct super_block *sb, struct inode *parent, | 
|  | ext4_group_t *group, int mode) | 
|  | { | 
|  | ext4_group_t parent_group = EXT4_I(parent)->i_block_group; | 
|  | ext4_group_t i, last, ngroups = ext4_get_groups_count(sb); | 
|  | struct ext4_group_desc *desc; | 
|  | int flex_size = ext4_flex_bg_size(EXT4_SB(sb)); | 
|  |  | 
|  | /* | 
|  | * Try to place the inode is the same flex group as its | 
|  | * parent.  If we can't find space, use the Orlov algorithm to | 
|  | * find another flex group, and store that information in the | 
|  | * parent directory's inode information so that use that flex | 
|  | * group for future allocations. | 
|  | */ | 
|  | if (flex_size > 1) { | 
|  | int retry = 0; | 
|  |  | 
|  | try_again: | 
|  | parent_group &= ~(flex_size-1); | 
|  | last = parent_group + flex_size; | 
|  | if (last > ngroups) | 
|  | last = ngroups; | 
|  | for  (i = parent_group; i < last; i++) { | 
|  | desc = ext4_get_group_desc(sb, i, NULL); | 
|  | if (desc && ext4_free_inodes_count(sb, desc)) { | 
|  | *group = i; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) { | 
|  | retry = 1; | 
|  | parent_group = EXT4_I(parent)->i_last_alloc_group; | 
|  | goto try_again; | 
|  | } | 
|  | /* | 
|  | * If this didn't work, use the Orlov search algorithm | 
|  | * to find a new flex group; we pass in the mode to | 
|  | * avoid the topdir algorithms. | 
|  | */ | 
|  | *group = parent_group + flex_size; | 
|  | if (*group > ngroups) | 
|  | *group = 0; | 
|  | return find_group_orlov(sb, parent, group, mode); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to place the inode in its parent directory | 
|  | */ | 
|  | *group = parent_group; | 
|  | desc = ext4_get_group_desc(sb, *group, NULL); | 
|  | if (desc && ext4_free_inodes_count(sb, desc) && | 
|  | ext4_free_blks_count(sb, desc)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * We're going to place this inode in a different blockgroup from its | 
|  | * parent.  We want to cause files in a common directory to all land in | 
|  | * the same blockgroup.  But we want files which are in a different | 
|  | * directory which shares a blockgroup with our parent to land in a | 
|  | * different blockgroup. | 
|  | * | 
|  | * So add our directory's i_ino into the starting point for the hash. | 
|  | */ | 
|  | *group = (*group + parent->i_ino) % ngroups; | 
|  |  | 
|  | /* | 
|  | * Use a quadratic hash to find a group with a free inode and some free | 
|  | * blocks. | 
|  | */ | 
|  | for (i = 1; i < ngroups; i <<= 1) { | 
|  | *group += i; | 
|  | if (*group >= ngroups) | 
|  | *group -= ngroups; | 
|  | desc = ext4_get_group_desc(sb, *group, NULL); | 
|  | if (desc && ext4_free_inodes_count(sb, desc) && | 
|  | ext4_free_blks_count(sb, desc)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * That failed: try linear search for a free inode, even if that group | 
|  | * has no free blocks. | 
|  | */ | 
|  | *group = parent_group; | 
|  | for (i = 0; i < ngroups; i++) { | 
|  | if (++*group >= ngroups) | 
|  | *group = 0; | 
|  | desc = ext4_get_group_desc(sb, *group, NULL); | 
|  | if (desc && ext4_free_inodes_count(sb, desc)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * claim the inode from the inode bitmap. If the group | 
|  | * is uninit we need to take the groups's ext4_group_lock | 
|  | * and clear the uninit flag. The inode bitmap update | 
|  | * and group desc uninit flag clear should be done | 
|  | * after holding ext4_group_lock so that ext4_read_inode_bitmap | 
|  | * doesn't race with the ext4_claim_inode | 
|  | */ | 
|  | static int ext4_claim_inode(struct super_block *sb, | 
|  | struct buffer_head *inode_bitmap_bh, | 
|  | unsigned long ino, ext4_group_t group, int mode) | 
|  | { | 
|  | int free = 0, retval = 0, count; | 
|  | struct ext4_sb_info *sbi = EXT4_SB(sb); | 
|  | struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); | 
|  |  | 
|  | ext4_lock_group(sb, group); | 
|  | if (ext4_set_bit(ino, inode_bitmap_bh->b_data)) { | 
|  | /* not a free inode */ | 
|  | retval = 1; | 
|  | goto err_ret; | 
|  | } | 
|  | ino++; | 
|  | if ((group == 0 && ino < EXT4_FIRST_INO(sb)) || | 
|  | ino > EXT4_INODES_PER_GROUP(sb)) { | 
|  | ext4_unlock_group(sb, group); | 
|  | ext4_error(sb, __func__, | 
|  | "reserved inode or inode > inodes count - " | 
|  | "block_group = %u, inode=%lu", group, | 
|  | ino + group * EXT4_INODES_PER_GROUP(sb)); | 
|  | return 1; | 
|  | } | 
|  | /* If we didn't allocate from within the initialized part of the inode | 
|  | * table then we need to initialize up to this inode. */ | 
|  | if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) { | 
|  |  | 
|  | if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { | 
|  | gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); | 
|  | /* When marking the block group with | 
|  | * ~EXT4_BG_INODE_UNINIT we don't want to depend | 
|  | * on the value of bg_itable_unused even though | 
|  | * mke2fs could have initialized the same for us. | 
|  | * Instead we calculated the value below | 
|  | */ | 
|  |  | 
|  | free = 0; | 
|  | } else { | 
|  | free = EXT4_INODES_PER_GROUP(sb) - | 
|  | ext4_itable_unused_count(sb, gdp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check the relative inode number against the last used | 
|  | * relative inode number in this group. if it is greater | 
|  | * we need to  update the bg_itable_unused count | 
|  | * | 
|  | */ | 
|  | if (ino > free) | 
|  | ext4_itable_unused_set(sb, gdp, | 
|  | (EXT4_INODES_PER_GROUP(sb) - ino)); | 
|  | } | 
|  | count = ext4_free_inodes_count(sb, gdp) - 1; | 
|  | ext4_free_inodes_set(sb, gdp, count); | 
|  | if (S_ISDIR(mode)) { | 
|  | count = ext4_used_dirs_count(sb, gdp) + 1; | 
|  | ext4_used_dirs_set(sb, gdp, count); | 
|  | if (sbi->s_log_groups_per_flex) { | 
|  | ext4_group_t f = ext4_flex_group(sbi, group); | 
|  |  | 
|  | atomic_inc(&sbi->s_flex_groups[f].free_inodes); | 
|  | } | 
|  | } | 
|  | gdp->bg_checksum = ext4_group_desc_csum(sbi, group, gdp); | 
|  | err_ret: | 
|  | ext4_unlock_group(sb, group); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There are two policies for allocating an inode.  If the new inode is | 
|  | * a directory, then a forward search is made for a block group with both | 
|  | * free space and a low directory-to-inode ratio; if that fails, then of | 
|  | * the groups with above-average free space, that group with the fewest | 
|  | * directories already is chosen. | 
|  | * | 
|  | * For other inodes, search forward from the parent directory's block | 
|  | * group to find a free inode. | 
|  | */ | 
|  | struct inode *ext4_new_inode(handle_t *handle, struct inode *dir, int mode) | 
|  | { | 
|  | struct super_block *sb; | 
|  | struct buffer_head *inode_bitmap_bh = NULL; | 
|  | struct buffer_head *group_desc_bh; | 
|  | ext4_group_t ngroups, group = 0; | 
|  | unsigned long ino = 0; | 
|  | struct inode *inode; | 
|  | struct ext4_group_desc *gdp = NULL; | 
|  | struct ext4_inode_info *ei; | 
|  | struct ext4_sb_info *sbi; | 
|  | int ret2, err = 0; | 
|  | struct inode *ret; | 
|  | ext4_group_t i; | 
|  | int free = 0; | 
|  | static int once = 1; | 
|  | ext4_group_t flex_group; | 
|  |  | 
|  | /* Cannot create files in a deleted directory */ | 
|  | if (!dir || !dir->i_nlink) | 
|  | return ERR_PTR(-EPERM); | 
|  |  | 
|  | sb = dir->i_sb; | 
|  | ngroups = ext4_get_groups_count(sb); | 
|  | trace_mark(ext4_request_inode, "dev %s dir %lu mode %d", sb->s_id, | 
|  | dir->i_ino, mode); | 
|  | inode = new_inode(sb); | 
|  | if (!inode) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | ei = EXT4_I(inode); | 
|  | sbi = EXT4_SB(sb); | 
|  |  | 
|  | if (sbi->s_log_groups_per_flex && test_opt(sb, OLDALLOC)) { | 
|  | ret2 = find_group_flex(sb, dir, &group); | 
|  | if (ret2 == -1) { | 
|  | ret2 = find_group_other(sb, dir, &group, mode); | 
|  | if (ret2 == 0 && once) { | 
|  | once = 0; | 
|  | printk(KERN_NOTICE "ext4: find_group_flex " | 
|  | "failed, fallback succeeded dir %lu\n", | 
|  | dir->i_ino); | 
|  | } | 
|  | } | 
|  | goto got_group; | 
|  | } | 
|  |  | 
|  | if (S_ISDIR(mode)) { | 
|  | if (test_opt(sb, OLDALLOC)) | 
|  | ret2 = find_group_dir(sb, dir, &group); | 
|  | else | 
|  | ret2 = find_group_orlov(sb, dir, &group, mode); | 
|  | } else | 
|  | ret2 = find_group_other(sb, dir, &group, mode); | 
|  |  | 
|  | got_group: | 
|  | EXT4_I(dir)->i_last_alloc_group = group; | 
|  | err = -ENOSPC; | 
|  | if (ret2 == -1) | 
|  | goto out; | 
|  |  | 
|  | for (i = 0; i < ngroups; i++) { | 
|  | err = -EIO; | 
|  |  | 
|  | gdp = ext4_get_group_desc(sb, group, &group_desc_bh); | 
|  | if (!gdp) | 
|  | goto fail; | 
|  |  | 
|  | brelse(inode_bitmap_bh); | 
|  | inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); | 
|  | if (!inode_bitmap_bh) | 
|  | goto fail; | 
|  |  | 
|  | ino = 0; | 
|  |  | 
|  | repeat_in_this_group: | 
|  | ino = ext4_find_next_zero_bit((unsigned long *) | 
|  | inode_bitmap_bh->b_data, | 
|  | EXT4_INODES_PER_GROUP(sb), ino); | 
|  |  | 
|  | if (ino < EXT4_INODES_PER_GROUP(sb)) { | 
|  |  | 
|  | BUFFER_TRACE(inode_bitmap_bh, "get_write_access"); | 
|  | err = ext4_journal_get_write_access(handle, | 
|  | inode_bitmap_bh); | 
|  | if (err) | 
|  | goto fail; | 
|  |  | 
|  | BUFFER_TRACE(group_desc_bh, "get_write_access"); | 
|  | err = ext4_journal_get_write_access(handle, | 
|  | group_desc_bh); | 
|  | if (err) | 
|  | goto fail; | 
|  | if (!ext4_claim_inode(sb, inode_bitmap_bh, | 
|  | ino, group, mode)) { | 
|  | /* we won it */ | 
|  | BUFFER_TRACE(inode_bitmap_bh, | 
|  | "call ext4_handle_dirty_metadata"); | 
|  | err = ext4_handle_dirty_metadata(handle, | 
|  | inode, | 
|  | inode_bitmap_bh); | 
|  | if (err) | 
|  | goto fail; | 
|  | /* zero bit is inode number 1*/ | 
|  | ino++; | 
|  | goto got; | 
|  | } | 
|  | /* we lost it */ | 
|  | ext4_handle_release_buffer(handle, inode_bitmap_bh); | 
|  | ext4_handle_release_buffer(handle, group_desc_bh); | 
|  |  | 
|  | if (++ino < EXT4_INODES_PER_GROUP(sb)) | 
|  | goto repeat_in_this_group; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This case is possible in concurrent environment.  It is very | 
|  | * rare.  We cannot repeat the find_group_xxx() call because | 
|  | * that will simply return the same blockgroup, because the | 
|  | * group descriptor metadata has not yet been updated. | 
|  | * So we just go onto the next blockgroup. | 
|  | */ | 
|  | if (++group == ngroups) | 
|  | group = 0; | 
|  | } | 
|  | err = -ENOSPC; | 
|  | goto out; | 
|  |  | 
|  | got: | 
|  | /* We may have to initialize the block bitmap if it isn't already */ | 
|  | if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM) && | 
|  | gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { | 
|  | struct buffer_head *block_bitmap_bh; | 
|  |  | 
|  | block_bitmap_bh = ext4_read_block_bitmap(sb, group); | 
|  | BUFFER_TRACE(block_bitmap_bh, "get block bitmap access"); | 
|  | err = ext4_journal_get_write_access(handle, block_bitmap_bh); | 
|  | if (err) { | 
|  | brelse(block_bitmap_bh); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | free = 0; | 
|  | ext4_lock_group(sb, group); | 
|  | /* recheck and clear flag under lock if we still need to */ | 
|  | if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { | 
|  | free = ext4_free_blocks_after_init(sb, group, gdp); | 
|  | gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); | 
|  | ext4_free_blks_set(sb, gdp, free); | 
|  | gdp->bg_checksum = ext4_group_desc_csum(sbi, group, | 
|  | gdp); | 
|  | } | 
|  | ext4_unlock_group(sb, group); | 
|  |  | 
|  | /* Don't need to dirty bitmap block if we didn't change it */ | 
|  | if (free) { | 
|  | BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); | 
|  | err = ext4_handle_dirty_metadata(handle, | 
|  | NULL, block_bitmap_bh); | 
|  | } | 
|  |  | 
|  | brelse(block_bitmap_bh); | 
|  | if (err) | 
|  | goto fail; | 
|  | } | 
|  | BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata"); | 
|  | err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh); | 
|  | if (err) | 
|  | goto fail; | 
|  |  | 
|  | percpu_counter_dec(&sbi->s_freeinodes_counter); | 
|  | if (S_ISDIR(mode)) | 
|  | percpu_counter_inc(&sbi->s_dirs_counter); | 
|  | sb->s_dirt = 1; | 
|  |  | 
|  | if (sbi->s_log_groups_per_flex) { | 
|  | flex_group = ext4_flex_group(sbi, group); | 
|  | atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes); | 
|  | } | 
|  |  | 
|  | inode->i_uid = current_fsuid(); | 
|  | if (test_opt(sb, GRPID)) | 
|  | inode->i_gid = dir->i_gid; | 
|  | else if (dir->i_mode & S_ISGID) { | 
|  | inode->i_gid = dir->i_gid; | 
|  | if (S_ISDIR(mode)) | 
|  | mode |= S_ISGID; | 
|  | } else | 
|  | inode->i_gid = current_fsgid(); | 
|  | inode->i_mode = mode; | 
|  |  | 
|  | inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb); | 
|  | /* This is the optimal IO size (for stat), not the fs block size */ | 
|  | inode->i_blocks = 0; | 
|  | inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime = | 
|  | ext4_current_time(inode); | 
|  |  | 
|  | memset(ei->i_data, 0, sizeof(ei->i_data)); | 
|  | ei->i_dir_start_lookup = 0; | 
|  | ei->i_disksize = 0; | 
|  |  | 
|  | /* | 
|  | * Don't inherit extent flag from directory, amongst others. We set | 
|  | * extent flag on newly created directory and file only if -o extent | 
|  | * mount option is specified | 
|  | */ | 
|  | ei->i_flags = | 
|  | ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED); | 
|  | ei->i_file_acl = 0; | 
|  | ei->i_dtime = 0; | 
|  | ei->i_block_group = group; | 
|  | ei->i_last_alloc_group = ~0; | 
|  |  | 
|  | ext4_set_inode_flags(inode); | 
|  | if (IS_DIRSYNC(inode)) | 
|  | ext4_handle_sync(handle); | 
|  | if (insert_inode_locked(inode) < 0) { | 
|  | err = -EINVAL; | 
|  | goto fail_drop; | 
|  | } | 
|  | spin_lock(&sbi->s_next_gen_lock); | 
|  | inode->i_generation = sbi->s_next_generation++; | 
|  | spin_unlock(&sbi->s_next_gen_lock); | 
|  |  | 
|  | ei->i_state = EXT4_STATE_NEW; | 
|  |  | 
|  | ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize; | 
|  |  | 
|  | ret = inode; | 
|  | if (vfs_dq_alloc_inode(inode)) { | 
|  | err = -EDQUOT; | 
|  | goto fail_drop; | 
|  | } | 
|  |  | 
|  | err = ext4_init_acl(handle, inode, dir); | 
|  | if (err) | 
|  | goto fail_free_drop; | 
|  |  | 
|  | err = ext4_init_security(handle, inode, dir); | 
|  | if (err) | 
|  | goto fail_free_drop; | 
|  |  | 
|  | if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { | 
|  | /* set extent flag only for directory, file and normal symlink*/ | 
|  | if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) { | 
|  | EXT4_I(inode)->i_flags |= EXT4_EXTENTS_FL; | 
|  | ext4_ext_tree_init(handle, inode); | 
|  | } | 
|  | } | 
|  |  | 
|  | err = ext4_mark_inode_dirty(handle, inode); | 
|  | if (err) { | 
|  | ext4_std_error(sb, err); | 
|  | goto fail_free_drop; | 
|  | } | 
|  |  | 
|  | ext4_debug("allocating inode %lu\n", inode->i_ino); | 
|  | trace_mark(ext4_allocate_inode, "dev %s ino %lu dir %lu mode %d", | 
|  | sb->s_id, inode->i_ino, dir->i_ino, mode); | 
|  | goto really_out; | 
|  | fail: | 
|  | ext4_std_error(sb, err); | 
|  | out: | 
|  | iput(inode); | 
|  | ret = ERR_PTR(err); | 
|  | really_out: | 
|  | brelse(inode_bitmap_bh); | 
|  | return ret; | 
|  |  | 
|  | fail_free_drop: | 
|  | vfs_dq_free_inode(inode); | 
|  |  | 
|  | fail_drop: | 
|  | vfs_dq_drop(inode); | 
|  | inode->i_flags |= S_NOQUOTA; | 
|  | inode->i_nlink = 0; | 
|  | unlock_new_inode(inode); | 
|  | iput(inode); | 
|  | brelse(inode_bitmap_bh); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | /* Verify that we are loading a valid orphan from disk */ | 
|  | struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino) | 
|  | { | 
|  | unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); | 
|  | ext4_group_t block_group; | 
|  | int bit; | 
|  | struct buffer_head *bitmap_bh; | 
|  | struct inode *inode = NULL; | 
|  | long err = -EIO; | 
|  |  | 
|  | /* Error cases - e2fsck has already cleaned up for us */ | 
|  | if (ino > max_ino) { | 
|  | ext4_warning(sb, __func__, | 
|  | "bad orphan ino %lu!  e2fsck was run?", ino); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); | 
|  | bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); | 
|  | bitmap_bh = ext4_read_inode_bitmap(sb, block_group); | 
|  | if (!bitmap_bh) { | 
|  | ext4_warning(sb, __func__, | 
|  | "inode bitmap error for orphan %lu", ino); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | /* Having the inode bit set should be a 100% indicator that this | 
|  | * is a valid orphan (no e2fsck run on fs).  Orphans also include | 
|  | * inodes that were being truncated, so we can't check i_nlink==0. | 
|  | */ | 
|  | if (!ext4_test_bit(bit, bitmap_bh->b_data)) | 
|  | goto bad_orphan; | 
|  |  | 
|  | inode = ext4_iget(sb, ino); | 
|  | if (IS_ERR(inode)) | 
|  | goto iget_failed; | 
|  |  | 
|  | /* | 
|  | * If the orphans has i_nlinks > 0 then it should be able to be | 
|  | * truncated, otherwise it won't be removed from the orphan list | 
|  | * during processing and an infinite loop will result. | 
|  | */ | 
|  | if (inode->i_nlink && !ext4_can_truncate(inode)) | 
|  | goto bad_orphan; | 
|  |  | 
|  | if (NEXT_ORPHAN(inode) > max_ino) | 
|  | goto bad_orphan; | 
|  | brelse(bitmap_bh); | 
|  | return inode; | 
|  |  | 
|  | iget_failed: | 
|  | err = PTR_ERR(inode); | 
|  | inode = NULL; | 
|  | bad_orphan: | 
|  | ext4_warning(sb, __func__, | 
|  | "bad orphan inode %lu!  e2fsck was run?", ino); | 
|  | printk(KERN_NOTICE "ext4_test_bit(bit=%d, block=%llu) = %d\n", | 
|  | bit, (unsigned long long)bitmap_bh->b_blocknr, | 
|  | ext4_test_bit(bit, bitmap_bh->b_data)); | 
|  | printk(KERN_NOTICE "inode=%p\n", inode); | 
|  | if (inode) { | 
|  | printk(KERN_NOTICE "is_bad_inode(inode)=%d\n", | 
|  | is_bad_inode(inode)); | 
|  | printk(KERN_NOTICE "NEXT_ORPHAN(inode)=%u\n", | 
|  | NEXT_ORPHAN(inode)); | 
|  | printk(KERN_NOTICE "max_ino=%lu\n", max_ino); | 
|  | printk(KERN_NOTICE "i_nlink=%u\n", inode->i_nlink); | 
|  | /* Avoid freeing blocks if we got a bad deleted inode */ | 
|  | if (inode->i_nlink == 0) | 
|  | inode->i_blocks = 0; | 
|  | iput(inode); | 
|  | } | 
|  | brelse(bitmap_bh); | 
|  | error: | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | unsigned long ext4_count_free_inodes(struct super_block *sb) | 
|  | { | 
|  | unsigned long desc_count; | 
|  | struct ext4_group_desc *gdp; | 
|  | ext4_group_t i, ngroups = ext4_get_groups_count(sb); | 
|  | #ifdef EXT4FS_DEBUG | 
|  | struct ext4_super_block *es; | 
|  | unsigned long bitmap_count, x; | 
|  | struct buffer_head *bitmap_bh = NULL; | 
|  |  | 
|  | es = EXT4_SB(sb)->s_es; | 
|  | desc_count = 0; | 
|  | bitmap_count = 0; | 
|  | gdp = NULL; | 
|  | for (i = 0; i < ngroups; i++) { | 
|  | gdp = ext4_get_group_desc(sb, i, NULL); | 
|  | if (!gdp) | 
|  | continue; | 
|  | desc_count += ext4_free_inodes_count(sb, gdp); | 
|  | brelse(bitmap_bh); | 
|  | bitmap_bh = ext4_read_inode_bitmap(sb, i); | 
|  | if (!bitmap_bh) | 
|  | continue; | 
|  |  | 
|  | x = ext4_count_free(bitmap_bh, EXT4_INODES_PER_GROUP(sb) / 8); | 
|  | printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n", | 
|  | i, ext4_free_inodes_count(sb, gdp), x); | 
|  | bitmap_count += x; | 
|  | } | 
|  | brelse(bitmap_bh); | 
|  | printk(KERN_DEBUG "ext4_count_free_inodes: " | 
|  | "stored = %u, computed = %lu, %lu\n", | 
|  | le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count); | 
|  | return desc_count; | 
|  | #else | 
|  | desc_count = 0; | 
|  | for (i = 0; i < ngroups; i++) { | 
|  | gdp = ext4_get_group_desc(sb, i, NULL); | 
|  | if (!gdp) | 
|  | continue; | 
|  | desc_count += ext4_free_inodes_count(sb, gdp); | 
|  | cond_resched(); | 
|  | } | 
|  | return desc_count; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Called at mount-time, super-block is locked */ | 
|  | unsigned long ext4_count_dirs(struct super_block * sb) | 
|  | { | 
|  | unsigned long count = 0; | 
|  | ext4_group_t i, ngroups = ext4_get_groups_count(sb); | 
|  |  | 
|  | for (i = 0; i < ngroups; i++) { | 
|  | struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); | 
|  | if (!gdp) | 
|  | continue; | 
|  | count += ext4_used_dirs_count(sb, gdp); | 
|  | } | 
|  | return count; | 
|  | } |