| /* | 
 |  * Copyright (C) 2001-2004 by David Brownell | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify it | 
 |  * under the terms of the GNU General Public License as published by the | 
 |  * Free Software Foundation; either version 2 of the License, or (at your | 
 |  * option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, but | 
 |  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | 
 |  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
 |  * for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software Foundation, | 
 |  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
 |  */ | 
 |  | 
 | /* this file is part of ehci-hcd.c */ | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /* | 
 |  * EHCI hardware queue manipulation ... the core.  QH/QTD manipulation. | 
 |  * | 
 |  * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd" | 
 |  * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned | 
 |  * buffers needed for the larger number).  We use one QH per endpoint, queue | 
 |  * multiple urbs (all three types) per endpoint.  URBs may need several qtds. | 
 |  * | 
 |  * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with | 
 |  * interrupts) needs careful scheduling.  Performance improvements can be | 
 |  * an ongoing challenge.  That's in "ehci-sched.c". | 
 |  * | 
 |  * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs, | 
 |  * or otherwise through transaction translators (TTs) in USB 2.0 hubs using | 
 |  * (b) special fields in qh entries or (c) split iso entries.  TTs will | 
 |  * buffer low/full speed data so the host collects it at high speed. | 
 |  */ | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /* fill a qtd, returning how much of the buffer we were able to queue up */ | 
 |  | 
 | static int | 
 | qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf, | 
 | 		  size_t len, int token, int maxpacket) | 
 | { | 
 | 	int	i, count; | 
 | 	u64	addr = buf; | 
 |  | 
 | 	/* one buffer entry per 4K ... first might be short or unaligned */ | 
 | 	qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr); | 
 | 	qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32)); | 
 | 	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */ | 
 | 	if (likely (len < count))		/* ... iff needed */ | 
 | 		count = len; | 
 | 	else { | 
 | 		buf +=  0x1000; | 
 | 		buf &= ~0x0fff; | 
 |  | 
 | 		/* per-qtd limit: from 16K to 20K (best alignment) */ | 
 | 		for (i = 1; count < len && i < 5; i++) { | 
 | 			addr = buf; | 
 | 			qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr); | 
 | 			qtd->hw_buf_hi[i] = cpu_to_hc32(ehci, | 
 | 					(u32)(addr >> 32)); | 
 | 			buf += 0x1000; | 
 | 			if ((count + 0x1000) < len) | 
 | 				count += 0x1000; | 
 | 			else | 
 | 				count = len; | 
 | 		} | 
 |  | 
 | 		/* short packets may only terminate transfers */ | 
 | 		if (count != len) | 
 | 			count -= (count % maxpacket); | 
 | 	} | 
 | 	qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token); | 
 | 	qtd->length = count; | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | static inline void | 
 | qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd) | 
 | { | 
 | 	/* writes to an active overlay are unsafe */ | 
 | 	BUG_ON(qh->qh_state != QH_STATE_IDLE); | 
 |  | 
 | 	qh->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma); | 
 | 	qh->hw_alt_next = EHCI_LIST_END(ehci); | 
 |  | 
 | 	/* Except for control endpoints, we make hardware maintain data | 
 | 	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH, | 
 | 	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will | 
 | 	 * ever clear it. | 
 | 	 */ | 
 | 	if (!(qh->hw_info1 & cpu_to_hc32(ehci, 1 << 14))) { | 
 | 		unsigned	is_out, epnum; | 
 |  | 
 | 		is_out = !(qtd->hw_token & cpu_to_hc32(ehci, 1 << 8)); | 
 | 		epnum = (hc32_to_cpup(ehci, &qh->hw_info1) >> 8) & 0x0f; | 
 | 		if (unlikely (!usb_gettoggle (qh->dev, epnum, is_out))) { | 
 | 			qh->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE); | 
 | 			usb_settoggle (qh->dev, epnum, is_out, 1); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* HC must see latest qtd and qh data before we clear ACTIVE+HALT */ | 
 | 	wmb (); | 
 | 	qh->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING); | 
 | } | 
 |  | 
 | /* if it weren't for a common silicon quirk (writing the dummy into the qh | 
 |  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault | 
 |  * recovery (including urb dequeue) would need software changes to a QH... | 
 |  */ | 
 | static void | 
 | qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh) | 
 | { | 
 | 	struct ehci_qtd *qtd; | 
 |  | 
 | 	if (list_empty (&qh->qtd_list)) | 
 | 		qtd = qh->dummy; | 
 | 	else { | 
 | 		qtd = list_entry (qh->qtd_list.next, | 
 | 				struct ehci_qtd, qtd_list); | 
 | 		/* first qtd may already be partially processed */ | 
 | 		if (cpu_to_hc32(ehci, qtd->qtd_dma) == qh->hw_current) | 
 | 			qtd = NULL; | 
 | 	} | 
 |  | 
 | 	if (qtd) | 
 | 		qh_update (ehci, qh, qtd); | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | static int qtd_copy_status ( | 
 | 	struct ehci_hcd *ehci, | 
 | 	struct urb *urb, | 
 | 	size_t length, | 
 | 	u32 token | 
 | ) | 
 | { | 
 | 	int	status = -EINPROGRESS; | 
 |  | 
 | 	/* count IN/OUT bytes, not SETUP (even short packets) */ | 
 | 	if (likely (QTD_PID (token) != 2)) | 
 | 		urb->actual_length += length - QTD_LENGTH (token); | 
 |  | 
 | 	/* don't modify error codes */ | 
 | 	if (unlikely(urb->unlinked)) | 
 | 		return status; | 
 |  | 
 | 	/* force cleanup after short read; not always an error */ | 
 | 	if (unlikely (IS_SHORT_READ (token))) | 
 | 		status = -EREMOTEIO; | 
 |  | 
 | 	/* serious "can't proceed" faults reported by the hardware */ | 
 | 	if (token & QTD_STS_HALT) { | 
 | 		if (token & QTD_STS_BABBLE) { | 
 | 			/* FIXME "must" disable babbling device's port too */ | 
 | 			status = -EOVERFLOW; | 
 | 		} else if (token & QTD_STS_MMF) { | 
 | 			/* fs/ls interrupt xfer missed the complete-split */ | 
 | 			status = -EPROTO; | 
 | 		} else if (token & QTD_STS_DBE) { | 
 | 			status = (QTD_PID (token) == 1) /* IN ? */ | 
 | 				? -ENOSR  /* hc couldn't read data */ | 
 | 				: -ECOMM; /* hc couldn't write data */ | 
 | 		} else if (token & QTD_STS_XACT) { | 
 | 			/* timeout, bad crc, wrong PID, etc; retried */ | 
 | 			if (QTD_CERR (token)) | 
 | 				status = -EPIPE; | 
 | 			else { | 
 | 				ehci_dbg (ehci, "devpath %s ep%d%s 3strikes\n", | 
 | 					urb->dev->devpath, | 
 | 					usb_pipeendpoint (urb->pipe), | 
 | 					usb_pipein (urb->pipe) ? "in" : "out"); | 
 | 				status = -EPROTO; | 
 | 			} | 
 | 		/* CERR nonzero + no errors + halt --> stall */ | 
 | 		} else if (QTD_CERR (token)) | 
 | 			status = -EPIPE; | 
 | 		else	/* unknown */ | 
 | 			status = -EPROTO; | 
 |  | 
 | 		ehci_vdbg (ehci, | 
 | 			"dev%d ep%d%s qtd token %08x --> status %d\n", | 
 | 			usb_pipedevice (urb->pipe), | 
 | 			usb_pipeendpoint (urb->pipe), | 
 | 			usb_pipein (urb->pipe) ? "in" : "out", | 
 | 			token, status); | 
 |  | 
 | 		/* if async CSPLIT failed, try cleaning out the TT buffer */ | 
 | 		if (status != -EPIPE | 
 | 				&& urb->dev->tt | 
 | 				&& !usb_pipeint(urb->pipe) | 
 | 				&& ((token & QTD_STS_MMF) != 0 | 
 | 					|| QTD_CERR(token) == 0) | 
 | 				&& (!ehci_is_TDI(ehci) | 
 | 			                || urb->dev->tt->hub != | 
 | 					   ehci_to_hcd(ehci)->self.root_hub)) { | 
 | #ifdef DEBUG | 
 | 			struct usb_device *tt = urb->dev->tt->hub; | 
 | 			dev_dbg (&tt->dev, | 
 | 				"clear tt buffer port %d, a%d ep%d t%08x\n", | 
 | 				urb->dev->ttport, urb->dev->devnum, | 
 | 				usb_pipeendpoint (urb->pipe), token); | 
 | #endif /* DEBUG */ | 
 | 			/* REVISIT ARC-derived cores don't clear the root | 
 | 			 * hub TT buffer in this way... | 
 | 			 */ | 
 | 			usb_hub_tt_clear_buffer (urb->dev, urb->pipe); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return status; | 
 | } | 
 |  | 
 | static void | 
 | ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status) | 
 | __releases(ehci->lock) | 
 | __acquires(ehci->lock) | 
 | { | 
 | 	if (likely (urb->hcpriv != NULL)) { | 
 | 		struct ehci_qh	*qh = (struct ehci_qh *) urb->hcpriv; | 
 |  | 
 | 		/* S-mask in a QH means it's an interrupt urb */ | 
 | 		if ((qh->hw_info2 & cpu_to_hc32(ehci, QH_SMASK)) != 0) { | 
 |  | 
 | 			/* ... update hc-wide periodic stats (for usbfs) */ | 
 | 			ehci_to_hcd(ehci)->self.bandwidth_int_reqs--; | 
 | 		} | 
 | 		qh_put (qh); | 
 | 	} | 
 |  | 
 | 	if (unlikely(urb->unlinked)) { | 
 | 		COUNT(ehci->stats.unlink); | 
 | 	} else { | 
 | 		/* report non-error and short read status as zero */ | 
 | 		if (status == -EINPROGRESS || status == -EREMOTEIO) | 
 | 			status = 0; | 
 | 		COUNT(ehci->stats.complete); | 
 | 	} | 
 |  | 
 | #ifdef EHCI_URB_TRACE | 
 | 	ehci_dbg (ehci, | 
 | 		"%s %s urb %p ep%d%s status %d len %d/%d\n", | 
 | 		__func__, urb->dev->devpath, urb, | 
 | 		usb_pipeendpoint (urb->pipe), | 
 | 		usb_pipein (urb->pipe) ? "in" : "out", | 
 | 		status, | 
 | 		urb->actual_length, urb->transfer_buffer_length); | 
 | #endif | 
 |  | 
 | 	/* complete() can reenter this HCD */ | 
 | 	usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); | 
 | 	spin_unlock (&ehci->lock); | 
 | 	usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status); | 
 | 	spin_lock (&ehci->lock); | 
 | } | 
 |  | 
 | static void start_unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh); | 
 | static void unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh); | 
 |  | 
 | static void intr_deschedule (struct ehci_hcd *ehci, struct ehci_qh *qh); | 
 | static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh); | 
 |  | 
 | /* | 
 |  * Process and free completed qtds for a qh, returning URBs to drivers. | 
 |  * Chases up to qh->hw_current.  Returns number of completions called, | 
 |  * indicating how much "real" work we did. | 
 |  */ | 
 | static unsigned | 
 | qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh) | 
 | { | 
 | 	struct ehci_qtd		*last = NULL, *end = qh->dummy; | 
 | 	struct list_head	*entry, *tmp; | 
 | 	int			last_status = -EINPROGRESS; | 
 | 	int			stopped; | 
 | 	unsigned		count = 0; | 
 | 	u8			state; | 
 | 	__le32			halt = HALT_BIT(ehci); | 
 |  | 
 | 	if (unlikely (list_empty (&qh->qtd_list))) | 
 | 		return count; | 
 |  | 
 | 	/* completions (or tasks on other cpus) must never clobber HALT | 
 | 	 * till we've gone through and cleaned everything up, even when | 
 | 	 * they add urbs to this qh's queue or mark them for unlinking. | 
 | 	 * | 
 | 	 * NOTE:  unlinking expects to be done in queue order. | 
 | 	 */ | 
 | 	state = qh->qh_state; | 
 | 	qh->qh_state = QH_STATE_COMPLETING; | 
 | 	stopped = (state == QH_STATE_IDLE); | 
 |  | 
 | 	/* remove de-activated QTDs from front of queue. | 
 | 	 * after faults (including short reads), cleanup this urb | 
 | 	 * then let the queue advance. | 
 | 	 * if queue is stopped, handles unlinks. | 
 | 	 */ | 
 | 	list_for_each_safe (entry, tmp, &qh->qtd_list) { | 
 | 		struct ehci_qtd	*qtd; | 
 | 		struct urb	*urb; | 
 | 		u32		token = 0; | 
 |  | 
 | 		qtd = list_entry (entry, struct ehci_qtd, qtd_list); | 
 | 		urb = qtd->urb; | 
 |  | 
 | 		/* clean up any state from previous QTD ...*/ | 
 | 		if (last) { | 
 | 			if (likely (last->urb != urb)) { | 
 | 				ehci_urb_done(ehci, last->urb, last_status); | 
 | 				count++; | 
 | 				last_status = -EINPROGRESS; | 
 | 			} | 
 | 			ehci_qtd_free (ehci, last); | 
 | 			last = NULL; | 
 | 		} | 
 |  | 
 | 		/* ignore urbs submitted during completions we reported */ | 
 | 		if (qtd == end) | 
 | 			break; | 
 |  | 
 | 		/* hardware copies qtd out of qh overlay */ | 
 | 		rmb (); | 
 | 		token = hc32_to_cpu(ehci, qtd->hw_token); | 
 |  | 
 | 		/* always clean up qtds the hc de-activated */ | 
 | 		if ((token & QTD_STS_ACTIVE) == 0) { | 
 |  | 
 | 			/* on STALL, error, and short reads this urb must | 
 | 			 * complete and all its qtds must be recycled. | 
 | 			 */ | 
 | 			if ((token & QTD_STS_HALT) != 0) { | 
 | 				stopped = 1; | 
 |  | 
 | 			/* magic dummy for some short reads; qh won't advance. | 
 | 			 * that silicon quirk can kick in with this dummy too. | 
 | 			 * | 
 | 			 * other short reads won't stop the queue, including | 
 | 			 * control transfers (status stage handles that) or | 
 | 			 * most other single-qtd reads ... the queue stops if | 
 | 			 * URB_SHORT_NOT_OK was set so the driver submitting | 
 | 			 * the urbs could clean it up. | 
 | 			 */ | 
 | 			} else if (IS_SHORT_READ (token) | 
 | 					&& !(qtd->hw_alt_next | 
 | 						& EHCI_LIST_END(ehci))) { | 
 | 				stopped = 1; | 
 | 				goto halt; | 
 | 			} | 
 |  | 
 | 		/* stop scanning when we reach qtds the hc is using */ | 
 | 		} else if (likely (!stopped | 
 | 				&& HC_IS_RUNNING (ehci_to_hcd(ehci)->state))) { | 
 | 			break; | 
 |  | 
 | 		/* scan the whole queue for unlinks whenever it stops */ | 
 | 		} else { | 
 | 			stopped = 1; | 
 |  | 
 | 			/* cancel everything if we halt, suspend, etc */ | 
 | 			if (!HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) | 
 | 				last_status = -ESHUTDOWN; | 
 |  | 
 | 			/* this qtd is active; skip it unless a previous qtd | 
 | 			 * for its urb faulted, or its urb was canceled. | 
 | 			 */ | 
 | 			else if (last_status == -EINPROGRESS && !urb->unlinked) | 
 | 				continue; | 
 |  | 
 | 			/* qh unlinked; token in overlay may be most current */ | 
 | 			if (state == QH_STATE_IDLE | 
 | 					&& cpu_to_hc32(ehci, qtd->qtd_dma) | 
 | 						== qh->hw_current) | 
 | 				token = hc32_to_cpu(ehci, qh->hw_token); | 
 |  | 
 | 			/* force halt for unlinked or blocked qh, so we'll | 
 | 			 * patch the qh later and so that completions can't | 
 | 			 * activate it while we "know" it's stopped. | 
 | 			 */ | 
 | 			if ((halt & qh->hw_token) == 0) { | 
 | halt: | 
 | 				qh->hw_token |= halt; | 
 | 				wmb (); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* unless we already know the urb's status, collect qtd status | 
 | 		 * and update count of bytes transferred.  in common short read | 
 | 		 * cases with only one data qtd (including control transfers), | 
 | 		 * queue processing won't halt.  but with two or more qtds (for | 
 | 		 * example, with a 32 KB transfer), when the first qtd gets a | 
 | 		 * short read the second must be removed by hand. | 
 | 		 */ | 
 | 		if (last_status == -EINPROGRESS) { | 
 | 			last_status = qtd_copy_status(ehci, urb, | 
 | 					qtd->length, token); | 
 | 			if (last_status == -EREMOTEIO | 
 | 					&& (qtd->hw_alt_next | 
 | 						& EHCI_LIST_END(ehci))) | 
 | 				last_status = -EINPROGRESS; | 
 | 		} | 
 |  | 
 | 		/* if we're removing something not at the queue head, | 
 | 		 * patch the hardware queue pointer. | 
 | 		 */ | 
 | 		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) { | 
 | 			last = list_entry (qtd->qtd_list.prev, | 
 | 					struct ehci_qtd, qtd_list); | 
 | 			last->hw_next = qtd->hw_next; | 
 | 		} | 
 |  | 
 | 		/* remove qtd; it's recycled after possible urb completion */ | 
 | 		list_del (&qtd->qtd_list); | 
 | 		last = qtd; | 
 | 	} | 
 |  | 
 | 	/* last urb's completion might still need calling */ | 
 | 	if (likely (last != NULL)) { | 
 | 		ehci_urb_done(ehci, last->urb, last_status); | 
 | 		count++; | 
 | 		ehci_qtd_free (ehci, last); | 
 | 	} | 
 |  | 
 | 	/* restore original state; caller must unlink or relink */ | 
 | 	qh->qh_state = state; | 
 |  | 
 | 	/* be sure the hardware's done with the qh before refreshing | 
 | 	 * it after fault cleanup, or recovering from silicon wrongly | 
 | 	 * overlaying the dummy qtd (which reduces DMA chatter). | 
 | 	 */ | 
 | 	if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END(ehci)) { | 
 | 		switch (state) { | 
 | 		case QH_STATE_IDLE: | 
 | 			qh_refresh(ehci, qh); | 
 | 			break; | 
 | 		case QH_STATE_LINKED: | 
 | 			/* We won't refresh a QH that's linked (after the HC | 
 | 			 * stopped the queue).  That avoids a race: | 
 | 			 *  - HC reads first part of QH; | 
 | 			 *  - CPU updates that first part and the token; | 
 | 			 *  - HC reads rest of that QH, including token | 
 | 			 * Result:  HC gets an inconsistent image, and then | 
 | 			 * DMAs to/from the wrong memory (corrupting it). | 
 | 			 * | 
 | 			 * That should be rare for interrupt transfers, | 
 | 			 * except maybe high bandwidth ... | 
 | 			 */ | 
 | 			if ((cpu_to_hc32(ehci, QH_SMASK) | 
 | 					& qh->hw_info2) != 0) { | 
 | 				intr_deschedule (ehci, qh); | 
 | 				(void) qh_schedule (ehci, qh); | 
 | 			} else | 
 | 				unlink_async (ehci, qh); | 
 | 			break; | 
 | 		/* otherwise, unlink already started */ | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | // high bandwidth multiplier, as encoded in highspeed endpoint descriptors | 
 | #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03)) | 
 | // ... and packet size, for any kind of endpoint descriptor | 
 | #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff) | 
 |  | 
 | /* | 
 |  * reverse of qh_urb_transaction:  free a list of TDs. | 
 |  * used for cleanup after errors, before HC sees an URB's TDs. | 
 |  */ | 
 | static void qtd_list_free ( | 
 | 	struct ehci_hcd		*ehci, | 
 | 	struct urb		*urb, | 
 | 	struct list_head	*qtd_list | 
 | ) { | 
 | 	struct list_head	*entry, *temp; | 
 |  | 
 | 	list_for_each_safe (entry, temp, qtd_list) { | 
 | 		struct ehci_qtd	*qtd; | 
 |  | 
 | 		qtd = list_entry (entry, struct ehci_qtd, qtd_list); | 
 | 		list_del (&qtd->qtd_list); | 
 | 		ehci_qtd_free (ehci, qtd); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * create a list of filled qtds for this URB; won't link into qh. | 
 |  */ | 
 | static struct list_head * | 
 | qh_urb_transaction ( | 
 | 	struct ehci_hcd		*ehci, | 
 | 	struct urb		*urb, | 
 | 	struct list_head	*head, | 
 | 	gfp_t			flags | 
 | ) { | 
 | 	struct ehci_qtd		*qtd, *qtd_prev; | 
 | 	dma_addr_t		buf; | 
 | 	int			len, maxpacket; | 
 | 	int			is_input; | 
 | 	u32			token; | 
 |  | 
 | 	/* | 
 | 	 * URBs map to sequences of QTDs:  one logical transaction | 
 | 	 */ | 
 | 	qtd = ehci_qtd_alloc (ehci, flags); | 
 | 	if (unlikely (!qtd)) | 
 | 		return NULL; | 
 | 	list_add_tail (&qtd->qtd_list, head); | 
 | 	qtd->urb = urb; | 
 |  | 
 | 	token = QTD_STS_ACTIVE; | 
 | 	token |= (EHCI_TUNE_CERR << 10); | 
 | 	/* for split transactions, SplitXState initialized to zero */ | 
 |  | 
 | 	len = urb->transfer_buffer_length; | 
 | 	is_input = usb_pipein (urb->pipe); | 
 | 	if (usb_pipecontrol (urb->pipe)) { | 
 | 		/* SETUP pid */ | 
 | 		qtd_fill(ehci, qtd, urb->setup_dma, | 
 | 				sizeof (struct usb_ctrlrequest), | 
 | 				token | (2 /* "setup" */ << 8), 8); | 
 |  | 
 | 		/* ... and always at least one more pid */ | 
 | 		token ^= QTD_TOGGLE; | 
 | 		qtd_prev = qtd; | 
 | 		qtd = ehci_qtd_alloc (ehci, flags); | 
 | 		if (unlikely (!qtd)) | 
 | 			goto cleanup; | 
 | 		qtd->urb = urb; | 
 | 		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma); | 
 | 		list_add_tail (&qtd->qtd_list, head); | 
 |  | 
 | 		/* for zero length DATA stages, STATUS is always IN */ | 
 | 		if (len == 0) | 
 | 			token |= (1 /* "in" */ << 8); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * data transfer stage:  buffer setup | 
 | 	 */ | 
 | 	buf = urb->transfer_dma; | 
 |  | 
 | 	if (is_input) | 
 | 		token |= (1 /* "in" */ << 8); | 
 | 	/* else it's already initted to "out" pid (0 << 8) */ | 
 |  | 
 | 	maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input)); | 
 |  | 
 | 	/* | 
 | 	 * buffer gets wrapped in one or more qtds; | 
 | 	 * last one may be "short" (including zero len) | 
 | 	 * and may serve as a control status ack | 
 | 	 */ | 
 | 	for (;;) { | 
 | 		int this_qtd_len; | 
 |  | 
 | 		this_qtd_len = qtd_fill(ehci, qtd, buf, len, token, maxpacket); | 
 | 		len -= this_qtd_len; | 
 | 		buf += this_qtd_len; | 
 |  | 
 | 		/* | 
 | 		 * short reads advance to a "magic" dummy instead of the next | 
 | 		 * qtd ... that forces the queue to stop, for manual cleanup. | 
 | 		 * (this will usually be overridden later.) | 
 | 		 */ | 
 | 		if (is_input) | 
 | 			qtd->hw_alt_next = ehci->async->hw_alt_next; | 
 |  | 
 | 		/* qh makes control packets use qtd toggle; maybe switch it */ | 
 | 		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0) | 
 | 			token ^= QTD_TOGGLE; | 
 |  | 
 | 		if (likely (len <= 0)) | 
 | 			break; | 
 |  | 
 | 		qtd_prev = qtd; | 
 | 		qtd = ehci_qtd_alloc (ehci, flags); | 
 | 		if (unlikely (!qtd)) | 
 | 			goto cleanup; | 
 | 		qtd->urb = urb; | 
 | 		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma); | 
 | 		list_add_tail (&qtd->qtd_list, head); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * unless the caller requires manual cleanup after short reads, | 
 | 	 * have the alt_next mechanism keep the queue running after the | 
 | 	 * last data qtd (the only one, for control and most other cases). | 
 | 	 */ | 
 | 	if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 | 
 | 				|| usb_pipecontrol (urb->pipe))) | 
 | 		qtd->hw_alt_next = EHCI_LIST_END(ehci); | 
 |  | 
 | 	/* | 
 | 	 * control requests may need a terminating data "status" ack; | 
 | 	 * bulk ones may need a terminating short packet (zero length). | 
 | 	 */ | 
 | 	if (likely (urb->transfer_buffer_length != 0)) { | 
 | 		int	one_more = 0; | 
 |  | 
 | 		if (usb_pipecontrol (urb->pipe)) { | 
 | 			one_more = 1; | 
 | 			token ^= 0x0100;	/* "in" <--> "out"  */ | 
 | 			token |= QTD_TOGGLE;	/* force DATA1 */ | 
 | 		} else if (usb_pipebulk (urb->pipe) | 
 | 				&& (urb->transfer_flags & URB_ZERO_PACKET) | 
 | 				&& !(urb->transfer_buffer_length % maxpacket)) { | 
 | 			one_more = 1; | 
 | 		} | 
 | 		if (one_more) { | 
 | 			qtd_prev = qtd; | 
 | 			qtd = ehci_qtd_alloc (ehci, flags); | 
 | 			if (unlikely (!qtd)) | 
 | 				goto cleanup; | 
 | 			qtd->urb = urb; | 
 | 			qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma); | 
 | 			list_add_tail (&qtd->qtd_list, head); | 
 |  | 
 | 			/* never any data in such packets */ | 
 | 			qtd_fill(ehci, qtd, 0, 0, token, 0); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* by default, enable interrupt on urb completion */ | 
 | 	if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT))) | 
 | 		qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC); | 
 | 	return head; | 
 |  | 
 | cleanup: | 
 | 	qtd_list_free (ehci, urb, head); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | // Would be best to create all qh's from config descriptors, | 
 | // when each interface/altsetting is established.  Unlink | 
 | // any previous qh and cancel its urbs first; endpoints are | 
 | // implicitly reset then (data toggle too). | 
 | // That'd mean updating how usbcore talks to HCDs. (2.7?) | 
 |  | 
 |  | 
 | /* | 
 |  * Each QH holds a qtd list; a QH is used for everything except iso. | 
 |  * | 
 |  * For interrupt urbs, the scheduler must set the microframe scheduling | 
 |  * mask(s) each time the QH gets scheduled.  For highspeed, that's | 
 |  * just one microframe in the s-mask.  For split interrupt transactions | 
 |  * there are additional complications: c-mask, maybe FSTNs. | 
 |  */ | 
 | static struct ehci_qh * | 
 | qh_make ( | 
 | 	struct ehci_hcd		*ehci, | 
 | 	struct urb		*urb, | 
 | 	gfp_t			flags | 
 | ) { | 
 | 	struct ehci_qh		*qh = ehci_qh_alloc (ehci, flags); | 
 | 	u32			info1 = 0, info2 = 0; | 
 | 	int			is_input, type; | 
 | 	int			maxp = 0; | 
 | 	struct usb_tt		*tt = urb->dev->tt; | 
 |  | 
 | 	if (!qh) | 
 | 		return qh; | 
 |  | 
 | 	/* | 
 | 	 * init endpoint/device data for this QH | 
 | 	 */ | 
 | 	info1 |= usb_pipeendpoint (urb->pipe) << 8; | 
 | 	info1 |= usb_pipedevice (urb->pipe) << 0; | 
 |  | 
 | 	is_input = usb_pipein (urb->pipe); | 
 | 	type = usb_pipetype (urb->pipe); | 
 | 	maxp = usb_maxpacket (urb->dev, urb->pipe, !is_input); | 
 |  | 
 | 	/* 1024 byte maxpacket is a hardware ceiling.  High bandwidth | 
 | 	 * acts like up to 3KB, but is built from smaller packets. | 
 | 	 */ | 
 | 	if (max_packet(maxp) > 1024) { | 
 | 		ehci_dbg(ehci, "bogus qh maxpacket %d\n", max_packet(maxp)); | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	/* Compute interrupt scheduling parameters just once, and save. | 
 | 	 * - allowing for high bandwidth, how many nsec/uframe are used? | 
 | 	 * - split transactions need a second CSPLIT uframe; same question | 
 | 	 * - splits also need a schedule gap (for full/low speed I/O) | 
 | 	 * - qh has a polling interval | 
 | 	 * | 
 | 	 * For control/bulk requests, the HC or TT handles these. | 
 | 	 */ | 
 | 	if (type == PIPE_INTERRUPT) { | 
 | 		qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH, | 
 | 				is_input, 0, | 
 | 				hb_mult(maxp) * max_packet(maxp))); | 
 | 		qh->start = NO_FRAME; | 
 |  | 
 | 		if (urb->dev->speed == USB_SPEED_HIGH) { | 
 | 			qh->c_usecs = 0; | 
 | 			qh->gap_uf = 0; | 
 |  | 
 | 			qh->period = urb->interval >> 3; | 
 | 			if (qh->period == 0 && urb->interval != 1) { | 
 | 				/* NOTE interval 2 or 4 uframes could work. | 
 | 				 * But interval 1 scheduling is simpler, and | 
 | 				 * includes high bandwidth. | 
 | 				 */ | 
 | 				dbg ("intr period %d uframes, NYET!", | 
 | 						urb->interval); | 
 | 				goto done; | 
 | 			} | 
 | 		} else { | 
 | 			int		think_time; | 
 |  | 
 | 			/* gap is f(FS/LS transfer times) */ | 
 | 			qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed, | 
 | 					is_input, 0, maxp) / (125 * 1000); | 
 |  | 
 | 			/* FIXME this just approximates SPLIT/CSPLIT times */ | 
 | 			if (is_input) {		// SPLIT, gap, CSPLIT+DATA | 
 | 				qh->c_usecs = qh->usecs + HS_USECS (0); | 
 | 				qh->usecs = HS_USECS (1); | 
 | 			} else {		// SPLIT+DATA, gap, CSPLIT | 
 | 				qh->usecs += HS_USECS (1); | 
 | 				qh->c_usecs = HS_USECS (0); | 
 | 			} | 
 |  | 
 | 			think_time = tt ? tt->think_time : 0; | 
 | 			qh->tt_usecs = NS_TO_US (think_time + | 
 | 					usb_calc_bus_time (urb->dev->speed, | 
 | 					is_input, 0, max_packet (maxp))); | 
 | 			qh->period = urb->interval; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* support for tt scheduling, and access to toggles */ | 
 | 	qh->dev = urb->dev; | 
 |  | 
 | 	/* using TT? */ | 
 | 	switch (urb->dev->speed) { | 
 | 	case USB_SPEED_LOW: | 
 | 		info1 |= (1 << 12);	/* EPS "low" */ | 
 | 		/* FALL THROUGH */ | 
 |  | 
 | 	case USB_SPEED_FULL: | 
 | 		/* EPS 0 means "full" */ | 
 | 		if (type != PIPE_INTERRUPT) | 
 | 			info1 |= (EHCI_TUNE_RL_TT << 28); | 
 | 		if (type == PIPE_CONTROL) { | 
 | 			info1 |= (1 << 27);	/* for TT */ | 
 | 			info1 |= 1 << 14;	/* toggle from qtd */ | 
 | 		} | 
 | 		info1 |= maxp << 16; | 
 |  | 
 | 		info2 |= (EHCI_TUNE_MULT_TT << 30); | 
 |  | 
 | 		/* Some Freescale processors have an erratum in which the | 
 | 		 * port number in the queue head was 0..N-1 instead of 1..N. | 
 | 		 */ | 
 | 		if (ehci_has_fsl_portno_bug(ehci)) | 
 | 			info2 |= (urb->dev->ttport-1) << 23; | 
 | 		else | 
 | 			info2 |= urb->dev->ttport << 23; | 
 |  | 
 | 		/* set the address of the TT; for TDI's integrated | 
 | 		 * root hub tt, leave it zeroed. | 
 | 		 */ | 
 | 		if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub) | 
 | 			info2 |= tt->hub->devnum << 16; | 
 |  | 
 | 		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */ | 
 |  | 
 | 		break; | 
 |  | 
 | 	case USB_SPEED_HIGH:		/* no TT involved */ | 
 | 		info1 |= (2 << 12);	/* EPS "high" */ | 
 | 		if (type == PIPE_CONTROL) { | 
 | 			info1 |= (EHCI_TUNE_RL_HS << 28); | 
 | 			info1 |= 64 << 16;	/* usb2 fixed maxpacket */ | 
 | 			info1 |= 1 << 14;	/* toggle from qtd */ | 
 | 			info2 |= (EHCI_TUNE_MULT_HS << 30); | 
 | 		} else if (type == PIPE_BULK) { | 
 | 			info1 |= (EHCI_TUNE_RL_HS << 28); | 
 | 			/* The USB spec says that high speed bulk endpoints | 
 | 			 * always use 512 byte maxpacket.  But some device | 
 | 			 * vendors decided to ignore that, and MSFT is happy | 
 | 			 * to help them do so.  So now people expect to use | 
 | 			 * such nonconformant devices with Linux too; sigh. | 
 | 			 */ | 
 | 			info1 |= max_packet(maxp) << 16; | 
 | 			info2 |= (EHCI_TUNE_MULT_HS << 30); | 
 | 		} else {		/* PIPE_INTERRUPT */ | 
 | 			info1 |= max_packet (maxp) << 16; | 
 | 			info2 |= hb_mult (maxp) << 30; | 
 | 		} | 
 | 		break; | 
 | 	default: | 
 | 		dbg ("bogus dev %p speed %d", urb->dev, urb->dev->speed); | 
 | done: | 
 | 		qh_put (qh); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */ | 
 |  | 
 | 	/* init as live, toggle clear, advance to dummy */ | 
 | 	qh->qh_state = QH_STATE_IDLE; | 
 | 	qh->hw_info1 = cpu_to_hc32(ehci, info1); | 
 | 	qh->hw_info2 = cpu_to_hc32(ehci, info2); | 
 | 	usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1); | 
 | 	qh_refresh (ehci, qh); | 
 | 	return qh; | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /* move qh (and its qtds) onto async queue; maybe enable queue.  */ | 
 |  | 
 | static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh) | 
 | { | 
 | 	__hc32		dma = QH_NEXT(ehci, qh->qh_dma); | 
 | 	struct ehci_qh	*head; | 
 |  | 
 | 	/* (re)start the async schedule? */ | 
 | 	head = ehci->async; | 
 | 	timer_action_done (ehci, TIMER_ASYNC_OFF); | 
 | 	if (!head->qh_next.qh) { | 
 | 		u32	cmd = ehci_readl(ehci, &ehci->regs->command); | 
 |  | 
 | 		if (!(cmd & CMD_ASE)) { | 
 | 			/* in case a clear of CMD_ASE didn't take yet */ | 
 | 			(void)handshake(ehci, &ehci->regs->status, | 
 | 					STS_ASS, 0, 150); | 
 | 			cmd |= CMD_ASE | CMD_RUN; | 
 | 			ehci_writel(ehci, cmd, &ehci->regs->command); | 
 | 			ehci_to_hcd(ehci)->state = HC_STATE_RUNNING; | 
 | 			/* posted write need not be known to HC yet ... */ | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* clear halt and/or toggle; and maybe recover from silicon quirk */ | 
 | 	if (qh->qh_state == QH_STATE_IDLE) | 
 | 		qh_refresh (ehci, qh); | 
 |  | 
 | 	/* splice right after start */ | 
 | 	qh->qh_next = head->qh_next; | 
 | 	qh->hw_next = head->hw_next; | 
 | 	wmb (); | 
 |  | 
 | 	head->qh_next.qh = qh; | 
 | 	head->hw_next = dma; | 
 |  | 
 | 	qh->qh_state = QH_STATE_LINKED; | 
 | 	/* qtd completions reported later by interrupt */ | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /* | 
 |  * For control/bulk/interrupt, return QH with these TDs appended. | 
 |  * Allocates and initializes the QH if necessary. | 
 |  * Returns null if it can't allocate a QH it needs to. | 
 |  * If the QH has TDs (urbs) already, that's great. | 
 |  */ | 
 | static struct ehci_qh *qh_append_tds ( | 
 | 	struct ehci_hcd		*ehci, | 
 | 	struct urb		*urb, | 
 | 	struct list_head	*qtd_list, | 
 | 	int			epnum, | 
 | 	void			**ptr | 
 | ) | 
 | { | 
 | 	struct ehci_qh		*qh = NULL; | 
 | 	__hc32			qh_addr_mask = cpu_to_hc32(ehci, 0x7f); | 
 |  | 
 | 	qh = (struct ehci_qh *) *ptr; | 
 | 	if (unlikely (qh == NULL)) { | 
 | 		/* can't sleep here, we have ehci->lock... */ | 
 | 		qh = qh_make (ehci, urb, GFP_ATOMIC); | 
 | 		*ptr = qh; | 
 | 	} | 
 | 	if (likely (qh != NULL)) { | 
 | 		struct ehci_qtd	*qtd; | 
 |  | 
 | 		if (unlikely (list_empty (qtd_list))) | 
 | 			qtd = NULL; | 
 | 		else | 
 | 			qtd = list_entry (qtd_list->next, struct ehci_qtd, | 
 | 					qtd_list); | 
 |  | 
 | 		/* control qh may need patching ... */ | 
 | 		if (unlikely (epnum == 0)) { | 
 |  | 
 |                         /* usb_reset_device() briefly reverts to address 0 */ | 
 |                         if (usb_pipedevice (urb->pipe) == 0) | 
 |                                 qh->hw_info1 &= ~qh_addr_mask; | 
 | 		} | 
 |  | 
 | 		/* just one way to queue requests: swap with the dummy qtd. | 
 | 		 * only hc or qh_refresh() ever modify the overlay. | 
 | 		 */ | 
 | 		if (likely (qtd != NULL)) { | 
 | 			struct ehci_qtd		*dummy; | 
 | 			dma_addr_t		dma; | 
 | 			__hc32			token; | 
 |  | 
 | 			/* to avoid racing the HC, use the dummy td instead of | 
 | 			 * the first td of our list (becomes new dummy).  both | 
 | 			 * tds stay deactivated until we're done, when the | 
 | 			 * HC is allowed to fetch the old dummy (4.10.2). | 
 | 			 */ | 
 | 			token = qtd->hw_token; | 
 | 			qtd->hw_token = HALT_BIT(ehci); | 
 | 			wmb (); | 
 | 			dummy = qh->dummy; | 
 |  | 
 | 			dma = dummy->qtd_dma; | 
 | 			*dummy = *qtd; | 
 | 			dummy->qtd_dma = dma; | 
 |  | 
 | 			list_del (&qtd->qtd_list); | 
 | 			list_add (&dummy->qtd_list, qtd_list); | 
 | 			__list_splice (qtd_list, qh->qtd_list.prev); | 
 |  | 
 | 			ehci_qtd_init(ehci, qtd, qtd->qtd_dma); | 
 | 			qh->dummy = qtd; | 
 |  | 
 | 			/* hc must see the new dummy at list end */ | 
 | 			dma = qtd->qtd_dma; | 
 | 			qtd = list_entry (qh->qtd_list.prev, | 
 | 					struct ehci_qtd, qtd_list); | 
 | 			qtd->hw_next = QTD_NEXT(ehci, dma); | 
 |  | 
 | 			/* let the hc process these next qtds */ | 
 | 			wmb (); | 
 | 			dummy->hw_token = token; | 
 |  | 
 | 			urb->hcpriv = qh_get (qh); | 
 | 		} | 
 | 	} | 
 | 	return qh; | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | static int | 
 | submit_async ( | 
 | 	struct ehci_hcd		*ehci, | 
 | 	struct urb		*urb, | 
 | 	struct list_head	*qtd_list, | 
 | 	gfp_t			mem_flags | 
 | ) { | 
 | 	struct ehci_qtd		*qtd; | 
 | 	int			epnum; | 
 | 	unsigned long		flags; | 
 | 	struct ehci_qh		*qh = NULL; | 
 | 	int			rc; | 
 |  | 
 | 	qtd = list_entry (qtd_list->next, struct ehci_qtd, qtd_list); | 
 | 	epnum = urb->ep->desc.bEndpointAddress; | 
 |  | 
 | #ifdef EHCI_URB_TRACE | 
 | 	ehci_dbg (ehci, | 
 | 		"%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n", | 
 | 		__func__, urb->dev->devpath, urb, | 
 | 		epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out", | 
 | 		urb->transfer_buffer_length, | 
 | 		qtd, urb->ep->hcpriv); | 
 | #endif | 
 |  | 
 | 	spin_lock_irqsave (&ehci->lock, flags); | 
 | 	if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE, | 
 | 			       &ehci_to_hcd(ehci)->flags))) { | 
 | 		rc = -ESHUTDOWN; | 
 | 		goto done; | 
 | 	} | 
 | 	rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); | 
 | 	if (unlikely(rc)) | 
 | 		goto done; | 
 |  | 
 | 	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv); | 
 | 	if (unlikely(qh == NULL)) { | 
 | 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); | 
 | 		rc = -ENOMEM; | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	/* Control/bulk operations through TTs don't need scheduling, | 
 | 	 * the HC and TT handle it when the TT has a buffer ready. | 
 | 	 */ | 
 | 	if (likely (qh->qh_state == QH_STATE_IDLE)) | 
 | 		qh_link_async (ehci, qh_get (qh)); | 
 |  done: | 
 | 	spin_unlock_irqrestore (&ehci->lock, flags); | 
 | 	if (unlikely (qh == NULL)) | 
 | 		qtd_list_free (ehci, urb, qtd_list); | 
 | 	return rc; | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /* the async qh for the qtds being reclaimed are now unlinked from the HC */ | 
 |  | 
 | static void end_unlink_async (struct ehci_hcd *ehci) | 
 | { | 
 | 	struct ehci_qh		*qh = ehci->reclaim; | 
 | 	struct ehci_qh		*next; | 
 |  | 
 | 	iaa_watchdog_done(ehci); | 
 |  | 
 | 	// qh->hw_next = cpu_to_hc32(qh->qh_dma); | 
 | 	qh->qh_state = QH_STATE_IDLE; | 
 | 	qh->qh_next.qh = NULL; | 
 | 	qh_put (qh);			// refcount from reclaim | 
 |  | 
 | 	/* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */ | 
 | 	next = qh->reclaim; | 
 | 	ehci->reclaim = next; | 
 | 	qh->reclaim = NULL; | 
 |  | 
 | 	qh_completions (ehci, qh); | 
 |  | 
 | 	if (!list_empty (&qh->qtd_list) | 
 | 			&& HC_IS_RUNNING (ehci_to_hcd(ehci)->state)) | 
 | 		qh_link_async (ehci, qh); | 
 | 	else { | 
 | 		qh_put (qh);		// refcount from async list | 
 |  | 
 | 		/* it's not free to turn the async schedule on/off; leave it | 
 | 		 * active but idle for a while once it empties. | 
 | 		 */ | 
 | 		if (HC_IS_RUNNING (ehci_to_hcd(ehci)->state) | 
 | 				&& ehci->async->qh_next.qh == NULL) | 
 | 			timer_action (ehci, TIMER_ASYNC_OFF); | 
 | 	} | 
 |  | 
 | 	if (next) { | 
 | 		ehci->reclaim = NULL; | 
 | 		start_unlink_async (ehci, next); | 
 | 	} | 
 | } | 
 |  | 
 | /* makes sure the async qh will become idle */ | 
 | /* caller must own ehci->lock */ | 
 |  | 
 | static void start_unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh) | 
 | { | 
 | 	int		cmd = ehci_readl(ehci, &ehci->regs->command); | 
 | 	struct ehci_qh	*prev; | 
 |  | 
 | #ifdef DEBUG | 
 | 	assert_spin_locked(&ehci->lock); | 
 | 	if (ehci->reclaim | 
 | 			|| (qh->qh_state != QH_STATE_LINKED | 
 | 				&& qh->qh_state != QH_STATE_UNLINK_WAIT) | 
 | 			) | 
 | 		BUG (); | 
 | #endif | 
 |  | 
 | 	/* stop async schedule right now? */ | 
 | 	if (unlikely (qh == ehci->async)) { | 
 | 		/* can't get here without STS_ASS set */ | 
 | 		if (ehci_to_hcd(ehci)->state != HC_STATE_HALT | 
 | 				&& !ehci->reclaim) { | 
 | 			/* ... and CMD_IAAD clear */ | 
 | 			ehci_writel(ehci, cmd & ~CMD_ASE, | 
 | 				    &ehci->regs->command); | 
 | 			wmb (); | 
 | 			// handshake later, if we need to | 
 | 			timer_action_done (ehci, TIMER_ASYNC_OFF); | 
 | 		} | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	qh->qh_state = QH_STATE_UNLINK; | 
 | 	ehci->reclaim = qh = qh_get (qh); | 
 |  | 
 | 	prev = ehci->async; | 
 | 	while (prev->qh_next.qh != qh) | 
 | 		prev = prev->qh_next.qh; | 
 |  | 
 | 	prev->hw_next = qh->hw_next; | 
 | 	prev->qh_next = qh->qh_next; | 
 | 	wmb (); | 
 |  | 
 | 	if (unlikely (ehci_to_hcd(ehci)->state == HC_STATE_HALT)) { | 
 | 		/* if (unlikely (qh->reclaim != 0)) | 
 | 		 *	this will recurse, probably not much | 
 | 		 */ | 
 | 		end_unlink_async (ehci); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	cmd |= CMD_IAAD; | 
 | 	ehci_writel(ehci, cmd, &ehci->regs->command); | 
 | 	(void)ehci_readl(ehci, &ehci->regs->command); | 
 | 	iaa_watchdog_start(ehci); | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | static void scan_async (struct ehci_hcd *ehci) | 
 | { | 
 | 	struct ehci_qh		*qh; | 
 | 	enum ehci_timer_action	action = TIMER_IO_WATCHDOG; | 
 |  | 
 | 	ehci->stamp = ehci_readl(ehci, &ehci->regs->frame_index); | 
 | 	timer_action_done (ehci, TIMER_ASYNC_SHRINK); | 
 | rescan: | 
 | 	qh = ehci->async->qh_next.qh; | 
 | 	if (likely (qh != NULL)) { | 
 | 		do { | 
 | 			/* clean any finished work for this qh */ | 
 | 			if (!list_empty (&qh->qtd_list) | 
 | 					&& qh->stamp != ehci->stamp) { | 
 | 				int temp; | 
 |  | 
 | 				/* unlinks could happen here; completion | 
 | 				 * reporting drops the lock.  rescan using | 
 | 				 * the latest schedule, but don't rescan | 
 | 				 * qhs we already finished (no looping). | 
 | 				 */ | 
 | 				qh = qh_get (qh); | 
 | 				qh->stamp = ehci->stamp; | 
 | 				temp = qh_completions (ehci, qh); | 
 | 				qh_put (qh); | 
 | 				if (temp != 0) { | 
 | 					goto rescan; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			/* unlink idle entries, reducing DMA usage as well | 
 | 			 * as HCD schedule-scanning costs.  delay for any qh | 
 | 			 * we just scanned, there's a not-unusual case that it | 
 | 			 * doesn't stay idle for long. | 
 | 			 * (plus, avoids some kind of re-activation race.) | 
 | 			 */ | 
 | 			if (list_empty(&qh->qtd_list) | 
 | 					&& qh->qh_state == QH_STATE_LINKED) { | 
 | 				if (!ehci->reclaim | 
 | 					&& ((ehci->stamp - qh->stamp) & 0x1fff) | 
 | 						>= (EHCI_SHRINK_FRAMES * 8)) | 
 | 					start_unlink_async(ehci, qh); | 
 | 				else | 
 | 					action = TIMER_ASYNC_SHRINK; | 
 | 			} | 
 |  | 
 | 			qh = qh->qh_next.qh; | 
 | 		} while (qh); | 
 | 	} | 
 | 	if (action == TIMER_ASYNC_SHRINK) | 
 | 		timer_action (ehci, TIMER_ASYNC_SHRINK); | 
 | } |