| /* | 
 |  * Copyright (C) 2001 Sistina Software (UK) Limited. | 
 |  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. | 
 |  * | 
 |  * This file is released under the GPL. | 
 |  */ | 
 |  | 
 | #include "dm.h" | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/namei.h> | 
 | #include <linux/ctype.h> | 
 | #include <linux/string.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/delay.h> | 
 | #include <asm/atomic.h> | 
 |  | 
 | #define DM_MSG_PREFIX "table" | 
 |  | 
 | #define MAX_DEPTH 16 | 
 | #define NODE_SIZE L1_CACHE_BYTES | 
 | #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) | 
 | #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) | 
 |  | 
 | /* | 
 |  * The table has always exactly one reference from either mapped_device->map | 
 |  * or hash_cell->new_map. This reference is not counted in table->holders. | 
 |  * A pair of dm_create_table/dm_destroy_table functions is used for table | 
 |  * creation/destruction. | 
 |  * | 
 |  * Temporary references from the other code increase table->holders. A pair | 
 |  * of dm_table_get/dm_table_put functions is used to manipulate it. | 
 |  * | 
 |  * When the table is about to be destroyed, we wait for table->holders to | 
 |  * drop to zero. | 
 |  */ | 
 |  | 
 | struct dm_table { | 
 | 	struct mapped_device *md; | 
 | 	atomic_t holders; | 
 | 	unsigned type; | 
 |  | 
 | 	/* btree table */ | 
 | 	unsigned int depth; | 
 | 	unsigned int counts[MAX_DEPTH];	/* in nodes */ | 
 | 	sector_t *index[MAX_DEPTH]; | 
 |  | 
 | 	unsigned int num_targets; | 
 | 	unsigned int num_allocated; | 
 | 	sector_t *highs; | 
 | 	struct dm_target *targets; | 
 |  | 
 | 	unsigned discards_supported:1; | 
 |  | 
 | 	/* | 
 | 	 * Indicates the rw permissions for the new logical | 
 | 	 * device.  This should be a combination of FMODE_READ | 
 | 	 * and FMODE_WRITE. | 
 | 	 */ | 
 | 	fmode_t mode; | 
 |  | 
 | 	/* a list of devices used by this table */ | 
 | 	struct list_head devices; | 
 |  | 
 | 	/* events get handed up using this callback */ | 
 | 	void (*event_fn)(void *); | 
 | 	void *event_context; | 
 |  | 
 | 	struct dm_md_mempools *mempools; | 
 | }; | 
 |  | 
 | /* | 
 |  * Similar to ceiling(log_size(n)) | 
 |  */ | 
 | static unsigned int int_log(unsigned int n, unsigned int base) | 
 | { | 
 | 	int result = 0; | 
 |  | 
 | 	while (n > 1) { | 
 | 		n = dm_div_up(n, base); | 
 | 		result++; | 
 | 	} | 
 |  | 
 | 	return result; | 
 | } | 
 |  | 
 | /* | 
 |  * Calculate the index of the child node of the n'th node k'th key. | 
 |  */ | 
 | static inline unsigned int get_child(unsigned int n, unsigned int k) | 
 | { | 
 | 	return (n * CHILDREN_PER_NODE) + k; | 
 | } | 
 |  | 
 | /* | 
 |  * Return the n'th node of level l from table t. | 
 |  */ | 
 | static inline sector_t *get_node(struct dm_table *t, | 
 | 				 unsigned int l, unsigned int n) | 
 | { | 
 | 	return t->index[l] + (n * KEYS_PER_NODE); | 
 | } | 
 |  | 
 | /* | 
 |  * Return the highest key that you could lookup from the n'th | 
 |  * node on level l of the btree. | 
 |  */ | 
 | static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) | 
 | { | 
 | 	for (; l < t->depth - 1; l++) | 
 | 		n = get_child(n, CHILDREN_PER_NODE - 1); | 
 |  | 
 | 	if (n >= t->counts[l]) | 
 | 		return (sector_t) - 1; | 
 |  | 
 | 	return get_node(t, l, n)[KEYS_PER_NODE - 1]; | 
 | } | 
 |  | 
 | /* | 
 |  * Fills in a level of the btree based on the highs of the level | 
 |  * below it. | 
 |  */ | 
 | static int setup_btree_index(unsigned int l, struct dm_table *t) | 
 | { | 
 | 	unsigned int n, k; | 
 | 	sector_t *node; | 
 |  | 
 | 	for (n = 0U; n < t->counts[l]; n++) { | 
 | 		node = get_node(t, l, n); | 
 |  | 
 | 		for (k = 0U; k < KEYS_PER_NODE; k++) | 
 | 			node[k] = high(t, l + 1, get_child(n, k)); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) | 
 | { | 
 | 	unsigned long size; | 
 | 	void *addr; | 
 |  | 
 | 	/* | 
 | 	 * Check that we're not going to overflow. | 
 | 	 */ | 
 | 	if (nmemb > (ULONG_MAX / elem_size)) | 
 | 		return NULL; | 
 |  | 
 | 	size = nmemb * elem_size; | 
 | 	addr = vmalloc(size); | 
 | 	if (addr) | 
 | 		memset(addr, 0, size); | 
 |  | 
 | 	return addr; | 
 | } | 
 |  | 
 | /* | 
 |  * highs, and targets are managed as dynamic arrays during a | 
 |  * table load. | 
 |  */ | 
 | static int alloc_targets(struct dm_table *t, unsigned int num) | 
 | { | 
 | 	sector_t *n_highs; | 
 | 	struct dm_target *n_targets; | 
 | 	int n = t->num_targets; | 
 |  | 
 | 	/* | 
 | 	 * Allocate both the target array and offset array at once. | 
 | 	 * Append an empty entry to catch sectors beyond the end of | 
 | 	 * the device. | 
 | 	 */ | 
 | 	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + | 
 | 					  sizeof(sector_t)); | 
 | 	if (!n_highs) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	n_targets = (struct dm_target *) (n_highs + num); | 
 |  | 
 | 	if (n) { | 
 | 		memcpy(n_highs, t->highs, sizeof(*n_highs) * n); | 
 | 		memcpy(n_targets, t->targets, sizeof(*n_targets) * n); | 
 | 	} | 
 |  | 
 | 	memset(n_highs + n, -1, sizeof(*n_highs) * (num - n)); | 
 | 	vfree(t->highs); | 
 |  | 
 | 	t->num_allocated = num; | 
 | 	t->highs = n_highs; | 
 | 	t->targets = n_targets; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int dm_table_create(struct dm_table **result, fmode_t mode, | 
 | 		    unsigned num_targets, struct mapped_device *md) | 
 | { | 
 | 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); | 
 |  | 
 | 	if (!t) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	INIT_LIST_HEAD(&t->devices); | 
 | 	atomic_set(&t->holders, 0); | 
 | 	t->discards_supported = 1; | 
 |  | 
 | 	if (!num_targets) | 
 | 		num_targets = KEYS_PER_NODE; | 
 |  | 
 | 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE); | 
 |  | 
 | 	if (alloc_targets(t, num_targets)) { | 
 | 		kfree(t); | 
 | 		t = NULL; | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	t->mode = mode; | 
 | 	t->md = md; | 
 | 	*result = t; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void free_devices(struct list_head *devices) | 
 | { | 
 | 	struct list_head *tmp, *next; | 
 |  | 
 | 	list_for_each_safe(tmp, next, devices) { | 
 | 		struct dm_dev_internal *dd = | 
 | 		    list_entry(tmp, struct dm_dev_internal, list); | 
 | 		DMWARN("dm_table_destroy: dm_put_device call missing for %s", | 
 | 		       dd->dm_dev.name); | 
 | 		kfree(dd); | 
 | 	} | 
 | } | 
 |  | 
 | void dm_table_destroy(struct dm_table *t) | 
 | { | 
 | 	unsigned int i; | 
 |  | 
 | 	if (!t) | 
 | 		return; | 
 |  | 
 | 	while (atomic_read(&t->holders)) | 
 | 		msleep(1); | 
 | 	smp_mb(); | 
 |  | 
 | 	/* free the indexes */ | 
 | 	if (t->depth >= 2) | 
 | 		vfree(t->index[t->depth - 2]); | 
 |  | 
 | 	/* free the targets */ | 
 | 	for (i = 0; i < t->num_targets; i++) { | 
 | 		struct dm_target *tgt = t->targets + i; | 
 |  | 
 | 		if (tgt->type->dtr) | 
 | 			tgt->type->dtr(tgt); | 
 |  | 
 | 		dm_put_target_type(tgt->type); | 
 | 	} | 
 |  | 
 | 	vfree(t->highs); | 
 |  | 
 | 	/* free the device list */ | 
 | 	if (t->devices.next != &t->devices) | 
 | 		free_devices(&t->devices); | 
 |  | 
 | 	dm_free_md_mempools(t->mempools); | 
 |  | 
 | 	kfree(t); | 
 | } | 
 |  | 
 | void dm_table_get(struct dm_table *t) | 
 | { | 
 | 	atomic_inc(&t->holders); | 
 | } | 
 |  | 
 | void dm_table_put(struct dm_table *t) | 
 | { | 
 | 	if (!t) | 
 | 		return; | 
 |  | 
 | 	smp_mb__before_atomic_dec(); | 
 | 	atomic_dec(&t->holders); | 
 | } | 
 |  | 
 | /* | 
 |  * Checks to see if we need to extend highs or targets. | 
 |  */ | 
 | static inline int check_space(struct dm_table *t) | 
 | { | 
 | 	if (t->num_targets >= t->num_allocated) | 
 | 		return alloc_targets(t, t->num_allocated * 2); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * See if we've already got a device in the list. | 
 |  */ | 
 | static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) | 
 | { | 
 | 	struct dm_dev_internal *dd; | 
 |  | 
 | 	list_for_each_entry (dd, l, list) | 
 | 		if (dd->dm_dev.bdev->bd_dev == dev) | 
 | 			return dd; | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Open a device so we can use it as a map destination. | 
 |  */ | 
 | static int open_dev(struct dm_dev_internal *d, dev_t dev, | 
 | 		    struct mapped_device *md) | 
 | { | 
 | 	static char *_claim_ptr = "I belong to device-mapper"; | 
 | 	struct block_device *bdev; | 
 |  | 
 | 	int r; | 
 |  | 
 | 	BUG_ON(d->dm_dev.bdev); | 
 |  | 
 | 	bdev = open_by_devnum(dev, d->dm_dev.mode); | 
 | 	if (IS_ERR(bdev)) | 
 | 		return PTR_ERR(bdev); | 
 | 	r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md)); | 
 | 	if (r) | 
 | 		blkdev_put(bdev, d->dm_dev.mode); | 
 | 	else | 
 | 		d->dm_dev.bdev = bdev; | 
 | 	return r; | 
 | } | 
 |  | 
 | /* | 
 |  * Close a device that we've been using. | 
 |  */ | 
 | static void close_dev(struct dm_dev_internal *d, struct mapped_device *md) | 
 | { | 
 | 	if (!d->dm_dev.bdev) | 
 | 		return; | 
 |  | 
 | 	bd_release_from_disk(d->dm_dev.bdev, dm_disk(md)); | 
 | 	blkdev_put(d->dm_dev.bdev, d->dm_dev.mode); | 
 | 	d->dm_dev.bdev = NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * If possible, this checks an area of a destination device is invalid. | 
 |  */ | 
 | static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, | 
 | 				  sector_t start, sector_t len, void *data) | 
 | { | 
 | 	struct queue_limits *limits = data; | 
 | 	struct block_device *bdev = dev->bdev; | 
 | 	sector_t dev_size = | 
 | 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; | 
 | 	unsigned short logical_block_size_sectors = | 
 | 		limits->logical_block_size >> SECTOR_SHIFT; | 
 | 	char b[BDEVNAME_SIZE]; | 
 |  | 
 | 	if (!dev_size) | 
 | 		return 0; | 
 |  | 
 | 	if ((start >= dev_size) || (start + len > dev_size)) { | 
 | 		DMWARN("%s: %s too small for target: " | 
 | 		       "start=%llu, len=%llu, dev_size=%llu", | 
 | 		       dm_device_name(ti->table->md), bdevname(bdev, b), | 
 | 		       (unsigned long long)start, | 
 | 		       (unsigned long long)len, | 
 | 		       (unsigned long long)dev_size); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (logical_block_size_sectors <= 1) | 
 | 		return 0; | 
 |  | 
 | 	if (start & (logical_block_size_sectors - 1)) { | 
 | 		DMWARN("%s: start=%llu not aligned to h/w " | 
 | 		       "logical block size %u of %s", | 
 | 		       dm_device_name(ti->table->md), | 
 | 		       (unsigned long long)start, | 
 | 		       limits->logical_block_size, bdevname(bdev, b)); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (len & (logical_block_size_sectors - 1)) { | 
 | 		DMWARN("%s: len=%llu not aligned to h/w " | 
 | 		       "logical block size %u of %s", | 
 | 		       dm_device_name(ti->table->md), | 
 | 		       (unsigned long long)len, | 
 | 		       limits->logical_block_size, bdevname(bdev, b)); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This upgrades the mode on an already open dm_dev, being | 
 |  * careful to leave things as they were if we fail to reopen the | 
 |  * device and not to touch the existing bdev field in case | 
 |  * it is accessed concurrently inside dm_table_any_congested(). | 
 |  */ | 
 | static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, | 
 | 			struct mapped_device *md) | 
 | { | 
 | 	int r; | 
 | 	struct dm_dev_internal dd_new, dd_old; | 
 |  | 
 | 	dd_new = dd_old = *dd; | 
 |  | 
 | 	dd_new.dm_dev.mode |= new_mode; | 
 | 	dd_new.dm_dev.bdev = NULL; | 
 |  | 
 | 	r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	dd->dm_dev.mode |= new_mode; | 
 | 	close_dev(&dd_old, md); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Add a device to the list, or just increment the usage count if | 
 |  * it's already present. | 
 |  */ | 
 | static int __table_get_device(struct dm_table *t, struct dm_target *ti, | 
 | 		      const char *path, fmode_t mode, struct dm_dev **result) | 
 | { | 
 | 	int r; | 
 | 	dev_t uninitialized_var(dev); | 
 | 	struct dm_dev_internal *dd; | 
 | 	unsigned int major, minor; | 
 |  | 
 | 	BUG_ON(!t); | 
 |  | 
 | 	if (sscanf(path, "%u:%u", &major, &minor) == 2) { | 
 | 		/* Extract the major/minor numbers */ | 
 | 		dev = MKDEV(major, minor); | 
 | 		if (MAJOR(dev) != major || MINOR(dev) != minor) | 
 | 			return -EOVERFLOW; | 
 | 	} else { | 
 | 		/* convert the path to a device */ | 
 | 		struct block_device *bdev = lookup_bdev(path); | 
 |  | 
 | 		if (IS_ERR(bdev)) | 
 | 			return PTR_ERR(bdev); | 
 | 		dev = bdev->bd_dev; | 
 | 		bdput(bdev); | 
 | 	} | 
 |  | 
 | 	dd = find_device(&t->devices, dev); | 
 | 	if (!dd) { | 
 | 		dd = kmalloc(sizeof(*dd), GFP_KERNEL); | 
 | 		if (!dd) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		dd->dm_dev.mode = mode; | 
 | 		dd->dm_dev.bdev = NULL; | 
 |  | 
 | 		if ((r = open_dev(dd, dev, t->md))) { | 
 | 			kfree(dd); | 
 | 			return r; | 
 | 		} | 
 |  | 
 | 		format_dev_t(dd->dm_dev.name, dev); | 
 |  | 
 | 		atomic_set(&dd->count, 0); | 
 | 		list_add(&dd->list, &t->devices); | 
 |  | 
 | 	} else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) { | 
 | 		r = upgrade_mode(dd, mode, t->md); | 
 | 		if (r) | 
 | 			return r; | 
 | 	} | 
 | 	atomic_inc(&dd->count); | 
 |  | 
 | 	*result = &dd->dm_dev; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, | 
 | 			 sector_t start, sector_t len, void *data) | 
 | { | 
 | 	struct queue_limits *limits = data; | 
 | 	struct block_device *bdev = dev->bdev; | 
 | 	struct request_queue *q = bdev_get_queue(bdev); | 
 | 	char b[BDEVNAME_SIZE]; | 
 |  | 
 | 	if (unlikely(!q)) { | 
 | 		DMWARN("%s: Cannot set limits for nonexistent device %s", | 
 | 		       dm_device_name(ti->table->md), bdevname(bdev, b)); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (bdev_stack_limits(limits, bdev, start) < 0) | 
 | 		DMWARN("%s: adding target device %s caused an alignment inconsistency: " | 
 | 		       "physical_block_size=%u, logical_block_size=%u, " | 
 | 		       "alignment_offset=%u, start=%llu", | 
 | 		       dm_device_name(ti->table->md), bdevname(bdev, b), | 
 | 		       q->limits.physical_block_size, | 
 | 		       q->limits.logical_block_size, | 
 | 		       q->limits.alignment_offset, | 
 | 		       (unsigned long long) start << SECTOR_SHIFT); | 
 |  | 
 | 	/* | 
 | 	 * Check if merge fn is supported. | 
 | 	 * If not we'll force DM to use PAGE_SIZE or | 
 | 	 * smaller I/O, just to be safe. | 
 | 	 */ | 
 |  | 
 | 	if (q->merge_bvec_fn && !ti->type->merge) | 
 | 		limits->max_sectors = | 
 | 			min_not_zero(limits->max_sectors, | 
 | 				     (unsigned int) (PAGE_SIZE >> 9)); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_set_device_limits); | 
 |  | 
 | int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, | 
 | 		  struct dm_dev **result) | 
 | { | 
 | 	return __table_get_device(ti->table, ti, path, mode, result); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Decrement a devices use count and remove it if necessary. | 
 |  */ | 
 | void dm_put_device(struct dm_target *ti, struct dm_dev *d) | 
 | { | 
 | 	struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal, | 
 | 						  dm_dev); | 
 |  | 
 | 	if (atomic_dec_and_test(&dd->count)) { | 
 | 		close_dev(dd, ti->table->md); | 
 | 		list_del(&dd->list); | 
 | 		kfree(dd); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Checks to see if the target joins onto the end of the table. | 
 |  */ | 
 | static int adjoin(struct dm_table *table, struct dm_target *ti) | 
 | { | 
 | 	struct dm_target *prev; | 
 |  | 
 | 	if (!table->num_targets) | 
 | 		return !ti->begin; | 
 |  | 
 | 	prev = &table->targets[table->num_targets - 1]; | 
 | 	return (ti->begin == (prev->begin + prev->len)); | 
 | } | 
 |  | 
 | /* | 
 |  * Used to dynamically allocate the arg array. | 
 |  */ | 
 | static char **realloc_argv(unsigned *array_size, char **old_argv) | 
 | { | 
 | 	char **argv; | 
 | 	unsigned new_size; | 
 |  | 
 | 	new_size = *array_size ? *array_size * 2 : 64; | 
 | 	argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL); | 
 | 	if (argv) { | 
 | 		memcpy(argv, old_argv, *array_size * sizeof(*argv)); | 
 | 		*array_size = new_size; | 
 | 	} | 
 |  | 
 | 	kfree(old_argv); | 
 | 	return argv; | 
 | } | 
 |  | 
 | /* | 
 |  * Destructively splits up the argument list to pass to ctr. | 
 |  */ | 
 | int dm_split_args(int *argc, char ***argvp, char *input) | 
 | { | 
 | 	char *start, *end = input, *out, **argv = NULL; | 
 | 	unsigned array_size = 0; | 
 |  | 
 | 	*argc = 0; | 
 |  | 
 | 	if (!input) { | 
 | 		*argvp = NULL; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	argv = realloc_argv(&array_size, argv); | 
 | 	if (!argv) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	while (1) { | 
 | 		/* Skip whitespace */ | 
 | 		start = skip_spaces(end); | 
 |  | 
 | 		if (!*start) | 
 | 			break;	/* success, we hit the end */ | 
 |  | 
 | 		/* 'out' is used to remove any back-quotes */ | 
 | 		end = out = start; | 
 | 		while (*end) { | 
 | 			/* Everything apart from '\0' can be quoted */ | 
 | 			if (*end == '\\' && *(end + 1)) { | 
 | 				*out++ = *(end + 1); | 
 | 				end += 2; | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			if (isspace(*end)) | 
 | 				break;	/* end of token */ | 
 |  | 
 | 			*out++ = *end++; | 
 | 		} | 
 |  | 
 | 		/* have we already filled the array ? */ | 
 | 		if ((*argc + 1) > array_size) { | 
 | 			argv = realloc_argv(&array_size, argv); | 
 | 			if (!argv) | 
 | 				return -ENOMEM; | 
 | 		} | 
 |  | 
 | 		/* we know this is whitespace */ | 
 | 		if (*end) | 
 | 			end++; | 
 |  | 
 | 		/* terminate the string and put it in the array */ | 
 | 		*out = '\0'; | 
 | 		argv[*argc] = start; | 
 | 		(*argc)++; | 
 | 	} | 
 |  | 
 | 	*argvp = argv; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Impose necessary and sufficient conditions on a devices's table such | 
 |  * that any incoming bio which respects its logical_block_size can be | 
 |  * processed successfully.  If it falls across the boundary between | 
 |  * two or more targets, the size of each piece it gets split into must | 
 |  * be compatible with the logical_block_size of the target processing it. | 
 |  */ | 
 | static int validate_hardware_logical_block_alignment(struct dm_table *table, | 
 | 						 struct queue_limits *limits) | 
 | { | 
 | 	/* | 
 | 	 * This function uses arithmetic modulo the logical_block_size | 
 | 	 * (in units of 512-byte sectors). | 
 | 	 */ | 
 | 	unsigned short device_logical_block_size_sects = | 
 | 		limits->logical_block_size >> SECTOR_SHIFT; | 
 |  | 
 | 	/* | 
 | 	 * Offset of the start of the next table entry, mod logical_block_size. | 
 | 	 */ | 
 | 	unsigned short next_target_start = 0; | 
 |  | 
 | 	/* | 
 | 	 * Given an aligned bio that extends beyond the end of a | 
 | 	 * target, how many sectors must the next target handle? | 
 | 	 */ | 
 | 	unsigned short remaining = 0; | 
 |  | 
 | 	struct dm_target *uninitialized_var(ti); | 
 | 	struct queue_limits ti_limits; | 
 | 	unsigned i = 0; | 
 |  | 
 | 	/* | 
 | 	 * Check each entry in the table in turn. | 
 | 	 */ | 
 | 	while (i < dm_table_get_num_targets(table)) { | 
 | 		ti = dm_table_get_target(table, i++); | 
 |  | 
 | 		blk_set_default_limits(&ti_limits); | 
 |  | 
 | 		/* combine all target devices' limits */ | 
 | 		if (ti->type->iterate_devices) | 
 | 			ti->type->iterate_devices(ti, dm_set_device_limits, | 
 | 						  &ti_limits); | 
 |  | 
 | 		/* | 
 | 		 * If the remaining sectors fall entirely within this | 
 | 		 * table entry are they compatible with its logical_block_size? | 
 | 		 */ | 
 | 		if (remaining < ti->len && | 
 | 		    remaining & ((ti_limits.logical_block_size >> | 
 | 				  SECTOR_SHIFT) - 1)) | 
 | 			break;	/* Error */ | 
 |  | 
 | 		next_target_start = | 
 | 		    (unsigned short) ((next_target_start + ti->len) & | 
 | 				      (device_logical_block_size_sects - 1)); | 
 | 		remaining = next_target_start ? | 
 | 		    device_logical_block_size_sects - next_target_start : 0; | 
 | 	} | 
 |  | 
 | 	if (remaining) { | 
 | 		DMWARN("%s: table line %u (start sect %llu len %llu) " | 
 | 		       "not aligned to h/w logical block size %u", | 
 | 		       dm_device_name(table->md), i, | 
 | 		       (unsigned long long) ti->begin, | 
 | 		       (unsigned long long) ti->len, | 
 | 		       limits->logical_block_size); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int dm_table_add_target(struct dm_table *t, const char *type, | 
 | 			sector_t start, sector_t len, char *params) | 
 | { | 
 | 	int r = -EINVAL, argc; | 
 | 	char **argv; | 
 | 	struct dm_target *tgt; | 
 |  | 
 | 	if ((r = check_space(t))) | 
 | 		return r; | 
 |  | 
 | 	tgt = t->targets + t->num_targets; | 
 | 	memset(tgt, 0, sizeof(*tgt)); | 
 |  | 
 | 	if (!len) { | 
 | 		DMERR("%s: zero-length target", dm_device_name(t->md)); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	tgt->type = dm_get_target_type(type); | 
 | 	if (!tgt->type) { | 
 | 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), | 
 | 		      type); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	tgt->table = t; | 
 | 	tgt->begin = start; | 
 | 	tgt->len = len; | 
 | 	tgt->error = "Unknown error"; | 
 |  | 
 | 	/* | 
 | 	 * Does this target adjoin the previous one ? | 
 | 	 */ | 
 | 	if (!adjoin(t, tgt)) { | 
 | 		tgt->error = "Gap in table"; | 
 | 		r = -EINVAL; | 
 | 		goto bad; | 
 | 	} | 
 |  | 
 | 	r = dm_split_args(&argc, &argv, params); | 
 | 	if (r) { | 
 | 		tgt->error = "couldn't split parameters (insufficient memory)"; | 
 | 		goto bad; | 
 | 	} | 
 |  | 
 | 	r = tgt->type->ctr(tgt, argc, argv); | 
 | 	kfree(argv); | 
 | 	if (r) | 
 | 		goto bad; | 
 |  | 
 | 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; | 
 |  | 
 | 	if (!tgt->num_discard_requests) | 
 | 		t->discards_supported = 0; | 
 |  | 
 | 	return 0; | 
 |  | 
 |  bad: | 
 | 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); | 
 | 	dm_put_target_type(tgt->type); | 
 | 	return r; | 
 | } | 
 |  | 
 | static int dm_table_set_type(struct dm_table *t) | 
 | { | 
 | 	unsigned i; | 
 | 	unsigned bio_based = 0, request_based = 0; | 
 | 	struct dm_target *tgt; | 
 | 	struct dm_dev_internal *dd; | 
 | 	struct list_head *devices; | 
 |  | 
 | 	for (i = 0; i < t->num_targets; i++) { | 
 | 		tgt = t->targets + i; | 
 | 		if (dm_target_request_based(tgt)) | 
 | 			request_based = 1; | 
 | 		else | 
 | 			bio_based = 1; | 
 |  | 
 | 		if (bio_based && request_based) { | 
 | 			DMWARN("Inconsistent table: different target types" | 
 | 			       " can't be mixed up"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (bio_based) { | 
 | 		/* We must use this table as bio-based */ | 
 | 		t->type = DM_TYPE_BIO_BASED; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	BUG_ON(!request_based); /* No targets in this table */ | 
 |  | 
 | 	/* Non-request-stackable devices can't be used for request-based dm */ | 
 | 	devices = dm_table_get_devices(t); | 
 | 	list_for_each_entry(dd, devices, list) { | 
 | 		if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) { | 
 | 			DMWARN("table load rejected: including" | 
 | 			       " non-request-stackable devices"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Request-based dm supports only tables that have a single target now. | 
 | 	 * To support multiple targets, request splitting support is needed, | 
 | 	 * and that needs lots of changes in the block-layer. | 
 | 	 * (e.g. request completion process for partial completion.) | 
 | 	 */ | 
 | 	if (t->num_targets > 1) { | 
 | 		DMWARN("Request-based dm doesn't support multiple targets yet"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	t->type = DM_TYPE_REQUEST_BASED; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | unsigned dm_table_get_type(struct dm_table *t) | 
 | { | 
 | 	return t->type; | 
 | } | 
 |  | 
 | bool dm_table_request_based(struct dm_table *t) | 
 | { | 
 | 	return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED; | 
 | } | 
 |  | 
 | int dm_table_alloc_md_mempools(struct dm_table *t) | 
 | { | 
 | 	unsigned type = dm_table_get_type(t); | 
 |  | 
 | 	if (unlikely(type == DM_TYPE_NONE)) { | 
 | 		DMWARN("no table type is set, can't allocate mempools"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	t->mempools = dm_alloc_md_mempools(type); | 
 | 	if (!t->mempools) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void dm_table_free_md_mempools(struct dm_table *t) | 
 | { | 
 | 	dm_free_md_mempools(t->mempools); | 
 | 	t->mempools = NULL; | 
 | } | 
 |  | 
 | struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) | 
 | { | 
 | 	return t->mempools; | 
 | } | 
 |  | 
 | static int setup_indexes(struct dm_table *t) | 
 | { | 
 | 	int i; | 
 | 	unsigned int total = 0; | 
 | 	sector_t *indexes; | 
 |  | 
 | 	/* allocate the space for *all* the indexes */ | 
 | 	for (i = t->depth - 2; i >= 0; i--) { | 
 | 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); | 
 | 		total += t->counts[i]; | 
 | 	} | 
 |  | 
 | 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); | 
 | 	if (!indexes) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* set up internal nodes, bottom-up */ | 
 | 	for (i = t->depth - 2; i >= 0; i--) { | 
 | 		t->index[i] = indexes; | 
 | 		indexes += (KEYS_PER_NODE * t->counts[i]); | 
 | 		setup_btree_index(i, t); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Builds the btree to index the map. | 
 |  */ | 
 | static int dm_table_build_index(struct dm_table *t) | 
 | { | 
 | 	int r = 0; | 
 | 	unsigned int leaf_nodes; | 
 |  | 
 | 	/* how many indexes will the btree have ? */ | 
 | 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); | 
 | 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); | 
 |  | 
 | 	/* leaf layer has already been set up */ | 
 | 	t->counts[t->depth - 1] = leaf_nodes; | 
 | 	t->index[t->depth - 1] = t->highs; | 
 |  | 
 | 	if (t->depth >= 2) | 
 | 		r = setup_indexes(t); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | /* | 
 |  * Register the mapped device for blk_integrity support if | 
 |  * the underlying devices support it. | 
 |  */ | 
 | static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md) | 
 | { | 
 | 	struct list_head *devices = dm_table_get_devices(t); | 
 | 	struct dm_dev_internal *dd; | 
 |  | 
 | 	list_for_each_entry(dd, devices, list) | 
 | 		if (bdev_get_integrity(dd->dm_dev.bdev)) | 
 | 			return blk_integrity_register(dm_disk(md), NULL); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Prepares the table for use by building the indices, | 
 |  * setting the type, and allocating mempools. | 
 |  */ | 
 | int dm_table_complete(struct dm_table *t) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	r = dm_table_set_type(t); | 
 | 	if (r) { | 
 | 		DMERR("unable to set table type"); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	r = dm_table_build_index(t); | 
 | 	if (r) { | 
 | 		DMERR("unable to build btrees"); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	r = dm_table_prealloc_integrity(t, t->md); | 
 | 	if (r) { | 
 | 		DMERR("could not register integrity profile."); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	r = dm_table_alloc_md_mempools(t); | 
 | 	if (r) | 
 | 		DMERR("unable to allocate mempools"); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static DEFINE_MUTEX(_event_lock); | 
 | void dm_table_event_callback(struct dm_table *t, | 
 | 			     void (*fn)(void *), void *context) | 
 | { | 
 | 	mutex_lock(&_event_lock); | 
 | 	t->event_fn = fn; | 
 | 	t->event_context = context; | 
 | 	mutex_unlock(&_event_lock); | 
 | } | 
 |  | 
 | void dm_table_event(struct dm_table *t) | 
 | { | 
 | 	/* | 
 | 	 * You can no longer call dm_table_event() from interrupt | 
 | 	 * context, use a bottom half instead. | 
 | 	 */ | 
 | 	BUG_ON(in_interrupt()); | 
 |  | 
 | 	mutex_lock(&_event_lock); | 
 | 	if (t->event_fn) | 
 | 		t->event_fn(t->event_context); | 
 | 	mutex_unlock(&_event_lock); | 
 | } | 
 |  | 
 | sector_t dm_table_get_size(struct dm_table *t) | 
 | { | 
 | 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; | 
 | } | 
 |  | 
 | struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) | 
 | { | 
 | 	if (index >= t->num_targets) | 
 | 		return NULL; | 
 |  | 
 | 	return t->targets + index; | 
 | } | 
 |  | 
 | /* | 
 |  * Search the btree for the correct target. | 
 |  * | 
 |  * Caller should check returned pointer with dm_target_is_valid() | 
 |  * to trap I/O beyond end of device. | 
 |  */ | 
 | struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) | 
 | { | 
 | 	unsigned int l, n = 0, k = 0; | 
 | 	sector_t *node; | 
 |  | 
 | 	for (l = 0; l < t->depth; l++) { | 
 | 		n = get_child(n, k); | 
 | 		node = get_node(t, l, n); | 
 |  | 
 | 		for (k = 0; k < KEYS_PER_NODE; k++) | 
 | 			if (node[k] >= sector) | 
 | 				break; | 
 | 	} | 
 |  | 
 | 	return &t->targets[(KEYS_PER_NODE * n) + k]; | 
 | } | 
 |  | 
 | /* | 
 |  * Establish the new table's queue_limits and validate them. | 
 |  */ | 
 | int dm_calculate_queue_limits(struct dm_table *table, | 
 | 			      struct queue_limits *limits) | 
 | { | 
 | 	struct dm_target *uninitialized_var(ti); | 
 | 	struct queue_limits ti_limits; | 
 | 	unsigned i = 0; | 
 |  | 
 | 	blk_set_default_limits(limits); | 
 |  | 
 | 	while (i < dm_table_get_num_targets(table)) { | 
 | 		blk_set_default_limits(&ti_limits); | 
 |  | 
 | 		ti = dm_table_get_target(table, i++); | 
 |  | 
 | 		if (!ti->type->iterate_devices) | 
 | 			goto combine_limits; | 
 |  | 
 | 		/* | 
 | 		 * Combine queue limits of all the devices this target uses. | 
 | 		 */ | 
 | 		ti->type->iterate_devices(ti, dm_set_device_limits, | 
 | 					  &ti_limits); | 
 |  | 
 | 		/* Set I/O hints portion of queue limits */ | 
 | 		if (ti->type->io_hints) | 
 | 			ti->type->io_hints(ti, &ti_limits); | 
 |  | 
 | 		/* | 
 | 		 * Check each device area is consistent with the target's | 
 | 		 * overall queue limits. | 
 | 		 */ | 
 | 		if (ti->type->iterate_devices(ti, device_area_is_invalid, | 
 | 					      &ti_limits)) | 
 | 			return -EINVAL; | 
 |  | 
 | combine_limits: | 
 | 		/* | 
 | 		 * Merge this target's queue limits into the overall limits | 
 | 		 * for the table. | 
 | 		 */ | 
 | 		if (blk_stack_limits(limits, &ti_limits, 0) < 0) | 
 | 			DMWARN("%s: adding target device " | 
 | 			       "(start sect %llu len %llu) " | 
 | 			       "caused an alignment inconsistency", | 
 | 			       dm_device_name(table->md), | 
 | 			       (unsigned long long) ti->begin, | 
 | 			       (unsigned long long) ti->len); | 
 | 	} | 
 |  | 
 | 	return validate_hardware_logical_block_alignment(table, limits); | 
 | } | 
 |  | 
 | /* | 
 |  * Set the integrity profile for this device if all devices used have | 
 |  * matching profiles. | 
 |  */ | 
 | static void dm_table_set_integrity(struct dm_table *t) | 
 | { | 
 | 	struct list_head *devices = dm_table_get_devices(t); | 
 | 	struct dm_dev_internal *prev = NULL, *dd = NULL; | 
 |  | 
 | 	if (!blk_get_integrity(dm_disk(t->md))) | 
 | 		return; | 
 |  | 
 | 	list_for_each_entry(dd, devices, list) { | 
 | 		if (prev && | 
 | 		    blk_integrity_compare(prev->dm_dev.bdev->bd_disk, | 
 | 					  dd->dm_dev.bdev->bd_disk) < 0) { | 
 | 			DMWARN("%s: integrity not set: %s and %s mismatch", | 
 | 			       dm_device_name(t->md), | 
 | 			       prev->dm_dev.bdev->bd_disk->disk_name, | 
 | 			       dd->dm_dev.bdev->bd_disk->disk_name); | 
 | 			goto no_integrity; | 
 | 		} | 
 | 		prev = dd; | 
 | 	} | 
 |  | 
 | 	if (!prev || !bdev_get_integrity(prev->dm_dev.bdev)) | 
 | 		goto no_integrity; | 
 |  | 
 | 	blk_integrity_register(dm_disk(t->md), | 
 | 			       bdev_get_integrity(prev->dm_dev.bdev)); | 
 |  | 
 | 	return; | 
 |  | 
 | no_integrity: | 
 | 	blk_integrity_register(dm_disk(t->md), NULL); | 
 |  | 
 | 	return; | 
 | } | 
 |  | 
 | void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, | 
 | 			       struct queue_limits *limits) | 
 | { | 
 | 	/* | 
 | 	 * Copy table's limits to the DM device's request_queue | 
 | 	 */ | 
 | 	q->limits = *limits; | 
 |  | 
 | 	if (limits->no_cluster) | 
 | 		queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q); | 
 | 	else | 
 | 		queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, q); | 
 |  | 
 | 	if (!dm_table_supports_discards(t)) | 
 | 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); | 
 | 	else | 
 | 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); | 
 |  | 
 | 	dm_table_set_integrity(t); | 
 |  | 
 | 	/* | 
 | 	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are | 
 | 	 * visible to other CPUs because, once the flag is set, incoming bios | 
 | 	 * are processed by request-based dm, which refers to the queue | 
 | 	 * settings. | 
 | 	 * Until the flag set, bios are passed to bio-based dm and queued to | 
 | 	 * md->deferred where queue settings are not needed yet. | 
 | 	 * Those bios are passed to request-based dm at the resume time. | 
 | 	 */ | 
 | 	smp_mb(); | 
 | 	if (dm_table_request_based(t)) | 
 | 		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q); | 
 | } | 
 |  | 
 | unsigned int dm_table_get_num_targets(struct dm_table *t) | 
 | { | 
 | 	return t->num_targets; | 
 | } | 
 |  | 
 | struct list_head *dm_table_get_devices(struct dm_table *t) | 
 | { | 
 | 	return &t->devices; | 
 | } | 
 |  | 
 | fmode_t dm_table_get_mode(struct dm_table *t) | 
 | { | 
 | 	return t->mode; | 
 | } | 
 |  | 
 | static void suspend_targets(struct dm_table *t, unsigned postsuspend) | 
 | { | 
 | 	int i = t->num_targets; | 
 | 	struct dm_target *ti = t->targets; | 
 |  | 
 | 	while (i--) { | 
 | 		if (postsuspend) { | 
 | 			if (ti->type->postsuspend) | 
 | 				ti->type->postsuspend(ti); | 
 | 		} else if (ti->type->presuspend) | 
 | 			ti->type->presuspend(ti); | 
 |  | 
 | 		ti++; | 
 | 	} | 
 | } | 
 |  | 
 | void dm_table_presuspend_targets(struct dm_table *t) | 
 | { | 
 | 	if (!t) | 
 | 		return; | 
 |  | 
 | 	suspend_targets(t, 0); | 
 | } | 
 |  | 
 | void dm_table_postsuspend_targets(struct dm_table *t) | 
 | { | 
 | 	if (!t) | 
 | 		return; | 
 |  | 
 | 	suspend_targets(t, 1); | 
 | } | 
 |  | 
 | int dm_table_resume_targets(struct dm_table *t) | 
 | { | 
 | 	int i, r = 0; | 
 |  | 
 | 	for (i = 0; i < t->num_targets; i++) { | 
 | 		struct dm_target *ti = t->targets + i; | 
 |  | 
 | 		if (!ti->type->preresume) | 
 | 			continue; | 
 |  | 
 | 		r = ti->type->preresume(ti); | 
 | 		if (r) | 
 | 			return r; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < t->num_targets; i++) { | 
 | 		struct dm_target *ti = t->targets + i; | 
 |  | 
 | 		if (ti->type->resume) | 
 | 			ti->type->resume(ti); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int dm_table_any_congested(struct dm_table *t, int bdi_bits) | 
 | { | 
 | 	struct dm_dev_internal *dd; | 
 | 	struct list_head *devices = dm_table_get_devices(t); | 
 | 	int r = 0; | 
 |  | 
 | 	list_for_each_entry(dd, devices, list) { | 
 | 		struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev); | 
 | 		char b[BDEVNAME_SIZE]; | 
 |  | 
 | 		if (likely(q)) | 
 | 			r |= bdi_congested(&q->backing_dev_info, bdi_bits); | 
 | 		else | 
 | 			DMWARN_LIMIT("%s: any_congested: nonexistent device %s", | 
 | 				     dm_device_name(t->md), | 
 | 				     bdevname(dd->dm_dev.bdev, b)); | 
 | 	} | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | int dm_table_any_busy_target(struct dm_table *t) | 
 | { | 
 | 	unsigned i; | 
 | 	struct dm_target *ti; | 
 |  | 
 | 	for (i = 0; i < t->num_targets; i++) { | 
 | 		ti = t->targets + i; | 
 | 		if (ti->type->busy && ti->type->busy(ti)) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void dm_table_unplug_all(struct dm_table *t) | 
 | { | 
 | 	struct dm_dev_internal *dd; | 
 | 	struct list_head *devices = dm_table_get_devices(t); | 
 |  | 
 | 	list_for_each_entry(dd, devices, list) { | 
 | 		struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev); | 
 | 		char b[BDEVNAME_SIZE]; | 
 |  | 
 | 		if (likely(q)) | 
 | 			blk_unplug(q); | 
 | 		else | 
 | 			DMWARN_LIMIT("%s: Cannot unplug nonexistent device %s", | 
 | 				     dm_device_name(t->md), | 
 | 				     bdevname(dd->dm_dev.bdev, b)); | 
 | 	} | 
 | } | 
 |  | 
 | struct mapped_device *dm_table_get_md(struct dm_table *t) | 
 | { | 
 | 	return t->md; | 
 | } | 
 |  | 
 | static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev, | 
 | 				  sector_t start, sector_t len, void *data) | 
 | { | 
 | 	struct request_queue *q = bdev_get_queue(dev->bdev); | 
 |  | 
 | 	return q && blk_queue_discard(q); | 
 | } | 
 |  | 
 | bool dm_table_supports_discards(struct dm_table *t) | 
 | { | 
 | 	struct dm_target *ti; | 
 | 	unsigned i = 0; | 
 |  | 
 | 	if (!t->discards_supported) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Ensure that at least one underlying device supports discards. | 
 | 	 * t->devices includes internal dm devices such as mirror logs | 
 | 	 * so we need to use iterate_devices here, which targets | 
 | 	 * supporting discard must provide. | 
 | 	 */ | 
 | 	while (i < dm_table_get_num_targets(t)) { | 
 | 		ti = dm_table_get_target(t, i++); | 
 |  | 
 | 		if (ti->type->iterate_devices && | 
 | 		    ti->type->iterate_devices(ti, device_discard_capable, NULL)) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dm_vcalloc); | 
 | EXPORT_SYMBOL(dm_get_device); | 
 | EXPORT_SYMBOL(dm_put_device); | 
 | EXPORT_SYMBOL(dm_table_event); | 
 | EXPORT_SYMBOL(dm_table_get_size); | 
 | EXPORT_SYMBOL(dm_table_get_mode); | 
 | EXPORT_SYMBOL(dm_table_get_md); | 
 | EXPORT_SYMBOL(dm_table_put); | 
 | EXPORT_SYMBOL(dm_table_get); | 
 | EXPORT_SYMBOL(dm_table_unplug_all); |