|  | /* | 
|  | *  linux/kernel/hrtimer.c | 
|  | * | 
|  | *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> | 
|  | *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar | 
|  | *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner | 
|  | * | 
|  | *  High-resolution kernel timers | 
|  | * | 
|  | *  In contrast to the low-resolution timeout API implemented in | 
|  | *  kernel/timer.c, hrtimers provide finer resolution and accuracy | 
|  | *  depending on system configuration and capabilities. | 
|  | * | 
|  | *  These timers are currently used for: | 
|  | *   - itimers | 
|  | *   - POSIX timers | 
|  | *   - nanosleep | 
|  | *   - precise in-kernel timing | 
|  | * | 
|  | *  Started by: Thomas Gleixner and Ingo Molnar | 
|  | * | 
|  | *  Credits: | 
|  | *	based on kernel/timer.c | 
|  | * | 
|  | *	Help, testing, suggestions, bugfixes, improvements were | 
|  | *	provided by: | 
|  | * | 
|  | *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel | 
|  | *	et. al. | 
|  | * | 
|  | *  For licencing details see kernel-base/COPYING | 
|  | */ | 
|  |  | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/hrtimer.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/kallsyms.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/tick.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/debugobjects.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/timer.h> | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  |  | 
|  | #include <trace/events/timer.h> | 
|  |  | 
|  | /* | 
|  | * The timer bases: | 
|  | * | 
|  | * Note: If we want to add new timer bases, we have to skip the two | 
|  | * clock ids captured by the cpu-timers. We do this by holding empty | 
|  | * entries rather than doing math adjustment of the clock ids. | 
|  | * This ensures that we capture erroneous accesses to these clock ids | 
|  | * rather than moving them into the range of valid clock id's. | 
|  | */ | 
|  | DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = | 
|  | { | 
|  |  | 
|  | .clock_base = | 
|  | { | 
|  | { | 
|  | .index = CLOCK_REALTIME, | 
|  | .get_time = &ktime_get_real, | 
|  | .resolution = KTIME_LOW_RES, | 
|  | }, | 
|  | { | 
|  | .index = CLOCK_MONOTONIC, | 
|  | .get_time = &ktime_get, | 
|  | .resolution = KTIME_LOW_RES, | 
|  | }, | 
|  | } | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Get the coarse grained time at the softirq based on xtime and | 
|  | * wall_to_monotonic. | 
|  | */ | 
|  | static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base) | 
|  | { | 
|  | ktime_t xtim, tomono; | 
|  | struct timespec xts, tom; | 
|  | unsigned long seq; | 
|  |  | 
|  | do { | 
|  | seq = read_seqbegin(&xtime_lock); | 
|  | xts = __current_kernel_time(); | 
|  | tom = __get_wall_to_monotonic(); | 
|  | } while (read_seqretry(&xtime_lock, seq)); | 
|  |  | 
|  | xtim = timespec_to_ktime(xts); | 
|  | tomono = timespec_to_ktime(tom); | 
|  | base->clock_base[CLOCK_REALTIME].softirq_time = xtim; | 
|  | base->clock_base[CLOCK_MONOTONIC].softirq_time = | 
|  | ktime_add(xtim, tomono); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Functions and macros which are different for UP/SMP systems are kept in a | 
|  | * single place | 
|  | */ | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | /* | 
|  | * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock | 
|  | * means that all timers which are tied to this base via timer->base are | 
|  | * locked, and the base itself is locked too. | 
|  | * | 
|  | * So __run_timers/migrate_timers can safely modify all timers which could | 
|  | * be found on the lists/queues. | 
|  | * | 
|  | * When the timer's base is locked, and the timer removed from list, it is | 
|  | * possible to set timer->base = NULL and drop the lock: the timer remains | 
|  | * locked. | 
|  | */ | 
|  | static | 
|  | struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, | 
|  | unsigned long *flags) | 
|  | { | 
|  | struct hrtimer_clock_base *base; | 
|  |  | 
|  | for (;;) { | 
|  | base = timer->base; | 
|  | if (likely(base != NULL)) { | 
|  | raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); | 
|  | if (likely(base == timer->base)) | 
|  | return base; | 
|  | /* The timer has migrated to another CPU: */ | 
|  | raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); | 
|  | } | 
|  | cpu_relax(); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Get the preferred target CPU for NOHZ | 
|  | */ | 
|  | static int hrtimer_get_target(int this_cpu, int pinned) | 
|  | { | 
|  | #ifdef CONFIG_NO_HZ | 
|  | if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu)) | 
|  | return get_nohz_timer_target(); | 
|  | #endif | 
|  | return this_cpu; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * With HIGHRES=y we do not migrate the timer when it is expiring | 
|  | * before the next event on the target cpu because we cannot reprogram | 
|  | * the target cpu hardware and we would cause it to fire late. | 
|  | * | 
|  | * Called with cpu_base->lock of target cpu held. | 
|  | */ | 
|  | static int | 
|  | hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) | 
|  | { | 
|  | #ifdef CONFIG_HIGH_RES_TIMERS | 
|  | ktime_t expires; | 
|  |  | 
|  | if (!new_base->cpu_base->hres_active) | 
|  | return 0; | 
|  |  | 
|  | expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); | 
|  | return expires.tv64 <= new_base->cpu_base->expires_next.tv64; | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Switch the timer base to the current CPU when possible. | 
|  | */ | 
|  | static inline struct hrtimer_clock_base * | 
|  | switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, | 
|  | int pinned) | 
|  | { | 
|  | struct hrtimer_clock_base *new_base; | 
|  | struct hrtimer_cpu_base *new_cpu_base; | 
|  | int this_cpu = smp_processor_id(); | 
|  | int cpu = hrtimer_get_target(this_cpu, pinned); | 
|  |  | 
|  | again: | 
|  | new_cpu_base = &per_cpu(hrtimer_bases, cpu); | 
|  | new_base = &new_cpu_base->clock_base[base->index]; | 
|  |  | 
|  | if (base != new_base) { | 
|  | /* | 
|  | * We are trying to move timer to new_base. | 
|  | * However we can't change timer's base while it is running, | 
|  | * so we keep it on the same CPU. No hassle vs. reprogramming | 
|  | * the event source in the high resolution case. The softirq | 
|  | * code will take care of this when the timer function has | 
|  | * completed. There is no conflict as we hold the lock until | 
|  | * the timer is enqueued. | 
|  | */ | 
|  | if (unlikely(hrtimer_callback_running(timer))) | 
|  | return base; | 
|  |  | 
|  | /* See the comment in lock_timer_base() */ | 
|  | timer->base = NULL; | 
|  | raw_spin_unlock(&base->cpu_base->lock); | 
|  | raw_spin_lock(&new_base->cpu_base->lock); | 
|  |  | 
|  | if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) { | 
|  | cpu = this_cpu; | 
|  | raw_spin_unlock(&new_base->cpu_base->lock); | 
|  | raw_spin_lock(&base->cpu_base->lock); | 
|  | timer->base = base; | 
|  | goto again; | 
|  | } | 
|  | timer->base = new_base; | 
|  | } | 
|  | return new_base; | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_SMP */ | 
|  |  | 
|  | static inline struct hrtimer_clock_base * | 
|  | lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) | 
|  | { | 
|  | struct hrtimer_clock_base *base = timer->base; | 
|  |  | 
|  | raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); | 
|  |  | 
|  | return base; | 
|  | } | 
|  |  | 
|  | # define switch_hrtimer_base(t, b, p)	(b) | 
|  |  | 
|  | #endif	/* !CONFIG_SMP */ | 
|  |  | 
|  | /* | 
|  | * Functions for the union type storage format of ktime_t which are | 
|  | * too large for inlining: | 
|  | */ | 
|  | #if BITS_PER_LONG < 64 | 
|  | # ifndef CONFIG_KTIME_SCALAR | 
|  | /** | 
|  | * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable | 
|  | * @kt:		addend | 
|  | * @nsec:	the scalar nsec value to add | 
|  | * | 
|  | * Returns the sum of kt and nsec in ktime_t format | 
|  | */ | 
|  | ktime_t ktime_add_ns(const ktime_t kt, u64 nsec) | 
|  | { | 
|  | ktime_t tmp; | 
|  |  | 
|  | if (likely(nsec < NSEC_PER_SEC)) { | 
|  | tmp.tv64 = nsec; | 
|  | } else { | 
|  | unsigned long rem = do_div(nsec, NSEC_PER_SEC); | 
|  |  | 
|  | tmp = ktime_set((long)nsec, rem); | 
|  | } | 
|  |  | 
|  | return ktime_add(kt, tmp); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(ktime_add_ns); | 
|  |  | 
|  | /** | 
|  | * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable | 
|  | * @kt:		minuend | 
|  | * @nsec:	the scalar nsec value to subtract | 
|  | * | 
|  | * Returns the subtraction of @nsec from @kt in ktime_t format | 
|  | */ | 
|  | ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec) | 
|  | { | 
|  | ktime_t tmp; | 
|  |  | 
|  | if (likely(nsec < NSEC_PER_SEC)) { | 
|  | tmp.tv64 = nsec; | 
|  | } else { | 
|  | unsigned long rem = do_div(nsec, NSEC_PER_SEC); | 
|  |  | 
|  | tmp = ktime_set((long)nsec, rem); | 
|  | } | 
|  |  | 
|  | return ktime_sub(kt, tmp); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(ktime_sub_ns); | 
|  | # endif /* !CONFIG_KTIME_SCALAR */ | 
|  |  | 
|  | /* | 
|  | * Divide a ktime value by a nanosecond value | 
|  | */ | 
|  | u64 ktime_divns(const ktime_t kt, s64 div) | 
|  | { | 
|  | u64 dclc; | 
|  | int sft = 0; | 
|  |  | 
|  | dclc = ktime_to_ns(kt); | 
|  | /* Make sure the divisor is less than 2^32: */ | 
|  | while (div >> 32) { | 
|  | sft++; | 
|  | div >>= 1; | 
|  | } | 
|  | dclc >>= sft; | 
|  | do_div(dclc, (unsigned long) div); | 
|  |  | 
|  | return dclc; | 
|  | } | 
|  | #endif /* BITS_PER_LONG >= 64 */ | 
|  |  | 
|  | /* | 
|  | * Add two ktime values and do a safety check for overflow: | 
|  | */ | 
|  | ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) | 
|  | { | 
|  | ktime_t res = ktime_add(lhs, rhs); | 
|  |  | 
|  | /* | 
|  | * We use KTIME_SEC_MAX here, the maximum timeout which we can | 
|  | * return to user space in a timespec: | 
|  | */ | 
|  | if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64) | 
|  | res = ktime_set(KTIME_SEC_MAX, 0); | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(ktime_add_safe); | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_OBJECTS_TIMERS | 
|  |  | 
|  | static struct debug_obj_descr hrtimer_debug_descr; | 
|  |  | 
|  | /* | 
|  | * fixup_init is called when: | 
|  | * - an active object is initialized | 
|  | */ | 
|  | static int hrtimer_fixup_init(void *addr, enum debug_obj_state state) | 
|  | { | 
|  | struct hrtimer *timer = addr; | 
|  |  | 
|  | switch (state) { | 
|  | case ODEBUG_STATE_ACTIVE: | 
|  | hrtimer_cancel(timer); | 
|  | debug_object_init(timer, &hrtimer_debug_descr); | 
|  | return 1; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fixup_activate is called when: | 
|  | * - an active object is activated | 
|  | * - an unknown object is activated (might be a statically initialized object) | 
|  | */ | 
|  | static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state) | 
|  | { | 
|  | switch (state) { | 
|  |  | 
|  | case ODEBUG_STATE_NOTAVAILABLE: | 
|  | WARN_ON_ONCE(1); | 
|  | return 0; | 
|  |  | 
|  | case ODEBUG_STATE_ACTIVE: | 
|  | WARN_ON(1); | 
|  |  | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fixup_free is called when: | 
|  | * - an active object is freed | 
|  | */ | 
|  | static int hrtimer_fixup_free(void *addr, enum debug_obj_state state) | 
|  | { | 
|  | struct hrtimer *timer = addr; | 
|  |  | 
|  | switch (state) { | 
|  | case ODEBUG_STATE_ACTIVE: | 
|  | hrtimer_cancel(timer); | 
|  | debug_object_free(timer, &hrtimer_debug_descr); | 
|  | return 1; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct debug_obj_descr hrtimer_debug_descr = { | 
|  | .name		= "hrtimer", | 
|  | .fixup_init	= hrtimer_fixup_init, | 
|  | .fixup_activate	= hrtimer_fixup_activate, | 
|  | .fixup_free	= hrtimer_fixup_free, | 
|  | }; | 
|  |  | 
|  | static inline void debug_hrtimer_init(struct hrtimer *timer) | 
|  | { | 
|  | debug_object_init(timer, &hrtimer_debug_descr); | 
|  | } | 
|  |  | 
|  | static inline void debug_hrtimer_activate(struct hrtimer *timer) | 
|  | { | 
|  | debug_object_activate(timer, &hrtimer_debug_descr); | 
|  | } | 
|  |  | 
|  | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) | 
|  | { | 
|  | debug_object_deactivate(timer, &hrtimer_debug_descr); | 
|  | } | 
|  |  | 
|  | static inline void debug_hrtimer_free(struct hrtimer *timer) | 
|  | { | 
|  | debug_object_free(timer, &hrtimer_debug_descr); | 
|  | } | 
|  |  | 
|  | static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, | 
|  | enum hrtimer_mode mode); | 
|  |  | 
|  | void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, | 
|  | enum hrtimer_mode mode) | 
|  | { | 
|  | debug_object_init_on_stack(timer, &hrtimer_debug_descr); | 
|  | __hrtimer_init(timer, clock_id, mode); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); | 
|  |  | 
|  | void destroy_hrtimer_on_stack(struct hrtimer *timer) | 
|  | { | 
|  | debug_object_free(timer, &hrtimer_debug_descr); | 
|  | } | 
|  |  | 
|  | #else | 
|  | static inline void debug_hrtimer_init(struct hrtimer *timer) { } | 
|  | static inline void debug_hrtimer_activate(struct hrtimer *timer) { } | 
|  | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } | 
|  | #endif | 
|  |  | 
|  | static inline void | 
|  | debug_init(struct hrtimer *timer, clockid_t clockid, | 
|  | enum hrtimer_mode mode) | 
|  | { | 
|  | debug_hrtimer_init(timer); | 
|  | trace_hrtimer_init(timer, clockid, mode); | 
|  | } | 
|  |  | 
|  | static inline void debug_activate(struct hrtimer *timer) | 
|  | { | 
|  | debug_hrtimer_activate(timer); | 
|  | trace_hrtimer_start(timer); | 
|  | } | 
|  |  | 
|  | static inline void debug_deactivate(struct hrtimer *timer) | 
|  | { | 
|  | debug_hrtimer_deactivate(timer); | 
|  | trace_hrtimer_cancel(timer); | 
|  | } | 
|  |  | 
|  | /* High resolution timer related functions */ | 
|  | #ifdef CONFIG_HIGH_RES_TIMERS | 
|  |  | 
|  | /* | 
|  | * High resolution timer enabled ? | 
|  | */ | 
|  | static int hrtimer_hres_enabled __read_mostly  = 1; | 
|  |  | 
|  | /* | 
|  | * Enable / Disable high resolution mode | 
|  | */ | 
|  | static int __init setup_hrtimer_hres(char *str) | 
|  | { | 
|  | if (!strcmp(str, "off")) | 
|  | hrtimer_hres_enabled = 0; | 
|  | else if (!strcmp(str, "on")) | 
|  | hrtimer_hres_enabled = 1; | 
|  | else | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("highres=", setup_hrtimer_hres); | 
|  |  | 
|  | /* | 
|  | * hrtimer_high_res_enabled - query, if the highres mode is enabled | 
|  | */ | 
|  | static inline int hrtimer_is_hres_enabled(void) | 
|  | { | 
|  | return hrtimer_hres_enabled; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Is the high resolution mode active ? | 
|  | */ | 
|  | static inline int hrtimer_hres_active(void) | 
|  | { | 
|  | return __get_cpu_var(hrtimer_bases).hres_active; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reprogram the event source with checking both queues for the | 
|  | * next event | 
|  | * Called with interrupts disabled and base->lock held | 
|  | */ | 
|  | static void | 
|  | hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) | 
|  | { | 
|  | int i; | 
|  | struct hrtimer_clock_base *base = cpu_base->clock_base; | 
|  | ktime_t expires, expires_next; | 
|  |  | 
|  | expires_next.tv64 = KTIME_MAX; | 
|  |  | 
|  | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { | 
|  | struct hrtimer *timer; | 
|  |  | 
|  | if (!base->first) | 
|  | continue; | 
|  | timer = rb_entry(base->first, struct hrtimer, node); | 
|  | expires = ktime_sub(hrtimer_get_expires(timer), base->offset); | 
|  | /* | 
|  | * clock_was_set() has changed base->offset so the | 
|  | * result might be negative. Fix it up to prevent a | 
|  | * false positive in clockevents_program_event() | 
|  | */ | 
|  | if (expires.tv64 < 0) | 
|  | expires.tv64 = 0; | 
|  | if (expires.tv64 < expires_next.tv64) | 
|  | expires_next = expires; | 
|  | } | 
|  |  | 
|  | if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64) | 
|  | return; | 
|  |  | 
|  | cpu_base->expires_next.tv64 = expires_next.tv64; | 
|  |  | 
|  | if (cpu_base->expires_next.tv64 != KTIME_MAX) | 
|  | tick_program_event(cpu_base->expires_next, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Shared reprogramming for clock_realtime and clock_monotonic | 
|  | * | 
|  | * When a timer is enqueued and expires earlier than the already enqueued | 
|  | * timers, we have to check, whether it expires earlier than the timer for | 
|  | * which the clock event device was armed. | 
|  | * | 
|  | * Called with interrupts disabled and base->cpu_base.lock held | 
|  | */ | 
|  | static int hrtimer_reprogram(struct hrtimer *timer, | 
|  | struct hrtimer_clock_base *base) | 
|  | { | 
|  | struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); | 
|  | ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); | 
|  | int res; | 
|  |  | 
|  | WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); | 
|  |  | 
|  | /* | 
|  | * When the callback is running, we do not reprogram the clock event | 
|  | * device. The timer callback is either running on a different CPU or | 
|  | * the callback is executed in the hrtimer_interrupt context. The | 
|  | * reprogramming is handled either by the softirq, which called the | 
|  | * callback or at the end of the hrtimer_interrupt. | 
|  | */ | 
|  | if (hrtimer_callback_running(timer)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * CLOCK_REALTIME timer might be requested with an absolute | 
|  | * expiry time which is less than base->offset. Nothing wrong | 
|  | * about that, just avoid to call into the tick code, which | 
|  | * has now objections against negative expiry values. | 
|  | */ | 
|  | if (expires.tv64 < 0) | 
|  | return -ETIME; | 
|  |  | 
|  | if (expires.tv64 >= cpu_base->expires_next.tv64) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If a hang was detected in the last timer interrupt then we | 
|  | * do not schedule a timer which is earlier than the expiry | 
|  | * which we enforced in the hang detection. We want the system | 
|  | * to make progress. | 
|  | */ | 
|  | if (cpu_base->hang_detected) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Clockevents returns -ETIME, when the event was in the past. | 
|  | */ | 
|  | res = tick_program_event(expires, 0); | 
|  | if (!IS_ERR_VALUE(res)) | 
|  | cpu_base->expires_next = expires; | 
|  | return res; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Retrigger next event is called after clock was set | 
|  | * | 
|  | * Called with interrupts disabled via on_each_cpu() | 
|  | */ | 
|  | static void retrigger_next_event(void *arg) | 
|  | { | 
|  | struct hrtimer_cpu_base *base; | 
|  | struct timespec realtime_offset, wtm; | 
|  | unsigned long seq; | 
|  |  | 
|  | if (!hrtimer_hres_active()) | 
|  | return; | 
|  |  | 
|  | do { | 
|  | seq = read_seqbegin(&xtime_lock); | 
|  | wtm = __get_wall_to_monotonic(); | 
|  | } while (read_seqretry(&xtime_lock, seq)); | 
|  | set_normalized_timespec(&realtime_offset, -wtm.tv_sec, -wtm.tv_nsec); | 
|  |  | 
|  | base = &__get_cpu_var(hrtimer_bases); | 
|  |  | 
|  | /* Adjust CLOCK_REALTIME offset */ | 
|  | raw_spin_lock(&base->lock); | 
|  | base->clock_base[CLOCK_REALTIME].offset = | 
|  | timespec_to_ktime(realtime_offset); | 
|  |  | 
|  | hrtimer_force_reprogram(base, 0); | 
|  | raw_spin_unlock(&base->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clock realtime was set | 
|  | * | 
|  | * Change the offset of the realtime clock vs. the monotonic | 
|  | * clock. | 
|  | * | 
|  | * We might have to reprogram the high resolution timer interrupt. On | 
|  | * SMP we call the architecture specific code to retrigger _all_ high | 
|  | * resolution timer interrupts. On UP we just disable interrupts and | 
|  | * call the high resolution interrupt code. | 
|  | */ | 
|  | void clock_was_set(void) | 
|  | { | 
|  | /* Retrigger the CPU local events everywhere */ | 
|  | on_each_cpu(retrigger_next_event, NULL, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * During resume we might have to reprogram the high resolution timer | 
|  | * interrupt (on the local CPU): | 
|  | */ | 
|  | void hres_timers_resume(void) | 
|  | { | 
|  | WARN_ONCE(!irqs_disabled(), | 
|  | KERN_INFO "hres_timers_resume() called with IRQs enabled!"); | 
|  |  | 
|  | retrigger_next_event(NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the high resolution related parts of cpu_base | 
|  | */ | 
|  | static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) | 
|  | { | 
|  | base->expires_next.tv64 = KTIME_MAX; | 
|  | base->hres_active = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the high resolution related parts of a hrtimer | 
|  | */ | 
|  | static inline void hrtimer_init_timer_hres(struct hrtimer *timer) | 
|  | { | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * When High resolution timers are active, try to reprogram. Note, that in case | 
|  | * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry | 
|  | * check happens. The timer gets enqueued into the rbtree. The reprogramming | 
|  | * and expiry check is done in the hrtimer_interrupt or in the softirq. | 
|  | */ | 
|  | static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, | 
|  | struct hrtimer_clock_base *base, | 
|  | int wakeup) | 
|  | { | 
|  | if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) { | 
|  | if (wakeup) { | 
|  | raw_spin_unlock(&base->cpu_base->lock); | 
|  | raise_softirq_irqoff(HRTIMER_SOFTIRQ); | 
|  | raw_spin_lock(&base->cpu_base->lock); | 
|  | } else | 
|  | __raise_softirq_irqoff(HRTIMER_SOFTIRQ); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Switch to high resolution mode | 
|  | */ | 
|  | static int hrtimer_switch_to_hres(void) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  | struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu); | 
|  | unsigned long flags; | 
|  |  | 
|  | if (base->hres_active) | 
|  | return 1; | 
|  |  | 
|  | local_irq_save(flags); | 
|  |  | 
|  | if (tick_init_highres()) { | 
|  | local_irq_restore(flags); | 
|  | printk(KERN_WARNING "Could not switch to high resolution " | 
|  | "mode on CPU %d\n", cpu); | 
|  | return 0; | 
|  | } | 
|  | base->hres_active = 1; | 
|  | base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES; | 
|  | base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES; | 
|  |  | 
|  | tick_setup_sched_timer(); | 
|  |  | 
|  | /* "Retrigger" the interrupt to get things going */ | 
|  | retrigger_next_event(NULL); | 
|  | local_irq_restore(flags); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static inline int hrtimer_hres_active(void) { return 0; } | 
|  | static inline int hrtimer_is_hres_enabled(void) { return 0; } | 
|  | static inline int hrtimer_switch_to_hres(void) { return 0; } | 
|  | static inline void | 
|  | hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { } | 
|  | static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, | 
|  | struct hrtimer_clock_base *base, | 
|  | int wakeup) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { } | 
|  | static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { } | 
|  |  | 
|  | #endif /* CONFIG_HIGH_RES_TIMERS */ | 
|  |  | 
|  | static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer) | 
|  | { | 
|  | #ifdef CONFIG_TIMER_STATS | 
|  | if (timer->start_site) | 
|  | return; | 
|  | timer->start_site = __builtin_return_address(0); | 
|  | memcpy(timer->start_comm, current->comm, TASK_COMM_LEN); | 
|  | timer->start_pid = current->pid; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer) | 
|  | { | 
|  | #ifdef CONFIG_TIMER_STATS | 
|  | timer->start_site = NULL; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void timer_stats_account_hrtimer(struct hrtimer *timer) | 
|  | { | 
|  | #ifdef CONFIG_TIMER_STATS | 
|  | if (likely(!timer_stats_active)) | 
|  | return; | 
|  | timer_stats_update_stats(timer, timer->start_pid, timer->start_site, | 
|  | timer->function, timer->start_comm, 0); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Counterpart to lock_hrtimer_base above: | 
|  | */ | 
|  | static inline | 
|  | void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) | 
|  | { | 
|  | raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hrtimer_forward - forward the timer expiry | 
|  | * @timer:	hrtimer to forward | 
|  | * @now:	forward past this time | 
|  | * @interval:	the interval to forward | 
|  | * | 
|  | * Forward the timer expiry so it will expire in the future. | 
|  | * Returns the number of overruns. | 
|  | */ | 
|  | u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) | 
|  | { | 
|  | u64 orun = 1; | 
|  | ktime_t delta; | 
|  |  | 
|  | delta = ktime_sub(now, hrtimer_get_expires(timer)); | 
|  |  | 
|  | if (delta.tv64 < 0) | 
|  | return 0; | 
|  |  | 
|  | if (interval.tv64 < timer->base->resolution.tv64) | 
|  | interval.tv64 = timer->base->resolution.tv64; | 
|  |  | 
|  | if (unlikely(delta.tv64 >= interval.tv64)) { | 
|  | s64 incr = ktime_to_ns(interval); | 
|  |  | 
|  | orun = ktime_divns(delta, incr); | 
|  | hrtimer_add_expires_ns(timer, incr * orun); | 
|  | if (hrtimer_get_expires_tv64(timer) > now.tv64) | 
|  | return orun; | 
|  | /* | 
|  | * This (and the ktime_add() below) is the | 
|  | * correction for exact: | 
|  | */ | 
|  | orun++; | 
|  | } | 
|  | hrtimer_add_expires(timer, interval); | 
|  |  | 
|  | return orun; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hrtimer_forward); | 
|  |  | 
|  | /* | 
|  | * enqueue_hrtimer - internal function to (re)start a timer | 
|  | * | 
|  | * The timer is inserted in expiry order. Insertion into the | 
|  | * red black tree is O(log(n)). Must hold the base lock. | 
|  | * | 
|  | * Returns 1 when the new timer is the leftmost timer in the tree. | 
|  | */ | 
|  | static int enqueue_hrtimer(struct hrtimer *timer, | 
|  | struct hrtimer_clock_base *base) | 
|  | { | 
|  | struct rb_node **link = &base->active.rb_node; | 
|  | struct rb_node *parent = NULL; | 
|  | struct hrtimer *entry; | 
|  | int leftmost = 1; | 
|  |  | 
|  | debug_activate(timer); | 
|  |  | 
|  | /* | 
|  | * Find the right place in the rbtree: | 
|  | */ | 
|  | while (*link) { | 
|  | parent = *link; | 
|  | entry = rb_entry(parent, struct hrtimer, node); | 
|  | /* | 
|  | * We dont care about collisions. Nodes with | 
|  | * the same expiry time stay together. | 
|  | */ | 
|  | if (hrtimer_get_expires_tv64(timer) < | 
|  | hrtimer_get_expires_tv64(entry)) { | 
|  | link = &(*link)->rb_left; | 
|  | } else { | 
|  | link = &(*link)->rb_right; | 
|  | leftmost = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Insert the timer to the rbtree and check whether it | 
|  | * replaces the first pending timer | 
|  | */ | 
|  | if (leftmost) | 
|  | base->first = &timer->node; | 
|  |  | 
|  | rb_link_node(&timer->node, parent, link); | 
|  | rb_insert_color(&timer->node, &base->active); | 
|  | /* | 
|  | * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the | 
|  | * state of a possibly running callback. | 
|  | */ | 
|  | timer->state |= HRTIMER_STATE_ENQUEUED; | 
|  |  | 
|  | return leftmost; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __remove_hrtimer - internal function to remove a timer | 
|  | * | 
|  | * Caller must hold the base lock. | 
|  | * | 
|  | * High resolution timer mode reprograms the clock event device when the | 
|  | * timer is the one which expires next. The caller can disable this by setting | 
|  | * reprogram to zero. This is useful, when the context does a reprogramming | 
|  | * anyway (e.g. timer interrupt) | 
|  | */ | 
|  | static void __remove_hrtimer(struct hrtimer *timer, | 
|  | struct hrtimer_clock_base *base, | 
|  | unsigned long newstate, int reprogram) | 
|  | { | 
|  | if (!(timer->state & HRTIMER_STATE_ENQUEUED)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Remove the timer from the rbtree and replace the first | 
|  | * entry pointer if necessary. | 
|  | */ | 
|  | if (base->first == &timer->node) { | 
|  | base->first = rb_next(&timer->node); | 
|  | #ifdef CONFIG_HIGH_RES_TIMERS | 
|  | /* Reprogram the clock event device. if enabled */ | 
|  | if (reprogram && hrtimer_hres_active()) { | 
|  | ktime_t expires; | 
|  |  | 
|  | expires = ktime_sub(hrtimer_get_expires(timer), | 
|  | base->offset); | 
|  | if (base->cpu_base->expires_next.tv64 == expires.tv64) | 
|  | hrtimer_force_reprogram(base->cpu_base, 1); | 
|  | } | 
|  | #endif | 
|  | } | 
|  | rb_erase(&timer->node, &base->active); | 
|  | out: | 
|  | timer->state = newstate; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * remove hrtimer, called with base lock held | 
|  | */ | 
|  | static inline int | 
|  | remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base) | 
|  | { | 
|  | if (hrtimer_is_queued(timer)) { | 
|  | unsigned long state; | 
|  | int reprogram; | 
|  |  | 
|  | /* | 
|  | * Remove the timer and force reprogramming when high | 
|  | * resolution mode is active and the timer is on the current | 
|  | * CPU. If we remove a timer on another CPU, reprogramming is | 
|  | * skipped. The interrupt event on this CPU is fired and | 
|  | * reprogramming happens in the interrupt handler. This is a | 
|  | * rare case and less expensive than a smp call. | 
|  | */ | 
|  | debug_deactivate(timer); | 
|  | timer_stats_hrtimer_clear_start_info(timer); | 
|  | reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases); | 
|  | /* | 
|  | * We must preserve the CALLBACK state flag here, | 
|  | * otherwise we could move the timer base in | 
|  | * switch_hrtimer_base. | 
|  | */ | 
|  | state = timer->state & HRTIMER_STATE_CALLBACK; | 
|  | __remove_hrtimer(timer, base, state, reprogram); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, | 
|  | unsigned long delta_ns, const enum hrtimer_mode mode, | 
|  | int wakeup) | 
|  | { | 
|  | struct hrtimer_clock_base *base, *new_base; | 
|  | unsigned long flags; | 
|  | int ret, leftmost; | 
|  |  | 
|  | base = lock_hrtimer_base(timer, &flags); | 
|  |  | 
|  | /* Remove an active timer from the queue: */ | 
|  | ret = remove_hrtimer(timer, base); | 
|  |  | 
|  | /* Switch the timer base, if necessary: */ | 
|  | new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); | 
|  |  | 
|  | if (mode & HRTIMER_MODE_REL) { | 
|  | tim = ktime_add_safe(tim, new_base->get_time()); | 
|  | /* | 
|  | * CONFIG_TIME_LOW_RES is a temporary way for architectures | 
|  | * to signal that they simply return xtime in | 
|  | * do_gettimeoffset(). In this case we want to round up by | 
|  | * resolution when starting a relative timer, to avoid short | 
|  | * timeouts. This will go away with the GTOD framework. | 
|  | */ | 
|  | #ifdef CONFIG_TIME_LOW_RES | 
|  | tim = ktime_add_safe(tim, base->resolution); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | hrtimer_set_expires_range_ns(timer, tim, delta_ns); | 
|  |  | 
|  | timer_stats_hrtimer_set_start_info(timer); | 
|  |  | 
|  | leftmost = enqueue_hrtimer(timer, new_base); | 
|  |  | 
|  | /* | 
|  | * Only allow reprogramming if the new base is on this CPU. | 
|  | * (it might still be on another CPU if the timer was pending) | 
|  | * | 
|  | * XXX send_remote_softirq() ? | 
|  | */ | 
|  | if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases)) | 
|  | hrtimer_enqueue_reprogram(timer, new_base, wakeup); | 
|  |  | 
|  | unlock_hrtimer_base(timer, &flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU | 
|  | * @timer:	the timer to be added | 
|  | * @tim:	expiry time | 
|  | * @delta_ns:	"slack" range for the timer | 
|  | * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL) | 
|  | * | 
|  | * Returns: | 
|  | *  0 on success | 
|  | *  1 when the timer was active | 
|  | */ | 
|  | int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, | 
|  | unsigned long delta_ns, const enum hrtimer_mode mode) | 
|  | { | 
|  | return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); | 
|  |  | 
|  | /** | 
|  | * hrtimer_start - (re)start an hrtimer on the current CPU | 
|  | * @timer:	the timer to be added | 
|  | * @tim:	expiry time | 
|  | * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL) | 
|  | * | 
|  | * Returns: | 
|  | *  0 on success | 
|  | *  1 when the timer was active | 
|  | */ | 
|  | int | 
|  | hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode) | 
|  | { | 
|  | return __hrtimer_start_range_ns(timer, tim, 0, mode, 1); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hrtimer_start); | 
|  |  | 
|  |  | 
|  | /** | 
|  | * hrtimer_try_to_cancel - try to deactivate a timer | 
|  | * @timer:	hrtimer to stop | 
|  | * | 
|  | * Returns: | 
|  | *  0 when the timer was not active | 
|  | *  1 when the timer was active | 
|  | * -1 when the timer is currently excuting the callback function and | 
|  | *    cannot be stopped | 
|  | */ | 
|  | int hrtimer_try_to_cancel(struct hrtimer *timer) | 
|  | { | 
|  | struct hrtimer_clock_base *base; | 
|  | unsigned long flags; | 
|  | int ret = -1; | 
|  |  | 
|  | base = lock_hrtimer_base(timer, &flags); | 
|  |  | 
|  | if (!hrtimer_callback_running(timer)) | 
|  | ret = remove_hrtimer(timer, base); | 
|  |  | 
|  | unlock_hrtimer_base(timer, &flags); | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); | 
|  |  | 
|  | /** | 
|  | * hrtimer_cancel - cancel a timer and wait for the handler to finish. | 
|  | * @timer:	the timer to be cancelled | 
|  | * | 
|  | * Returns: | 
|  | *  0 when the timer was not active | 
|  | *  1 when the timer was active | 
|  | */ | 
|  | int hrtimer_cancel(struct hrtimer *timer) | 
|  | { | 
|  | for (;;) { | 
|  | int ret = hrtimer_try_to_cancel(timer); | 
|  |  | 
|  | if (ret >= 0) | 
|  | return ret; | 
|  | cpu_relax(); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hrtimer_cancel); | 
|  |  | 
|  | /** | 
|  | * hrtimer_get_remaining - get remaining time for the timer | 
|  | * @timer:	the timer to read | 
|  | */ | 
|  | ktime_t hrtimer_get_remaining(const struct hrtimer *timer) | 
|  | { | 
|  | unsigned long flags; | 
|  | ktime_t rem; | 
|  |  | 
|  | lock_hrtimer_base(timer, &flags); | 
|  | rem = hrtimer_expires_remaining(timer); | 
|  | unlock_hrtimer_base(timer, &flags); | 
|  |  | 
|  | return rem; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hrtimer_get_remaining); | 
|  |  | 
|  | #ifdef CONFIG_NO_HZ | 
|  | /** | 
|  | * hrtimer_get_next_event - get the time until next expiry event | 
|  | * | 
|  | * Returns the delta to the next expiry event or KTIME_MAX if no timer | 
|  | * is pending. | 
|  | */ | 
|  | ktime_t hrtimer_get_next_event(void) | 
|  | { | 
|  | struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); | 
|  | struct hrtimer_clock_base *base = cpu_base->clock_base; | 
|  | ktime_t delta, mindelta = { .tv64 = KTIME_MAX }; | 
|  | unsigned long flags; | 
|  | int i; | 
|  |  | 
|  | raw_spin_lock_irqsave(&cpu_base->lock, flags); | 
|  |  | 
|  | if (!hrtimer_hres_active()) { | 
|  | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { | 
|  | struct hrtimer *timer; | 
|  |  | 
|  | if (!base->first) | 
|  | continue; | 
|  |  | 
|  | timer = rb_entry(base->first, struct hrtimer, node); | 
|  | delta.tv64 = hrtimer_get_expires_tv64(timer); | 
|  | delta = ktime_sub(delta, base->get_time()); | 
|  | if (delta.tv64 < mindelta.tv64) | 
|  | mindelta.tv64 = delta.tv64; | 
|  | } | 
|  | } | 
|  |  | 
|  | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); | 
|  |  | 
|  | if (mindelta.tv64 < 0) | 
|  | mindelta.tv64 = 0; | 
|  | return mindelta; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, | 
|  | enum hrtimer_mode mode) | 
|  | { | 
|  | struct hrtimer_cpu_base *cpu_base; | 
|  |  | 
|  | memset(timer, 0, sizeof(struct hrtimer)); | 
|  |  | 
|  | cpu_base = &__raw_get_cpu_var(hrtimer_bases); | 
|  |  | 
|  | if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS) | 
|  | clock_id = CLOCK_MONOTONIC; | 
|  |  | 
|  | timer->base = &cpu_base->clock_base[clock_id]; | 
|  | hrtimer_init_timer_hres(timer); | 
|  |  | 
|  | #ifdef CONFIG_TIMER_STATS | 
|  | timer->start_site = NULL; | 
|  | timer->start_pid = -1; | 
|  | memset(timer->start_comm, 0, TASK_COMM_LEN); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hrtimer_init - initialize a timer to the given clock | 
|  | * @timer:	the timer to be initialized | 
|  | * @clock_id:	the clock to be used | 
|  | * @mode:	timer mode abs/rel | 
|  | */ | 
|  | void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, | 
|  | enum hrtimer_mode mode) | 
|  | { | 
|  | debug_init(timer, clock_id, mode); | 
|  | __hrtimer_init(timer, clock_id, mode); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hrtimer_init); | 
|  |  | 
|  | /** | 
|  | * hrtimer_get_res - get the timer resolution for a clock | 
|  | * @which_clock: which clock to query | 
|  | * @tp:		 pointer to timespec variable to store the resolution | 
|  | * | 
|  | * Store the resolution of the clock selected by @which_clock in the | 
|  | * variable pointed to by @tp. | 
|  | */ | 
|  | int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp) | 
|  | { | 
|  | struct hrtimer_cpu_base *cpu_base; | 
|  |  | 
|  | cpu_base = &__raw_get_cpu_var(hrtimer_bases); | 
|  | *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hrtimer_get_res); | 
|  |  | 
|  | static void __run_hrtimer(struct hrtimer *timer, ktime_t *now) | 
|  | { | 
|  | struct hrtimer_clock_base *base = timer->base; | 
|  | struct hrtimer_cpu_base *cpu_base = base->cpu_base; | 
|  | enum hrtimer_restart (*fn)(struct hrtimer *); | 
|  | int restart; | 
|  |  | 
|  | WARN_ON(!irqs_disabled()); | 
|  |  | 
|  | debug_deactivate(timer); | 
|  | __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0); | 
|  | timer_stats_account_hrtimer(timer); | 
|  | fn = timer->function; | 
|  |  | 
|  | /* | 
|  | * Because we run timers from hardirq context, there is no chance | 
|  | * they get migrated to another cpu, therefore its safe to unlock | 
|  | * the timer base. | 
|  | */ | 
|  | raw_spin_unlock(&cpu_base->lock); | 
|  | trace_hrtimer_expire_entry(timer, now); | 
|  | restart = fn(timer); | 
|  | trace_hrtimer_expire_exit(timer); | 
|  | raw_spin_lock(&cpu_base->lock); | 
|  |  | 
|  | /* | 
|  | * Note: We clear the CALLBACK bit after enqueue_hrtimer and | 
|  | * we do not reprogramm the event hardware. Happens either in | 
|  | * hrtimer_start_range_ns() or in hrtimer_interrupt() | 
|  | */ | 
|  | if (restart != HRTIMER_NORESTART) { | 
|  | BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); | 
|  | enqueue_hrtimer(timer, base); | 
|  | } | 
|  |  | 
|  | WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK)); | 
|  |  | 
|  | timer->state &= ~HRTIMER_STATE_CALLBACK; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HIGH_RES_TIMERS | 
|  |  | 
|  | /* | 
|  | * High resolution timer interrupt | 
|  | * Called with interrupts disabled | 
|  | */ | 
|  | void hrtimer_interrupt(struct clock_event_device *dev) | 
|  | { | 
|  | struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); | 
|  | struct hrtimer_clock_base *base; | 
|  | ktime_t expires_next, now, entry_time, delta; | 
|  | int i, retries = 0; | 
|  |  | 
|  | BUG_ON(!cpu_base->hres_active); | 
|  | cpu_base->nr_events++; | 
|  | dev->next_event.tv64 = KTIME_MAX; | 
|  |  | 
|  | entry_time = now = ktime_get(); | 
|  | retry: | 
|  | expires_next.tv64 = KTIME_MAX; | 
|  |  | 
|  | raw_spin_lock(&cpu_base->lock); | 
|  | /* | 
|  | * We set expires_next to KTIME_MAX here with cpu_base->lock | 
|  | * held to prevent that a timer is enqueued in our queue via | 
|  | * the migration code. This does not affect enqueueing of | 
|  | * timers which run their callback and need to be requeued on | 
|  | * this CPU. | 
|  | */ | 
|  | cpu_base->expires_next.tv64 = KTIME_MAX; | 
|  |  | 
|  | base = cpu_base->clock_base; | 
|  |  | 
|  | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { | 
|  | ktime_t basenow; | 
|  | struct rb_node *node; | 
|  |  | 
|  | basenow = ktime_add(now, base->offset); | 
|  |  | 
|  | while ((node = base->first)) { | 
|  | struct hrtimer *timer; | 
|  |  | 
|  | timer = rb_entry(node, struct hrtimer, node); | 
|  |  | 
|  | /* | 
|  | * The immediate goal for using the softexpires is | 
|  | * minimizing wakeups, not running timers at the | 
|  | * earliest interrupt after their soft expiration. | 
|  | * This allows us to avoid using a Priority Search | 
|  | * Tree, which can answer a stabbing querry for | 
|  | * overlapping intervals and instead use the simple | 
|  | * BST we already have. | 
|  | * We don't add extra wakeups by delaying timers that | 
|  | * are right-of a not yet expired timer, because that | 
|  | * timer will have to trigger a wakeup anyway. | 
|  | */ | 
|  |  | 
|  | if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) { | 
|  | ktime_t expires; | 
|  |  | 
|  | expires = ktime_sub(hrtimer_get_expires(timer), | 
|  | base->offset); | 
|  | if (expires.tv64 < expires_next.tv64) | 
|  | expires_next = expires; | 
|  | break; | 
|  | } | 
|  |  | 
|  | __run_hrtimer(timer, &basenow); | 
|  | } | 
|  | base++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Store the new expiry value so the migration code can verify | 
|  | * against it. | 
|  | */ | 
|  | cpu_base->expires_next = expires_next; | 
|  | raw_spin_unlock(&cpu_base->lock); | 
|  |  | 
|  | /* Reprogramming necessary ? */ | 
|  | if (expires_next.tv64 == KTIME_MAX || | 
|  | !tick_program_event(expires_next, 0)) { | 
|  | cpu_base->hang_detected = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The next timer was already expired due to: | 
|  | * - tracing | 
|  | * - long lasting callbacks | 
|  | * - being scheduled away when running in a VM | 
|  | * | 
|  | * We need to prevent that we loop forever in the hrtimer | 
|  | * interrupt routine. We give it 3 attempts to avoid | 
|  | * overreacting on some spurious event. | 
|  | */ | 
|  | now = ktime_get(); | 
|  | cpu_base->nr_retries++; | 
|  | if (++retries < 3) | 
|  | goto retry; | 
|  | /* | 
|  | * Give the system a chance to do something else than looping | 
|  | * here. We stored the entry time, so we know exactly how long | 
|  | * we spent here. We schedule the next event this amount of | 
|  | * time away. | 
|  | */ | 
|  | cpu_base->nr_hangs++; | 
|  | cpu_base->hang_detected = 1; | 
|  | delta = ktime_sub(now, entry_time); | 
|  | if (delta.tv64 > cpu_base->max_hang_time.tv64) | 
|  | cpu_base->max_hang_time = delta; | 
|  | /* | 
|  | * Limit it to a sensible value as we enforce a longer | 
|  | * delay. Give the CPU at least 100ms to catch up. | 
|  | */ | 
|  | if (delta.tv64 > 100 * NSEC_PER_MSEC) | 
|  | expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); | 
|  | else | 
|  | expires_next = ktime_add(now, delta); | 
|  | tick_program_event(expires_next, 1); | 
|  | printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n", | 
|  | ktime_to_ns(delta)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * local version of hrtimer_peek_ahead_timers() called with interrupts | 
|  | * disabled. | 
|  | */ | 
|  | static void __hrtimer_peek_ahead_timers(void) | 
|  | { | 
|  | struct tick_device *td; | 
|  |  | 
|  | if (!hrtimer_hres_active()) | 
|  | return; | 
|  |  | 
|  | td = &__get_cpu_var(tick_cpu_device); | 
|  | if (td && td->evtdev) | 
|  | hrtimer_interrupt(td->evtdev); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hrtimer_peek_ahead_timers -- run soft-expired timers now | 
|  | * | 
|  | * hrtimer_peek_ahead_timers will peek at the timer queue of | 
|  | * the current cpu and check if there are any timers for which | 
|  | * the soft expires time has passed. If any such timers exist, | 
|  | * they are run immediately and then removed from the timer queue. | 
|  | * | 
|  | */ | 
|  | void hrtimer_peek_ahead_timers(void) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | __hrtimer_peek_ahead_timers(); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | static void run_hrtimer_softirq(struct softirq_action *h) | 
|  | { | 
|  | hrtimer_peek_ahead_timers(); | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_HIGH_RES_TIMERS */ | 
|  |  | 
|  | static inline void __hrtimer_peek_ahead_timers(void) { } | 
|  |  | 
|  | #endif	/* !CONFIG_HIGH_RES_TIMERS */ | 
|  |  | 
|  | /* | 
|  | * Called from timer softirq every jiffy, expire hrtimers: | 
|  | * | 
|  | * For HRT its the fall back code to run the softirq in the timer | 
|  | * softirq context in case the hrtimer initialization failed or has | 
|  | * not been done yet. | 
|  | */ | 
|  | void hrtimer_run_pending(void) | 
|  | { | 
|  | if (hrtimer_hres_active()) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * This _is_ ugly: We have to check in the softirq context, | 
|  | * whether we can switch to highres and / or nohz mode. The | 
|  | * clocksource switch happens in the timer interrupt with | 
|  | * xtime_lock held. Notification from there only sets the | 
|  | * check bit in the tick_oneshot code, otherwise we might | 
|  | * deadlock vs. xtime_lock. | 
|  | */ | 
|  | if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) | 
|  | hrtimer_switch_to_hres(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called from hardirq context every jiffy | 
|  | */ | 
|  | void hrtimer_run_queues(void) | 
|  | { | 
|  | struct rb_node *node; | 
|  | struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); | 
|  | struct hrtimer_clock_base *base; | 
|  | int index, gettime = 1; | 
|  |  | 
|  | if (hrtimer_hres_active()) | 
|  | return; | 
|  |  | 
|  | for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) { | 
|  | base = &cpu_base->clock_base[index]; | 
|  |  | 
|  | if (!base->first) | 
|  | continue; | 
|  |  | 
|  | if (gettime) { | 
|  | hrtimer_get_softirq_time(cpu_base); | 
|  | gettime = 0; | 
|  | } | 
|  |  | 
|  | raw_spin_lock(&cpu_base->lock); | 
|  |  | 
|  | while ((node = base->first)) { | 
|  | struct hrtimer *timer; | 
|  |  | 
|  | timer = rb_entry(node, struct hrtimer, node); | 
|  | if (base->softirq_time.tv64 <= | 
|  | hrtimer_get_expires_tv64(timer)) | 
|  | break; | 
|  |  | 
|  | __run_hrtimer(timer, &base->softirq_time); | 
|  | } | 
|  | raw_spin_unlock(&cpu_base->lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sleep related functions: | 
|  | */ | 
|  | static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) | 
|  | { | 
|  | struct hrtimer_sleeper *t = | 
|  | container_of(timer, struct hrtimer_sleeper, timer); | 
|  | struct task_struct *task = t->task; | 
|  |  | 
|  | t->task = NULL; | 
|  | if (task) | 
|  | wake_up_process(task); | 
|  |  | 
|  | return HRTIMER_NORESTART; | 
|  | } | 
|  |  | 
|  | void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) | 
|  | { | 
|  | sl->timer.function = hrtimer_wakeup; | 
|  | sl->task = task; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); | 
|  |  | 
|  | static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) | 
|  | { | 
|  | hrtimer_init_sleeper(t, current); | 
|  |  | 
|  | do { | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | hrtimer_start_expires(&t->timer, mode); | 
|  | if (!hrtimer_active(&t->timer)) | 
|  | t->task = NULL; | 
|  |  | 
|  | if (likely(t->task)) | 
|  | schedule(); | 
|  |  | 
|  | hrtimer_cancel(&t->timer); | 
|  | mode = HRTIMER_MODE_ABS; | 
|  |  | 
|  | } while (t->task && !signal_pending(current)); | 
|  |  | 
|  | __set_current_state(TASK_RUNNING); | 
|  |  | 
|  | return t->task == NULL; | 
|  | } | 
|  |  | 
|  | static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp) | 
|  | { | 
|  | struct timespec rmt; | 
|  | ktime_t rem; | 
|  |  | 
|  | rem = hrtimer_expires_remaining(timer); | 
|  | if (rem.tv64 <= 0) | 
|  | return 0; | 
|  | rmt = ktime_to_timespec(rem); | 
|  |  | 
|  | if (copy_to_user(rmtp, &rmt, sizeof(*rmtp))) | 
|  | return -EFAULT; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | long __sched hrtimer_nanosleep_restart(struct restart_block *restart) | 
|  | { | 
|  | struct hrtimer_sleeper t; | 
|  | struct timespec __user  *rmtp; | 
|  | int ret = 0; | 
|  |  | 
|  | hrtimer_init_on_stack(&t.timer, restart->nanosleep.index, | 
|  | HRTIMER_MODE_ABS); | 
|  | hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); | 
|  |  | 
|  | if (do_nanosleep(&t, HRTIMER_MODE_ABS)) | 
|  | goto out; | 
|  |  | 
|  | rmtp = restart->nanosleep.rmtp; | 
|  | if (rmtp) { | 
|  | ret = update_rmtp(&t.timer, rmtp); | 
|  | if (ret <= 0) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* The other values in restart are already filled in */ | 
|  | ret = -ERESTART_RESTARTBLOCK; | 
|  | out: | 
|  | destroy_hrtimer_on_stack(&t.timer); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, | 
|  | const enum hrtimer_mode mode, const clockid_t clockid) | 
|  | { | 
|  | struct restart_block *restart; | 
|  | struct hrtimer_sleeper t; | 
|  | int ret = 0; | 
|  | unsigned long slack; | 
|  |  | 
|  | slack = current->timer_slack_ns; | 
|  | if (rt_task(current)) | 
|  | slack = 0; | 
|  |  | 
|  | hrtimer_init_on_stack(&t.timer, clockid, mode); | 
|  | hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack); | 
|  | if (do_nanosleep(&t, mode)) | 
|  | goto out; | 
|  |  | 
|  | /* Absolute timers do not update the rmtp value and restart: */ | 
|  | if (mode == HRTIMER_MODE_ABS) { | 
|  | ret = -ERESTARTNOHAND; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (rmtp) { | 
|  | ret = update_rmtp(&t.timer, rmtp); | 
|  | if (ret <= 0) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | restart = ¤t_thread_info()->restart_block; | 
|  | restart->fn = hrtimer_nanosleep_restart; | 
|  | restart->nanosleep.index = t.timer.base->index; | 
|  | restart->nanosleep.rmtp = rmtp; | 
|  | restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); | 
|  |  | 
|  | ret = -ERESTART_RESTARTBLOCK; | 
|  | out: | 
|  | destroy_hrtimer_on_stack(&t.timer); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp, | 
|  | struct timespec __user *, rmtp) | 
|  | { | 
|  | struct timespec tu; | 
|  |  | 
|  | if (copy_from_user(&tu, rqtp, sizeof(tu))) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (!timespec_valid(&tu)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Functions related to boot-time initialization: | 
|  | */ | 
|  | static void __cpuinit init_hrtimers_cpu(int cpu) | 
|  | { | 
|  | struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); | 
|  | int i; | 
|  |  | 
|  | raw_spin_lock_init(&cpu_base->lock); | 
|  |  | 
|  | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) | 
|  | cpu_base->clock_base[i].cpu_base = cpu_base; | 
|  |  | 
|  | hrtimer_init_hres(cpu_base); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  |  | 
|  | static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, | 
|  | struct hrtimer_clock_base *new_base) | 
|  | { | 
|  | struct hrtimer *timer; | 
|  | struct rb_node *node; | 
|  |  | 
|  | while ((node = rb_first(&old_base->active))) { | 
|  | timer = rb_entry(node, struct hrtimer, node); | 
|  | BUG_ON(hrtimer_callback_running(timer)); | 
|  | debug_deactivate(timer); | 
|  |  | 
|  | /* | 
|  | * Mark it as STATE_MIGRATE not INACTIVE otherwise the | 
|  | * timer could be seen as !active and just vanish away | 
|  | * under us on another CPU | 
|  | */ | 
|  | __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0); | 
|  | timer->base = new_base; | 
|  | /* | 
|  | * Enqueue the timers on the new cpu. This does not | 
|  | * reprogram the event device in case the timer | 
|  | * expires before the earliest on this CPU, but we run | 
|  | * hrtimer_interrupt after we migrated everything to | 
|  | * sort out already expired timers and reprogram the | 
|  | * event device. | 
|  | */ | 
|  | enqueue_hrtimer(timer, new_base); | 
|  |  | 
|  | /* Clear the migration state bit */ | 
|  | timer->state &= ~HRTIMER_STATE_MIGRATE; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void migrate_hrtimers(int scpu) | 
|  | { | 
|  | struct hrtimer_cpu_base *old_base, *new_base; | 
|  | int i; | 
|  |  | 
|  | BUG_ON(cpu_online(scpu)); | 
|  | tick_cancel_sched_timer(scpu); | 
|  |  | 
|  | local_irq_disable(); | 
|  | old_base = &per_cpu(hrtimer_bases, scpu); | 
|  | new_base = &__get_cpu_var(hrtimer_bases); | 
|  | /* | 
|  | * The caller is globally serialized and nobody else | 
|  | * takes two locks at once, deadlock is not possible. | 
|  | */ | 
|  | raw_spin_lock(&new_base->lock); | 
|  | raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); | 
|  |  | 
|  | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { | 
|  | migrate_hrtimer_list(&old_base->clock_base[i], | 
|  | &new_base->clock_base[i]); | 
|  | } | 
|  |  | 
|  | raw_spin_unlock(&old_base->lock); | 
|  | raw_spin_unlock(&new_base->lock); | 
|  |  | 
|  | /* Check, if we got expired work to do */ | 
|  | __hrtimer_peek_ahead_timers(); | 
|  | local_irq_enable(); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_HOTPLUG_CPU */ | 
|  |  | 
|  | static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self, | 
|  | unsigned long action, void *hcpu) | 
|  | { | 
|  | int scpu = (long)hcpu; | 
|  |  | 
|  | switch (action) { | 
|  |  | 
|  | case CPU_UP_PREPARE: | 
|  | case CPU_UP_PREPARE_FROZEN: | 
|  | init_hrtimers_cpu(scpu); | 
|  | break; | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | case CPU_DYING: | 
|  | case CPU_DYING_FROZEN: | 
|  | clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu); | 
|  | break; | 
|  | case CPU_DEAD: | 
|  | case CPU_DEAD_FROZEN: | 
|  | { | 
|  | clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu); | 
|  | migrate_hrtimers(scpu); | 
|  | break; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static struct notifier_block __cpuinitdata hrtimers_nb = { | 
|  | .notifier_call = hrtimer_cpu_notify, | 
|  | }; | 
|  |  | 
|  | void __init hrtimers_init(void) | 
|  | { | 
|  | hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE, | 
|  | (void *)(long)smp_processor_id()); | 
|  | register_cpu_notifier(&hrtimers_nb); | 
|  | #ifdef CONFIG_HIGH_RES_TIMERS | 
|  | open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /** | 
|  | * schedule_hrtimeout_range_clock - sleep until timeout | 
|  | * @expires:	timeout value (ktime_t) | 
|  | * @delta:	slack in expires timeout (ktime_t) | 
|  | * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL | 
|  | * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME | 
|  | */ | 
|  | int __sched | 
|  | schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta, | 
|  | const enum hrtimer_mode mode, int clock) | 
|  | { | 
|  | struct hrtimer_sleeper t; | 
|  |  | 
|  | /* | 
|  | * Optimize when a zero timeout value is given. It does not | 
|  | * matter whether this is an absolute or a relative time. | 
|  | */ | 
|  | if (expires && !expires->tv64) { | 
|  | __set_current_state(TASK_RUNNING); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A NULL parameter means "inifinte" | 
|  | */ | 
|  | if (!expires) { | 
|  | schedule(); | 
|  | __set_current_state(TASK_RUNNING); | 
|  | return -EINTR; | 
|  | } | 
|  |  | 
|  | hrtimer_init_on_stack(&t.timer, clock, mode); | 
|  | hrtimer_set_expires_range_ns(&t.timer, *expires, delta); | 
|  |  | 
|  | hrtimer_init_sleeper(&t, current); | 
|  |  | 
|  | hrtimer_start_expires(&t.timer, mode); | 
|  | if (!hrtimer_active(&t.timer)) | 
|  | t.task = NULL; | 
|  |  | 
|  | if (likely(t.task)) | 
|  | schedule(); | 
|  |  | 
|  | hrtimer_cancel(&t.timer); | 
|  | destroy_hrtimer_on_stack(&t.timer); | 
|  |  | 
|  | __set_current_state(TASK_RUNNING); | 
|  |  | 
|  | return !t.task ? 0 : -EINTR; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * schedule_hrtimeout_range - sleep until timeout | 
|  | * @expires:	timeout value (ktime_t) | 
|  | * @delta:	slack in expires timeout (ktime_t) | 
|  | * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL | 
|  | * | 
|  | * Make the current task sleep until the given expiry time has | 
|  | * elapsed. The routine will return immediately unless | 
|  | * the current task state has been set (see set_current_state()). | 
|  | * | 
|  | * The @delta argument gives the kernel the freedom to schedule the | 
|  | * actual wakeup to a time that is both power and performance friendly. | 
|  | * The kernel give the normal best effort behavior for "@expires+@delta", | 
|  | * but may decide to fire the timer earlier, but no earlier than @expires. | 
|  | * | 
|  | * You can set the task state as follows - | 
|  | * | 
|  | * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to | 
|  | * pass before the routine returns. | 
|  | * | 
|  | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | 
|  | * delivered to the current task. | 
|  | * | 
|  | * The current task state is guaranteed to be TASK_RUNNING when this | 
|  | * routine returns. | 
|  | * | 
|  | * Returns 0 when the timer has expired otherwise -EINTR | 
|  | */ | 
|  | int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta, | 
|  | const enum hrtimer_mode mode) | 
|  | { | 
|  | return schedule_hrtimeout_range_clock(expires, delta, mode, | 
|  | CLOCK_MONOTONIC); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); | 
|  |  | 
|  | /** | 
|  | * schedule_hrtimeout - sleep until timeout | 
|  | * @expires:	timeout value (ktime_t) | 
|  | * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL | 
|  | * | 
|  | * Make the current task sleep until the given expiry time has | 
|  | * elapsed. The routine will return immediately unless | 
|  | * the current task state has been set (see set_current_state()). | 
|  | * | 
|  | * You can set the task state as follows - | 
|  | * | 
|  | * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to | 
|  | * pass before the routine returns. | 
|  | * | 
|  | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | 
|  | * delivered to the current task. | 
|  | * | 
|  | * The current task state is guaranteed to be TASK_RUNNING when this | 
|  | * routine returns. | 
|  | * | 
|  | * Returns 0 when the timer has expired otherwise -EINTR | 
|  | */ | 
|  | int __sched schedule_hrtimeout(ktime_t *expires, | 
|  | const enum hrtimer_mode mode) | 
|  | { | 
|  | return schedule_hrtimeout_range(expires, 0, mode); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(schedule_hrtimeout); |