| /* | 
 |  * Copyright (c) 2006 Oracle.  All rights reserved. | 
 |  * | 
 |  * This software is available to you under a choice of one of two | 
 |  * licenses.  You may choose to be licensed under the terms of the GNU | 
 |  * General Public License (GPL) Version 2, available from the file | 
 |  * COPYING in the main directory of this source tree, or the | 
 |  * OpenIB.org BSD license below: | 
 |  * | 
 |  *     Redistribution and use in source and binary forms, with or | 
 |  *     without modification, are permitted provided that the following | 
 |  *     conditions are met: | 
 |  * | 
 |  *      - Redistributions of source code must retain the above | 
 |  *        copyright notice, this list of conditions and the following | 
 |  *        disclaimer. | 
 |  * | 
 |  *      - Redistributions in binary form must reproduce the above | 
 |  *        copyright notice, this list of conditions and the following | 
 |  *        disclaimer in the documentation and/or other materials | 
 |  *        provided with the distribution. | 
 |  * | 
 |  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | 
 |  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | 
 |  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | 
 |  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | 
 |  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | 
 |  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | 
 |  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | 
 |  * SOFTWARE. | 
 |  * | 
 |  */ | 
 | #include <linux/kernel.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/rculist.h> | 
 |  | 
 | #include "rds.h" | 
 | #include "ib.h" | 
 | #include "xlist.h" | 
 |  | 
 | static DEFINE_PER_CPU(unsigned long, clean_list_grace); | 
 | #define CLEAN_LIST_BUSY_BIT 0 | 
 |  | 
 | /* | 
 |  * This is stored as mr->r_trans_private. | 
 |  */ | 
 | struct rds_ib_mr { | 
 | 	struct rds_ib_device	*device; | 
 | 	struct rds_ib_mr_pool	*pool; | 
 | 	struct ib_fmr		*fmr; | 
 |  | 
 | 	struct xlist_head	xlist; | 
 |  | 
 | 	/* unmap_list is for freeing */ | 
 | 	struct list_head	unmap_list; | 
 | 	unsigned int		remap_count; | 
 |  | 
 | 	struct scatterlist	*sg; | 
 | 	unsigned int		sg_len; | 
 | 	u64			*dma; | 
 | 	int			sg_dma_len; | 
 | }; | 
 |  | 
 | /* | 
 |  * Our own little FMR pool | 
 |  */ | 
 | struct rds_ib_mr_pool { | 
 | 	struct mutex		flush_lock;		/* serialize fmr invalidate */ | 
 | 	struct delayed_work	flush_worker;		/* flush worker */ | 
 |  | 
 | 	atomic_t		item_count;		/* total # of MRs */ | 
 | 	atomic_t		dirty_count;		/* # dirty of MRs */ | 
 |  | 
 | 	struct xlist_head	drop_list;		/* MRs that have reached their max_maps limit */ | 
 | 	struct xlist_head	free_list;		/* unused MRs */ | 
 | 	struct xlist_head	clean_list;		/* global unused & unamapped MRs */ | 
 | 	wait_queue_head_t	flush_wait; | 
 |  | 
 | 	atomic_t		free_pinned;		/* memory pinned by free MRs */ | 
 | 	unsigned long		max_items; | 
 | 	unsigned long		max_items_soft; | 
 | 	unsigned long		max_free_pinned; | 
 | 	struct ib_fmr_attr	fmr_attr; | 
 | }; | 
 |  | 
 | static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool, int free_all, struct rds_ib_mr **); | 
 | static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr); | 
 | static void rds_ib_mr_pool_flush_worker(struct work_struct *work); | 
 |  | 
 | static struct rds_ib_device *rds_ib_get_device(__be32 ipaddr) | 
 | { | 
 | 	struct rds_ib_device *rds_ibdev; | 
 | 	struct rds_ib_ipaddr *i_ipaddr; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	list_for_each_entry_rcu(rds_ibdev, &rds_ib_devices, list) { | 
 | 		list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) { | 
 | 			if (i_ipaddr->ipaddr == ipaddr) { | 
 | 				atomic_inc(&rds_ibdev->refcount); | 
 | 				rcu_read_unlock(); | 
 | 				return rds_ibdev; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static int rds_ib_add_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr) | 
 | { | 
 | 	struct rds_ib_ipaddr *i_ipaddr; | 
 |  | 
 | 	i_ipaddr = kmalloc(sizeof *i_ipaddr, GFP_KERNEL); | 
 | 	if (!i_ipaddr) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	i_ipaddr->ipaddr = ipaddr; | 
 |  | 
 | 	spin_lock_irq(&rds_ibdev->spinlock); | 
 | 	list_add_tail_rcu(&i_ipaddr->list, &rds_ibdev->ipaddr_list); | 
 | 	spin_unlock_irq(&rds_ibdev->spinlock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void rds_ib_remove_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr) | 
 | { | 
 | 	struct rds_ib_ipaddr *i_ipaddr; | 
 | 	struct rds_ib_ipaddr *to_free = NULL; | 
 |  | 
 |  | 
 | 	spin_lock_irq(&rds_ibdev->spinlock); | 
 | 	list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) { | 
 | 		if (i_ipaddr->ipaddr == ipaddr) { | 
 | 			list_del_rcu(&i_ipaddr->list); | 
 | 			to_free = i_ipaddr; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irq(&rds_ibdev->spinlock); | 
 |  | 
 | 	if (to_free) { | 
 | 		synchronize_rcu(); | 
 | 		kfree(to_free); | 
 | 	} | 
 | } | 
 |  | 
 | int rds_ib_update_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr) | 
 | { | 
 | 	struct rds_ib_device *rds_ibdev_old; | 
 |  | 
 | 	rds_ibdev_old = rds_ib_get_device(ipaddr); | 
 | 	if (rds_ibdev_old) { | 
 | 		rds_ib_remove_ipaddr(rds_ibdev_old, ipaddr); | 
 | 		rds_ib_dev_put(rds_ibdev_old); | 
 | 	} | 
 |  | 
 | 	return rds_ib_add_ipaddr(rds_ibdev, ipaddr); | 
 | } | 
 |  | 
 | void rds_ib_add_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn) | 
 | { | 
 | 	struct rds_ib_connection *ic = conn->c_transport_data; | 
 |  | 
 | 	/* conn was previously on the nodev_conns_list */ | 
 | 	spin_lock_irq(&ib_nodev_conns_lock); | 
 | 	BUG_ON(list_empty(&ib_nodev_conns)); | 
 | 	BUG_ON(list_empty(&ic->ib_node)); | 
 | 	list_del(&ic->ib_node); | 
 |  | 
 | 	spin_lock(&rds_ibdev->spinlock); | 
 | 	list_add_tail(&ic->ib_node, &rds_ibdev->conn_list); | 
 | 	spin_unlock(&rds_ibdev->spinlock); | 
 | 	spin_unlock_irq(&ib_nodev_conns_lock); | 
 |  | 
 | 	ic->rds_ibdev = rds_ibdev; | 
 | 	atomic_inc(&rds_ibdev->refcount); | 
 | } | 
 |  | 
 | void rds_ib_remove_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn) | 
 | { | 
 | 	struct rds_ib_connection *ic = conn->c_transport_data; | 
 |  | 
 | 	/* place conn on nodev_conns_list */ | 
 | 	spin_lock(&ib_nodev_conns_lock); | 
 |  | 
 | 	spin_lock_irq(&rds_ibdev->spinlock); | 
 | 	BUG_ON(list_empty(&ic->ib_node)); | 
 | 	list_del(&ic->ib_node); | 
 | 	spin_unlock_irq(&rds_ibdev->spinlock); | 
 |  | 
 | 	list_add_tail(&ic->ib_node, &ib_nodev_conns); | 
 |  | 
 | 	spin_unlock(&ib_nodev_conns_lock); | 
 |  | 
 | 	ic->rds_ibdev = NULL; | 
 | 	rds_ib_dev_put(rds_ibdev); | 
 | } | 
 |  | 
 | void rds_ib_destroy_nodev_conns(void) | 
 | { | 
 | 	struct rds_ib_connection *ic, *_ic; | 
 | 	LIST_HEAD(tmp_list); | 
 |  | 
 | 	/* avoid calling conn_destroy with irqs off */ | 
 | 	spin_lock_irq(&ib_nodev_conns_lock); | 
 | 	list_splice(&ib_nodev_conns, &tmp_list); | 
 | 	spin_unlock_irq(&ib_nodev_conns_lock); | 
 |  | 
 | 	list_for_each_entry_safe(ic, _ic, &tmp_list, ib_node) | 
 | 		rds_conn_destroy(ic->conn); | 
 | } | 
 |  | 
 | struct rds_ib_mr_pool *rds_ib_create_mr_pool(struct rds_ib_device *rds_ibdev) | 
 | { | 
 | 	struct rds_ib_mr_pool *pool; | 
 |  | 
 | 	pool = kzalloc(sizeof(*pool), GFP_KERNEL); | 
 | 	if (!pool) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	INIT_XLIST_HEAD(&pool->free_list); | 
 | 	INIT_XLIST_HEAD(&pool->drop_list); | 
 | 	INIT_XLIST_HEAD(&pool->clean_list); | 
 | 	mutex_init(&pool->flush_lock); | 
 | 	init_waitqueue_head(&pool->flush_wait); | 
 | 	INIT_DELAYED_WORK(&pool->flush_worker, rds_ib_mr_pool_flush_worker); | 
 |  | 
 | 	pool->fmr_attr.max_pages = fmr_message_size; | 
 | 	pool->fmr_attr.max_maps = rds_ibdev->fmr_max_remaps; | 
 | 	pool->fmr_attr.page_shift = PAGE_SHIFT; | 
 | 	pool->max_free_pinned = rds_ibdev->max_fmrs * fmr_message_size / 4; | 
 |  | 
 | 	/* We never allow more than max_items MRs to be allocated. | 
 | 	 * When we exceed more than max_items_soft, we start freeing | 
 | 	 * items more aggressively. | 
 | 	 * Make sure that max_items > max_items_soft > max_items / 2 | 
 | 	 */ | 
 | 	pool->max_items_soft = rds_ibdev->max_fmrs * 3 / 4; | 
 | 	pool->max_items = rds_ibdev->max_fmrs; | 
 |  | 
 | 	return pool; | 
 | } | 
 |  | 
 | void rds_ib_get_mr_info(struct rds_ib_device *rds_ibdev, struct rds_info_rdma_connection *iinfo) | 
 | { | 
 | 	struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool; | 
 |  | 
 | 	iinfo->rdma_mr_max = pool->max_items; | 
 | 	iinfo->rdma_mr_size = pool->fmr_attr.max_pages; | 
 | } | 
 |  | 
 | void rds_ib_destroy_mr_pool(struct rds_ib_mr_pool *pool) | 
 | { | 
 | 	cancel_delayed_work_sync(&pool->flush_worker); | 
 | 	rds_ib_flush_mr_pool(pool, 1, NULL); | 
 | 	WARN_ON(atomic_read(&pool->item_count)); | 
 | 	WARN_ON(atomic_read(&pool->free_pinned)); | 
 | 	kfree(pool); | 
 | } | 
 |  | 
 | static void refill_local(struct rds_ib_mr_pool *pool, struct xlist_head *xl, | 
 | 			 struct rds_ib_mr **ibmr_ret) | 
 | { | 
 | 	struct xlist_head *ibmr_xl; | 
 | 	ibmr_xl = xlist_del_head_fast(xl); | 
 | 	*ibmr_ret = list_entry(ibmr_xl, struct rds_ib_mr, xlist); | 
 | } | 
 |  | 
 | static inline struct rds_ib_mr *rds_ib_reuse_fmr(struct rds_ib_mr_pool *pool) | 
 | { | 
 | 	struct rds_ib_mr *ibmr = NULL; | 
 | 	struct xlist_head *ret; | 
 | 	unsigned long *flag; | 
 |  | 
 | 	preempt_disable(); | 
 | 	flag = &__get_cpu_var(clean_list_grace); | 
 | 	set_bit(CLEAN_LIST_BUSY_BIT, flag); | 
 | 	ret = xlist_del_head(&pool->clean_list); | 
 | 	if (ret) | 
 | 		ibmr = list_entry(ret, struct rds_ib_mr, xlist); | 
 |  | 
 | 	clear_bit(CLEAN_LIST_BUSY_BIT, flag); | 
 | 	preempt_enable(); | 
 | 	return ibmr; | 
 | } | 
 |  | 
 | static inline void wait_clean_list_grace(void) | 
 | { | 
 | 	int cpu; | 
 | 	unsigned long *flag; | 
 |  | 
 | 	for_each_online_cpu(cpu) { | 
 | 		flag = &per_cpu(clean_list_grace, cpu); | 
 | 		while (test_bit(CLEAN_LIST_BUSY_BIT, flag)) | 
 | 			cpu_relax(); | 
 | 	} | 
 | } | 
 |  | 
 | static struct rds_ib_mr *rds_ib_alloc_fmr(struct rds_ib_device *rds_ibdev) | 
 | { | 
 | 	struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool; | 
 | 	struct rds_ib_mr *ibmr = NULL; | 
 | 	int err = 0, iter = 0; | 
 |  | 
 | 	if (atomic_read(&pool->dirty_count) >= pool->max_items / 10) | 
 | 		schedule_delayed_work(&pool->flush_worker, 10); | 
 |  | 
 | 	while (1) { | 
 | 		ibmr = rds_ib_reuse_fmr(pool); | 
 | 		if (ibmr) | 
 | 			return ibmr; | 
 |  | 
 | 		/* No clean MRs - now we have the choice of either | 
 | 		 * allocating a fresh MR up to the limit imposed by the | 
 | 		 * driver, or flush any dirty unused MRs. | 
 | 		 * We try to avoid stalling in the send path if possible, | 
 | 		 * so we allocate as long as we're allowed to. | 
 | 		 * | 
 | 		 * We're fussy with enforcing the FMR limit, though. If the driver | 
 | 		 * tells us we can't use more than N fmrs, we shouldn't start | 
 | 		 * arguing with it */ | 
 | 		if (atomic_inc_return(&pool->item_count) <= pool->max_items) | 
 | 			break; | 
 |  | 
 | 		atomic_dec(&pool->item_count); | 
 |  | 
 | 		if (++iter > 2) { | 
 | 			rds_ib_stats_inc(s_ib_rdma_mr_pool_depleted); | 
 | 			return ERR_PTR(-EAGAIN); | 
 | 		} | 
 |  | 
 | 		/* We do have some empty MRs. Flush them out. */ | 
 | 		rds_ib_stats_inc(s_ib_rdma_mr_pool_wait); | 
 | 		rds_ib_flush_mr_pool(pool, 0, &ibmr); | 
 | 		if (ibmr) | 
 | 			return ibmr; | 
 | 	} | 
 |  | 
 | 	ibmr = kzalloc_node(sizeof(*ibmr), GFP_KERNEL, rdsibdev_to_node(rds_ibdev)); | 
 | 	if (!ibmr) { | 
 | 		err = -ENOMEM; | 
 | 		goto out_no_cigar; | 
 | 	} | 
 |  | 
 | 	memset(ibmr, 0, sizeof(*ibmr)); | 
 |  | 
 | 	ibmr->fmr = ib_alloc_fmr(rds_ibdev->pd, | 
 | 			(IB_ACCESS_LOCAL_WRITE | | 
 | 			 IB_ACCESS_REMOTE_READ | | 
 | 			 IB_ACCESS_REMOTE_WRITE| | 
 | 			 IB_ACCESS_REMOTE_ATOMIC), | 
 | 			&pool->fmr_attr); | 
 | 	if (IS_ERR(ibmr->fmr)) { | 
 | 		err = PTR_ERR(ibmr->fmr); | 
 | 		ibmr->fmr = NULL; | 
 | 		printk(KERN_WARNING "RDS/IB: ib_alloc_fmr failed (err=%d)\n", err); | 
 | 		goto out_no_cigar; | 
 | 	} | 
 |  | 
 | 	rds_ib_stats_inc(s_ib_rdma_mr_alloc); | 
 | 	return ibmr; | 
 |  | 
 | out_no_cigar: | 
 | 	if (ibmr) { | 
 | 		if (ibmr->fmr) | 
 | 			ib_dealloc_fmr(ibmr->fmr); | 
 | 		kfree(ibmr); | 
 | 	} | 
 | 	atomic_dec(&pool->item_count); | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | static int rds_ib_map_fmr(struct rds_ib_device *rds_ibdev, struct rds_ib_mr *ibmr, | 
 | 	       struct scatterlist *sg, unsigned int nents) | 
 | { | 
 | 	struct ib_device *dev = rds_ibdev->dev; | 
 | 	struct scatterlist *scat = sg; | 
 | 	u64 io_addr = 0; | 
 | 	u64 *dma_pages; | 
 | 	u32 len; | 
 | 	int page_cnt, sg_dma_len; | 
 | 	int i, j; | 
 | 	int ret; | 
 |  | 
 | 	sg_dma_len = ib_dma_map_sg(dev, sg, nents, | 
 | 				 DMA_BIDIRECTIONAL); | 
 | 	if (unlikely(!sg_dma_len)) { | 
 | 		printk(KERN_WARNING "RDS/IB: dma_map_sg failed!\n"); | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	len = 0; | 
 | 	page_cnt = 0; | 
 |  | 
 | 	for (i = 0; i < sg_dma_len; ++i) { | 
 | 		unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]); | 
 | 		u64 dma_addr = ib_sg_dma_address(dev, &scat[i]); | 
 |  | 
 | 		if (dma_addr & ~PAGE_MASK) { | 
 | 			if (i > 0) | 
 | 				return -EINVAL; | 
 | 			else | 
 | 				++page_cnt; | 
 | 		} | 
 | 		if ((dma_addr + dma_len) & ~PAGE_MASK) { | 
 | 			if (i < sg_dma_len - 1) | 
 | 				return -EINVAL; | 
 | 			else | 
 | 				++page_cnt; | 
 | 		} | 
 |  | 
 | 		len += dma_len; | 
 | 	} | 
 |  | 
 | 	page_cnt += len >> PAGE_SHIFT; | 
 | 	if (page_cnt > fmr_message_size) | 
 | 		return -EINVAL; | 
 |  | 
 | 	dma_pages = kmalloc_node(sizeof(u64) * page_cnt, GFP_ATOMIC, | 
 | 				 rdsibdev_to_node(rds_ibdev)); | 
 | 	if (!dma_pages) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	page_cnt = 0; | 
 | 	for (i = 0; i < sg_dma_len; ++i) { | 
 | 		unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]); | 
 | 		u64 dma_addr = ib_sg_dma_address(dev, &scat[i]); | 
 |  | 
 | 		for (j = 0; j < dma_len; j += PAGE_SIZE) | 
 | 			dma_pages[page_cnt++] = | 
 | 				(dma_addr & PAGE_MASK) + j; | 
 | 	} | 
 |  | 
 | 	ret = ib_map_phys_fmr(ibmr->fmr, | 
 | 				   dma_pages, page_cnt, io_addr); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	/* Success - we successfully remapped the MR, so we can | 
 | 	 * safely tear down the old mapping. */ | 
 | 	rds_ib_teardown_mr(ibmr); | 
 |  | 
 | 	ibmr->sg = scat; | 
 | 	ibmr->sg_len = nents; | 
 | 	ibmr->sg_dma_len = sg_dma_len; | 
 | 	ibmr->remap_count++; | 
 |  | 
 | 	rds_ib_stats_inc(s_ib_rdma_mr_used); | 
 | 	ret = 0; | 
 |  | 
 | out: | 
 | 	kfree(dma_pages); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | void rds_ib_sync_mr(void *trans_private, int direction) | 
 | { | 
 | 	struct rds_ib_mr *ibmr = trans_private; | 
 | 	struct rds_ib_device *rds_ibdev = ibmr->device; | 
 |  | 
 | 	switch (direction) { | 
 | 	case DMA_FROM_DEVICE: | 
 | 		ib_dma_sync_sg_for_cpu(rds_ibdev->dev, ibmr->sg, | 
 | 			ibmr->sg_dma_len, DMA_BIDIRECTIONAL); | 
 | 		break; | 
 | 	case DMA_TO_DEVICE: | 
 | 		ib_dma_sync_sg_for_device(rds_ibdev->dev, ibmr->sg, | 
 | 			ibmr->sg_dma_len, DMA_BIDIRECTIONAL); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static void __rds_ib_teardown_mr(struct rds_ib_mr *ibmr) | 
 | { | 
 | 	struct rds_ib_device *rds_ibdev = ibmr->device; | 
 |  | 
 | 	if (ibmr->sg_dma_len) { | 
 | 		ib_dma_unmap_sg(rds_ibdev->dev, | 
 | 				ibmr->sg, ibmr->sg_len, | 
 | 				DMA_BIDIRECTIONAL); | 
 | 		ibmr->sg_dma_len = 0; | 
 | 	} | 
 |  | 
 | 	/* Release the s/g list */ | 
 | 	if (ibmr->sg_len) { | 
 | 		unsigned int i; | 
 |  | 
 | 		for (i = 0; i < ibmr->sg_len; ++i) { | 
 | 			struct page *page = sg_page(&ibmr->sg[i]); | 
 |  | 
 | 			/* FIXME we need a way to tell a r/w MR | 
 | 			 * from a r/o MR */ | 
 | 			BUG_ON(irqs_disabled()); | 
 | 			set_page_dirty(page); | 
 | 			put_page(page); | 
 | 		} | 
 | 		kfree(ibmr->sg); | 
 |  | 
 | 		ibmr->sg = NULL; | 
 | 		ibmr->sg_len = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr) | 
 | { | 
 | 	unsigned int pinned = ibmr->sg_len; | 
 |  | 
 | 	__rds_ib_teardown_mr(ibmr); | 
 | 	if (pinned) { | 
 | 		struct rds_ib_device *rds_ibdev = ibmr->device; | 
 | 		struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool; | 
 |  | 
 | 		atomic_sub(pinned, &pool->free_pinned); | 
 | 	} | 
 | } | 
 |  | 
 | static inline unsigned int rds_ib_flush_goal(struct rds_ib_mr_pool *pool, int free_all) | 
 | { | 
 | 	unsigned int item_count; | 
 |  | 
 | 	item_count = atomic_read(&pool->item_count); | 
 | 	if (free_all) | 
 | 		return item_count; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * given an xlist of mrs, put them all into the list_head for more processing | 
 |  */ | 
 | static void xlist_append_to_list(struct xlist_head *xlist, struct list_head *list) | 
 | { | 
 | 	struct rds_ib_mr *ibmr; | 
 | 	struct xlist_head splice; | 
 | 	struct xlist_head *cur; | 
 | 	struct xlist_head *next; | 
 |  | 
 | 	splice.next = NULL; | 
 | 	xlist_splice(xlist, &splice); | 
 | 	cur = splice.next; | 
 | 	while (cur) { | 
 | 		next = cur->next; | 
 | 		ibmr = list_entry(cur, struct rds_ib_mr, xlist); | 
 | 		list_add_tail(&ibmr->unmap_list, list); | 
 | 		cur = next; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * this takes a list head of mrs and turns it into an xlist of clusters. | 
 |  * each cluster has an xlist of MR_CLUSTER_SIZE mrs that are ready for | 
 |  * reuse. | 
 |  */ | 
 | static void list_append_to_xlist(struct rds_ib_mr_pool *pool, | 
 | 				struct list_head *list, struct xlist_head *xlist, | 
 | 				struct xlist_head **tail_ret) | 
 | { | 
 | 	struct rds_ib_mr *ibmr; | 
 | 	struct xlist_head *cur_mr = xlist; | 
 | 	struct xlist_head *tail_mr = NULL; | 
 |  | 
 | 	list_for_each_entry(ibmr, list, unmap_list) { | 
 | 		tail_mr = &ibmr->xlist; | 
 | 		tail_mr->next = NULL; | 
 | 		cur_mr->next = tail_mr; | 
 | 		cur_mr = tail_mr; | 
 | 	} | 
 | 	*tail_ret = tail_mr; | 
 | } | 
 |  | 
 | /* | 
 |  * Flush our pool of MRs. | 
 |  * At a minimum, all currently unused MRs are unmapped. | 
 |  * If the number of MRs allocated exceeds the limit, we also try | 
 |  * to free as many MRs as needed to get back to this limit. | 
 |  */ | 
 | static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool, | 
 | 			        int free_all, struct rds_ib_mr **ibmr_ret) | 
 | { | 
 | 	struct rds_ib_mr *ibmr, *next; | 
 | 	struct xlist_head clean_xlist; | 
 | 	struct xlist_head *clean_tail; | 
 | 	LIST_HEAD(unmap_list); | 
 | 	LIST_HEAD(fmr_list); | 
 | 	unsigned long unpinned = 0; | 
 | 	unsigned int nfreed = 0, ncleaned = 0, free_goal; | 
 | 	int ret = 0; | 
 |  | 
 | 	rds_ib_stats_inc(s_ib_rdma_mr_pool_flush); | 
 |  | 
 | 	if (ibmr_ret) { | 
 | 		DEFINE_WAIT(wait); | 
 | 		while(!mutex_trylock(&pool->flush_lock)) { | 
 | 			ibmr = rds_ib_reuse_fmr(pool); | 
 | 			if (ibmr) { | 
 | 				*ibmr_ret = ibmr; | 
 | 				finish_wait(&pool->flush_wait, &wait); | 
 | 				goto out_nolock; | 
 | 			} | 
 |  | 
 | 			prepare_to_wait(&pool->flush_wait, &wait, | 
 | 					TASK_UNINTERRUPTIBLE); | 
 | 			if (xlist_empty(&pool->clean_list)) | 
 | 				schedule(); | 
 |  | 
 | 			ibmr = rds_ib_reuse_fmr(pool); | 
 | 			if (ibmr) { | 
 | 				*ibmr_ret = ibmr; | 
 | 				finish_wait(&pool->flush_wait, &wait); | 
 | 				goto out_nolock; | 
 | 			} | 
 | 		} | 
 | 		finish_wait(&pool->flush_wait, &wait); | 
 | 	} else | 
 | 		mutex_lock(&pool->flush_lock); | 
 |  | 
 | 	if (ibmr_ret) { | 
 | 		ibmr = rds_ib_reuse_fmr(pool); | 
 | 		if (ibmr) { | 
 | 			*ibmr_ret = ibmr; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Get the list of all MRs to be dropped. Ordering matters - | 
 | 	 * we want to put drop_list ahead of free_list. | 
 | 	 */ | 
 | 	xlist_append_to_list(&pool->drop_list, &unmap_list); | 
 | 	xlist_append_to_list(&pool->free_list, &unmap_list); | 
 | 	if (free_all) | 
 | 		xlist_append_to_list(&pool->clean_list, &unmap_list); | 
 |  | 
 | 	free_goal = rds_ib_flush_goal(pool, free_all); | 
 |  | 
 | 	if (list_empty(&unmap_list)) | 
 | 		goto out; | 
 |  | 
 | 	/* String all ib_mr's onto one list and hand them to ib_unmap_fmr */ | 
 | 	list_for_each_entry(ibmr, &unmap_list, unmap_list) | 
 | 		list_add(&ibmr->fmr->list, &fmr_list); | 
 |  | 
 | 	ret = ib_unmap_fmr(&fmr_list); | 
 | 	if (ret) | 
 | 		printk(KERN_WARNING "RDS/IB: ib_unmap_fmr failed (err=%d)\n", ret); | 
 |  | 
 | 	/* Now we can destroy the DMA mapping and unpin any pages */ | 
 | 	list_for_each_entry_safe(ibmr, next, &unmap_list, unmap_list) { | 
 | 		unpinned += ibmr->sg_len; | 
 | 		__rds_ib_teardown_mr(ibmr); | 
 | 		if (nfreed < free_goal || ibmr->remap_count >= pool->fmr_attr.max_maps) { | 
 | 			rds_ib_stats_inc(s_ib_rdma_mr_free); | 
 | 			list_del(&ibmr->unmap_list); | 
 | 			ib_dealloc_fmr(ibmr->fmr); | 
 | 			kfree(ibmr); | 
 | 			nfreed++; | 
 | 		} | 
 | 		ncleaned++; | 
 | 	} | 
 |  | 
 | 	if (!list_empty(&unmap_list)) { | 
 | 		/* we have to make sure that none of the things we're about | 
 | 		 * to put on the clean list would race with other cpus trying | 
 | 		 * to pull items off.  The xlist would explode if we managed to | 
 | 		 * remove something from the clean list and then add it back again | 
 | 		 * while another CPU was spinning on that same item in xlist_del_head. | 
 | 		 * | 
 | 		 * This is pretty unlikely, but just in case  wait for an xlist grace period | 
 | 		 * here before adding anything back into the clean list. | 
 | 		 */ | 
 | 		wait_clean_list_grace(); | 
 |  | 
 | 		list_append_to_xlist(pool, &unmap_list, &clean_xlist, &clean_tail); | 
 | 		if (ibmr_ret) | 
 | 			refill_local(pool, &clean_xlist, ibmr_ret); | 
 |  | 
 | 		/* refill_local may have emptied our list */ | 
 | 		if (!xlist_empty(&clean_xlist)) | 
 | 			xlist_add(clean_xlist.next, clean_tail, &pool->clean_list); | 
 |  | 
 | 	} | 
 |  | 
 | 	atomic_sub(unpinned, &pool->free_pinned); | 
 | 	atomic_sub(ncleaned, &pool->dirty_count); | 
 | 	atomic_sub(nfreed, &pool->item_count); | 
 |  | 
 | out: | 
 | 	mutex_unlock(&pool->flush_lock); | 
 | 	if (waitqueue_active(&pool->flush_wait)) | 
 | 		wake_up(&pool->flush_wait); | 
 | out_nolock: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void rds_ib_mr_pool_flush_worker(struct work_struct *work) | 
 | { | 
 | 	struct rds_ib_mr_pool *pool = container_of(work, struct rds_ib_mr_pool, flush_worker.work); | 
 |  | 
 | 	rds_ib_flush_mr_pool(pool, 0, NULL); | 
 | } | 
 |  | 
 | void rds_ib_free_mr(void *trans_private, int invalidate) | 
 | { | 
 | 	struct rds_ib_mr *ibmr = trans_private; | 
 | 	struct rds_ib_device *rds_ibdev = ibmr->device; | 
 | 	struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool; | 
 |  | 
 | 	rdsdebug("RDS/IB: free_mr nents %u\n", ibmr->sg_len); | 
 |  | 
 | 	/* Return it to the pool's free list */ | 
 | 	if (ibmr->remap_count >= pool->fmr_attr.max_maps) | 
 | 		xlist_add(&ibmr->xlist, &ibmr->xlist, &pool->drop_list); | 
 | 	else | 
 | 		xlist_add(&ibmr->xlist, &ibmr->xlist, &pool->free_list); | 
 |  | 
 | 	atomic_add(ibmr->sg_len, &pool->free_pinned); | 
 | 	atomic_inc(&pool->dirty_count); | 
 |  | 
 | 	/* If we've pinned too many pages, request a flush */ | 
 | 	if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned || | 
 | 	    atomic_read(&pool->dirty_count) >= pool->max_items / 10) | 
 | 		schedule_delayed_work(&pool->flush_worker, 10); | 
 |  | 
 | 	if (invalidate) { | 
 | 		if (likely(!in_interrupt())) { | 
 | 			rds_ib_flush_mr_pool(pool, 0, NULL); | 
 | 		} else { | 
 | 			/* We get here if the user created a MR marked | 
 | 			 * as use_once and invalidate at the same time. */ | 
 | 			schedule_delayed_work(&pool->flush_worker, 10); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rds_ib_dev_put(rds_ibdev); | 
 | } | 
 |  | 
 | void rds_ib_flush_mrs(void) | 
 | { | 
 | 	struct rds_ib_device *rds_ibdev; | 
 |  | 
 | 	down_read(&rds_ib_devices_lock); | 
 | 	list_for_each_entry(rds_ibdev, &rds_ib_devices, list) { | 
 | 		struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool; | 
 |  | 
 | 		if (pool) | 
 | 			rds_ib_flush_mr_pool(pool, 0, NULL); | 
 | 	} | 
 | 	up_read(&rds_ib_devices_lock); | 
 | } | 
 |  | 
 | void *rds_ib_get_mr(struct scatterlist *sg, unsigned long nents, | 
 | 		    struct rds_sock *rs, u32 *key_ret) | 
 | { | 
 | 	struct rds_ib_device *rds_ibdev; | 
 | 	struct rds_ib_mr *ibmr = NULL; | 
 | 	int ret; | 
 |  | 
 | 	rds_ibdev = rds_ib_get_device(rs->rs_bound_addr); | 
 | 	if (!rds_ibdev) { | 
 | 		ret = -ENODEV; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!rds_ibdev->mr_pool) { | 
 | 		ret = -ENODEV; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ibmr = rds_ib_alloc_fmr(rds_ibdev); | 
 | 	if (IS_ERR(ibmr)) | 
 | 		return ibmr; | 
 |  | 
 | 	ret = rds_ib_map_fmr(rds_ibdev, ibmr, sg, nents); | 
 | 	if (ret == 0) | 
 | 		*key_ret = ibmr->fmr->rkey; | 
 | 	else | 
 | 		printk(KERN_WARNING "RDS/IB: map_fmr failed (errno=%d)\n", ret); | 
 |  | 
 | 	ibmr->device = rds_ibdev; | 
 | 	rds_ibdev = NULL; | 
 |  | 
 |  out: | 
 | 	if (ret) { | 
 | 		if (ibmr) | 
 | 			rds_ib_free_mr(ibmr, 0); | 
 | 		ibmr = ERR_PTR(ret); | 
 | 	} | 
 | 	if (rds_ibdev) | 
 | 		rds_ib_dev_put(rds_ibdev); | 
 | 	return ibmr; | 
 | } | 
 |  |