| /* mpihelp-div.c  -  MPI helper functions | 
 |  *	Copyright (C) 1994, 1996 Free Software Foundation, Inc. | 
 |  *	Copyright (C) 1998, 1999 Free Software Foundation, Inc. | 
 |  * | 
 |  * This file is part of GnuPG. | 
 |  * | 
 |  * GnuPG is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License, or | 
 |  * (at your option) any later version. | 
 |  * | 
 |  * GnuPG is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA | 
 |  * | 
 |  * Note: This code is heavily based on the GNU MP Library. | 
 |  *	 Actually it's the same code with only minor changes in the | 
 |  *	 way the data is stored; this is to support the abstraction | 
 |  *	 of an optional secure memory allocation which may be used | 
 |  *	 to avoid revealing of sensitive data due to paging etc. | 
 |  *	 The GNU MP Library itself is published under the LGPL; | 
 |  *	 however I decided to publish this code under the plain GPL. | 
 |  */ | 
 |  | 
 | #include "mpi-internal.h" | 
 | #include "longlong.h" | 
 |  | 
 | #ifndef UMUL_TIME | 
 | #define UMUL_TIME 1 | 
 | #endif | 
 | #ifndef UDIV_TIME | 
 | #define UDIV_TIME UMUL_TIME | 
 | #endif | 
 |  | 
 | /* FIXME: We should be using invert_limb (or invert_normalized_limb) | 
 |  * here (not udiv_qrnnd). | 
 |  */ | 
 |  | 
 | mpi_limb_t | 
 | mpihelp_mod_1(mpi_ptr_t dividend_ptr, mpi_size_t dividend_size, | 
 | 	      mpi_limb_t divisor_limb) | 
 | { | 
 | 	mpi_size_t i; | 
 | 	mpi_limb_t n1, n0, r; | 
 | 	int dummy; | 
 |  | 
 | 	/* Botch: Should this be handled at all?  Rely on callers?  */ | 
 | 	if (!dividend_size) | 
 | 		return 0; | 
 |  | 
 | 	/* If multiplication is much faster than division, and the | 
 | 	 * dividend is large, pre-invert the divisor, and use | 
 | 	 * only multiplications in the inner loop. | 
 | 	 * | 
 | 	 * This test should be read: | 
 | 	 *   Does it ever help to use udiv_qrnnd_preinv? | 
 | 	 *     && Does what we save compensate for the inversion overhead? | 
 | 	 */ | 
 | 	if (UDIV_TIME > (2 * UMUL_TIME + 6) | 
 | 	    && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) { | 
 | 		int normalization_steps; | 
 |  | 
 | 		count_leading_zeros(normalization_steps, divisor_limb); | 
 | 		if (normalization_steps) { | 
 | 			mpi_limb_t divisor_limb_inverted; | 
 |  | 
 | 			divisor_limb <<= normalization_steps; | 
 |  | 
 | 			/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The | 
 | 			 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the | 
 | 			 * most significant bit (with weight 2**N) implicit. | 
 | 			 * | 
 | 			 * Special case for DIVISOR_LIMB == 100...000. | 
 | 			 */ | 
 | 			if (!(divisor_limb << 1)) | 
 | 				divisor_limb_inverted = ~(mpi_limb_t) 0; | 
 | 			else | 
 | 				udiv_qrnnd(divisor_limb_inverted, dummy, | 
 | 					   -divisor_limb, 0, divisor_limb); | 
 |  | 
 | 			n1 = dividend_ptr[dividend_size - 1]; | 
 | 			r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps); | 
 |  | 
 | 			/* Possible optimization: | 
 | 			 * if (r == 0 | 
 | 			 * && divisor_limb > ((n1 << normalization_steps) | 
 | 			 *                 | (dividend_ptr[dividend_size - 2] >> ...))) | 
 | 			 * ...one division less... | 
 | 			 */ | 
 | 			for (i = dividend_size - 2; i >= 0; i--) { | 
 | 				n0 = dividend_ptr[i]; | 
 | 				UDIV_QRNND_PREINV(dummy, r, r, | 
 | 						  ((n1 << normalization_steps) | 
 | 						   | (n0 >> | 
 | 						      (BITS_PER_MPI_LIMB - | 
 | 						       normalization_steps))), | 
 | 						  divisor_limb, | 
 | 						  divisor_limb_inverted); | 
 | 				n1 = n0; | 
 | 			} | 
 | 			UDIV_QRNND_PREINV(dummy, r, r, | 
 | 					  n1 << normalization_steps, | 
 | 					  divisor_limb, divisor_limb_inverted); | 
 | 			return r >> normalization_steps; | 
 | 		} else { | 
 | 			mpi_limb_t divisor_limb_inverted; | 
 |  | 
 | 			/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The | 
 | 			 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the | 
 | 			 * most significant bit (with weight 2**N) implicit. | 
 | 			 * | 
 | 			 * Special case for DIVISOR_LIMB == 100...000. | 
 | 			 */ | 
 | 			if (!(divisor_limb << 1)) | 
 | 				divisor_limb_inverted = ~(mpi_limb_t) 0; | 
 | 			else | 
 | 				udiv_qrnnd(divisor_limb_inverted, dummy, | 
 | 					   -divisor_limb, 0, divisor_limb); | 
 |  | 
 | 			i = dividend_size - 1; | 
 | 			r = dividend_ptr[i]; | 
 |  | 
 | 			if (r >= divisor_limb) | 
 | 				r = 0; | 
 | 			else | 
 | 				i--; | 
 |  | 
 | 			for (; i >= 0; i--) { | 
 | 				n0 = dividend_ptr[i]; | 
 | 				UDIV_QRNND_PREINV(dummy, r, r, | 
 | 						  n0, divisor_limb, | 
 | 						  divisor_limb_inverted); | 
 | 			} | 
 | 			return r; | 
 | 		} | 
 | 	} else { | 
 | 		if (UDIV_NEEDS_NORMALIZATION) { | 
 | 			int normalization_steps; | 
 |  | 
 | 			count_leading_zeros(normalization_steps, divisor_limb); | 
 | 			if (normalization_steps) { | 
 | 				divisor_limb <<= normalization_steps; | 
 |  | 
 | 				n1 = dividend_ptr[dividend_size - 1]; | 
 | 				r = n1 >> (BITS_PER_MPI_LIMB - | 
 | 					   normalization_steps); | 
 |  | 
 | 				/* Possible optimization: | 
 | 				 * if (r == 0 | 
 | 				 * && divisor_limb > ((n1 << normalization_steps) | 
 | 				 *                 | (dividend_ptr[dividend_size - 2] >> ...))) | 
 | 				 * ...one division less... | 
 | 				 */ | 
 | 				for (i = dividend_size - 2; i >= 0; i--) { | 
 | 					n0 = dividend_ptr[i]; | 
 | 					udiv_qrnnd(dummy, r, r, | 
 | 						   ((n1 << normalization_steps) | 
 | 						    | (n0 >> | 
 | 						       (BITS_PER_MPI_LIMB - | 
 | 							normalization_steps))), | 
 | 						   divisor_limb); | 
 | 					n1 = n0; | 
 | 				} | 
 | 				udiv_qrnnd(dummy, r, r, | 
 | 					   n1 << normalization_steps, | 
 | 					   divisor_limb); | 
 | 				return r >> normalization_steps; | 
 | 			} | 
 | 		} | 
 | 		/* No normalization needed, either because udiv_qrnnd doesn't require | 
 | 		 * it, or because DIVISOR_LIMB is already normalized.  */ | 
 | 		i = dividend_size - 1; | 
 | 		r = dividend_ptr[i]; | 
 |  | 
 | 		if (r >= divisor_limb) | 
 | 			r = 0; | 
 | 		else | 
 | 			i--; | 
 |  | 
 | 		for (; i >= 0; i--) { | 
 | 			n0 = dividend_ptr[i]; | 
 | 			udiv_qrnnd(dummy, r, r, n0, divisor_limb); | 
 | 		} | 
 | 		return r; | 
 | 	} | 
 | } | 
 |  | 
 | /* Divide num (NP/NSIZE) by den (DP/DSIZE) and write | 
 |  * the NSIZE-DSIZE least significant quotient limbs at QP | 
 |  * and the DSIZE long remainder at NP.	If QEXTRA_LIMBS is | 
 |  * non-zero, generate that many fraction bits and append them after the | 
 |  * other quotient limbs. | 
 |  * Return the most significant limb of the quotient, this is always 0 or 1. | 
 |  * | 
 |  * Preconditions: | 
 |  * 0. NSIZE >= DSIZE. | 
 |  * 1. The most significant bit of the divisor must be set. | 
 |  * 2. QP must either not overlap with the input operands at all, or | 
 |  *    QP + DSIZE >= NP must hold true.	(This means that it's | 
 |  *    possible to put the quotient in the high part of NUM, right after the | 
 |  *    remainder in NUM. | 
 |  * 3. NSIZE >= DSIZE, even if QEXTRA_LIMBS is non-zero. | 
 |  */ | 
 |  | 
 | mpi_limb_t | 
 | mpihelp_divrem(mpi_ptr_t qp, mpi_size_t qextra_limbs, | 
 | 	       mpi_ptr_t np, mpi_size_t nsize, mpi_ptr_t dp, mpi_size_t dsize) | 
 | { | 
 | 	mpi_limb_t most_significant_q_limb = 0; | 
 |  | 
 | 	switch (dsize) { | 
 | 	case 0: | 
 | 		/* We are asked to divide by zero, so go ahead and do it!  (To make | 
 | 		   the compiler not remove this statement, return the value.)  */ | 
 | 		/* | 
 | 		 * existing clients of this function have been modified | 
 | 		 * not to call it with dsize == 0, so this should not happen | 
 | 		 */ | 
 | 		return 1 / dsize; | 
 |  | 
 | 	case 1: | 
 | 		{ | 
 | 			mpi_size_t i; | 
 | 			mpi_limb_t n1; | 
 | 			mpi_limb_t d; | 
 |  | 
 | 			d = dp[0]; | 
 | 			n1 = np[nsize - 1]; | 
 |  | 
 | 			if (n1 >= d) { | 
 | 				n1 -= d; | 
 | 				most_significant_q_limb = 1; | 
 | 			} | 
 |  | 
 | 			qp += qextra_limbs; | 
 | 			for (i = nsize - 2; i >= 0; i--) | 
 | 				udiv_qrnnd(qp[i], n1, n1, np[i], d); | 
 | 			qp -= qextra_limbs; | 
 |  | 
 | 			for (i = qextra_limbs - 1; i >= 0; i--) | 
 | 				udiv_qrnnd(qp[i], n1, n1, 0, d); | 
 |  | 
 | 			np[0] = n1; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case 2: | 
 | 		{ | 
 | 			mpi_size_t i; | 
 | 			mpi_limb_t n1, n0, n2; | 
 | 			mpi_limb_t d1, d0; | 
 |  | 
 | 			np += nsize - 2; | 
 | 			d1 = dp[1]; | 
 | 			d0 = dp[0]; | 
 | 			n1 = np[1]; | 
 | 			n0 = np[0]; | 
 |  | 
 | 			if (n1 >= d1 && (n1 > d1 || n0 >= d0)) { | 
 | 				sub_ddmmss(n1, n0, n1, n0, d1, d0); | 
 | 				most_significant_q_limb = 1; | 
 | 			} | 
 |  | 
 | 			for (i = qextra_limbs + nsize - 2 - 1; i >= 0; i--) { | 
 | 				mpi_limb_t q; | 
 | 				mpi_limb_t r; | 
 |  | 
 | 				if (i >= qextra_limbs) | 
 | 					np--; | 
 | 				else | 
 | 					np[0] = 0; | 
 |  | 
 | 				if (n1 == d1) { | 
 | 					/* Q should be either 111..111 or 111..110.  Need special | 
 | 					 * treatment of this rare case as normal division would | 
 | 					 * give overflow.  */ | 
 | 					q = ~(mpi_limb_t) 0; | 
 |  | 
 | 					r = n0 + d1; | 
 | 					if (r < d1) {	/* Carry in the addition? */ | 
 | 						add_ssaaaa(n1, n0, r - d0, | 
 | 							   np[0], 0, d0); | 
 | 						qp[i] = q; | 
 | 						continue; | 
 | 					} | 
 | 					n1 = d0 - (d0 != 0 ? 1 : 0); | 
 | 					n0 = -d0; | 
 | 				} else { | 
 | 					udiv_qrnnd(q, r, n1, n0, d1); | 
 | 					umul_ppmm(n1, n0, d0, q); | 
 | 				} | 
 |  | 
 | 				n2 = np[0]; | 
 | q_test: | 
 | 				if (n1 > r || (n1 == r && n0 > n2)) { | 
 | 					/* The estimated Q was too large.  */ | 
 | 					q--; | 
 | 					sub_ddmmss(n1, n0, n1, n0, 0, d0); | 
 | 					r += d1; | 
 | 					if (r >= d1)	/* If not carry, test Q again.  */ | 
 | 						goto q_test; | 
 | 				} | 
 |  | 
 | 				qp[i] = q; | 
 | 				sub_ddmmss(n1, n0, r, n2, n1, n0); | 
 | 			} | 
 | 			np[1] = n1; | 
 | 			np[0] = n0; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		{ | 
 | 			mpi_size_t i; | 
 | 			mpi_limb_t dX, d1, n0; | 
 |  | 
 | 			np += nsize - dsize; | 
 | 			dX = dp[dsize - 1]; | 
 | 			d1 = dp[dsize - 2]; | 
 | 			n0 = np[dsize - 1]; | 
 |  | 
 | 			if (n0 >= dX) { | 
 | 				if (n0 > dX | 
 | 				    || mpihelp_cmp(np, dp, dsize - 1) >= 0) { | 
 | 					mpihelp_sub_n(np, np, dp, dsize); | 
 | 					n0 = np[dsize - 1]; | 
 | 					most_significant_q_limb = 1; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			for (i = qextra_limbs + nsize - dsize - 1; i >= 0; i--) { | 
 | 				mpi_limb_t q; | 
 | 				mpi_limb_t n1, n2; | 
 | 				mpi_limb_t cy_limb; | 
 |  | 
 | 				if (i >= qextra_limbs) { | 
 | 					np--; | 
 | 					n2 = np[dsize]; | 
 | 				} else { | 
 | 					n2 = np[dsize - 1]; | 
 | 					MPN_COPY_DECR(np + 1, np, dsize - 1); | 
 | 					np[0] = 0; | 
 | 				} | 
 |  | 
 | 				if (n0 == dX) { | 
 | 					/* This might over-estimate q, but it's probably not worth | 
 | 					 * the extra code here to find out.  */ | 
 | 					q = ~(mpi_limb_t) 0; | 
 | 				} else { | 
 | 					mpi_limb_t r; | 
 |  | 
 | 					udiv_qrnnd(q, r, n0, np[dsize - 1], dX); | 
 | 					umul_ppmm(n1, n0, d1, q); | 
 |  | 
 | 					while (n1 > r | 
 | 					       || (n1 == r | 
 | 						   && n0 > np[dsize - 2])) { | 
 | 						q--; | 
 | 						r += dX; | 
 | 						if (r < dX)	/* I.e. "carry in previous addition?" */ | 
 | 							break; | 
 | 						n1 -= n0 < d1; | 
 | 						n0 -= d1; | 
 | 					} | 
 | 				} | 
 |  | 
 | 				/* Possible optimization: We already have (q * n0) and (1 * n1) | 
 | 				 * after the calculation of q.  Taking advantage of that, we | 
 | 				 * could make this loop make two iterations less.  */ | 
 | 				cy_limb = mpihelp_submul_1(np, dp, dsize, q); | 
 |  | 
 | 				if (n2 != cy_limb) { | 
 | 					mpihelp_add_n(np, np, dp, dsize); | 
 | 					q--; | 
 | 				} | 
 |  | 
 | 				qp[i] = q; | 
 | 				n0 = np[dsize - 1]; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return most_significant_q_limb; | 
 | } | 
 |  | 
 | /**************** | 
 |  * Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB. | 
 |  * Write DIVIDEND_SIZE limbs of quotient at QUOT_PTR. | 
 |  * Return the single-limb remainder. | 
 |  * There are no constraints on the value of the divisor. | 
 |  * | 
 |  * QUOT_PTR and DIVIDEND_PTR might point to the same limb. | 
 |  */ | 
 |  | 
 | mpi_limb_t | 
 | mpihelp_divmod_1(mpi_ptr_t quot_ptr, | 
 | 		 mpi_ptr_t dividend_ptr, mpi_size_t dividend_size, | 
 | 		 mpi_limb_t divisor_limb) | 
 | { | 
 | 	mpi_size_t i; | 
 | 	mpi_limb_t n1, n0, r; | 
 | 	int dummy; | 
 |  | 
 | 	if (!dividend_size) | 
 | 		return 0; | 
 |  | 
 | 	/* If multiplication is much faster than division, and the | 
 | 	 * dividend is large, pre-invert the divisor, and use | 
 | 	 * only multiplications in the inner loop. | 
 | 	 * | 
 | 	 * This test should be read: | 
 | 	 * Does it ever help to use udiv_qrnnd_preinv? | 
 | 	 * && Does what we save compensate for the inversion overhead? | 
 | 	 */ | 
 | 	if (UDIV_TIME > (2 * UMUL_TIME + 6) | 
 | 	    && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) { | 
 | 		int normalization_steps; | 
 |  | 
 | 		count_leading_zeros(normalization_steps, divisor_limb); | 
 | 		if (normalization_steps) { | 
 | 			mpi_limb_t divisor_limb_inverted; | 
 |  | 
 | 			divisor_limb <<= normalization_steps; | 
 |  | 
 | 			/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The | 
 | 			 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the | 
 | 			 * most significant bit (with weight 2**N) implicit. | 
 | 			 */ | 
 | 			/* Special case for DIVISOR_LIMB == 100...000.  */ | 
 | 			if (!(divisor_limb << 1)) | 
 | 				divisor_limb_inverted = ~(mpi_limb_t) 0; | 
 | 			else | 
 | 				udiv_qrnnd(divisor_limb_inverted, dummy, | 
 | 					   -divisor_limb, 0, divisor_limb); | 
 |  | 
 | 			n1 = dividend_ptr[dividend_size - 1]; | 
 | 			r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps); | 
 |  | 
 | 			/* Possible optimization: | 
 | 			 * if (r == 0 | 
 | 			 * && divisor_limb > ((n1 << normalization_steps) | 
 | 			 *                 | (dividend_ptr[dividend_size - 2] >> ...))) | 
 | 			 * ...one division less... | 
 | 			 */ | 
 | 			for (i = dividend_size - 2; i >= 0; i--) { | 
 | 				n0 = dividend_ptr[i]; | 
 | 				UDIV_QRNND_PREINV(quot_ptr[i + 1], r, r, | 
 | 						  ((n1 << normalization_steps) | 
 | 						   | (n0 >> | 
 | 						      (BITS_PER_MPI_LIMB - | 
 | 						       normalization_steps))), | 
 | 						  divisor_limb, | 
 | 						  divisor_limb_inverted); | 
 | 				n1 = n0; | 
 | 			} | 
 | 			UDIV_QRNND_PREINV(quot_ptr[0], r, r, | 
 | 					  n1 << normalization_steps, | 
 | 					  divisor_limb, divisor_limb_inverted); | 
 | 			return r >> normalization_steps; | 
 | 		} else { | 
 | 			mpi_limb_t divisor_limb_inverted; | 
 |  | 
 | 			/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The | 
 | 			 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the | 
 | 			 * most significant bit (with weight 2**N) implicit. | 
 | 			 */ | 
 | 			/* Special case for DIVISOR_LIMB == 100...000.  */ | 
 | 			if (!(divisor_limb << 1)) | 
 | 				divisor_limb_inverted = ~(mpi_limb_t) 0; | 
 | 			else | 
 | 				udiv_qrnnd(divisor_limb_inverted, dummy, | 
 | 					   -divisor_limb, 0, divisor_limb); | 
 |  | 
 | 			i = dividend_size - 1; | 
 | 			r = dividend_ptr[i]; | 
 |  | 
 | 			if (r >= divisor_limb) | 
 | 				r = 0; | 
 | 			else | 
 | 				quot_ptr[i--] = 0; | 
 |  | 
 | 			for (; i >= 0; i--) { | 
 | 				n0 = dividend_ptr[i]; | 
 | 				UDIV_QRNND_PREINV(quot_ptr[i], r, r, | 
 | 						  n0, divisor_limb, | 
 | 						  divisor_limb_inverted); | 
 | 			} | 
 | 			return r; | 
 | 		} | 
 | 	} else { | 
 | 		if (UDIV_NEEDS_NORMALIZATION) { | 
 | 			int normalization_steps; | 
 |  | 
 | 			count_leading_zeros(normalization_steps, divisor_limb); | 
 | 			if (normalization_steps) { | 
 | 				divisor_limb <<= normalization_steps; | 
 |  | 
 | 				n1 = dividend_ptr[dividend_size - 1]; | 
 | 				r = n1 >> (BITS_PER_MPI_LIMB - | 
 | 					   normalization_steps); | 
 |  | 
 | 				/* Possible optimization: | 
 | 				 * if (r == 0 | 
 | 				 * && divisor_limb > ((n1 << normalization_steps) | 
 | 				 *                 | (dividend_ptr[dividend_size - 2] >> ...))) | 
 | 				 * ...one division less... | 
 | 				 */ | 
 | 				for (i = dividend_size - 2; i >= 0; i--) { | 
 | 					n0 = dividend_ptr[i]; | 
 | 					udiv_qrnnd(quot_ptr[i + 1], r, r, | 
 | 						   ((n1 << normalization_steps) | 
 | 						    | (n0 >> | 
 | 						       (BITS_PER_MPI_LIMB - | 
 | 							normalization_steps))), | 
 | 						   divisor_limb); | 
 | 					n1 = n0; | 
 | 				} | 
 | 				udiv_qrnnd(quot_ptr[0], r, r, | 
 | 					   n1 << normalization_steps, | 
 | 					   divisor_limb); | 
 | 				return r >> normalization_steps; | 
 | 			} | 
 | 		} | 
 | 		/* No normalization needed, either because udiv_qrnnd doesn't require | 
 | 		 * it, or because DIVISOR_LIMB is already normalized.  */ | 
 | 		i = dividend_size - 1; | 
 | 		r = dividend_ptr[i]; | 
 |  | 
 | 		if (r >= divisor_limb) | 
 | 			r = 0; | 
 | 		else | 
 | 			quot_ptr[i--] = 0; | 
 |  | 
 | 		for (; i >= 0; i--) { | 
 | 			n0 = dividend_ptr[i]; | 
 | 			udiv_qrnnd(quot_ptr[i], r, r, n0, divisor_limb); | 
 | 		} | 
 | 		return r; | 
 | 	} | 
 | } |