| /* | 
 |  * Copyright (c) 2000-2006 Silicon Graphics, Inc. | 
 |  * All Rights Reserved. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public License as | 
 |  * published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it would be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write the Free Software Foundation, | 
 |  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA | 
 |  */ | 
 | #include "xfs.h" | 
 | #include "xfs_bit.h" | 
 | #include "xfs_log.h" | 
 | #include "xfs_clnt.h" | 
 | #include "xfs_inum.h" | 
 | #include "xfs_trans.h" | 
 | #include "xfs_sb.h" | 
 | #include "xfs_ag.h" | 
 | #include "xfs_dir2.h" | 
 | #include "xfs_alloc.h" | 
 | #include "xfs_dmapi.h" | 
 | #include "xfs_quota.h" | 
 | #include "xfs_mount.h" | 
 | #include "xfs_bmap_btree.h" | 
 | #include "xfs_alloc_btree.h" | 
 | #include "xfs_ialloc_btree.h" | 
 | #include "xfs_dir2_sf.h" | 
 | #include "xfs_attr_sf.h" | 
 | #include "xfs_dinode.h" | 
 | #include "xfs_inode.h" | 
 | #include "xfs_btree.h" | 
 | #include "xfs_ialloc.h" | 
 | #include "xfs_bmap.h" | 
 | #include "xfs_rtalloc.h" | 
 | #include "xfs_error.h" | 
 | #include "xfs_itable.h" | 
 | #include "xfs_rw.h" | 
 | #include "xfs_acl.h" | 
 | #include "xfs_cap.h" | 
 | #include "xfs_mac.h" | 
 | #include "xfs_attr.h" | 
 | #include "xfs_buf_item.h" | 
 | #include "xfs_utils.h" | 
 | #include "xfs_version.h" | 
 |  | 
 | #include <linux/namei.h> | 
 | #include <linux/init.h> | 
 | #include <linux/mount.h> | 
 | #include <linux/mempool.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/kthread.h> | 
 |  | 
 | STATIC struct quotactl_ops xfs_quotactl_operations; | 
 | STATIC struct super_operations xfs_super_operations; | 
 | STATIC kmem_zone_t *xfs_vnode_zone; | 
 | STATIC kmem_zone_t *xfs_ioend_zone; | 
 | mempool_t *xfs_ioend_pool; | 
 |  | 
 | STATIC struct xfs_mount_args * | 
 | xfs_args_allocate( | 
 | 	struct super_block	*sb, | 
 | 	int			silent) | 
 | { | 
 | 	struct xfs_mount_args	*args; | 
 |  | 
 | 	args = kmem_zalloc(sizeof(struct xfs_mount_args), KM_SLEEP); | 
 | 	args->logbufs = args->logbufsize = -1; | 
 | 	strncpy(args->fsname, sb->s_id, MAXNAMELEN); | 
 |  | 
 | 	/* Copy the already-parsed mount(2) flags we're interested in */ | 
 | 	if (sb->s_flags & MS_DIRSYNC) | 
 | 		args->flags |= XFSMNT_DIRSYNC; | 
 | 	if (sb->s_flags & MS_SYNCHRONOUS) | 
 | 		args->flags |= XFSMNT_WSYNC; | 
 | 	if (silent) | 
 | 		args->flags |= XFSMNT_QUIET; | 
 | 	args->flags |= XFSMNT_32BITINODES; | 
 |  | 
 | 	return args; | 
 | } | 
 |  | 
 | __uint64_t | 
 | xfs_max_file_offset( | 
 | 	unsigned int		blockshift) | 
 | { | 
 | 	unsigned int		pagefactor = 1; | 
 | 	unsigned int		bitshift = BITS_PER_LONG - 1; | 
 |  | 
 | 	/* Figure out maximum filesize, on Linux this can depend on | 
 | 	 * the filesystem blocksize (on 32 bit platforms). | 
 | 	 * __block_prepare_write does this in an [unsigned] long... | 
 | 	 *      page->index << (PAGE_CACHE_SHIFT - bbits) | 
 | 	 * So, for page sized blocks (4K on 32 bit platforms), | 
 | 	 * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is | 
 | 	 *      (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1) | 
 | 	 * but for smaller blocksizes it is less (bbits = log2 bsize). | 
 | 	 * Note1: get_block_t takes a long (implicit cast from above) | 
 | 	 * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch | 
 | 	 * can optionally convert the [unsigned] long from above into | 
 | 	 * an [unsigned] long long. | 
 | 	 */ | 
 |  | 
 | #if BITS_PER_LONG == 32 | 
 | # if defined(CONFIG_LBD) | 
 | 	ASSERT(sizeof(sector_t) == 8); | 
 | 	pagefactor = PAGE_CACHE_SIZE; | 
 | 	bitshift = BITS_PER_LONG; | 
 | # else | 
 | 	pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift); | 
 | # endif | 
 | #endif | 
 |  | 
 | 	return (((__uint64_t)pagefactor) << bitshift) - 1; | 
 | } | 
 |  | 
 | STATIC __inline__ void | 
 | xfs_set_inodeops( | 
 | 	struct inode		*inode) | 
 | { | 
 | 	switch (inode->i_mode & S_IFMT) { | 
 | 	case S_IFREG: | 
 | 		inode->i_op = &xfs_inode_operations; | 
 | 		inode->i_fop = &xfs_file_operations; | 
 | 		inode->i_mapping->a_ops = &xfs_address_space_operations; | 
 | 		break; | 
 | 	case S_IFDIR: | 
 | 		inode->i_op = &xfs_dir_inode_operations; | 
 | 		inode->i_fop = &xfs_dir_file_operations; | 
 | 		break; | 
 | 	case S_IFLNK: | 
 | 		inode->i_op = &xfs_symlink_inode_operations; | 
 | 		if (inode->i_blocks) | 
 | 			inode->i_mapping->a_ops = &xfs_address_space_operations; | 
 | 		break; | 
 | 	default: | 
 | 		inode->i_op = &xfs_inode_operations; | 
 | 		init_special_inode(inode, inode->i_mode, inode->i_rdev); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | STATIC __inline__ void | 
 | xfs_revalidate_inode( | 
 | 	xfs_mount_t		*mp, | 
 | 	bhv_vnode_t		*vp, | 
 | 	xfs_inode_t		*ip) | 
 | { | 
 | 	struct inode		*inode = vn_to_inode(vp); | 
 |  | 
 | 	inode->i_mode	= ip->i_d.di_mode; | 
 | 	inode->i_nlink	= ip->i_d.di_nlink; | 
 | 	inode->i_uid	= ip->i_d.di_uid; | 
 | 	inode->i_gid	= ip->i_d.di_gid; | 
 |  | 
 | 	switch (inode->i_mode & S_IFMT) { | 
 | 	case S_IFBLK: | 
 | 	case S_IFCHR: | 
 | 		inode->i_rdev = | 
 | 			MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff, | 
 | 			      sysv_minor(ip->i_df.if_u2.if_rdev)); | 
 | 		break; | 
 | 	default: | 
 | 		inode->i_rdev = 0; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	inode->i_generation = ip->i_d.di_gen; | 
 | 	i_size_write(inode, ip->i_d.di_size); | 
 | 	inode->i_blocks = | 
 | 		XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks); | 
 | 	inode->i_atime.tv_sec	= ip->i_d.di_atime.t_sec; | 
 | 	inode->i_atime.tv_nsec	= ip->i_d.di_atime.t_nsec; | 
 | 	inode->i_mtime.tv_sec	= ip->i_d.di_mtime.t_sec; | 
 | 	inode->i_mtime.tv_nsec	= ip->i_d.di_mtime.t_nsec; | 
 | 	inode->i_ctime.tv_sec	= ip->i_d.di_ctime.t_sec; | 
 | 	inode->i_ctime.tv_nsec	= ip->i_d.di_ctime.t_nsec; | 
 | 	if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE) | 
 | 		inode->i_flags |= S_IMMUTABLE; | 
 | 	else | 
 | 		inode->i_flags &= ~S_IMMUTABLE; | 
 | 	if (ip->i_d.di_flags & XFS_DIFLAG_APPEND) | 
 | 		inode->i_flags |= S_APPEND; | 
 | 	else | 
 | 		inode->i_flags &= ~S_APPEND; | 
 | 	if (ip->i_d.di_flags & XFS_DIFLAG_SYNC) | 
 | 		inode->i_flags |= S_SYNC; | 
 | 	else | 
 | 		inode->i_flags &= ~S_SYNC; | 
 | 	if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME) | 
 | 		inode->i_flags |= S_NOATIME; | 
 | 	else | 
 | 		inode->i_flags &= ~S_NOATIME; | 
 | 	vp->v_flag &= ~VMODIFIED; | 
 | } | 
 |  | 
 | void | 
 | xfs_initialize_vnode( | 
 | 	bhv_desc_t		*bdp, | 
 | 	bhv_vnode_t		*vp, | 
 | 	bhv_desc_t		*inode_bhv, | 
 | 	int			unlock) | 
 | { | 
 | 	xfs_inode_t		*ip = XFS_BHVTOI(inode_bhv); | 
 | 	struct inode		*inode = vn_to_inode(vp); | 
 |  | 
 | 	if (!inode_bhv->bd_vobj) { | 
 | 		vp->v_vfsp = bhvtovfs(bdp); | 
 | 		bhv_desc_init(inode_bhv, ip, vp, &xfs_vnodeops); | 
 | 		bhv_insert(VN_BHV_HEAD(vp), inode_bhv); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We need to set the ops vectors, and unlock the inode, but if | 
 | 	 * we have been called during the new inode create process, it is | 
 | 	 * too early to fill in the Linux inode.  We will get called a | 
 | 	 * second time once the inode is properly set up, and then we can | 
 | 	 * finish our work. | 
 | 	 */ | 
 | 	if (ip->i_d.di_mode != 0 && unlock && (inode->i_state & I_NEW)) { | 
 | 		xfs_revalidate_inode(XFS_BHVTOM(bdp), vp, ip); | 
 | 		xfs_set_inodeops(inode); | 
 |  | 
 | 		ip->i_flags &= ~XFS_INEW; | 
 | 		barrier(); | 
 |  | 
 | 		unlock_new_inode(inode); | 
 | 	} | 
 | } | 
 |  | 
 | int | 
 | xfs_blkdev_get( | 
 | 	xfs_mount_t		*mp, | 
 | 	const char		*name, | 
 | 	struct block_device	**bdevp) | 
 | { | 
 | 	int			error = 0; | 
 |  | 
 | 	*bdevp = open_bdev_excl(name, 0, mp); | 
 | 	if (IS_ERR(*bdevp)) { | 
 | 		error = PTR_ERR(*bdevp); | 
 | 		printk("XFS: Invalid device [%s], error=%d\n", name, error); | 
 | 	} | 
 |  | 
 | 	return -error; | 
 | } | 
 |  | 
 | void | 
 | xfs_blkdev_put( | 
 | 	struct block_device	*bdev) | 
 | { | 
 | 	if (bdev) | 
 | 		close_bdev_excl(bdev); | 
 | } | 
 |  | 
 | /* | 
 |  * Try to write out the superblock using barriers. | 
 |  */ | 
 | STATIC int | 
 | xfs_barrier_test( | 
 | 	xfs_mount_t	*mp) | 
 | { | 
 | 	xfs_buf_t	*sbp = xfs_getsb(mp, 0); | 
 | 	int		error; | 
 |  | 
 | 	XFS_BUF_UNDONE(sbp); | 
 | 	XFS_BUF_UNREAD(sbp); | 
 | 	XFS_BUF_UNDELAYWRITE(sbp); | 
 | 	XFS_BUF_WRITE(sbp); | 
 | 	XFS_BUF_UNASYNC(sbp); | 
 | 	XFS_BUF_ORDERED(sbp); | 
 |  | 
 | 	xfsbdstrat(mp, sbp); | 
 | 	error = xfs_iowait(sbp); | 
 |  | 
 | 	/* | 
 | 	 * Clear all the flags we set and possible error state in the | 
 | 	 * buffer.  We only did the write to try out whether barriers | 
 | 	 * worked and shouldn't leave any traces in the superblock | 
 | 	 * buffer. | 
 | 	 */ | 
 | 	XFS_BUF_DONE(sbp); | 
 | 	XFS_BUF_ERROR(sbp, 0); | 
 | 	XFS_BUF_UNORDERED(sbp); | 
 |  | 
 | 	xfs_buf_relse(sbp); | 
 | 	return error; | 
 | } | 
 |  | 
 | void | 
 | xfs_mountfs_check_barriers(xfs_mount_t *mp) | 
 | { | 
 | 	int error; | 
 |  | 
 | 	if (mp->m_logdev_targp != mp->m_ddev_targp) { | 
 | 		xfs_fs_cmn_err(CE_NOTE, mp, | 
 | 		  "Disabling barriers, not supported with external log device"); | 
 | 		mp->m_flags &= ~XFS_MOUNT_BARRIER; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (mp->m_ddev_targp->bt_bdev->bd_disk->queue->ordered == | 
 | 					QUEUE_ORDERED_NONE) { | 
 | 		xfs_fs_cmn_err(CE_NOTE, mp, | 
 | 		  "Disabling barriers, not supported by the underlying device"); | 
 | 		mp->m_flags &= ~XFS_MOUNT_BARRIER; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (xfs_readonly_buftarg(mp->m_ddev_targp)) { | 
 | 		xfs_fs_cmn_err(CE_NOTE, mp, | 
 | 		  "Disabling barriers, underlying device is readonly"); | 
 | 		mp->m_flags &= ~XFS_MOUNT_BARRIER; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	error = xfs_barrier_test(mp); | 
 | 	if (error) { | 
 | 		xfs_fs_cmn_err(CE_NOTE, mp, | 
 | 		  "Disabling barriers, trial barrier write failed"); | 
 | 		mp->m_flags &= ~XFS_MOUNT_BARRIER; | 
 | 		return; | 
 | 	} | 
 | } | 
 |  | 
 | void | 
 | xfs_blkdev_issue_flush( | 
 | 	xfs_buftarg_t		*buftarg) | 
 | { | 
 | 	blkdev_issue_flush(buftarg->bt_bdev, NULL); | 
 | } | 
 |  | 
 | STATIC struct inode * | 
 | xfs_fs_alloc_inode( | 
 | 	struct super_block	*sb) | 
 | { | 
 | 	bhv_vnode_t		*vp; | 
 |  | 
 | 	vp = kmem_zone_alloc(xfs_vnode_zone, KM_SLEEP); | 
 | 	if (unlikely(!vp)) | 
 | 		return NULL; | 
 | 	return vn_to_inode(vp); | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_fs_destroy_inode( | 
 | 	struct inode		*inode) | 
 | { | 
 | 	kmem_zone_free(xfs_vnode_zone, vn_from_inode(inode)); | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_fs_inode_init_once( | 
 | 	void			*vnode, | 
 | 	kmem_zone_t		*zonep, | 
 | 	unsigned long		flags) | 
 | { | 
 | 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == | 
 | 		      SLAB_CTOR_CONSTRUCTOR) | 
 | 		inode_init_once(vn_to_inode((bhv_vnode_t *)vnode)); | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_init_zones(void) | 
 | { | 
 | 	xfs_vnode_zone = kmem_zone_init_flags(sizeof(bhv_vnode_t), "xfs_vnode", | 
 | 					KM_ZONE_HWALIGN | KM_ZONE_RECLAIM | | 
 | 					KM_ZONE_SPREAD, | 
 | 					xfs_fs_inode_init_once); | 
 | 	if (!xfs_vnode_zone) | 
 | 		goto out; | 
 |  | 
 | 	xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend"); | 
 | 	if (!xfs_ioend_zone) | 
 | 		goto out_destroy_vnode_zone; | 
 |  | 
 | 	xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE, | 
 | 						  xfs_ioend_zone); | 
 | 	if (!xfs_ioend_pool) | 
 | 		goto out_free_ioend_zone; | 
 | 	return 0; | 
 |  | 
 |  out_free_ioend_zone: | 
 | 	kmem_zone_destroy(xfs_ioend_zone); | 
 |  out_destroy_vnode_zone: | 
 | 	kmem_zone_destroy(xfs_vnode_zone); | 
 |  out: | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_destroy_zones(void) | 
 | { | 
 | 	mempool_destroy(xfs_ioend_pool); | 
 | 	kmem_zone_destroy(xfs_vnode_zone); | 
 | 	kmem_zone_destroy(xfs_ioend_zone); | 
 | } | 
 |  | 
 | /* | 
 |  * Attempt to flush the inode, this will actually fail | 
 |  * if the inode is pinned, but we dirty the inode again | 
 |  * at the point when it is unpinned after a log write, | 
 |  * since this is when the inode itself becomes flushable. | 
 |  */ | 
 | STATIC int | 
 | xfs_fs_write_inode( | 
 | 	struct inode		*inode, | 
 | 	int			sync) | 
 | { | 
 | 	bhv_vnode_t		*vp = vn_from_inode(inode); | 
 | 	int			error = 0, flags = FLUSH_INODE; | 
 |  | 
 | 	if (vp) { | 
 | 		vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address); | 
 | 		if (sync) | 
 | 			flags |= FLUSH_SYNC; | 
 | 		error = bhv_vop_iflush(vp, flags); | 
 | 		if (error == EAGAIN) | 
 | 			error = sync? bhv_vop_iflush(vp, flags | FLUSH_LOG) : 0; | 
 | 	} | 
 | 	return -error; | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_fs_clear_inode( | 
 | 	struct inode		*inode) | 
 | { | 
 | 	bhv_vnode_t		*vp = vn_from_inode(inode); | 
 |  | 
 | 	vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address); | 
 |  | 
 | 	XFS_STATS_INC(vn_rele); | 
 | 	XFS_STATS_INC(vn_remove); | 
 | 	XFS_STATS_INC(vn_reclaim); | 
 | 	XFS_STATS_DEC(vn_active); | 
 |  | 
 | 	/* | 
 | 	 * This can happen because xfs_iget_core calls xfs_idestroy if we | 
 | 	 * find an inode with di_mode == 0 but without IGET_CREATE set. | 
 | 	 */ | 
 | 	if (VNHEAD(vp)) | 
 | 		bhv_vop_inactive(vp, NULL); | 
 |  | 
 | 	VN_LOCK(vp); | 
 | 	vp->v_flag &= ~VMODIFIED; | 
 | 	VN_UNLOCK(vp, 0); | 
 |  | 
 | 	if (VNHEAD(vp)) | 
 | 		if (bhv_vop_reclaim(vp)) | 
 | 			panic("%s: cannot reclaim 0x%p\n", __FUNCTION__, vp); | 
 |  | 
 | 	ASSERT(VNHEAD(vp) == NULL); | 
 |  | 
 | #ifdef XFS_VNODE_TRACE | 
 | 	ktrace_free(vp->v_trace); | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * Enqueue a work item to be picked up by the vfs xfssyncd thread. | 
 |  * Doing this has two advantages: | 
 |  * - It saves on stack space, which is tight in certain situations | 
 |  * - It can be used (with care) as a mechanism to avoid deadlocks. | 
 |  * Flushing while allocating in a full filesystem requires both. | 
 |  */ | 
 | STATIC void | 
 | xfs_syncd_queue_work( | 
 | 	struct bhv_vfs	*vfs, | 
 | 	void		*data, | 
 | 	void		(*syncer)(bhv_vfs_t *, void *)) | 
 | { | 
 | 	struct bhv_vfs_sync_work *work; | 
 |  | 
 | 	work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP); | 
 | 	INIT_LIST_HEAD(&work->w_list); | 
 | 	work->w_syncer = syncer; | 
 | 	work->w_data = data; | 
 | 	work->w_vfs = vfs; | 
 | 	spin_lock(&vfs->vfs_sync_lock); | 
 | 	list_add_tail(&work->w_list, &vfs->vfs_sync_list); | 
 | 	spin_unlock(&vfs->vfs_sync_lock); | 
 | 	wake_up_process(vfs->vfs_sync_task); | 
 | } | 
 |  | 
 | /* | 
 |  * Flush delayed allocate data, attempting to free up reserved space | 
 |  * from existing allocations.  At this point a new allocation attempt | 
 |  * has failed with ENOSPC and we are in the process of scratching our | 
 |  * heads, looking about for more room... | 
 |  */ | 
 | STATIC void | 
 | xfs_flush_inode_work( | 
 | 	bhv_vfs_t	*vfs, | 
 | 	void		*inode) | 
 | { | 
 | 	filemap_flush(((struct inode *)inode)->i_mapping); | 
 | 	iput((struct inode *)inode); | 
 | } | 
 |  | 
 | void | 
 | xfs_flush_inode( | 
 | 	xfs_inode_t	*ip) | 
 | { | 
 | 	struct inode	*inode = vn_to_inode(XFS_ITOV(ip)); | 
 | 	struct bhv_vfs	*vfs = XFS_MTOVFS(ip->i_mount); | 
 |  | 
 | 	igrab(inode); | 
 | 	xfs_syncd_queue_work(vfs, inode, xfs_flush_inode_work); | 
 | 	delay(msecs_to_jiffies(500)); | 
 | } | 
 |  | 
 | /* | 
 |  * This is the "bigger hammer" version of xfs_flush_inode_work... | 
 |  * (IOW, "If at first you don't succeed, use a Bigger Hammer"). | 
 |  */ | 
 | STATIC void | 
 | xfs_flush_device_work( | 
 | 	bhv_vfs_t	*vfs, | 
 | 	void		*inode) | 
 | { | 
 | 	sync_blockdev(vfs->vfs_super->s_bdev); | 
 | 	iput((struct inode *)inode); | 
 | } | 
 |  | 
 | void | 
 | xfs_flush_device( | 
 | 	xfs_inode_t	*ip) | 
 | { | 
 | 	struct inode	*inode = vn_to_inode(XFS_ITOV(ip)); | 
 | 	struct bhv_vfs	*vfs = XFS_MTOVFS(ip->i_mount); | 
 |  | 
 | 	igrab(inode); | 
 | 	xfs_syncd_queue_work(vfs, inode, xfs_flush_device_work); | 
 | 	delay(msecs_to_jiffies(500)); | 
 | 	xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC); | 
 | } | 
 |  | 
 | STATIC void | 
 | vfs_sync_worker( | 
 | 	bhv_vfs_t	*vfsp, | 
 | 	void		*unused) | 
 | { | 
 | 	int		error; | 
 |  | 
 | 	if (!(vfsp->vfs_flag & VFS_RDONLY)) | 
 | 		error = bhv_vfs_sync(vfsp, SYNC_FSDATA | SYNC_BDFLUSH | \ | 
 | 					SYNC_ATTR | SYNC_REFCACHE, NULL); | 
 | 	vfsp->vfs_sync_seq++; | 
 | 	wmb(); | 
 | 	wake_up(&vfsp->vfs_wait_single_sync_task); | 
 | } | 
 |  | 
 | STATIC int | 
 | xfssyncd( | 
 | 	void			*arg) | 
 | { | 
 | 	long			timeleft; | 
 | 	bhv_vfs_t		*vfsp = (bhv_vfs_t *) arg; | 
 | 	bhv_vfs_sync_work_t	*work, *n; | 
 | 	LIST_HEAD		(tmp); | 
 |  | 
 | 	timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10); | 
 | 	for (;;) { | 
 | 		timeleft = schedule_timeout_interruptible(timeleft); | 
 | 		/* swsusp */ | 
 | 		try_to_freeze(); | 
 | 		if (kthread_should_stop() && list_empty(&vfsp->vfs_sync_list)) | 
 | 			break; | 
 |  | 
 | 		spin_lock(&vfsp->vfs_sync_lock); | 
 | 		/* | 
 | 		 * We can get woken by laptop mode, to do a sync - | 
 | 		 * that's the (only!) case where the list would be | 
 | 		 * empty with time remaining. | 
 | 		 */ | 
 | 		if (!timeleft || list_empty(&vfsp->vfs_sync_list)) { | 
 | 			if (!timeleft) | 
 | 				timeleft = xfs_syncd_centisecs * | 
 | 							msecs_to_jiffies(10); | 
 | 			INIT_LIST_HEAD(&vfsp->vfs_sync_work.w_list); | 
 | 			list_add_tail(&vfsp->vfs_sync_work.w_list, | 
 | 					&vfsp->vfs_sync_list); | 
 | 		} | 
 | 		list_for_each_entry_safe(work, n, &vfsp->vfs_sync_list, w_list) | 
 | 			list_move(&work->w_list, &tmp); | 
 | 		spin_unlock(&vfsp->vfs_sync_lock); | 
 |  | 
 | 		list_for_each_entry_safe(work, n, &tmp, w_list) { | 
 | 			(*work->w_syncer)(vfsp, work->w_data); | 
 | 			list_del(&work->w_list); | 
 | 			if (work == &vfsp->vfs_sync_work) | 
 | 				continue; | 
 | 			kmem_free(work, sizeof(struct bhv_vfs_sync_work)); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_fs_start_syncd( | 
 | 	bhv_vfs_t		*vfsp) | 
 | { | 
 | 	vfsp->vfs_sync_work.w_syncer = vfs_sync_worker; | 
 | 	vfsp->vfs_sync_work.w_vfs = vfsp; | 
 | 	vfsp->vfs_sync_task = kthread_run(xfssyncd, vfsp, "xfssyncd"); | 
 | 	if (IS_ERR(vfsp->vfs_sync_task)) | 
 | 		return -PTR_ERR(vfsp->vfs_sync_task); | 
 | 	return 0; | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_fs_stop_syncd( | 
 | 	bhv_vfs_t		*vfsp) | 
 | { | 
 | 	kthread_stop(vfsp->vfs_sync_task); | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_fs_put_super( | 
 | 	struct super_block	*sb) | 
 | { | 
 | 	bhv_vfs_t		*vfsp = vfs_from_sb(sb); | 
 | 	int			error; | 
 |  | 
 | 	xfs_fs_stop_syncd(vfsp); | 
 | 	bhv_vfs_sync(vfsp, SYNC_ATTR | SYNC_DELWRI, NULL); | 
 | 	error = bhv_vfs_unmount(vfsp, 0, NULL); | 
 | 	if (error) { | 
 | 		printk("XFS: unmount got error=%d\n", error); | 
 | 		printk("%s: vfs=0x%p left dangling!\n", __FUNCTION__, vfsp); | 
 | 	} else { | 
 | 		vfs_deallocate(vfsp); | 
 | 	} | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_fs_write_super( | 
 | 	struct super_block	*sb) | 
 | { | 
 | 	if (!(sb->s_flags & MS_RDONLY)) | 
 | 		bhv_vfs_sync(vfs_from_sb(sb), SYNC_FSDATA, NULL); | 
 | 	sb->s_dirt = 0; | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_fs_sync_super( | 
 | 	struct super_block	*sb, | 
 | 	int			wait) | 
 | { | 
 | 	bhv_vfs_t		*vfsp = vfs_from_sb(sb); | 
 | 	int			error; | 
 | 	int			flags; | 
 |  | 
 | 	if (unlikely(sb->s_frozen == SB_FREEZE_WRITE)) | 
 | 		flags = SYNC_QUIESCE; | 
 | 	else | 
 | 		flags = SYNC_FSDATA | (wait ? SYNC_WAIT : 0); | 
 |  | 
 | 	error = bhv_vfs_sync(vfsp, flags, NULL); | 
 | 	sb->s_dirt = 0; | 
 |  | 
 | 	if (unlikely(laptop_mode)) { | 
 | 		int	prev_sync_seq = vfsp->vfs_sync_seq; | 
 |  | 
 | 		/* | 
 | 		 * The disk must be active because we're syncing. | 
 | 		 * We schedule xfssyncd now (now that the disk is | 
 | 		 * active) instead of later (when it might not be). | 
 | 		 */ | 
 | 		wake_up_process(vfsp->vfs_sync_task); | 
 | 		/* | 
 | 		 * We have to wait for the sync iteration to complete. | 
 | 		 * If we don't, the disk activity caused by the sync | 
 | 		 * will come after the sync is completed, and that | 
 | 		 * triggers another sync from laptop mode. | 
 | 		 */ | 
 | 		wait_event(vfsp->vfs_wait_single_sync_task, | 
 | 				vfsp->vfs_sync_seq != prev_sync_seq); | 
 | 	} | 
 |  | 
 | 	return -error; | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_fs_statfs( | 
 | 	struct dentry		*dentry, | 
 | 	struct kstatfs		*statp) | 
 | { | 
 | 	return -bhv_vfs_statvfs(vfs_from_sb(dentry->d_sb), statp, | 
 | 				vn_from_inode(dentry->d_inode)); | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_fs_remount( | 
 | 	struct super_block	*sb, | 
 | 	int			*flags, | 
 | 	char			*options) | 
 | { | 
 | 	bhv_vfs_t		*vfsp = vfs_from_sb(sb); | 
 | 	struct xfs_mount_args	*args = xfs_args_allocate(sb, 0); | 
 | 	int			error; | 
 |  | 
 | 	error = bhv_vfs_parseargs(vfsp, options, args, 1); | 
 | 	if (!error) | 
 | 		error = bhv_vfs_mntupdate(vfsp, flags, args); | 
 | 	kmem_free(args, sizeof(*args)); | 
 | 	return -error; | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_fs_lockfs( | 
 | 	struct super_block	*sb) | 
 | { | 
 | 	bhv_vfs_freeze(vfs_from_sb(sb)); | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_fs_show_options( | 
 | 	struct seq_file		*m, | 
 | 	struct vfsmount		*mnt) | 
 | { | 
 | 	return -bhv_vfs_showargs(vfs_from_sb(mnt->mnt_sb), m); | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_fs_quotasync( | 
 | 	struct super_block	*sb, | 
 | 	int			type) | 
 | { | 
 | 	return -bhv_vfs_quotactl(vfs_from_sb(sb), Q_XQUOTASYNC, 0, NULL); | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_fs_getxstate( | 
 | 	struct super_block	*sb, | 
 | 	struct fs_quota_stat	*fqs) | 
 | { | 
 | 	return -bhv_vfs_quotactl(vfs_from_sb(sb), Q_XGETQSTAT, 0, (caddr_t)fqs); | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_fs_setxstate( | 
 | 	struct super_block	*sb, | 
 | 	unsigned int		flags, | 
 | 	int			op) | 
 | { | 
 | 	return -bhv_vfs_quotactl(vfs_from_sb(sb), op, 0, (caddr_t)&flags); | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_fs_getxquota( | 
 | 	struct super_block	*sb, | 
 | 	int			type, | 
 | 	qid_t			id, | 
 | 	struct fs_disk_quota	*fdq) | 
 | { | 
 | 	return -bhv_vfs_quotactl(vfs_from_sb(sb), | 
 | 				 (type == USRQUOTA) ? Q_XGETQUOTA : | 
 | 				  ((type == GRPQUOTA) ? Q_XGETGQUOTA : | 
 | 				   Q_XGETPQUOTA), id, (caddr_t)fdq); | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_fs_setxquota( | 
 | 	struct super_block	*sb, | 
 | 	int			type, | 
 | 	qid_t			id, | 
 | 	struct fs_disk_quota	*fdq) | 
 | { | 
 | 	return -bhv_vfs_quotactl(vfs_from_sb(sb), | 
 | 				 (type == USRQUOTA) ? Q_XSETQLIM : | 
 | 				  ((type == GRPQUOTA) ? Q_XSETGQLIM : | 
 | 				   Q_XSETPQLIM), id, (caddr_t)fdq); | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_fs_fill_super( | 
 | 	struct super_block	*sb, | 
 | 	void			*data, | 
 | 	int			silent) | 
 | { | 
 | 	struct bhv_vnode	*rootvp; | 
 | 	struct bhv_vfs		*vfsp = vfs_allocate(sb); | 
 | 	struct xfs_mount_args	*args = xfs_args_allocate(sb, silent); | 
 | 	struct kstatfs		statvfs; | 
 | 	int			error; | 
 |  | 
 | 	bhv_insert_all_vfsops(vfsp); | 
 |  | 
 | 	error = bhv_vfs_parseargs(vfsp, (char *)data, args, 0); | 
 | 	if (error) { | 
 | 		bhv_remove_all_vfsops(vfsp, 1); | 
 | 		goto fail_vfsop; | 
 | 	} | 
 |  | 
 | 	sb_min_blocksize(sb, BBSIZE); | 
 | 	sb->s_export_op = &xfs_export_operations; | 
 | 	sb->s_qcop = &xfs_quotactl_operations; | 
 | 	sb->s_op = &xfs_super_operations; | 
 |  | 
 | 	error = bhv_vfs_mount(vfsp, args, NULL); | 
 | 	if (error) { | 
 | 		bhv_remove_all_vfsops(vfsp, 1); | 
 | 		goto fail_vfsop; | 
 | 	} | 
 |  | 
 | 	error = bhv_vfs_statvfs(vfsp, &statvfs, NULL); | 
 | 	if (error) | 
 | 		goto fail_unmount; | 
 |  | 
 | 	sb->s_dirt = 1; | 
 | 	sb->s_magic = statvfs.f_type; | 
 | 	sb->s_blocksize = statvfs.f_bsize; | 
 | 	sb->s_blocksize_bits = ffs(statvfs.f_bsize) - 1; | 
 | 	sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits); | 
 | 	sb->s_time_gran = 1; | 
 | 	set_posix_acl_flag(sb); | 
 |  | 
 | 	error = bhv_vfs_root(vfsp, &rootvp); | 
 | 	if (error) | 
 | 		goto fail_unmount; | 
 |  | 
 | 	sb->s_root = d_alloc_root(vn_to_inode(rootvp)); | 
 | 	if (!sb->s_root) { | 
 | 		error = ENOMEM; | 
 | 		goto fail_vnrele; | 
 | 	} | 
 | 	if (is_bad_inode(sb->s_root->d_inode)) { | 
 | 		error = EINVAL; | 
 | 		goto fail_vnrele; | 
 | 	} | 
 | 	if ((error = xfs_fs_start_syncd(vfsp))) | 
 | 		goto fail_vnrele; | 
 | 	vn_trace_exit(rootvp, __FUNCTION__, (inst_t *)__return_address); | 
 |  | 
 | 	kmem_free(args, sizeof(*args)); | 
 | 	return 0; | 
 |  | 
 | fail_vnrele: | 
 | 	if (sb->s_root) { | 
 | 		dput(sb->s_root); | 
 | 		sb->s_root = NULL; | 
 | 	} else { | 
 | 		VN_RELE(rootvp); | 
 | 	} | 
 |  | 
 | fail_unmount: | 
 | 	bhv_vfs_unmount(vfsp, 0, NULL); | 
 |  | 
 | fail_vfsop: | 
 | 	vfs_deallocate(vfsp); | 
 | 	kmem_free(args, sizeof(*args)); | 
 | 	return -error; | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_fs_get_sb( | 
 | 	struct file_system_type	*fs_type, | 
 | 	int			flags, | 
 | 	const char		*dev_name, | 
 | 	void			*data, | 
 | 	struct vfsmount		*mnt) | 
 | { | 
 | 	return get_sb_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super, | 
 | 			   mnt); | 
 | } | 
 |  | 
 | STATIC struct super_operations xfs_super_operations = { | 
 | 	.alloc_inode		= xfs_fs_alloc_inode, | 
 | 	.destroy_inode		= xfs_fs_destroy_inode, | 
 | 	.write_inode		= xfs_fs_write_inode, | 
 | 	.clear_inode		= xfs_fs_clear_inode, | 
 | 	.put_super		= xfs_fs_put_super, | 
 | 	.write_super		= xfs_fs_write_super, | 
 | 	.sync_fs		= xfs_fs_sync_super, | 
 | 	.write_super_lockfs	= xfs_fs_lockfs, | 
 | 	.statfs			= xfs_fs_statfs, | 
 | 	.remount_fs		= xfs_fs_remount, | 
 | 	.show_options		= xfs_fs_show_options, | 
 | }; | 
 |  | 
 | STATIC struct quotactl_ops xfs_quotactl_operations = { | 
 | 	.quota_sync		= xfs_fs_quotasync, | 
 | 	.get_xstate		= xfs_fs_getxstate, | 
 | 	.set_xstate		= xfs_fs_setxstate, | 
 | 	.get_xquota		= xfs_fs_getxquota, | 
 | 	.set_xquota		= xfs_fs_setxquota, | 
 | }; | 
 |  | 
 | STATIC struct file_system_type xfs_fs_type = { | 
 | 	.owner			= THIS_MODULE, | 
 | 	.name			= "xfs", | 
 | 	.get_sb			= xfs_fs_get_sb, | 
 | 	.kill_sb		= kill_block_super, | 
 | 	.fs_flags		= FS_REQUIRES_DEV, | 
 | }; | 
 |  | 
 |  | 
 | STATIC int __init | 
 | init_xfs_fs( void ) | 
 | { | 
 | 	int			error; | 
 | 	struct sysinfo		si; | 
 | 	static char		message[] __initdata = KERN_INFO \ | 
 | 		XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n"; | 
 |  | 
 | 	printk(message); | 
 |  | 
 | 	si_meminfo(&si); | 
 | 	xfs_physmem = si.totalram; | 
 |  | 
 | 	ktrace_init(64); | 
 |  | 
 | 	error = xfs_init_zones(); | 
 | 	if (error < 0) | 
 | 		goto undo_zones; | 
 |  | 
 | 	error = xfs_buf_init(); | 
 | 	if (error < 0) | 
 | 		goto undo_buffers; | 
 |  | 
 | 	vn_init(); | 
 | 	xfs_init(); | 
 | 	uuid_init(); | 
 | 	vfs_initquota(); | 
 |  | 
 | 	error = register_filesystem(&xfs_fs_type); | 
 | 	if (error) | 
 | 		goto undo_register; | 
 | 	return 0; | 
 |  | 
 | undo_register: | 
 | 	xfs_buf_terminate(); | 
 |  | 
 | undo_buffers: | 
 | 	xfs_destroy_zones(); | 
 |  | 
 | undo_zones: | 
 | 	return error; | 
 | } | 
 |  | 
 | STATIC void __exit | 
 | exit_xfs_fs( void ) | 
 | { | 
 | 	vfs_exitquota(); | 
 | 	unregister_filesystem(&xfs_fs_type); | 
 | 	xfs_cleanup(); | 
 | 	xfs_buf_terminate(); | 
 | 	xfs_destroy_zones(); | 
 | 	ktrace_uninit(); | 
 | } | 
 |  | 
 | module_init(init_xfs_fs); | 
 | module_exit(exit_xfs_fs); | 
 |  | 
 | MODULE_AUTHOR("Silicon Graphics, Inc."); | 
 | MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled"); | 
 | MODULE_LICENSE("GPL"); |