|  | /* | 
|  | *  drivers/mtd/nand/rtc_from4.c | 
|  | * | 
|  | *  Copyright (C) 2004  Red Hat, Inc. | 
|  | * | 
|  | *  Derived from drivers/mtd/nand/spia.c | 
|  | *       Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) | 
|  | * | 
|  | * $Id: rtc_from4.c,v 1.10 2005/11/07 11:14:31 gleixner Exp $ | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * Overview: | 
|  | *   This is a device driver for the AG-AND flash device found on the | 
|  | *   Renesas Technology Corp. Flash ROM 4-slot interface board (FROM_BOARD4), | 
|  | *   which utilizes the Renesas HN29V1G91T-30 part. | 
|  | *   This chip is a 1 GBibit (128MiB x 8 bits) AG-AND flash device. | 
|  | */ | 
|  |  | 
|  | #include <linux/delay.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/rslib.h> | 
|  | #include <linux/bitrev.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/mtd/compatmac.h> | 
|  | #include <linux/mtd/mtd.h> | 
|  | #include <linux/mtd/nand.h> | 
|  | #include <linux/mtd/partitions.h> | 
|  | #include <asm/io.h> | 
|  |  | 
|  | /* | 
|  | * MTD structure for Renesas board | 
|  | */ | 
|  | static struct mtd_info *rtc_from4_mtd = NULL; | 
|  |  | 
|  | #define RTC_FROM4_MAX_CHIPS	2 | 
|  |  | 
|  | /* HS77x9 processor register defines */ | 
|  | #define SH77X9_BCR1	((volatile unsigned short *)(0xFFFFFF60)) | 
|  | #define SH77X9_BCR2	((volatile unsigned short *)(0xFFFFFF62)) | 
|  | #define SH77X9_WCR1	((volatile unsigned short *)(0xFFFFFF64)) | 
|  | #define SH77X9_WCR2	((volatile unsigned short *)(0xFFFFFF66)) | 
|  | #define SH77X9_MCR	((volatile unsigned short *)(0xFFFFFF68)) | 
|  | #define SH77X9_PCR	((volatile unsigned short *)(0xFFFFFF6C)) | 
|  | #define SH77X9_FRQCR	((volatile unsigned short *)(0xFFFFFF80)) | 
|  |  | 
|  | /* | 
|  | * Values specific to the Renesas Technology Corp. FROM_BOARD4 (used with HS77x9 processor) | 
|  | */ | 
|  | /* Address where flash is mapped */ | 
|  | #define RTC_FROM4_FIO_BASE	0x14000000 | 
|  |  | 
|  | /* CLE and ALE are tied to address lines 5 & 4, respectively */ | 
|  | #define RTC_FROM4_CLE		(1 << 5) | 
|  | #define RTC_FROM4_ALE		(1 << 4) | 
|  |  | 
|  | /* address lines A24-A22 used for chip selection */ | 
|  | #define RTC_FROM4_NAND_ADDR_SLOT3	(0x00800000) | 
|  | #define RTC_FROM4_NAND_ADDR_SLOT4	(0x00C00000) | 
|  | #define RTC_FROM4_NAND_ADDR_FPGA	(0x01000000) | 
|  | /* mask address lines A24-A22 used for chip selection */ | 
|  | #define RTC_FROM4_NAND_ADDR_MASK	(RTC_FROM4_NAND_ADDR_SLOT3 | RTC_FROM4_NAND_ADDR_SLOT4 | RTC_FROM4_NAND_ADDR_FPGA) | 
|  |  | 
|  | /* FPGA status register for checking device ready (bit zero) */ | 
|  | #define RTC_FROM4_FPGA_SR		(RTC_FROM4_NAND_ADDR_FPGA | 0x00000002) | 
|  | #define RTC_FROM4_DEVICE_READY		0x0001 | 
|  |  | 
|  | /* FPGA Reed-Solomon ECC Control register */ | 
|  |  | 
|  | #define RTC_FROM4_RS_ECC_CTL		(RTC_FROM4_NAND_ADDR_FPGA | 0x00000050) | 
|  | #define RTC_FROM4_RS_ECC_CTL_CLR	(1 << 7) | 
|  | #define RTC_FROM4_RS_ECC_CTL_GEN	(1 << 6) | 
|  | #define RTC_FROM4_RS_ECC_CTL_FD_E	(1 << 5) | 
|  |  | 
|  | /* FPGA Reed-Solomon ECC code base */ | 
|  | #define RTC_FROM4_RS_ECC		(RTC_FROM4_NAND_ADDR_FPGA | 0x00000060) | 
|  | #define RTC_FROM4_RS_ECCN		(RTC_FROM4_NAND_ADDR_FPGA | 0x00000080) | 
|  |  | 
|  | /* FPGA Reed-Solomon ECC check register */ | 
|  | #define RTC_FROM4_RS_ECC_CHK		(RTC_FROM4_NAND_ADDR_FPGA | 0x00000070) | 
|  | #define RTC_FROM4_RS_ECC_CHK_ERROR	(1 << 7) | 
|  |  | 
|  | #define ERR_STAT_ECC_AVAILABLE		0x20 | 
|  |  | 
|  | /* Undefine for software ECC */ | 
|  | #define RTC_FROM4_HWECC	1 | 
|  |  | 
|  | /* Define as 1 for no virtual erase blocks (in JFFS2) */ | 
|  | #define RTC_FROM4_NO_VIRTBLOCKS	0 | 
|  |  | 
|  | /* | 
|  | * Module stuff | 
|  | */ | 
|  | static void __iomem *rtc_from4_fio_base = (void *)P2SEGADDR(RTC_FROM4_FIO_BASE); | 
|  |  | 
|  | static const struct mtd_partition partition_info[] = { | 
|  | { | 
|  | .name = "Renesas flash partition 1", | 
|  | .offset = 0, | 
|  | .size = MTDPART_SIZ_FULL}, | 
|  | }; | 
|  |  | 
|  | #define NUM_PARTITIONS 1 | 
|  |  | 
|  | /* | 
|  | *	hardware specific flash bbt decriptors | 
|  | *	Note: this is to allow debugging by disabling | 
|  | *		NAND_BBT_CREATE and/or NAND_BBT_WRITE | 
|  | * | 
|  | */ | 
|  | static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' }; | 
|  | static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' }; | 
|  |  | 
|  | static struct nand_bbt_descr rtc_from4_bbt_main_descr = { | 
|  | .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 
|  | | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, | 
|  | .offs = 40, | 
|  | .len = 4, | 
|  | .veroffs = 44, | 
|  | .maxblocks = 4, | 
|  | .pattern = bbt_pattern | 
|  | }; | 
|  |  | 
|  | static struct nand_bbt_descr rtc_from4_bbt_mirror_descr = { | 
|  | .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 
|  | | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, | 
|  | .offs = 40, | 
|  | .len = 4, | 
|  | .veroffs = 44, | 
|  | .maxblocks = 4, | 
|  | .pattern = mirror_pattern | 
|  | }; | 
|  |  | 
|  | #ifdef RTC_FROM4_HWECC | 
|  |  | 
|  | /* the Reed Solomon control structure */ | 
|  | static struct rs_control *rs_decoder; | 
|  |  | 
|  | /* | 
|  | *      hardware specific Out Of Band information | 
|  | */ | 
|  | static struct nand_ecclayout rtc_from4_nand_oobinfo = { | 
|  | .eccbytes = 32, | 
|  | .eccpos = { | 
|  | 0, 1, 2, 3, 4, 5, 6, 7, | 
|  | 8, 9, 10, 11, 12, 13, 14, 15, | 
|  | 16, 17, 18, 19, 20, 21, 22, 23, | 
|  | 24, 25, 26, 27, 28, 29, 30, 31}, | 
|  | .oobfree = {{32, 32}} | 
|  | }; | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * rtc_from4_hwcontrol - hardware specific access to control-lines | 
|  | * @mtd:	MTD device structure | 
|  | * @cmd:	hardware control command | 
|  | * | 
|  | * Address lines (A5 and A4) are used to control Command and Address Latch | 
|  | * Enable on this board, so set the read/write address appropriately. | 
|  | * | 
|  | * Chip Enable is also controlled by the Chip Select (CS5) and | 
|  | * Address lines (A24-A22), so no action is required here. | 
|  | * | 
|  | */ | 
|  | static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd, | 
|  | unsigned int ctrl) | 
|  | { | 
|  | struct nand_chip *chip = (mtd->priv); | 
|  |  | 
|  | if (cmd == NAND_CMD_NONE) | 
|  | return; | 
|  |  | 
|  | if (ctrl & NAND_CLE) | 
|  | writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_CLE); | 
|  | else | 
|  | writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_ALE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * rtc_from4_nand_select_chip - hardware specific chip select | 
|  | * @mtd:	MTD device structure | 
|  | * @chip:	Chip to select (0 == slot 3, 1 == slot 4) | 
|  | * | 
|  | * The chip select is based on address lines A24-A22. | 
|  | * This driver uses flash slots 3 and 4 (A23-A22). | 
|  | * | 
|  | */ | 
|  | static void rtc_from4_nand_select_chip(struct mtd_info *mtd, int chip) | 
|  | { | 
|  | struct nand_chip *this = mtd->priv; | 
|  |  | 
|  | this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R & ~RTC_FROM4_NAND_ADDR_MASK); | 
|  | this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_NAND_ADDR_MASK); | 
|  |  | 
|  | switch (chip) { | 
|  |  | 
|  | case 0:		/* select slot 3 chip */ | 
|  | this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT3); | 
|  | this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT3); | 
|  | break; | 
|  | case 1:		/* select slot 4 chip */ | 
|  | this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT4); | 
|  | this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT4); | 
|  | break; | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * rtc_from4_nand_device_ready - hardware specific ready/busy check | 
|  | * @mtd:	MTD device structure | 
|  | * | 
|  | * This board provides the Ready/Busy state in the status register | 
|  | * of the FPGA.  Bit zero indicates the RDY(1)/BSY(0) signal. | 
|  | * | 
|  | */ | 
|  | static int rtc_from4_nand_device_ready(struct mtd_info *mtd) | 
|  | { | 
|  | unsigned short status; | 
|  |  | 
|  | status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_FPGA_SR)); | 
|  |  | 
|  | return (status & RTC_FROM4_DEVICE_READY); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * deplete - code to perform device recovery in case there was a power loss | 
|  | * @mtd:	MTD device structure | 
|  | * @chip:	Chip to select (0 == slot 3, 1 == slot 4) | 
|  | * | 
|  | * If there was a sudden loss of power during an erase operation, a | 
|  | * "device recovery" operation must be performed when power is restored | 
|  | * to ensure correct operation.  This routine performs the required steps | 
|  | * for the requested chip. | 
|  | * | 
|  | * See page 86 of the data sheet for details. | 
|  | * | 
|  | */ | 
|  | static void deplete(struct mtd_info *mtd, int chip) | 
|  | { | 
|  | struct nand_chip *this = mtd->priv; | 
|  |  | 
|  | /* wait until device is ready */ | 
|  | while (!this->dev_ready(mtd)) ; | 
|  |  | 
|  | this->select_chip(mtd, chip); | 
|  |  | 
|  | /* Send the commands for device recovery, phase 1 */ | 
|  | this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0000); | 
|  | this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1); | 
|  |  | 
|  | /* Send the commands for device recovery, phase 2 */ | 
|  | this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0004); | 
|  | this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1); | 
|  |  | 
|  | } | 
|  |  | 
|  | #ifdef RTC_FROM4_HWECC | 
|  | /* | 
|  | * rtc_from4_enable_hwecc - hardware specific hardware ECC enable function | 
|  | * @mtd:	MTD device structure | 
|  | * @mode:	I/O mode; read or write | 
|  | * | 
|  | * enable hardware ECC for data read or write | 
|  | * | 
|  | */ | 
|  | static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode) | 
|  | { | 
|  | volatile unsigned short *rs_ecc_ctl = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CTL); | 
|  | unsigned short status; | 
|  |  | 
|  | switch (mode) { | 
|  | case NAND_ECC_READ: | 
|  | status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_FD_E; | 
|  |  | 
|  | *rs_ecc_ctl = status; | 
|  | break; | 
|  |  | 
|  | case NAND_ECC_READSYN: | 
|  | status = 0x00; | 
|  |  | 
|  | *rs_ecc_ctl = status; | 
|  | break; | 
|  |  | 
|  | case NAND_ECC_WRITE: | 
|  | status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_GEN | RTC_FROM4_RS_ECC_CTL_FD_E; | 
|  |  | 
|  | *rs_ecc_ctl = status; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | BUG(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * rtc_from4_calculate_ecc - hardware specific code to read ECC code | 
|  | * @mtd:	MTD device structure | 
|  | * @dat:	buffer containing the data to generate ECC codes | 
|  | * @ecc_code	ECC codes calculated | 
|  | * | 
|  | * The ECC code is calculated by the FPGA.  All we have to do is read the values | 
|  | * from the FPGA registers. | 
|  | * | 
|  | * Note: We read from the inverted registers, since data is inverted before | 
|  | * the code is calculated. So all 0xff data (blank page) results in all 0xff rs code | 
|  | * | 
|  | */ | 
|  | static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) | 
|  | { | 
|  | volatile unsigned short *rs_eccn = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECCN); | 
|  | unsigned short value; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 8; i++) { | 
|  | value = *rs_eccn; | 
|  | ecc_code[i] = (unsigned char)value; | 
|  | rs_eccn++; | 
|  | } | 
|  | ecc_code[7] |= 0x0f;	/* set the last four bits (not used) */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * rtc_from4_correct_data - hardware specific code to correct data using ECC code | 
|  | * @mtd:	MTD device structure | 
|  | * @buf:	buffer containing the data to generate ECC codes | 
|  | * @ecc1	ECC codes read | 
|  | * @ecc2	ECC codes calculated | 
|  | * | 
|  | * The FPGA tells us fast, if there's an error or not. If no, we go back happy | 
|  | * else we read the ecc results from the fpga and call the rs library to decode | 
|  | * and hopefully correct the error. | 
|  | * | 
|  | */ | 
|  | static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_char *ecc1, u_char *ecc2) | 
|  | { | 
|  | int i, j, res; | 
|  | unsigned short status; | 
|  | uint16_t par[6], syn[6]; | 
|  | uint8_t ecc[8]; | 
|  | volatile unsigned short *rs_ecc; | 
|  |  | 
|  | status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CHK)); | 
|  |  | 
|  | if (!(status & RTC_FROM4_RS_ECC_CHK_ERROR)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Read the syndrom pattern from the FPGA and correct the bitorder */ | 
|  | rs_ecc = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC); | 
|  | for (i = 0; i < 8; i++) { | 
|  | ecc[i] = bitrev8(*rs_ecc); | 
|  | rs_ecc++; | 
|  | } | 
|  |  | 
|  | /* convert into 6 10bit syndrome fields */ | 
|  | par[5] = rs_decoder->index_of[(((uint16_t) ecc[0] >> 0) & 0x0ff) | (((uint16_t) ecc[1] << 8) & 0x300)]; | 
|  | par[4] = rs_decoder->index_of[(((uint16_t) ecc[1] >> 2) & 0x03f) | (((uint16_t) ecc[2] << 6) & 0x3c0)]; | 
|  | par[3] = rs_decoder->index_of[(((uint16_t) ecc[2] >> 4) & 0x00f) | (((uint16_t) ecc[3] << 4) & 0x3f0)]; | 
|  | par[2] = rs_decoder->index_of[(((uint16_t) ecc[3] >> 6) & 0x003) | (((uint16_t) ecc[4] << 2) & 0x3fc)]; | 
|  | par[1] = rs_decoder->index_of[(((uint16_t) ecc[5] >> 0) & 0x0ff) | (((uint16_t) ecc[6] << 8) & 0x300)]; | 
|  | par[0] = (((uint16_t) ecc[6] >> 2) & 0x03f) | (((uint16_t) ecc[7] << 6) & 0x3c0); | 
|  |  | 
|  | /* Convert to computable syndrome */ | 
|  | for (i = 0; i < 6; i++) { | 
|  | syn[i] = par[0]; | 
|  | for (j = 1; j < 6; j++) | 
|  | if (par[j] != rs_decoder->nn) | 
|  | syn[i] ^= rs_decoder->alpha_to[rs_modnn(rs_decoder, par[j] + i * j)]; | 
|  |  | 
|  | /* Convert to index form */ | 
|  | syn[i] = rs_decoder->index_of[syn[i]]; | 
|  | } | 
|  |  | 
|  | /* Let the library code do its magic. */ | 
|  | res = decode_rs8(rs_decoder, (uint8_t *) buf, par, 512, syn, 0, NULL, 0xff, NULL); | 
|  | if (res > 0) { | 
|  | DEBUG(MTD_DEBUG_LEVEL0, "rtc_from4_correct_data: " "ECC corrected %d errors on read\n", res); | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rtc_from4_errstat - perform additional error status checks | 
|  | * @mtd:	MTD device structure | 
|  | * @this:	NAND chip structure | 
|  | * @state:	state or the operation | 
|  | * @status:	status code returned from read status | 
|  | * @page:	startpage inside the chip, must be called with (page & this->pagemask) | 
|  | * | 
|  | * Perform additional error status checks on erase and write failures | 
|  | * to determine if errors are correctable.  For this device, correctable | 
|  | * 1-bit errors on erase and write are considered acceptable. | 
|  | * | 
|  | * note: see pages 34..37 of data sheet for details. | 
|  | * | 
|  | */ | 
|  | static int rtc_from4_errstat(struct mtd_info *mtd, struct nand_chip *this, | 
|  | int state, int status, int page) | 
|  | { | 
|  | int er_stat = 0; | 
|  | int rtn, retlen; | 
|  | size_t len; | 
|  | uint8_t *buf; | 
|  | int i; | 
|  |  | 
|  | this->cmdfunc(mtd, NAND_CMD_STATUS_CLEAR, -1, -1); | 
|  |  | 
|  | if (state == FL_ERASING) { | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | if (!(status & 1 << (i + 1))) | 
|  | continue; | 
|  | this->cmdfunc(mtd, (NAND_CMD_STATUS_ERROR + i + 1), | 
|  | -1, -1); | 
|  | rtn = this->read_byte(mtd); | 
|  | this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1); | 
|  |  | 
|  | /* err_ecc_not_avail */ | 
|  | if (!(rtn & ERR_STAT_ECC_AVAILABLE)) | 
|  | er_stat |= 1 << (i + 1); | 
|  | } | 
|  |  | 
|  | } else if (state == FL_WRITING) { | 
|  |  | 
|  | unsigned long corrected = mtd->ecc_stats.corrected; | 
|  |  | 
|  | /* single bank write logic */ | 
|  | this->cmdfunc(mtd, NAND_CMD_STATUS_ERROR, -1, -1); | 
|  | rtn = this->read_byte(mtd); | 
|  | this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1); | 
|  |  | 
|  | if (!(rtn & ERR_STAT_ECC_AVAILABLE)) { | 
|  | /* err_ecc_not_avail */ | 
|  | er_stat |= 1 << 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | len = mtd->writesize; | 
|  | buf = kmalloc(len, GFP_KERNEL); | 
|  | if (!buf) { | 
|  | printk(KERN_ERR "rtc_from4_errstat: Out of memory!\n"); | 
|  | er_stat = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* recovery read */ | 
|  | rtn = nand_do_read(mtd, page, len, &retlen, buf); | 
|  |  | 
|  | /* if read failed or > 1-bit error corrected */ | 
|  | if (rtn || (mtd->ecc_stats.corrected - corrected) > 1) | 
|  | er_stat |= 1 << 1; | 
|  | kfree(buf); | 
|  | } | 
|  |  | 
|  | rtn = status; | 
|  | if (er_stat == 0) {	/* if ECC is available   */ | 
|  | rtn = (status & ~NAND_STATUS_FAIL);	/*   clear the error bit */ | 
|  | } | 
|  |  | 
|  | return rtn; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Main initialization routine | 
|  | */ | 
|  | static int __init rtc_from4_init(void) | 
|  | { | 
|  | struct nand_chip *this; | 
|  | unsigned short bcr1, bcr2, wcr2; | 
|  | int i; | 
|  |  | 
|  | /* Allocate memory for MTD device structure and private data */ | 
|  | rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL); | 
|  | if (!rtc_from4_mtd) { | 
|  | printk("Unable to allocate Renesas NAND MTD device structure.\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Get pointer to private data */ | 
|  | this = (struct nand_chip *)(&rtc_from4_mtd[1]); | 
|  |  | 
|  | /* Initialize structures */ | 
|  | memset(rtc_from4_mtd, 0, sizeof(struct mtd_info)); | 
|  | memset(this, 0, sizeof(struct nand_chip)); | 
|  |  | 
|  | /* Link the private data with the MTD structure */ | 
|  | rtc_from4_mtd->priv = this; | 
|  | rtc_from4_mtd->owner = THIS_MODULE; | 
|  |  | 
|  | /* set area 5 as PCMCIA mode to clear the spec of tDH(Data hold time;9ns min) */ | 
|  | bcr1 = *SH77X9_BCR1 & ~0x0002; | 
|  | bcr1 |= 0x0002; | 
|  | *SH77X9_BCR1 = bcr1; | 
|  |  | 
|  | /* set */ | 
|  | bcr2 = *SH77X9_BCR2 & ~0x0c00; | 
|  | bcr2 |= 0x0800; | 
|  | *SH77X9_BCR2 = bcr2; | 
|  |  | 
|  | /* set area 5 wait states */ | 
|  | wcr2 = *SH77X9_WCR2 & ~0x1c00; | 
|  | wcr2 |= 0x1c00; | 
|  | *SH77X9_WCR2 = wcr2; | 
|  |  | 
|  | /* Set address of NAND IO lines */ | 
|  | this->IO_ADDR_R = rtc_from4_fio_base; | 
|  | this->IO_ADDR_W = rtc_from4_fio_base; | 
|  | /* Set address of hardware control function */ | 
|  | this->cmd_ctrl = rtc_from4_hwcontrol; | 
|  | /* Set address of chip select function */ | 
|  | this->select_chip = rtc_from4_nand_select_chip; | 
|  | /* command delay time (in us) */ | 
|  | this->chip_delay = 100; | 
|  | /* return the status of the Ready/Busy line */ | 
|  | this->dev_ready = rtc_from4_nand_device_ready; | 
|  |  | 
|  | #ifdef RTC_FROM4_HWECC | 
|  | printk(KERN_INFO "rtc_from4_init: using hardware ECC detection.\n"); | 
|  |  | 
|  | this->ecc.mode = NAND_ECC_HW_SYNDROME; | 
|  | this->ecc.size = 512; | 
|  | this->ecc.bytes = 8; | 
|  | /* return the status of extra status and ECC checks */ | 
|  | this->errstat = rtc_from4_errstat; | 
|  | /* set the nand_oobinfo to support FPGA H/W error detection */ | 
|  | this->ecc.layout = &rtc_from4_nand_oobinfo; | 
|  | this->ecc.hwctl = rtc_from4_enable_hwecc; | 
|  | this->ecc.calculate = rtc_from4_calculate_ecc; | 
|  | this->ecc.correct = rtc_from4_correct_data; | 
|  | #else | 
|  | printk(KERN_INFO "rtc_from4_init: using software ECC detection.\n"); | 
|  |  | 
|  | this->ecc.mode = NAND_ECC_SOFT; | 
|  | #endif | 
|  |  | 
|  | /* set the bad block tables to support debugging */ | 
|  | this->bbt_td = &rtc_from4_bbt_main_descr; | 
|  | this->bbt_md = &rtc_from4_bbt_mirror_descr; | 
|  |  | 
|  | /* Scan to find existence of the device */ | 
|  | if (nand_scan(rtc_from4_mtd, RTC_FROM4_MAX_CHIPS)) { | 
|  | kfree(rtc_from4_mtd); | 
|  | return -ENXIO; | 
|  | } | 
|  |  | 
|  | /* Perform 'device recovery' for each chip in case there was a power loss. */ | 
|  | for (i = 0; i < this->numchips; i++) { | 
|  | deplete(rtc_from4_mtd, i); | 
|  | } | 
|  |  | 
|  | #if RTC_FROM4_NO_VIRTBLOCKS | 
|  | /* use a smaller erase block to minimize wasted space when a block is bad */ | 
|  | /* note: this uses eight times as much RAM as using the default and makes */ | 
|  | /*       mounts take four times as long. */ | 
|  | rtc_from4_mtd->flags |= MTD_NO_VIRTBLOCKS; | 
|  | #endif | 
|  |  | 
|  | /* Register the partitions */ | 
|  | add_mtd_partitions(rtc_from4_mtd, partition_info, NUM_PARTITIONS); | 
|  |  | 
|  | #ifdef RTC_FROM4_HWECC | 
|  | /* We could create the decoder on demand, if memory is a concern. | 
|  | * This way we have it handy, if an error happens | 
|  | * | 
|  | * Symbolsize is 10 (bits) | 
|  | * Primitve polynomial is x^10+x^3+1 | 
|  | * first consecutive root is 0 | 
|  | * primitve element to generate roots = 1 | 
|  | * generator polinomial degree = 6 | 
|  | */ | 
|  | rs_decoder = init_rs(10, 0x409, 0, 1, 6); | 
|  | if (!rs_decoder) { | 
|  | printk(KERN_ERR "Could not create a RS decoder\n"); | 
|  | nand_release(rtc_from4_mtd); | 
|  | kfree(rtc_from4_mtd); | 
|  | return -ENOMEM; | 
|  | } | 
|  | #endif | 
|  | /* Return happy */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | module_init(rtc_from4_init); | 
|  |  | 
|  | /* | 
|  | * Clean up routine | 
|  | */ | 
|  | static void __exit rtc_from4_cleanup(void) | 
|  | { | 
|  | /* Release resource, unregister partitions */ | 
|  | nand_release(rtc_from4_mtd); | 
|  |  | 
|  | /* Free the MTD device structure */ | 
|  | kfree(rtc_from4_mtd); | 
|  |  | 
|  | #ifdef RTC_FROM4_HWECC | 
|  | /* Free the reed solomon resources */ | 
|  | if (rs_decoder) { | 
|  | free_rs(rs_decoder); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | module_exit(rtc_from4_cleanup); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("d.marlin <dmarlin@redhat.com"); | 
|  | MODULE_DESCRIPTION("Board-specific glue layer for AG-AND flash on Renesas FROM_BOARD4"); |