| /* | 
 |  *  linux/mm/vmalloc.c | 
 |  * | 
 |  *  Copyright (C) 1993  Linus Torvalds | 
 |  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | 
 |  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 | 
 |  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 | 
 |  *  Numa awareness, Christoph Lameter, SGI, June 2005 | 
 |  */ | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/module.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/interrupt.h> | 
 |  | 
 | #include <linux/vmalloc.h> | 
 |  | 
 | #include <asm/uaccess.h> | 
 | #include <asm/tlbflush.h> | 
 |  | 
 |  | 
 | DEFINE_RWLOCK(vmlist_lock); | 
 | struct vm_struct *vmlist; | 
 |  | 
 | static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, | 
 | 			    int node); | 
 |  | 
 | static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) | 
 | { | 
 | 	pte_t *pte; | 
 |  | 
 | 	pte = pte_offset_kernel(pmd, addr); | 
 | 	do { | 
 | 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); | 
 | 		WARN_ON(!pte_none(ptent) && !pte_present(ptent)); | 
 | 	} while (pte++, addr += PAGE_SIZE, addr != end); | 
 | } | 
 |  | 
 | static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr, | 
 | 						unsigned long end) | 
 | { | 
 | 	pmd_t *pmd; | 
 | 	unsigned long next; | 
 |  | 
 | 	pmd = pmd_offset(pud, addr); | 
 | 	do { | 
 | 		next = pmd_addr_end(addr, end); | 
 | 		if (pmd_none_or_clear_bad(pmd)) | 
 | 			continue; | 
 | 		vunmap_pte_range(pmd, addr, next); | 
 | 	} while (pmd++, addr = next, addr != end); | 
 | } | 
 |  | 
 | static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr, | 
 | 						unsigned long end) | 
 | { | 
 | 	pud_t *pud; | 
 | 	unsigned long next; | 
 |  | 
 | 	pud = pud_offset(pgd, addr); | 
 | 	do { | 
 | 		next = pud_addr_end(addr, end); | 
 | 		if (pud_none_or_clear_bad(pud)) | 
 | 			continue; | 
 | 		vunmap_pmd_range(pud, addr, next); | 
 | 	} while (pud++, addr = next, addr != end); | 
 | } | 
 |  | 
 | void unmap_kernel_range(unsigned long addr, unsigned long size) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	unsigned long next; | 
 | 	unsigned long start = addr; | 
 | 	unsigned long end = addr + size; | 
 |  | 
 | 	BUG_ON(addr >= end); | 
 | 	pgd = pgd_offset_k(addr); | 
 | 	flush_cache_vunmap(addr, end); | 
 | 	do { | 
 | 		next = pgd_addr_end(addr, end); | 
 | 		if (pgd_none_or_clear_bad(pgd)) | 
 | 			continue; | 
 | 		vunmap_pud_range(pgd, addr, next); | 
 | 	} while (pgd++, addr = next, addr != end); | 
 | 	flush_tlb_kernel_range(start, end); | 
 | } | 
 |  | 
 | static void unmap_vm_area(struct vm_struct *area) | 
 | { | 
 | 	unmap_kernel_range((unsigned long)area->addr, area->size); | 
 | } | 
 |  | 
 | static int vmap_pte_range(pmd_t *pmd, unsigned long addr, | 
 | 			unsigned long end, pgprot_t prot, struct page ***pages) | 
 | { | 
 | 	pte_t *pte; | 
 |  | 
 | 	pte = pte_alloc_kernel(pmd, addr); | 
 | 	if (!pte) | 
 | 		return -ENOMEM; | 
 | 	do { | 
 | 		struct page *page = **pages; | 
 | 		WARN_ON(!pte_none(*pte)); | 
 | 		if (!page) | 
 | 			return -ENOMEM; | 
 | 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); | 
 | 		(*pages)++; | 
 | 	} while (pte++, addr += PAGE_SIZE, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int vmap_pmd_range(pud_t *pud, unsigned long addr, | 
 | 			unsigned long end, pgprot_t prot, struct page ***pages) | 
 | { | 
 | 	pmd_t *pmd; | 
 | 	unsigned long next; | 
 |  | 
 | 	pmd = pmd_alloc(&init_mm, pud, addr); | 
 | 	if (!pmd) | 
 | 		return -ENOMEM; | 
 | 	do { | 
 | 		next = pmd_addr_end(addr, end); | 
 | 		if (vmap_pte_range(pmd, addr, next, prot, pages)) | 
 | 			return -ENOMEM; | 
 | 	} while (pmd++, addr = next, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr, | 
 | 			unsigned long end, pgprot_t prot, struct page ***pages) | 
 | { | 
 | 	pud_t *pud; | 
 | 	unsigned long next; | 
 |  | 
 | 	pud = pud_alloc(&init_mm, pgd, addr); | 
 | 	if (!pud) | 
 | 		return -ENOMEM; | 
 | 	do { | 
 | 		next = pud_addr_end(addr, end); | 
 | 		if (vmap_pmd_range(pud, addr, next, prot, pages)) | 
 | 			return -ENOMEM; | 
 | 	} while (pud++, addr = next, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	unsigned long next; | 
 | 	unsigned long addr = (unsigned long) area->addr; | 
 | 	unsigned long end = addr + area->size - PAGE_SIZE; | 
 | 	int err; | 
 |  | 
 | 	BUG_ON(addr >= end); | 
 | 	pgd = pgd_offset_k(addr); | 
 | 	do { | 
 | 		next = pgd_addr_end(addr, end); | 
 | 		err = vmap_pud_range(pgd, addr, next, prot, pages); | 
 | 		if (err) | 
 | 			break; | 
 | 	} while (pgd++, addr = next, addr != end); | 
 | 	flush_cache_vmap((unsigned long) area->addr, end); | 
 | 	return err; | 
 | } | 
 | EXPORT_SYMBOL_GPL(map_vm_area); | 
 |  | 
 | /* | 
 |  * Map a vmalloc()-space virtual address to the physical page. | 
 |  */ | 
 | struct page *vmalloc_to_page(const void *vmalloc_addr) | 
 | { | 
 | 	unsigned long addr = (unsigned long) vmalloc_addr; | 
 | 	struct page *page = NULL; | 
 | 	pgd_t *pgd = pgd_offset_k(addr); | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 | 	pte_t *ptep, pte; | 
 |  | 
 | 	if (!pgd_none(*pgd)) { | 
 | 		pud = pud_offset(pgd, addr); | 
 | 		if (!pud_none(*pud)) { | 
 | 			pmd = pmd_offset(pud, addr); | 
 | 			if (!pmd_none(*pmd)) { | 
 | 				ptep = pte_offset_map(pmd, addr); | 
 | 				pte = *ptep; | 
 | 				if (pte_present(pte)) | 
 | 					page = pte_page(pte); | 
 | 				pte_unmap(ptep); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	return page; | 
 | } | 
 | EXPORT_SYMBOL(vmalloc_to_page); | 
 |  | 
 | /* | 
 |  * Map a vmalloc()-space virtual address to the physical page frame number. | 
 |  */ | 
 | unsigned long vmalloc_to_pfn(const void *vmalloc_addr) | 
 | { | 
 | 	return page_to_pfn(vmalloc_to_page(vmalloc_addr)); | 
 | } | 
 | EXPORT_SYMBOL(vmalloc_to_pfn); | 
 |  | 
 | static struct vm_struct *__get_vm_area_node(unsigned long size, unsigned long flags, | 
 | 					    unsigned long start, unsigned long end, | 
 | 					    int node, gfp_t gfp_mask) | 
 | { | 
 | 	struct vm_struct **p, *tmp, *area; | 
 | 	unsigned long align = 1; | 
 | 	unsigned long addr; | 
 |  | 
 | 	BUG_ON(in_interrupt()); | 
 | 	if (flags & VM_IOREMAP) { | 
 | 		int bit = fls(size); | 
 |  | 
 | 		if (bit > IOREMAP_MAX_ORDER) | 
 | 			bit = IOREMAP_MAX_ORDER; | 
 | 		else if (bit < PAGE_SHIFT) | 
 | 			bit = PAGE_SHIFT; | 
 |  | 
 | 		align = 1ul << bit; | 
 | 	} | 
 | 	addr = ALIGN(start, align); | 
 | 	size = PAGE_ALIGN(size); | 
 | 	if (unlikely(!size)) | 
 | 		return NULL; | 
 |  | 
 | 	area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); | 
 |  | 
 | 	if (unlikely(!area)) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * We always allocate a guard page. | 
 | 	 */ | 
 | 	size += PAGE_SIZE; | 
 |  | 
 | 	write_lock(&vmlist_lock); | 
 | 	for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) { | 
 | 		if ((unsigned long)tmp->addr < addr) { | 
 | 			if((unsigned long)tmp->addr + tmp->size >= addr) | 
 | 				addr = ALIGN(tmp->size +  | 
 | 					     (unsigned long)tmp->addr, align); | 
 | 			continue; | 
 | 		} | 
 | 		if ((size + addr) < addr) | 
 | 			goto out; | 
 | 		if (size + addr <= (unsigned long)tmp->addr) | 
 | 			goto found; | 
 | 		addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align); | 
 | 		if (addr > end - size) | 
 | 			goto out; | 
 | 	} | 
 | 	if ((size + addr) < addr) | 
 | 		goto out; | 
 | 	if (addr > end - size) | 
 | 		goto out; | 
 |  | 
 | found: | 
 | 	area->next = *p; | 
 | 	*p = area; | 
 |  | 
 | 	area->flags = flags; | 
 | 	area->addr = (void *)addr; | 
 | 	area->size = size; | 
 | 	area->pages = NULL; | 
 | 	area->nr_pages = 0; | 
 | 	area->phys_addr = 0; | 
 | 	write_unlock(&vmlist_lock); | 
 |  | 
 | 	return area; | 
 |  | 
 | out: | 
 | 	write_unlock(&vmlist_lock); | 
 | 	kfree(area); | 
 | 	if (printk_ratelimit()) | 
 | 		printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n"); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, | 
 | 				unsigned long start, unsigned long end) | 
 | { | 
 | 	return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL); | 
 | } | 
 | EXPORT_SYMBOL_GPL(__get_vm_area); | 
 |  | 
 | /** | 
 |  *	get_vm_area  -  reserve a contiguous kernel virtual area | 
 |  *	@size:		size of the area | 
 |  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC | 
 |  * | 
 |  *	Search an area of @size in the kernel virtual mapping area, | 
 |  *	and reserved it for out purposes.  Returns the area descriptor | 
 |  *	on success or %NULL on failure. | 
 |  */ | 
 | struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) | 
 | { | 
 | 	return __get_vm_area(size, flags, VMALLOC_START, VMALLOC_END); | 
 | } | 
 |  | 
 | struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags, | 
 | 				   int node, gfp_t gfp_mask) | 
 | { | 
 | 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node, | 
 | 				  gfp_mask); | 
 | } | 
 |  | 
 | /* Caller must hold vmlist_lock */ | 
 | static struct vm_struct *__find_vm_area(const void *addr) | 
 | { | 
 | 	struct vm_struct *tmp; | 
 |  | 
 | 	for (tmp = vmlist; tmp != NULL; tmp = tmp->next) { | 
 | 		 if (tmp->addr == addr) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return tmp; | 
 | } | 
 |  | 
 | /* Caller must hold vmlist_lock */ | 
 | static struct vm_struct *__remove_vm_area(const void *addr) | 
 | { | 
 | 	struct vm_struct **p, *tmp; | 
 |  | 
 | 	for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) { | 
 | 		 if (tmp->addr == addr) | 
 | 			 goto found; | 
 | 	} | 
 | 	return NULL; | 
 |  | 
 | found: | 
 | 	unmap_vm_area(tmp); | 
 | 	*p = tmp->next; | 
 |  | 
 | 	/* | 
 | 	 * Remove the guard page. | 
 | 	 */ | 
 | 	tmp->size -= PAGE_SIZE; | 
 | 	return tmp; | 
 | } | 
 |  | 
 | /** | 
 |  *	remove_vm_area  -  find and remove a continuous kernel virtual area | 
 |  *	@addr:		base address | 
 |  * | 
 |  *	Search for the kernel VM area starting at @addr, and remove it. | 
 |  *	This function returns the found VM area, but using it is NOT safe | 
 |  *	on SMP machines, except for its size or flags. | 
 |  */ | 
 | struct vm_struct *remove_vm_area(const void *addr) | 
 | { | 
 | 	struct vm_struct *v; | 
 | 	write_lock(&vmlist_lock); | 
 | 	v = __remove_vm_area(addr); | 
 | 	write_unlock(&vmlist_lock); | 
 | 	return v; | 
 | } | 
 |  | 
 | static void __vunmap(const void *addr, int deallocate_pages) | 
 | { | 
 | 	struct vm_struct *area; | 
 |  | 
 | 	if (!addr) | 
 | 		return; | 
 |  | 
 | 	if ((PAGE_SIZE-1) & (unsigned long)addr) { | 
 | 		printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr); | 
 | 		WARN_ON(1); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	area = remove_vm_area(addr); | 
 | 	if (unlikely(!area)) { | 
 | 		printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", | 
 | 				addr); | 
 | 		WARN_ON(1); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	debug_check_no_locks_freed(addr, area->size); | 
 |  | 
 | 	if (deallocate_pages) { | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < area->nr_pages; i++) { | 
 | 			struct page *page = area->pages[i]; | 
 |  | 
 | 			BUG_ON(!page); | 
 | 			__free_page(page); | 
 | 		} | 
 |  | 
 | 		if (area->flags & VM_VPAGES) | 
 | 			vfree(area->pages); | 
 | 		else | 
 | 			kfree(area->pages); | 
 | 	} | 
 |  | 
 | 	kfree(area); | 
 | 	return; | 
 | } | 
 |  | 
 | /** | 
 |  *	vfree  -  release memory allocated by vmalloc() | 
 |  *	@addr:		memory base address | 
 |  * | 
 |  *	Free the virtually continuous memory area starting at @addr, as | 
 |  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is | 
 |  *	NULL, no operation is performed. | 
 |  * | 
 |  *	Must not be called in interrupt context. | 
 |  */ | 
 | void vfree(const void *addr) | 
 | { | 
 | 	BUG_ON(in_interrupt()); | 
 | 	__vunmap(addr, 1); | 
 | } | 
 | EXPORT_SYMBOL(vfree); | 
 |  | 
 | /** | 
 |  *	vunmap  -  release virtual mapping obtained by vmap() | 
 |  *	@addr:		memory base address | 
 |  * | 
 |  *	Free the virtually contiguous memory area starting at @addr, | 
 |  *	which was created from the page array passed to vmap(). | 
 |  * | 
 |  *	Must not be called in interrupt context. | 
 |  */ | 
 | void vunmap(const void *addr) | 
 | { | 
 | 	BUG_ON(in_interrupt()); | 
 | 	__vunmap(addr, 0); | 
 | } | 
 | EXPORT_SYMBOL(vunmap); | 
 |  | 
 | /** | 
 |  *	vmap  -  map an array of pages into virtually contiguous space | 
 |  *	@pages:		array of page pointers | 
 |  *	@count:		number of pages to map | 
 |  *	@flags:		vm_area->flags | 
 |  *	@prot:		page protection for the mapping | 
 |  * | 
 |  *	Maps @count pages from @pages into contiguous kernel virtual | 
 |  *	space. | 
 |  */ | 
 | void *vmap(struct page **pages, unsigned int count, | 
 | 		unsigned long flags, pgprot_t prot) | 
 | { | 
 | 	struct vm_struct *area; | 
 |  | 
 | 	if (count > num_physpages) | 
 | 		return NULL; | 
 |  | 
 | 	area = get_vm_area((count << PAGE_SHIFT), flags); | 
 | 	if (!area) | 
 | 		return NULL; | 
 | 	if (map_vm_area(area, prot, &pages)) { | 
 | 		vunmap(area->addr); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	return area->addr; | 
 | } | 
 | EXPORT_SYMBOL(vmap); | 
 |  | 
 | static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, | 
 | 				 pgprot_t prot, int node) | 
 | { | 
 | 	struct page **pages; | 
 | 	unsigned int nr_pages, array_size, i; | 
 |  | 
 | 	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; | 
 | 	array_size = (nr_pages * sizeof(struct page *)); | 
 |  | 
 | 	area->nr_pages = nr_pages; | 
 | 	/* Please note that the recursion is strictly bounded. */ | 
 | 	if (array_size > PAGE_SIZE) { | 
 | 		pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO, | 
 | 					PAGE_KERNEL, node); | 
 | 		area->flags |= VM_VPAGES; | 
 | 	} else { | 
 | 		pages = kmalloc_node(array_size, | 
 | 				(gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO, | 
 | 				node); | 
 | 	} | 
 | 	area->pages = pages; | 
 | 	if (!area->pages) { | 
 | 		remove_vm_area(area->addr); | 
 | 		kfree(area); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < area->nr_pages; i++) { | 
 | 		struct page *page; | 
 |  | 
 | 		if (node < 0) | 
 | 			page = alloc_page(gfp_mask); | 
 | 		else | 
 | 			page = alloc_pages_node(node, gfp_mask, 0); | 
 |  | 
 | 		if (unlikely(!page)) { | 
 | 			/* Successfully allocated i pages, free them in __vunmap() */ | 
 | 			area->nr_pages = i; | 
 | 			goto fail; | 
 | 		} | 
 | 		area->pages[i] = page; | 
 | 	} | 
 |  | 
 | 	if (map_vm_area(area, prot, &pages)) | 
 | 		goto fail; | 
 | 	return area->addr; | 
 |  | 
 | fail: | 
 | 	vfree(area->addr); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot) | 
 | { | 
 | 	return __vmalloc_area_node(area, gfp_mask, prot, -1); | 
 | } | 
 |  | 
 | /** | 
 |  *	__vmalloc_node  -  allocate virtually contiguous memory | 
 |  *	@size:		allocation size | 
 |  *	@gfp_mask:	flags for the page level allocator | 
 |  *	@prot:		protection mask for the allocated pages | 
 |  *	@node:		node to use for allocation or -1 | 
 |  * | 
 |  *	Allocate enough pages to cover @size from the page level | 
 |  *	allocator with @gfp_mask flags.  Map them into contiguous | 
 |  *	kernel virtual space, using a pagetable protection of @prot. | 
 |  */ | 
 | static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, | 
 | 			    int node) | 
 | { | 
 | 	struct vm_struct *area; | 
 |  | 
 | 	size = PAGE_ALIGN(size); | 
 | 	if (!size || (size >> PAGE_SHIFT) > num_physpages) | 
 | 		return NULL; | 
 |  | 
 | 	area = get_vm_area_node(size, VM_ALLOC, node, gfp_mask); | 
 | 	if (!area) | 
 | 		return NULL; | 
 |  | 
 | 	return __vmalloc_area_node(area, gfp_mask, prot, node); | 
 | } | 
 |  | 
 | void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) | 
 | { | 
 | 	return __vmalloc_node(size, gfp_mask, prot, -1); | 
 | } | 
 | EXPORT_SYMBOL(__vmalloc); | 
 |  | 
 | /** | 
 |  *	vmalloc  -  allocate virtually contiguous memory | 
 |  *	@size:		allocation size | 
 |  *	Allocate enough pages to cover @size from the page level | 
 |  *	allocator and map them into contiguous kernel virtual space. | 
 |  * | 
 |  *	For tight control over page level allocator and protection flags | 
 |  *	use __vmalloc() instead. | 
 |  */ | 
 | void *vmalloc(unsigned long size) | 
 | { | 
 | 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); | 
 | } | 
 | EXPORT_SYMBOL(vmalloc); | 
 |  | 
 | /** | 
 |  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace | 
 |  * @size: allocation size | 
 |  * | 
 |  * The resulting memory area is zeroed so it can be mapped to userspace | 
 |  * without leaking data. | 
 |  */ | 
 | void *vmalloc_user(unsigned long size) | 
 | { | 
 | 	struct vm_struct *area; | 
 | 	void *ret; | 
 |  | 
 | 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL); | 
 | 	if (ret) { | 
 | 		write_lock(&vmlist_lock); | 
 | 		area = __find_vm_area(ret); | 
 | 		area->flags |= VM_USERMAP; | 
 | 		write_unlock(&vmlist_lock); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(vmalloc_user); | 
 |  | 
 | /** | 
 |  *	vmalloc_node  -  allocate memory on a specific node | 
 |  *	@size:		allocation size | 
 |  *	@node:		numa node | 
 |  * | 
 |  *	Allocate enough pages to cover @size from the page level | 
 |  *	allocator and map them into contiguous kernel virtual space. | 
 |  * | 
 |  *	For tight control over page level allocator and protection flags | 
 |  *	use __vmalloc() instead. | 
 |  */ | 
 | void *vmalloc_node(unsigned long size, int node) | 
 | { | 
 | 	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, node); | 
 | } | 
 | EXPORT_SYMBOL(vmalloc_node); | 
 |  | 
 | #ifndef PAGE_KERNEL_EXEC | 
 | # define PAGE_KERNEL_EXEC PAGE_KERNEL | 
 | #endif | 
 |  | 
 | /** | 
 |  *	vmalloc_exec  -  allocate virtually contiguous, executable memory | 
 |  *	@size:		allocation size | 
 |  * | 
 |  *	Kernel-internal function to allocate enough pages to cover @size | 
 |  *	the page level allocator and map them into contiguous and | 
 |  *	executable kernel virtual space. | 
 |  * | 
 |  *	For tight control over page level allocator and protection flags | 
 |  *	use __vmalloc() instead. | 
 |  */ | 
 |  | 
 | void *vmalloc_exec(unsigned long size) | 
 | { | 
 | 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); | 
 | } | 
 |  | 
 | #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) | 
 | #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL | 
 | #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) | 
 | #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL | 
 | #else | 
 | #define GFP_VMALLOC32 GFP_KERNEL | 
 | #endif | 
 |  | 
 | /** | 
 |  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable) | 
 |  *	@size:		allocation size | 
 |  * | 
 |  *	Allocate enough 32bit PA addressable pages to cover @size from the | 
 |  *	page level allocator and map them into contiguous kernel virtual space. | 
 |  */ | 
 | void *vmalloc_32(unsigned long size) | 
 | { | 
 | 	return __vmalloc(size, GFP_VMALLOC32, PAGE_KERNEL); | 
 | } | 
 | EXPORT_SYMBOL(vmalloc_32); | 
 |  | 
 | /** | 
 |  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory | 
 |  *	@size:		allocation size | 
 |  * | 
 |  * The resulting memory area is 32bit addressable and zeroed so it can be | 
 |  * mapped to userspace without leaking data. | 
 |  */ | 
 | void *vmalloc_32_user(unsigned long size) | 
 | { | 
 | 	struct vm_struct *area; | 
 | 	void *ret; | 
 |  | 
 | 	ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL); | 
 | 	if (ret) { | 
 | 		write_lock(&vmlist_lock); | 
 | 		area = __find_vm_area(ret); | 
 | 		area->flags |= VM_USERMAP; | 
 | 		write_unlock(&vmlist_lock); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(vmalloc_32_user); | 
 |  | 
 | long vread(char *buf, char *addr, unsigned long count) | 
 | { | 
 | 	struct vm_struct *tmp; | 
 | 	char *vaddr, *buf_start = buf; | 
 | 	unsigned long n; | 
 |  | 
 | 	/* Don't allow overflow */ | 
 | 	if ((unsigned long) addr + count < count) | 
 | 		count = -(unsigned long) addr; | 
 |  | 
 | 	read_lock(&vmlist_lock); | 
 | 	for (tmp = vmlist; tmp; tmp = tmp->next) { | 
 | 		vaddr = (char *) tmp->addr; | 
 | 		if (addr >= vaddr + tmp->size - PAGE_SIZE) | 
 | 			continue; | 
 | 		while (addr < vaddr) { | 
 | 			if (count == 0) | 
 | 				goto finished; | 
 | 			*buf = '\0'; | 
 | 			buf++; | 
 | 			addr++; | 
 | 			count--; | 
 | 		} | 
 | 		n = vaddr + tmp->size - PAGE_SIZE - addr; | 
 | 		do { | 
 | 			if (count == 0) | 
 | 				goto finished; | 
 | 			*buf = *addr; | 
 | 			buf++; | 
 | 			addr++; | 
 | 			count--; | 
 | 		} while (--n > 0); | 
 | 	} | 
 | finished: | 
 | 	read_unlock(&vmlist_lock); | 
 | 	return buf - buf_start; | 
 | } | 
 |  | 
 | long vwrite(char *buf, char *addr, unsigned long count) | 
 | { | 
 | 	struct vm_struct *tmp; | 
 | 	char *vaddr, *buf_start = buf; | 
 | 	unsigned long n; | 
 |  | 
 | 	/* Don't allow overflow */ | 
 | 	if ((unsigned long) addr + count < count) | 
 | 		count = -(unsigned long) addr; | 
 |  | 
 | 	read_lock(&vmlist_lock); | 
 | 	for (tmp = vmlist; tmp; tmp = tmp->next) { | 
 | 		vaddr = (char *) tmp->addr; | 
 | 		if (addr >= vaddr + tmp->size - PAGE_SIZE) | 
 | 			continue; | 
 | 		while (addr < vaddr) { | 
 | 			if (count == 0) | 
 | 				goto finished; | 
 | 			buf++; | 
 | 			addr++; | 
 | 			count--; | 
 | 		} | 
 | 		n = vaddr + tmp->size - PAGE_SIZE - addr; | 
 | 		do { | 
 | 			if (count == 0) | 
 | 				goto finished; | 
 | 			*addr = *buf; | 
 | 			buf++; | 
 | 			addr++; | 
 | 			count--; | 
 | 		} while (--n > 0); | 
 | 	} | 
 | finished: | 
 | 	read_unlock(&vmlist_lock); | 
 | 	return buf - buf_start; | 
 | } | 
 |  | 
 | /** | 
 |  *	remap_vmalloc_range  -  map vmalloc pages to userspace | 
 |  *	@vma:		vma to cover (map full range of vma) | 
 |  *	@addr:		vmalloc memory | 
 |  *	@pgoff:		number of pages into addr before first page to map | 
 |  *	@returns:	0 for success, -Exxx on failure | 
 |  * | 
 |  *	This function checks that addr is a valid vmalloc'ed area, and | 
 |  *	that it is big enough to cover the vma. Will return failure if | 
 |  *	that criteria isn't met. | 
 |  * | 
 |  *	Similar to remap_pfn_range() (see mm/memory.c) | 
 |  */ | 
 | int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, | 
 | 						unsigned long pgoff) | 
 | { | 
 | 	struct vm_struct *area; | 
 | 	unsigned long uaddr = vma->vm_start; | 
 | 	unsigned long usize = vma->vm_end - vma->vm_start; | 
 | 	int ret; | 
 |  | 
 | 	if ((PAGE_SIZE-1) & (unsigned long)addr) | 
 | 		return -EINVAL; | 
 |  | 
 | 	read_lock(&vmlist_lock); | 
 | 	area = __find_vm_area(addr); | 
 | 	if (!area) | 
 | 		goto out_einval_locked; | 
 |  | 
 | 	if (!(area->flags & VM_USERMAP)) | 
 | 		goto out_einval_locked; | 
 |  | 
 | 	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) | 
 | 		goto out_einval_locked; | 
 | 	read_unlock(&vmlist_lock); | 
 |  | 
 | 	addr += pgoff << PAGE_SHIFT; | 
 | 	do { | 
 | 		struct page *page = vmalloc_to_page(addr); | 
 | 		ret = vm_insert_page(vma, uaddr, page); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		uaddr += PAGE_SIZE; | 
 | 		addr += PAGE_SIZE; | 
 | 		usize -= PAGE_SIZE; | 
 | 	} while (usize > 0); | 
 |  | 
 | 	/* Prevent "things" like memory migration? VM_flags need a cleanup... */ | 
 | 	vma->vm_flags |= VM_RESERVED; | 
 |  | 
 | 	return ret; | 
 |  | 
 | out_einval_locked: | 
 | 	read_unlock(&vmlist_lock); | 
 | 	return -EINVAL; | 
 | } | 
 | EXPORT_SYMBOL(remap_vmalloc_range); | 
 |  | 
 | /* | 
 |  * Implement a stub for vmalloc_sync_all() if the architecture chose not to | 
 |  * have one. | 
 |  */ | 
 | void  __attribute__((weak)) vmalloc_sync_all(void) | 
 | { | 
 | } | 
 |  | 
 |  | 
 | static int f(pte_t *pte, struct page *pmd_page, unsigned long addr, void *data) | 
 | { | 
 | 	/* apply_to_page_range() does all the hard work. */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	alloc_vm_area - allocate a range of kernel address space | 
 |  *	@size:		size of the area | 
 |  *	@returns:	NULL on failure, vm_struct on success | 
 |  * | 
 |  *	This function reserves a range of kernel address space, and | 
 |  *	allocates pagetables to map that range.  No actual mappings | 
 |  *	are created.  If the kernel address space is not shared | 
 |  *	between processes, it syncs the pagetable across all | 
 |  *	processes. | 
 |  */ | 
 | struct vm_struct *alloc_vm_area(size_t size) | 
 | { | 
 | 	struct vm_struct *area; | 
 |  | 
 | 	area = get_vm_area(size, VM_IOREMAP); | 
 | 	if (area == NULL) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * This ensures that page tables are constructed for this region | 
 | 	 * of kernel virtual address space and mapped into init_mm. | 
 | 	 */ | 
 | 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr, | 
 | 				area->size, f, NULL)) { | 
 | 		free_vm_area(area); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* Make sure the pagetables are constructed in process kernel | 
 | 	   mappings */ | 
 | 	vmalloc_sync_all(); | 
 |  | 
 | 	return area; | 
 | } | 
 | EXPORT_SYMBOL_GPL(alloc_vm_area); | 
 |  | 
 | void free_vm_area(struct vm_struct *area) | 
 | { | 
 | 	struct vm_struct *ret; | 
 | 	ret = remove_vm_area(area->addr); | 
 | 	BUG_ON(ret != area); | 
 | 	kfree(area); | 
 | } | 
 | EXPORT_SYMBOL_GPL(free_vm_area); |