|  | /* | 
|  | * Generic waiting primitives. | 
|  | * | 
|  | * (C) 2004 William Irwin, Oracle | 
|  | */ | 
|  | #include <linux/init.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/wait.h> | 
|  | #include <linux/hash.h> | 
|  |  | 
|  | void init_waitqueue_head(wait_queue_head_t *q) | 
|  | { | 
|  | spin_lock_init(&q->lock); | 
|  | INIT_LIST_HEAD(&q->task_list); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(init_waitqueue_head); | 
|  |  | 
|  | void fastcall add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | wait->flags &= ~WQ_FLAG_EXCLUSIVE; | 
|  | spin_lock_irqsave(&q->lock, flags); | 
|  | __add_wait_queue(q, wait); | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(add_wait_queue); | 
|  |  | 
|  | void fastcall add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | wait->flags |= WQ_FLAG_EXCLUSIVE; | 
|  | spin_lock_irqsave(&q->lock, flags); | 
|  | __add_wait_queue_tail(q, wait); | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(add_wait_queue_exclusive); | 
|  |  | 
|  | void fastcall remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&q->lock, flags); | 
|  | __remove_wait_queue(q, wait); | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(remove_wait_queue); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Note: we use "set_current_state()" _after_ the wait-queue add, | 
|  | * because we need a memory barrier there on SMP, so that any | 
|  | * wake-function that tests for the wait-queue being active | 
|  | * will be guaranteed to see waitqueue addition _or_ subsequent | 
|  | * tests in this thread will see the wakeup having taken place. | 
|  | * | 
|  | * The spin_unlock() itself is semi-permeable and only protects | 
|  | * one way (it only protects stuff inside the critical region and | 
|  | * stops them from bleeding out - it would still allow subsequent | 
|  | * loads to move into the the critical region). | 
|  | */ | 
|  | void fastcall | 
|  | prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | wait->flags &= ~WQ_FLAG_EXCLUSIVE; | 
|  | spin_lock_irqsave(&q->lock, flags); | 
|  | if (list_empty(&wait->task_list)) | 
|  | __add_wait_queue(q, wait); | 
|  | /* | 
|  | * don't alter the task state if this is just going to | 
|  | * queue an async wait queue callback | 
|  | */ | 
|  | if (is_sync_wait(wait)) | 
|  | set_current_state(state); | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(prepare_to_wait); | 
|  |  | 
|  | void fastcall | 
|  | prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | wait->flags |= WQ_FLAG_EXCLUSIVE; | 
|  | spin_lock_irqsave(&q->lock, flags); | 
|  | if (list_empty(&wait->task_list)) | 
|  | __add_wait_queue_tail(q, wait); | 
|  | /* | 
|  | * don't alter the task state if this is just going to | 
|  | * queue an async wait queue callback | 
|  | */ | 
|  | if (is_sync_wait(wait)) | 
|  | set_current_state(state); | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(prepare_to_wait_exclusive); | 
|  |  | 
|  | void fastcall finish_wait(wait_queue_head_t *q, wait_queue_t *wait) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | __set_current_state(TASK_RUNNING); | 
|  | /* | 
|  | * We can check for list emptiness outside the lock | 
|  | * IFF: | 
|  | *  - we use the "careful" check that verifies both | 
|  | *    the next and prev pointers, so that there cannot | 
|  | *    be any half-pending updates in progress on other | 
|  | *    CPU's that we haven't seen yet (and that might | 
|  | *    still change the stack area. | 
|  | * and | 
|  | *  - all other users take the lock (ie we can only | 
|  | *    have _one_ other CPU that looks at or modifies | 
|  | *    the list). | 
|  | */ | 
|  | if (!list_empty_careful(&wait->task_list)) { | 
|  | spin_lock_irqsave(&q->lock, flags); | 
|  | list_del_init(&wait->task_list); | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(finish_wait); | 
|  |  | 
|  | int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key) | 
|  | { | 
|  | int ret = default_wake_function(wait, mode, sync, key); | 
|  |  | 
|  | if (ret) | 
|  | list_del_init(&wait->task_list); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(autoremove_wake_function); | 
|  |  | 
|  | int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg) | 
|  | { | 
|  | struct wait_bit_key *key = arg; | 
|  | struct wait_bit_queue *wait_bit | 
|  | = container_of(wait, struct wait_bit_queue, wait); | 
|  |  | 
|  | if (wait_bit->key.flags != key->flags || | 
|  | wait_bit->key.bit_nr != key->bit_nr || | 
|  | test_bit(key->bit_nr, key->flags)) | 
|  | return 0; | 
|  | else | 
|  | return autoremove_wake_function(wait, mode, sync, key); | 
|  | } | 
|  | EXPORT_SYMBOL(wake_bit_function); | 
|  |  | 
|  | /* | 
|  | * To allow interruptible waiting and asynchronous (i.e. nonblocking) | 
|  | * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are | 
|  | * permitted return codes. Nonzero return codes halt waiting and return. | 
|  | */ | 
|  | int __sched fastcall | 
|  | __wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q, | 
|  | int (*action)(void *), unsigned mode) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | do { | 
|  | prepare_to_wait(wq, &q->wait, mode); | 
|  | if (test_bit(q->key.bit_nr, q->key.flags)) | 
|  | ret = (*action)(q->key.flags); | 
|  | } while (test_bit(q->key.bit_nr, q->key.flags) && !ret); | 
|  | finish_wait(wq, &q->wait); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(__wait_on_bit); | 
|  |  | 
|  | int __sched fastcall out_of_line_wait_on_bit(void *word, int bit, | 
|  | int (*action)(void *), unsigned mode) | 
|  | { | 
|  | wait_queue_head_t *wq = bit_waitqueue(word, bit); | 
|  | DEFINE_WAIT_BIT(wait, word, bit); | 
|  |  | 
|  | return __wait_on_bit(wq, &wait, action, mode); | 
|  | } | 
|  | EXPORT_SYMBOL(out_of_line_wait_on_bit); | 
|  |  | 
|  | int __sched fastcall | 
|  | __wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q, | 
|  | int (*action)(void *), unsigned mode) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | do { | 
|  | prepare_to_wait_exclusive(wq, &q->wait, mode); | 
|  | if (test_bit(q->key.bit_nr, q->key.flags)) { | 
|  | if ((ret = (*action)(q->key.flags))) | 
|  | break; | 
|  | } | 
|  | } while (test_and_set_bit(q->key.bit_nr, q->key.flags)); | 
|  | finish_wait(wq, &q->wait); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(__wait_on_bit_lock); | 
|  |  | 
|  | int __sched fastcall out_of_line_wait_on_bit_lock(void *word, int bit, | 
|  | int (*action)(void *), unsigned mode) | 
|  | { | 
|  | wait_queue_head_t *wq = bit_waitqueue(word, bit); | 
|  | DEFINE_WAIT_BIT(wait, word, bit); | 
|  |  | 
|  | return __wait_on_bit_lock(wq, &wait, action, mode); | 
|  | } | 
|  | EXPORT_SYMBOL(out_of_line_wait_on_bit_lock); | 
|  |  | 
|  | void fastcall __wake_up_bit(wait_queue_head_t *wq, void *word, int bit) | 
|  | { | 
|  | struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit); | 
|  | if (waitqueue_active(wq)) | 
|  | __wake_up(wq, TASK_INTERRUPTIBLE|TASK_UNINTERRUPTIBLE, 1, &key); | 
|  | } | 
|  | EXPORT_SYMBOL(__wake_up_bit); | 
|  |  | 
|  | /** | 
|  | * wake_up_bit - wake up a waiter on a bit | 
|  | * @word: the word being waited on, a kernel virtual address | 
|  | * @bit: the bit of the word being waited on | 
|  | * | 
|  | * There is a standard hashed waitqueue table for generic use. This | 
|  | * is the part of the hashtable's accessor API that wakes up waiters | 
|  | * on a bit. For instance, if one were to have waiters on a bitflag, | 
|  | * one would call wake_up_bit() after clearing the bit. | 
|  | * | 
|  | * In order for this to function properly, as it uses waitqueue_active() | 
|  | * internally, some kind of memory barrier must be done prior to calling | 
|  | * this. Typically, this will be smp_mb__after_clear_bit(), but in some | 
|  | * cases where bitflags are manipulated non-atomically under a lock, one | 
|  | * may need to use a less regular barrier, such fs/inode.c's smp_mb(), | 
|  | * because spin_unlock() does not guarantee a memory barrier. | 
|  | */ | 
|  | void fastcall wake_up_bit(void *word, int bit) | 
|  | { | 
|  | __wake_up_bit(bit_waitqueue(word, bit), word, bit); | 
|  | } | 
|  | EXPORT_SYMBOL(wake_up_bit); | 
|  |  | 
|  | fastcall wait_queue_head_t *bit_waitqueue(void *word, int bit) | 
|  | { | 
|  | const int shift = BITS_PER_LONG == 32 ? 5 : 6; | 
|  | const struct zone *zone = page_zone(virt_to_page(word)); | 
|  | unsigned long val = (unsigned long)word << shift | bit; | 
|  |  | 
|  | return &zone->wait_table[hash_long(val, zone->wait_table_bits)]; | 
|  | } | 
|  | EXPORT_SYMBOL(bit_waitqueue); |