|  | /* | 
|  | * net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support | 
|  | * Copyright (c) 2008 Marvell Semiconductor | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | */ | 
|  |  | 
|  | #include <linux/list.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/phy.h> | 
|  | #include "dsa_priv.h" | 
|  | #include "mv88e6xxx.h" | 
|  |  | 
|  | /* | 
|  | * If the switch's ADDR[4:0] strap pins are strapped to zero, it will | 
|  | * use all 32 SMI bus addresses on its SMI bus, and all switch registers | 
|  | * will be directly accessible on some {device address,register address} | 
|  | * pair.  If the ADDR[4:0] pins are not strapped to zero, the switch | 
|  | * will only respond to SMI transactions to that specific address, and | 
|  | * an indirect addressing mechanism needs to be used to access its | 
|  | * registers. | 
|  | */ | 
|  | static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr) | 
|  | { | 
|  | int ret; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 16; i++) { | 
|  | ret = mdiobus_read(bus, sw_addr, 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if ((ret & 0x8000) == 0) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr, int reg) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (sw_addr == 0) | 
|  | return mdiobus_read(bus, addr, reg); | 
|  |  | 
|  | /* | 
|  | * Wait for the bus to become free. | 
|  | */ | 
|  | ret = mv88e6xxx_reg_wait_ready(bus, sw_addr); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Transmit the read command. | 
|  | */ | 
|  | ret = mdiobus_write(bus, sw_addr, 0, 0x9800 | (addr << 5) | reg); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Wait for the read command to complete. | 
|  | */ | 
|  | ret = mv88e6xxx_reg_wait_ready(bus, sw_addr); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Read the data. | 
|  | */ | 
|  | ret = mdiobus_read(bus, sw_addr, 1); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | return ret & 0xffff; | 
|  | } | 
|  |  | 
|  | int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg) | 
|  | { | 
|  | struct mv88e6xxx_priv_state *ps = (void *)(ds + 1); | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&ps->smi_mutex); | 
|  | ret = __mv88e6xxx_reg_read(ds->master_mii_bus, | 
|  | ds->pd->sw_addr, addr, reg); | 
|  | mutex_unlock(&ps->smi_mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr, | 
|  | int reg, u16 val) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (sw_addr == 0) | 
|  | return mdiobus_write(bus, addr, reg, val); | 
|  |  | 
|  | /* | 
|  | * Wait for the bus to become free. | 
|  | */ | 
|  | ret = mv88e6xxx_reg_wait_ready(bus, sw_addr); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Transmit the data to write. | 
|  | */ | 
|  | ret = mdiobus_write(bus, sw_addr, 1, val); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Transmit the write command. | 
|  | */ | 
|  | ret = mdiobus_write(bus, sw_addr, 0, 0x9400 | (addr << 5) | reg); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Wait for the write command to complete. | 
|  | */ | 
|  | ret = mv88e6xxx_reg_wait_ready(bus, sw_addr); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val) | 
|  | { | 
|  | struct mv88e6xxx_priv_state *ps = (void *)(ds + 1); | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&ps->smi_mutex); | 
|  | ret = __mv88e6xxx_reg_write(ds->master_mii_bus, | 
|  | ds->pd->sw_addr, addr, reg, val); | 
|  | mutex_unlock(&ps->smi_mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int mv88e6xxx_config_prio(struct dsa_switch *ds) | 
|  | { | 
|  | /* | 
|  | * Configure the IP ToS mapping registers. | 
|  | */ | 
|  | REG_WRITE(REG_GLOBAL, 0x10, 0x0000); | 
|  | REG_WRITE(REG_GLOBAL, 0x11, 0x0000); | 
|  | REG_WRITE(REG_GLOBAL, 0x12, 0x5555); | 
|  | REG_WRITE(REG_GLOBAL, 0x13, 0x5555); | 
|  | REG_WRITE(REG_GLOBAL, 0x14, 0xaaaa); | 
|  | REG_WRITE(REG_GLOBAL, 0x15, 0xaaaa); | 
|  | REG_WRITE(REG_GLOBAL, 0x16, 0xffff); | 
|  | REG_WRITE(REG_GLOBAL, 0x17, 0xffff); | 
|  |  | 
|  | /* | 
|  | * Configure the IEEE 802.1p priority mapping register. | 
|  | */ | 
|  | REG_WRITE(REG_GLOBAL, 0x18, 0xfa41); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr) | 
|  | { | 
|  | REG_WRITE(REG_GLOBAL, 0x01, (addr[0] << 8) | addr[1]); | 
|  | REG_WRITE(REG_GLOBAL, 0x02, (addr[2] << 8) | addr[3]); | 
|  | REG_WRITE(REG_GLOBAL, 0x03, (addr[4] << 8) | addr[5]); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr) | 
|  | { | 
|  | int i; | 
|  | int ret; | 
|  |  | 
|  | for (i = 0; i < 6; i++) { | 
|  | int j; | 
|  |  | 
|  | /* | 
|  | * Write the MAC address byte. | 
|  | */ | 
|  | REG_WRITE(REG_GLOBAL2, 0x0d, 0x8000 | (i << 8) | addr[i]); | 
|  |  | 
|  | /* | 
|  | * Wait for the write to complete. | 
|  | */ | 
|  | for (j = 0; j < 16; j++) { | 
|  | ret = REG_READ(REG_GLOBAL2, 0x0d); | 
|  | if ((ret & 0x8000) == 0) | 
|  | break; | 
|  | } | 
|  | if (j == 16) | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum) | 
|  | { | 
|  | if (addr >= 0) | 
|  | return mv88e6xxx_reg_read(ds, addr, regnum); | 
|  | return 0xffff; | 
|  | } | 
|  |  | 
|  | int mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum, u16 val) | 
|  | { | 
|  | if (addr >= 0) | 
|  | return mv88e6xxx_reg_write(ds, addr, regnum, val); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU | 
|  | static int mv88e6xxx_ppu_disable(struct dsa_switch *ds) | 
|  | { | 
|  | int ret; | 
|  | int i; | 
|  |  | 
|  | ret = REG_READ(REG_GLOBAL, 0x04); | 
|  | REG_WRITE(REG_GLOBAL, 0x04, ret & ~0x4000); | 
|  |  | 
|  | for (i = 0; i < 1000; i++) { | 
|  | ret = REG_READ(REG_GLOBAL, 0x00); | 
|  | msleep(1); | 
|  | if ((ret & 0xc000) != 0xc000) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | static int mv88e6xxx_ppu_enable(struct dsa_switch *ds) | 
|  | { | 
|  | int ret; | 
|  | int i; | 
|  |  | 
|  | ret = REG_READ(REG_GLOBAL, 0x04); | 
|  | REG_WRITE(REG_GLOBAL, 0x04, ret | 0x4000); | 
|  |  | 
|  | for (i = 0; i < 1000; i++) { | 
|  | ret = REG_READ(REG_GLOBAL, 0x00); | 
|  | msleep(1); | 
|  | if ((ret & 0xc000) == 0xc000) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly) | 
|  | { | 
|  | struct mv88e6xxx_priv_state *ps; | 
|  |  | 
|  | ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work); | 
|  | if (mutex_trylock(&ps->ppu_mutex)) { | 
|  | struct dsa_switch *ds = ((struct dsa_switch *)ps) - 1; | 
|  |  | 
|  | if (mv88e6xxx_ppu_enable(ds) == 0) | 
|  | ps->ppu_disabled = 0; | 
|  | mutex_unlock(&ps->ppu_mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps) | 
|  | { | 
|  | struct mv88e6xxx_priv_state *ps = (void *)_ps; | 
|  |  | 
|  | schedule_work(&ps->ppu_work); | 
|  | } | 
|  |  | 
|  | static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds) | 
|  | { | 
|  | struct mv88e6xxx_priv_state *ps = (void *)(ds + 1); | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&ps->ppu_mutex); | 
|  |  | 
|  | /* | 
|  | * If the PHY polling unit is enabled, disable it so that | 
|  | * we can access the PHY registers.  If it was already | 
|  | * disabled, cancel the timer that is going to re-enable | 
|  | * it. | 
|  | */ | 
|  | if (!ps->ppu_disabled) { | 
|  | ret = mv88e6xxx_ppu_disable(ds); | 
|  | if (ret < 0) { | 
|  | mutex_unlock(&ps->ppu_mutex); | 
|  | return ret; | 
|  | } | 
|  | ps->ppu_disabled = 1; | 
|  | } else { | 
|  | del_timer(&ps->ppu_timer); | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds) | 
|  | { | 
|  | struct mv88e6xxx_priv_state *ps = (void *)(ds + 1); | 
|  |  | 
|  | /* | 
|  | * Schedule a timer to re-enable the PHY polling unit. | 
|  | */ | 
|  | mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10)); | 
|  | mutex_unlock(&ps->ppu_mutex); | 
|  | } | 
|  |  | 
|  | void mv88e6xxx_ppu_state_init(struct dsa_switch *ds) | 
|  | { | 
|  | struct mv88e6xxx_priv_state *ps = (void *)(ds + 1); | 
|  |  | 
|  | mutex_init(&ps->ppu_mutex); | 
|  | INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work); | 
|  | init_timer(&ps->ppu_timer); | 
|  | ps->ppu_timer.data = (unsigned long)ps; | 
|  | ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer; | 
|  | } | 
|  |  | 
|  | int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = mv88e6xxx_ppu_access_get(ds); | 
|  | if (ret >= 0) { | 
|  | ret = mv88e6xxx_reg_read(ds, addr, regnum); | 
|  | mv88e6xxx_ppu_access_put(ds); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr, | 
|  | int regnum, u16 val) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = mv88e6xxx_ppu_access_get(ds); | 
|  | if (ret >= 0) { | 
|  | ret = mv88e6xxx_reg_write(ds, addr, regnum, val); | 
|  | mv88e6xxx_ppu_access_put(ds); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void mv88e6xxx_poll_link(struct dsa_switch *ds) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < DSA_MAX_PORTS; i++) { | 
|  | struct net_device *dev; | 
|  | int uninitialized_var(port_status); | 
|  | int link; | 
|  | int speed; | 
|  | int duplex; | 
|  | int fc; | 
|  |  | 
|  | dev = ds->ports[i]; | 
|  | if (dev == NULL) | 
|  | continue; | 
|  |  | 
|  | link = 0; | 
|  | if (dev->flags & IFF_UP) { | 
|  | port_status = mv88e6xxx_reg_read(ds, REG_PORT(i), 0x00); | 
|  | if (port_status < 0) | 
|  | continue; | 
|  |  | 
|  | link = !!(port_status & 0x0800); | 
|  | } | 
|  |  | 
|  | if (!link) { | 
|  | if (netif_carrier_ok(dev)) { | 
|  | printk(KERN_INFO "%s: link down\n", dev->name); | 
|  | netif_carrier_off(dev); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | switch (port_status & 0x0300) { | 
|  | case 0x0000: | 
|  | speed = 10; | 
|  | break; | 
|  | case 0x0100: | 
|  | speed = 100; | 
|  | break; | 
|  | case 0x0200: | 
|  | speed = 1000; | 
|  | break; | 
|  | default: | 
|  | speed = -1; | 
|  | break; | 
|  | } | 
|  | duplex = (port_status & 0x0400) ? 1 : 0; | 
|  | fc = (port_status & 0x8000) ? 1 : 0; | 
|  |  | 
|  | if (!netif_carrier_ok(dev)) { | 
|  | printk(KERN_INFO "%s: link up, %d Mb/s, %s duplex, " | 
|  | "flow control %sabled\n", dev->name, | 
|  | speed, duplex ? "full" : "half", | 
|  | fc ? "en" : "dis"); | 
|  | netif_carrier_on(dev); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int mv88e6xxx_stats_wait(struct dsa_switch *ds) | 
|  | { | 
|  | int ret; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 10; i++) { | 
|  | ret = REG_READ(REG_GLOBAL, 0x1d); | 
|  | if ((ret & 0x8000) == 0) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | static int mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Snapshot the hardware statistics counters for this port. | 
|  | */ | 
|  | REG_WRITE(REG_GLOBAL, 0x1d, 0xdc00 | port); | 
|  |  | 
|  | /* | 
|  | * Wait for the snapshotting to complete. | 
|  | */ | 
|  | ret = mv88e6xxx_stats_wait(ds); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val) | 
|  | { | 
|  | u32 _val; | 
|  | int ret; | 
|  |  | 
|  | *val = 0; | 
|  |  | 
|  | ret = mv88e6xxx_reg_write(ds, REG_GLOBAL, 0x1d, 0xcc00 | stat); | 
|  | if (ret < 0) | 
|  | return; | 
|  |  | 
|  | ret = mv88e6xxx_stats_wait(ds); | 
|  | if (ret < 0) | 
|  | return; | 
|  |  | 
|  | ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x1e); | 
|  | if (ret < 0) | 
|  | return; | 
|  |  | 
|  | _val = ret << 16; | 
|  |  | 
|  | ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x1f); | 
|  | if (ret < 0) | 
|  | return; | 
|  |  | 
|  | *val = _val | ret; | 
|  | } | 
|  |  | 
|  | void mv88e6xxx_get_strings(struct dsa_switch *ds, | 
|  | int nr_stats, struct mv88e6xxx_hw_stat *stats, | 
|  | int port, uint8_t *data) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < nr_stats; i++) { | 
|  | memcpy(data + i * ETH_GSTRING_LEN, | 
|  | stats[i].string, ETH_GSTRING_LEN); | 
|  | } | 
|  | } | 
|  |  | 
|  | void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds, | 
|  | int nr_stats, struct mv88e6xxx_hw_stat *stats, | 
|  | int port, uint64_t *data) | 
|  | { | 
|  | struct mv88e6xxx_priv_state *ps = (void *)(ds + 1); | 
|  | int ret; | 
|  | int i; | 
|  |  | 
|  | mutex_lock(&ps->stats_mutex); | 
|  |  | 
|  | ret = mv88e6xxx_stats_snapshot(ds, port); | 
|  | if (ret < 0) { | 
|  | mutex_unlock(&ps->stats_mutex); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read each of the counters. | 
|  | */ | 
|  | for (i = 0; i < nr_stats; i++) { | 
|  | struct mv88e6xxx_hw_stat *s = stats + i; | 
|  | u32 low; | 
|  | u32 high; | 
|  |  | 
|  | mv88e6xxx_stats_read(ds, s->reg, &low); | 
|  | if (s->sizeof_stat == 8) | 
|  | mv88e6xxx_stats_read(ds, s->reg + 1, &high); | 
|  | else | 
|  | high = 0; | 
|  |  | 
|  | data[i] = (((u64)high) << 32) | low; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&ps->stats_mutex); | 
|  | } |