| /* | 
 |  * Physical mapping layer for MTD using the Axis partitiontable format | 
 |  * | 
 |  * Copyright (c) 2001, 2002 Axis Communications AB | 
 |  * | 
 |  * This file is under the GPL. | 
 |  * | 
 |  * First partition is always sector 0 regardless of if we find a partitiontable | 
 |  * or not. In the start of the next sector, there can be a partitiontable that | 
 |  * tells us what other partitions to define. If there isn't, we use a default | 
 |  * partition split defined below. | 
 |  * | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/types.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/init.h> | 
 | #include <linux/slab.h> | 
 |  | 
 | #include <linux/mtd/concat.h> | 
 | #include <linux/mtd/map.h> | 
 | #include <linux/mtd/mtd.h> | 
 | #include <linux/mtd/mtdram.h> | 
 | #include <linux/mtd/partitions.h> | 
 |  | 
 | #include <asm/axisflashmap.h> | 
 | #include <asm/mmu.h> | 
 | #include <arch/sv_addr_ag.h> | 
 |  | 
 | #ifdef CONFIG_CRIS_LOW_MAP | 
 | #define FLASH_UNCACHED_ADDR  KSEG_8 | 
 | #define FLASH_CACHED_ADDR    KSEG_5 | 
 | #else | 
 | #define FLASH_UNCACHED_ADDR  KSEG_E | 
 | #define FLASH_CACHED_ADDR    KSEG_F | 
 | #endif | 
 |  | 
 | #if CONFIG_ETRAX_FLASH_BUSWIDTH==1 | 
 | #define flash_data __u8 | 
 | #elif CONFIG_ETRAX_FLASH_BUSWIDTH==2 | 
 | #define flash_data __u16 | 
 | #elif CONFIG_ETRAX_FLASH_BUSWIDTH==4 | 
 | #define flash_data __u32 | 
 | #endif | 
 |  | 
 | /* From head.S */ | 
 | extern unsigned long romfs_start, romfs_length, romfs_in_flash; | 
 |  | 
 | /* The master mtd for the entire flash. */ | 
 | struct mtd_info* axisflash_mtd = NULL; | 
 |  | 
 | /* Map driver functions. */ | 
 |  | 
 | static map_word flash_read(struct map_info *map, unsigned long ofs) | 
 | { | 
 | 	map_word tmp; | 
 | 	tmp.x[0] = *(flash_data *)(map->map_priv_1 + ofs); | 
 | 	return tmp; | 
 | } | 
 |  | 
 | static void flash_copy_from(struct map_info *map, void *to, | 
 | 			    unsigned long from, ssize_t len) | 
 | { | 
 | 	memcpy(to, (void *)(map->map_priv_1 + from), len); | 
 | } | 
 |  | 
 | static void flash_write(struct map_info *map, map_word d, unsigned long adr) | 
 | { | 
 | 	*(flash_data *)(map->map_priv_1 + adr) = (flash_data)d.x[0]; | 
 | } | 
 |  | 
 | /* | 
 |  * The map for chip select e0. | 
 |  * | 
 |  * We run into tricky coherence situations if we mix cached with uncached | 
 |  * accesses to we only use the uncached version here. | 
 |  * | 
 |  * The size field is the total size where the flash chips may be mapped on the | 
 |  * chip select. MTD probes should find all devices there and it does not matter | 
 |  * if there are unmapped gaps or aliases (mirrors of flash devices). The MTD | 
 |  * probes will ignore them. | 
 |  * | 
 |  * The start address in map_priv_1 is in virtual memory so we cannot use | 
 |  * MEM_CSE0_START but must rely on that FLASH_UNCACHED_ADDR is the start | 
 |  * address of cse0. | 
 |  */ | 
 | static struct map_info map_cse0 = { | 
 | 	.name = "cse0", | 
 | 	.size = MEM_CSE0_SIZE, | 
 | 	.bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH, | 
 | 	.read = flash_read, | 
 | 	.copy_from = flash_copy_from, | 
 | 	.write = flash_write, | 
 | 	.map_priv_1 = FLASH_UNCACHED_ADDR | 
 | }; | 
 |  | 
 | /* | 
 |  * The map for chip select e1. | 
 |  * | 
 |  * If there was a gap between cse0 and cse1, map_priv_1 would get the wrong | 
 |  * address, but there isn't. | 
 |  */ | 
 | static struct map_info map_cse1 = { | 
 | 	.name = "cse1", | 
 | 	.size = MEM_CSE1_SIZE, | 
 | 	.bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH, | 
 | 	.read = flash_read, | 
 | 	.copy_from = flash_copy_from, | 
 | 	.write = flash_write, | 
 | 	.map_priv_1 = FLASH_UNCACHED_ADDR + MEM_CSE0_SIZE | 
 | }; | 
 |  | 
 | /* If no partition-table was found, we use this default-set. */ | 
 | #define MAX_PARTITIONS         7 | 
 | #define NUM_DEFAULT_PARTITIONS 3 | 
 |  | 
 | /* | 
 |  * Default flash size is 2MB. CONFIG_ETRAX_PTABLE_SECTOR is most likely the | 
 |  * size of one flash block and "filesystem"-partition needs 5 blocks to be able | 
 |  * to use JFFS. | 
 |  */ | 
 | static struct mtd_partition axis_default_partitions[NUM_DEFAULT_PARTITIONS] = { | 
 | 	{ | 
 | 		.name = "boot firmware", | 
 | 		.size = CONFIG_ETRAX_PTABLE_SECTOR, | 
 | 		.offset = 0 | 
 | 	}, | 
 | 	{ | 
 | 		.name = "kernel", | 
 | 		.size = 0x200000 - (6 * CONFIG_ETRAX_PTABLE_SECTOR), | 
 | 		.offset = CONFIG_ETRAX_PTABLE_SECTOR | 
 | 	}, | 
 | 	{ | 
 | 		.name = "filesystem", | 
 | 		.size = 5 * CONFIG_ETRAX_PTABLE_SECTOR, | 
 | 		.offset = 0x200000 - (5 * CONFIG_ETRAX_PTABLE_SECTOR) | 
 | 	} | 
 | }; | 
 |  | 
 | /* Initialize the ones normally used. */ | 
 | static struct mtd_partition axis_partitions[MAX_PARTITIONS] = { | 
 | 	{ | 
 | 		.name = "part0", | 
 | 		.size = CONFIG_ETRAX_PTABLE_SECTOR, | 
 | 		.offset = 0 | 
 | 	}, | 
 | 	{ | 
 | 		.name = "part1", | 
 | 		.size = 0, | 
 | 		.offset = 0 | 
 | 	}, | 
 | 	{ | 
 | 		.name = "part2", | 
 | 		.size = 0, | 
 | 		.offset = 0 | 
 | 	}, | 
 | 	{ | 
 | 		.name = "part3", | 
 | 		.size = 0, | 
 | 		.offset = 0 | 
 | 	}, | 
 | 	{ | 
 | 		.name = "part4", | 
 | 		.size = 0, | 
 | 		.offset = 0 | 
 | 	}, | 
 | 	{ | 
 | 		.name = "part5", | 
 | 		.size = 0, | 
 | 		.offset = 0 | 
 | 	}, | 
 | 	{ | 
 | 		.name = "part6", | 
 | 		.size = 0, | 
 | 		.offset = 0 | 
 | 	}, | 
 | }; | 
 |  | 
 | #ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE | 
 | /* Main flash device */ | 
 | static struct mtd_partition main_partition = { | 
 | 	.name = "main", | 
 | 	.size = 0, | 
 | 	.offset = 0 | 
 | }; | 
 | #endif | 
 |  | 
 | /* | 
 |  * Probe a chip select for AMD-compatible (JEDEC) or CFI-compatible flash | 
 |  * chips in that order (because the amd_flash-driver is faster). | 
 |  */ | 
 | static struct mtd_info *probe_cs(struct map_info *map_cs) | 
 | { | 
 | 	struct mtd_info *mtd_cs = NULL; | 
 |  | 
 | 	printk(KERN_INFO | 
 |                "%s: Probing a 0x%08lx bytes large window at 0x%08lx.\n", | 
 | 	       map_cs->name, map_cs->size, map_cs->map_priv_1); | 
 |  | 
 | #ifdef CONFIG_MTD_CFI | 
 | 	mtd_cs = do_map_probe("cfi_probe", map_cs); | 
 | #endif | 
 | #ifdef CONFIG_MTD_JEDECPROBE | 
 | 	if (!mtd_cs) | 
 | 		mtd_cs = do_map_probe("jedec_probe", map_cs); | 
 | #endif | 
 |  | 
 | 	return mtd_cs; | 
 | } | 
 |  | 
 | /* | 
 |  * Probe each chip select individually for flash chips. If there are chips on | 
 |  * both cse0 and cse1, the mtd_info structs will be concatenated to one struct | 
 |  * so that MTD partitions can cross chip boundries. | 
 |  * | 
 |  * The only known restriction to how you can mount your chips is that each | 
 |  * chip select must hold similar flash chips. But you need external hardware | 
 |  * to do that anyway and you can put totally different chips on cse0 and cse1 | 
 |  * so it isn't really much of a restriction. | 
 |  */ | 
 | static struct mtd_info *flash_probe(void) | 
 | { | 
 | 	struct mtd_info *mtd_cse0; | 
 | 	struct mtd_info *mtd_cse1; | 
 | 	struct mtd_info *mtd_cse; | 
 |  | 
 | 	mtd_cse0 = probe_cs(&map_cse0); | 
 | 	mtd_cse1 = probe_cs(&map_cse1); | 
 |  | 
 | 	if (!mtd_cse0 && !mtd_cse1) { | 
 | 		/* No chip found. */ | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	if (mtd_cse0 && mtd_cse1) { | 
 | #ifdef CONFIG_MTD_CONCAT | 
 | 		struct mtd_info *mtds[] = { mtd_cse0, mtd_cse1 }; | 
 |  | 
 | 		/* Since the concatenation layer adds a small overhead we | 
 | 		 * could try to figure out if the chips in cse0 and cse1 are | 
 | 		 * identical and reprobe the whole cse0+cse1 window. But since | 
 | 		 * flash chips are slow, the overhead is relatively small. | 
 | 		 * So we use the MTD concatenation layer instead of further | 
 | 		 * complicating the probing procedure. | 
 | 		 */ | 
 | 		mtd_cse = mtd_concat_create(mtds, ARRAY_SIZE(mtds), | 
 | 					    "cse0+cse1"); | 
 | #else | 
 | 		printk(KERN_ERR "%s and %s: Cannot concatenate due to kernel " | 
 | 		       "(mis)configuration!\n", map_cse0.name, map_cse1.name); | 
 | 		mtd_cse = NULL; | 
 | #endif | 
 | 		if (!mtd_cse) { | 
 | 			printk(KERN_ERR "%s and %s: Concatenation failed!\n", | 
 | 			       map_cse0.name, map_cse1.name); | 
 |  | 
 | 			/* The best we can do now is to only use what we found | 
 | 			 * at cse0. | 
 | 			 */ | 
 | 			mtd_cse = mtd_cse0; | 
 | 			map_destroy(mtd_cse1); | 
 | 		} | 
 | 	} else { | 
 | 		mtd_cse = mtd_cse0? mtd_cse0 : mtd_cse1; | 
 | 	} | 
 |  | 
 | 	return mtd_cse; | 
 | } | 
 |  | 
 | /* | 
 |  * Probe the flash chip(s) and, if it succeeds, read the partition-table | 
 |  * and register the partitions with MTD. | 
 |  */ | 
 | static int __init init_axis_flash(void) | 
 | { | 
 | 	struct mtd_info *mymtd; | 
 | 	int err = 0; | 
 | 	int pidx = 0; | 
 | 	struct partitiontable_head *ptable_head = NULL; | 
 | 	struct partitiontable_entry *ptable; | 
 | 	int use_default_ptable = 1; /* Until proven otherwise. */ | 
 | 	const char pmsg[] = "  /dev/flash%d at 0x%08x, size 0x%08x\n"; | 
 |  | 
 | 	if (!(mymtd = flash_probe())) { | 
 | 		/* There's no reason to use this module if no flash chip can | 
 | 		 * be identified. Make sure that's understood. | 
 | 		 */ | 
 | 		printk(KERN_INFO "axisflashmap: Found no flash chip.\n"); | 
 | 	} else { | 
 | 		printk(KERN_INFO "%s: 0x%08x bytes of flash memory.\n", | 
 | 		       mymtd->name, mymtd->size); | 
 | 		axisflash_mtd = mymtd; | 
 | 	} | 
 |  | 
 | 	if (mymtd) { | 
 | 		mymtd->owner = THIS_MODULE; | 
 | 		ptable_head = (struct partitiontable_head *)(FLASH_CACHED_ADDR + | 
 | 			      CONFIG_ETRAX_PTABLE_SECTOR + | 
 | 			      PARTITION_TABLE_OFFSET); | 
 | 	} | 
 | 	pidx++;  /* First partition is always set to the default. */ | 
 |  | 
 | 	if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC) | 
 | 	    && (ptable_head->size < | 
 | 		(MAX_PARTITIONS * sizeof(struct partitiontable_entry) + | 
 | 		PARTITIONTABLE_END_MARKER_SIZE)) | 
 | 	    && (*(unsigned long*)((void*)ptable_head + sizeof(*ptable_head) + | 
 | 				  ptable_head->size - | 
 | 				  PARTITIONTABLE_END_MARKER_SIZE) | 
 | 		== PARTITIONTABLE_END_MARKER)) { | 
 | 		/* Looks like a start, sane length and end of a | 
 | 		 * partition table, lets check csum etc. | 
 | 		 */ | 
 | 		int ptable_ok = 0; | 
 | 		struct partitiontable_entry *max_addr = | 
 | 			(struct partitiontable_entry *) | 
 | 			((unsigned long)ptable_head + sizeof(*ptable_head) + | 
 | 			 ptable_head->size); | 
 | 		unsigned long offset = CONFIG_ETRAX_PTABLE_SECTOR; | 
 | 		unsigned char *p; | 
 | 		unsigned long csum = 0; | 
 |  | 
 | 		ptable = (struct partitiontable_entry *) | 
 | 			((unsigned long)ptable_head + sizeof(*ptable_head)); | 
 |  | 
 | 		/* Lets be PARANOID, and check the checksum. */ | 
 | 		p = (unsigned char*) ptable; | 
 |  | 
 | 		while (p <= (unsigned char*)max_addr) { | 
 | 			csum += *p++; | 
 | 			csum += *p++; | 
 | 			csum += *p++; | 
 | 			csum += *p++; | 
 | 		} | 
 | 		ptable_ok = (csum == ptable_head->checksum); | 
 |  | 
 | 		/* Read the entries and use/show the info.  */ | 
 | 		printk(KERN_INFO " Found a%s partition table at 0x%p-0x%p.\n", | 
 | 		       (ptable_ok ? " valid" : "n invalid"), ptable_head, | 
 | 		       max_addr); | 
 |  | 
 | 		/* We have found a working bootblock.  Now read the | 
 | 		 * partition table.  Scan the table.  It ends when | 
 | 		 * there is 0xffffffff, that is, empty flash. | 
 | 		 */ | 
 | 		while (ptable_ok | 
 | 		       && ptable->offset != 0xffffffff | 
 | 		       && ptable < max_addr | 
 | 		       && pidx < MAX_PARTITIONS) { | 
 |  | 
 | 			axis_partitions[pidx].offset = offset + ptable->offset; | 
 | 			axis_partitions[pidx].size = ptable->size; | 
 |  | 
 | 			printk(pmsg, pidx, axis_partitions[pidx].offset, | 
 | 			       axis_partitions[pidx].size); | 
 | 			pidx++; | 
 | 			ptable++; | 
 | 		} | 
 | 		use_default_ptable = !ptable_ok; | 
 | 	} | 
 |  | 
 | 	if (romfs_in_flash) { | 
 | 		/* Add an overlapping device for the root partition (romfs). */ | 
 |  | 
 | 		axis_partitions[pidx].name = "romfs"; | 
 | 		axis_partitions[pidx].size = romfs_length; | 
 | 		axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR; | 
 | 		axis_partitions[pidx].mask_flags |= MTD_WRITEABLE; | 
 |  | 
 | 		printk(KERN_INFO | 
 |                        " Adding readonly flash partition for romfs image:\n"); | 
 | 		printk(pmsg, pidx, axis_partitions[pidx].offset, | 
 | 		       axis_partitions[pidx].size); | 
 | 		pidx++; | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE | 
 | 	if (mymtd) { | 
 | 		main_partition.size = mymtd->size; | 
 | 		err = add_mtd_partitions(mymtd, &main_partition, 1); | 
 | 		if (err) | 
 | 			panic("axisflashmap: Could not initialize " | 
 | 			      "partition for whole main mtd device!\n"); | 
 | 	} | 
 | #endif | 
 |  | 
 |         if (mymtd) { | 
 | 		if (use_default_ptable) { | 
 | 			printk(KERN_INFO " Using default partition table.\n"); | 
 | 			err = add_mtd_partitions(mymtd, axis_default_partitions, | 
 | 						 NUM_DEFAULT_PARTITIONS); | 
 | 		} else { | 
 | 			err = add_mtd_partitions(mymtd, axis_partitions, pidx); | 
 | 		} | 
 |  | 
 | 		if (err) | 
 | 			panic("axisflashmap could not add MTD partitions!\n"); | 
 | 	} | 
 |  | 
 | 	if (!romfs_in_flash) { | 
 | 		/* Create an RAM device for the root partition (romfs). */ | 
 |  | 
 | #if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0) | 
 | 		/* No use trying to boot this kernel from RAM. Panic! */ | 
 | 		printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM " | 
 | 		       "device due to kernel (mis)configuration!\n"); | 
 | 		panic("This kernel cannot boot from RAM!\n"); | 
 | #else | 
 | 		struct mtd_info *mtd_ram; | 
 |  | 
 | 		mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL); | 
 | 		if (!mtd_ram) | 
 | 			panic("axisflashmap couldn't allocate memory for " | 
 | 			      "mtd_info!\n"); | 
 |  | 
 | 		printk(KERN_INFO " Adding RAM partition for romfs image:\n"); | 
 | 		printk(pmsg, pidx, (unsigned)romfs_start, | 
 | 			(unsigned)romfs_length); | 
 |  | 
 | 		err = mtdram_init_device(mtd_ram, | 
 | 			(void *)romfs_start, | 
 | 			romfs_length, | 
 | 			"romfs"); | 
 | 		if (err) | 
 | 			panic("axisflashmap could not initialize MTD RAM " | 
 | 			      "device!\n"); | 
 | #endif | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | /* This adds the above to the kernels init-call chain. */ | 
 | module_init(init_axis_flash); | 
 |  | 
 | EXPORT_SYMBOL(axisflash_mtd); |