| /* | 
 |  * Generic pidhash and scalable, time-bounded PID allocator | 
 |  * | 
 |  * (C) 2002-2003 William Irwin, IBM | 
 |  * (C) 2004 William Irwin, Oracle | 
 |  * (C) 2002-2004 Ingo Molnar, Red Hat | 
 |  * | 
 |  * pid-structures are backing objects for tasks sharing a given ID to chain | 
 |  * against. There is very little to them aside from hashing them and | 
 |  * parking tasks using given ID's on a list. | 
 |  * | 
 |  * The hash is always changed with the tasklist_lock write-acquired, | 
 |  * and the hash is only accessed with the tasklist_lock at least | 
 |  * read-acquired, so there's no additional SMP locking needed here. | 
 |  * | 
 |  * We have a list of bitmap pages, which bitmaps represent the PID space. | 
 |  * Allocating and freeing PIDs is completely lockless. The worst-case | 
 |  * allocation scenario when all but one out of 1 million PIDs possible are | 
 |  * allocated already: the scanning of 32 list entries and at most PAGE_SIZE | 
 |  * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). | 
 |  * | 
 |  * Pid namespaces: | 
 |  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. | 
 |  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM | 
 |  *     Many thanks to Oleg Nesterov for comments and help | 
 |  * | 
 |  */ | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/module.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/init.h> | 
 | #include <linux/rculist.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/hash.h> | 
 | #include <linux/pid_namespace.h> | 
 | #include <linux/init_task.h> | 
 | #include <linux/syscalls.h> | 
 |  | 
 | #define pid_hashfn(nr, ns)	\ | 
 | 	hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift) | 
 | static struct hlist_head *pid_hash; | 
 | static unsigned int pidhash_shift = 4; | 
 | struct pid init_struct_pid = INIT_STRUCT_PID; | 
 |  | 
 | int pid_max = PID_MAX_DEFAULT; | 
 |  | 
 | #define RESERVED_PIDS		300 | 
 |  | 
 | int pid_max_min = RESERVED_PIDS + 1; | 
 | int pid_max_max = PID_MAX_LIMIT; | 
 |  | 
 | #define BITS_PER_PAGE		(PAGE_SIZE*8) | 
 | #define BITS_PER_PAGE_MASK	(BITS_PER_PAGE-1) | 
 |  | 
 | static inline int mk_pid(struct pid_namespace *pid_ns, | 
 | 		struct pidmap *map, int off) | 
 | { | 
 | 	return (map - pid_ns->pidmap)*BITS_PER_PAGE + off; | 
 | } | 
 |  | 
 | #define find_next_offset(map, off)					\ | 
 | 		find_next_zero_bit((map)->page, BITS_PER_PAGE, off) | 
 |  | 
 | /* | 
 |  * PID-map pages start out as NULL, they get allocated upon | 
 |  * first use and are never deallocated. This way a low pid_max | 
 |  * value does not cause lots of bitmaps to be allocated, but | 
 |  * the scheme scales to up to 4 million PIDs, runtime. | 
 |  */ | 
 | struct pid_namespace init_pid_ns = { | 
 | 	.kref = { | 
 | 		.refcount       = ATOMIC_INIT(2), | 
 | 	}, | 
 | 	.pidmap = { | 
 | 		[ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } | 
 | 	}, | 
 | 	.last_pid = 0, | 
 | 	.level = 0, | 
 | 	.child_reaper = &init_task, | 
 | }; | 
 | EXPORT_SYMBOL_GPL(init_pid_ns); | 
 |  | 
 | int is_container_init(struct task_struct *tsk) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct pid *pid; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	pid = task_pid(tsk); | 
 | 	if (pid != NULL && pid->numbers[pid->level].nr == 1) | 
 | 		ret = 1; | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(is_container_init); | 
 |  | 
 | /* | 
 |  * Note: disable interrupts while the pidmap_lock is held as an | 
 |  * interrupt might come in and do read_lock(&tasklist_lock). | 
 |  * | 
 |  * If we don't disable interrupts there is a nasty deadlock between | 
 |  * detach_pid()->free_pid() and another cpu that does | 
 |  * spin_lock(&pidmap_lock) followed by an interrupt routine that does | 
 |  * read_lock(&tasklist_lock); | 
 |  * | 
 |  * After we clean up the tasklist_lock and know there are no | 
 |  * irq handlers that take it we can leave the interrupts enabled. | 
 |  * For now it is easier to be safe than to prove it can't happen. | 
 |  */ | 
 |  | 
 | static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); | 
 |  | 
 | static void free_pidmap(struct upid *upid) | 
 | { | 
 | 	int nr = upid->nr; | 
 | 	struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE; | 
 | 	int offset = nr & BITS_PER_PAGE_MASK; | 
 |  | 
 | 	clear_bit(offset, map->page); | 
 | 	atomic_inc(&map->nr_free); | 
 | } | 
 |  | 
 | /* | 
 |  * If we started walking pids at 'base', is 'a' seen before 'b'? | 
 |  */ | 
 | static int pid_before(int base, int a, int b) | 
 | { | 
 | 	/* | 
 | 	 * This is the same as saying | 
 | 	 * | 
 | 	 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT | 
 | 	 * and that mapping orders 'a' and 'b' with respect to 'base'. | 
 | 	 */ | 
 | 	return (unsigned)(a - base) < (unsigned)(b - base); | 
 | } | 
 |  | 
 | /* | 
 |  * We might be racing with someone else trying to set pid_ns->last_pid. | 
 |  * We want the winner to have the "later" value, because if the | 
 |  * "earlier" value prevails, then a pid may get reused immediately. | 
 |  * | 
 |  * Since pids rollover, it is not sufficient to just pick the bigger | 
 |  * value.  We have to consider where we started counting from. | 
 |  * | 
 |  * 'base' is the value of pid_ns->last_pid that we observed when | 
 |  * we started looking for a pid. | 
 |  * | 
 |  * 'pid' is the pid that we eventually found. | 
 |  */ | 
 | static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid) | 
 | { | 
 | 	int prev; | 
 | 	int last_write = base; | 
 | 	do { | 
 | 		prev = last_write; | 
 | 		last_write = cmpxchg(&pid_ns->last_pid, prev, pid); | 
 | 	} while ((prev != last_write) && (pid_before(base, last_write, pid))); | 
 | } | 
 |  | 
 | static int alloc_pidmap(struct pid_namespace *pid_ns) | 
 | { | 
 | 	int i, offset, max_scan, pid, last = pid_ns->last_pid; | 
 | 	struct pidmap *map; | 
 |  | 
 | 	pid = last + 1; | 
 | 	if (pid >= pid_max) | 
 | 		pid = RESERVED_PIDS; | 
 | 	offset = pid & BITS_PER_PAGE_MASK; | 
 | 	map = &pid_ns->pidmap[pid/BITS_PER_PAGE]; | 
 | 	/* | 
 | 	 * If last_pid points into the middle of the map->page we | 
 | 	 * want to scan this bitmap block twice, the second time | 
 | 	 * we start with offset == 0 (or RESERVED_PIDS). | 
 | 	 */ | 
 | 	max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset; | 
 | 	for (i = 0; i <= max_scan; ++i) { | 
 | 		if (unlikely(!map->page)) { | 
 | 			void *page = kzalloc(PAGE_SIZE, GFP_KERNEL); | 
 | 			/* | 
 | 			 * Free the page if someone raced with us | 
 | 			 * installing it: | 
 | 			 */ | 
 | 			spin_lock_irq(&pidmap_lock); | 
 | 			if (!map->page) { | 
 | 				map->page = page; | 
 | 				page = NULL; | 
 | 			} | 
 | 			spin_unlock_irq(&pidmap_lock); | 
 | 			kfree(page); | 
 | 			if (unlikely(!map->page)) | 
 | 				break; | 
 | 		} | 
 | 		if (likely(atomic_read(&map->nr_free))) { | 
 | 			do { | 
 | 				if (!test_and_set_bit(offset, map->page)) { | 
 | 					atomic_dec(&map->nr_free); | 
 | 					set_last_pid(pid_ns, last, pid); | 
 | 					return pid; | 
 | 				} | 
 | 				offset = find_next_offset(map, offset); | 
 | 				pid = mk_pid(pid_ns, map, offset); | 
 | 			} while (offset < BITS_PER_PAGE && pid < pid_max); | 
 | 		} | 
 | 		if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) { | 
 | 			++map; | 
 | 			offset = 0; | 
 | 		} else { | 
 | 			map = &pid_ns->pidmap[0]; | 
 | 			offset = RESERVED_PIDS; | 
 | 			if (unlikely(last == offset)) | 
 | 				break; | 
 | 		} | 
 | 		pid = mk_pid(pid_ns, map, offset); | 
 | 	} | 
 | 	return -1; | 
 | } | 
 |  | 
 | int next_pidmap(struct pid_namespace *pid_ns, int last) | 
 | { | 
 | 	int offset; | 
 | 	struct pidmap *map, *end; | 
 |  | 
 | 	offset = (last + 1) & BITS_PER_PAGE_MASK; | 
 | 	map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE]; | 
 | 	end = &pid_ns->pidmap[PIDMAP_ENTRIES]; | 
 | 	for (; map < end; map++, offset = 0) { | 
 | 		if (unlikely(!map->page)) | 
 | 			continue; | 
 | 		offset = find_next_bit((map)->page, BITS_PER_PAGE, offset); | 
 | 		if (offset < BITS_PER_PAGE) | 
 | 			return mk_pid(pid_ns, map, offset); | 
 | 	} | 
 | 	return -1; | 
 | } | 
 |  | 
 | void put_pid(struct pid *pid) | 
 | { | 
 | 	struct pid_namespace *ns; | 
 |  | 
 | 	if (!pid) | 
 | 		return; | 
 |  | 
 | 	ns = pid->numbers[pid->level].ns; | 
 | 	if ((atomic_read(&pid->count) == 1) || | 
 | 	     atomic_dec_and_test(&pid->count)) { | 
 | 		kmem_cache_free(ns->pid_cachep, pid); | 
 | 		put_pid_ns(ns); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(put_pid); | 
 |  | 
 | static void delayed_put_pid(struct rcu_head *rhp) | 
 | { | 
 | 	struct pid *pid = container_of(rhp, struct pid, rcu); | 
 | 	put_pid(pid); | 
 | } | 
 |  | 
 | void free_pid(struct pid *pid) | 
 | { | 
 | 	/* We can be called with write_lock_irq(&tasklist_lock) held */ | 
 | 	int i; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&pidmap_lock, flags); | 
 | 	for (i = 0; i <= pid->level; i++) | 
 | 		hlist_del_rcu(&pid->numbers[i].pid_chain); | 
 | 	spin_unlock_irqrestore(&pidmap_lock, flags); | 
 |  | 
 | 	for (i = 0; i <= pid->level; i++) | 
 | 		free_pidmap(pid->numbers + i); | 
 |  | 
 | 	call_rcu(&pid->rcu, delayed_put_pid); | 
 | } | 
 |  | 
 | struct pid *alloc_pid(struct pid_namespace *ns) | 
 | { | 
 | 	struct pid *pid; | 
 | 	enum pid_type type; | 
 | 	int i, nr; | 
 | 	struct pid_namespace *tmp; | 
 | 	struct upid *upid; | 
 |  | 
 | 	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); | 
 | 	if (!pid) | 
 | 		goto out; | 
 |  | 
 | 	tmp = ns; | 
 | 	for (i = ns->level; i >= 0; i--) { | 
 | 		nr = alloc_pidmap(tmp); | 
 | 		if (nr < 0) | 
 | 			goto out_free; | 
 |  | 
 | 		pid->numbers[i].nr = nr; | 
 | 		pid->numbers[i].ns = tmp; | 
 | 		tmp = tmp->parent; | 
 | 	} | 
 |  | 
 | 	get_pid_ns(ns); | 
 | 	pid->level = ns->level; | 
 | 	atomic_set(&pid->count, 1); | 
 | 	for (type = 0; type < PIDTYPE_MAX; ++type) | 
 | 		INIT_HLIST_HEAD(&pid->tasks[type]); | 
 |  | 
 | 	upid = pid->numbers + ns->level; | 
 | 	spin_lock_irq(&pidmap_lock); | 
 | 	for ( ; upid >= pid->numbers; --upid) | 
 | 		hlist_add_head_rcu(&upid->pid_chain, | 
 | 				&pid_hash[pid_hashfn(upid->nr, upid->ns)]); | 
 | 	spin_unlock_irq(&pidmap_lock); | 
 |  | 
 | out: | 
 | 	return pid; | 
 |  | 
 | out_free: | 
 | 	while (++i <= ns->level) | 
 | 		free_pidmap(pid->numbers + i); | 
 |  | 
 | 	kmem_cache_free(ns->pid_cachep, pid); | 
 | 	pid = NULL; | 
 | 	goto out; | 
 | } | 
 |  | 
 | struct pid *find_pid_ns(int nr, struct pid_namespace *ns) | 
 | { | 
 | 	struct hlist_node *elem; | 
 | 	struct upid *pnr; | 
 |  | 
 | 	hlist_for_each_entry_rcu(pnr, elem, | 
 | 			&pid_hash[pid_hashfn(nr, ns)], pid_chain) | 
 | 		if (pnr->nr == nr && pnr->ns == ns) | 
 | 			return container_of(pnr, struct pid, | 
 | 					numbers[ns->level]); | 
 |  | 
 | 	return NULL; | 
 | } | 
 | EXPORT_SYMBOL_GPL(find_pid_ns); | 
 |  | 
 | struct pid *find_vpid(int nr) | 
 | { | 
 | 	return find_pid_ns(nr, current->nsproxy->pid_ns); | 
 | } | 
 | EXPORT_SYMBOL_GPL(find_vpid); | 
 |  | 
 | /* | 
 |  * attach_pid() must be called with the tasklist_lock write-held. | 
 |  */ | 
 | void attach_pid(struct task_struct *task, enum pid_type type, | 
 | 		struct pid *pid) | 
 | { | 
 | 	struct pid_link *link; | 
 |  | 
 | 	link = &task->pids[type]; | 
 | 	link->pid = pid; | 
 | 	hlist_add_head_rcu(&link->node, &pid->tasks[type]); | 
 | } | 
 |  | 
 | static void __change_pid(struct task_struct *task, enum pid_type type, | 
 | 			struct pid *new) | 
 | { | 
 | 	struct pid_link *link; | 
 | 	struct pid *pid; | 
 | 	int tmp; | 
 |  | 
 | 	link = &task->pids[type]; | 
 | 	pid = link->pid; | 
 |  | 
 | 	hlist_del_rcu(&link->node); | 
 | 	link->pid = new; | 
 |  | 
 | 	for (tmp = PIDTYPE_MAX; --tmp >= 0; ) | 
 | 		if (!hlist_empty(&pid->tasks[tmp])) | 
 | 			return; | 
 |  | 
 | 	free_pid(pid); | 
 | } | 
 |  | 
 | void detach_pid(struct task_struct *task, enum pid_type type) | 
 | { | 
 | 	__change_pid(task, type, NULL); | 
 | } | 
 |  | 
 | void change_pid(struct task_struct *task, enum pid_type type, | 
 | 		struct pid *pid) | 
 | { | 
 | 	__change_pid(task, type, pid); | 
 | 	attach_pid(task, type, pid); | 
 | } | 
 |  | 
 | /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ | 
 | void transfer_pid(struct task_struct *old, struct task_struct *new, | 
 | 			   enum pid_type type) | 
 | { | 
 | 	new->pids[type].pid = old->pids[type].pid; | 
 | 	hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node); | 
 | } | 
 |  | 
 | struct task_struct *pid_task(struct pid *pid, enum pid_type type) | 
 | { | 
 | 	struct task_struct *result = NULL; | 
 | 	if (pid) { | 
 | 		struct hlist_node *first; | 
 | 		first = rcu_dereference_check(pid->tasks[type].first, | 
 | 					      rcu_read_lock_held() || | 
 | 					      lockdep_tasklist_lock_is_held()); | 
 | 		if (first) | 
 | 			result = hlist_entry(first, struct task_struct, pids[(type)].node); | 
 | 	} | 
 | 	return result; | 
 | } | 
 | EXPORT_SYMBOL(pid_task); | 
 |  | 
 | /* | 
 |  * Must be called under rcu_read_lock(). | 
 |  */ | 
 | struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) | 
 | { | 
 | 	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); | 
 | } | 
 |  | 
 | struct task_struct *find_task_by_vpid(pid_t vnr) | 
 | { | 
 | 	return find_task_by_pid_ns(vnr, current->nsproxy->pid_ns); | 
 | } | 
 |  | 
 | struct pid *get_task_pid(struct task_struct *task, enum pid_type type) | 
 | { | 
 | 	struct pid *pid; | 
 | 	rcu_read_lock(); | 
 | 	if (type != PIDTYPE_PID) | 
 | 		task = task->group_leader; | 
 | 	pid = get_pid(task->pids[type].pid); | 
 | 	rcu_read_unlock(); | 
 | 	return pid; | 
 | } | 
 |  | 
 | struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) | 
 | { | 
 | 	struct task_struct *result; | 
 | 	rcu_read_lock(); | 
 | 	result = pid_task(pid, type); | 
 | 	if (result) | 
 | 		get_task_struct(result); | 
 | 	rcu_read_unlock(); | 
 | 	return result; | 
 | } | 
 |  | 
 | struct pid *find_get_pid(pid_t nr) | 
 | { | 
 | 	struct pid *pid; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	pid = get_pid(find_vpid(nr)); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return pid; | 
 | } | 
 | EXPORT_SYMBOL_GPL(find_get_pid); | 
 |  | 
 | pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) | 
 | { | 
 | 	struct upid *upid; | 
 | 	pid_t nr = 0; | 
 |  | 
 | 	if (pid && ns->level <= pid->level) { | 
 | 		upid = &pid->numbers[ns->level]; | 
 | 		if (upid->ns == ns) | 
 | 			nr = upid->nr; | 
 | 	} | 
 | 	return nr; | 
 | } | 
 |  | 
 | pid_t pid_vnr(struct pid *pid) | 
 | { | 
 | 	return pid_nr_ns(pid, current->nsproxy->pid_ns); | 
 | } | 
 | EXPORT_SYMBOL_GPL(pid_vnr); | 
 |  | 
 | pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, | 
 | 			struct pid_namespace *ns) | 
 | { | 
 | 	pid_t nr = 0; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	if (!ns) | 
 | 		ns = current->nsproxy->pid_ns; | 
 | 	if (likely(pid_alive(task))) { | 
 | 		if (type != PIDTYPE_PID) | 
 | 			task = task->group_leader; | 
 | 		nr = pid_nr_ns(task->pids[type].pid, ns); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return nr; | 
 | } | 
 | EXPORT_SYMBOL(__task_pid_nr_ns); | 
 |  | 
 | pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) | 
 | { | 
 | 	return pid_nr_ns(task_tgid(tsk), ns); | 
 | } | 
 | EXPORT_SYMBOL(task_tgid_nr_ns); | 
 |  | 
 | struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) | 
 | { | 
 | 	return ns_of_pid(task_pid(tsk)); | 
 | } | 
 | EXPORT_SYMBOL_GPL(task_active_pid_ns); | 
 |  | 
 | /* | 
 |  * Used by proc to find the first pid that is greater than or equal to nr. | 
 |  * | 
 |  * If there is a pid at nr this function is exactly the same as find_pid_ns. | 
 |  */ | 
 | struct pid *find_ge_pid(int nr, struct pid_namespace *ns) | 
 | { | 
 | 	struct pid *pid; | 
 |  | 
 | 	do { | 
 | 		pid = find_pid_ns(nr, ns); | 
 | 		if (pid) | 
 | 			break; | 
 | 		nr = next_pidmap(ns, nr); | 
 | 	} while (nr > 0); | 
 |  | 
 | 	return pid; | 
 | } | 
 |  | 
 | /* | 
 |  * The pid hash table is scaled according to the amount of memory in the | 
 |  * machine.  From a minimum of 16 slots up to 4096 slots at one gigabyte or | 
 |  * more. | 
 |  */ | 
 | void __init pidhash_init(void) | 
 | { | 
 | 	int i, pidhash_size; | 
 |  | 
 | 	pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18, | 
 | 					   HASH_EARLY | HASH_SMALL, | 
 | 					   &pidhash_shift, NULL, 4096); | 
 | 	pidhash_size = 1 << pidhash_shift; | 
 |  | 
 | 	for (i = 0; i < pidhash_size; i++) | 
 | 		INIT_HLIST_HEAD(&pid_hash[i]); | 
 | } | 
 |  | 
 | void __init pidmap_init(void) | 
 | { | 
 | 	/* bump default and minimum pid_max based on number of cpus */ | 
 | 	pid_max = min(pid_max_max, max_t(int, pid_max, | 
 | 				PIDS_PER_CPU_DEFAULT * num_possible_cpus())); | 
 | 	pid_max_min = max_t(int, pid_max_min, | 
 | 				PIDS_PER_CPU_MIN * num_possible_cpus()); | 
 | 	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); | 
 |  | 
 | 	init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL); | 
 | 	/* Reserve PID 0. We never call free_pidmap(0) */ | 
 | 	set_bit(0, init_pid_ns.pidmap[0].page); | 
 | 	atomic_dec(&init_pid_ns.pidmap[0].nr_free); | 
 |  | 
 | 	init_pid_ns.pid_cachep = KMEM_CACHE(pid, | 
 | 			SLAB_HWCACHE_ALIGN | SLAB_PANIC); | 
 | } |