| /* | 
 |  * fs/fs-writeback.c | 
 |  * | 
 |  * Copyright (C) 2002, Linus Torvalds. | 
 |  * | 
 |  * Contains all the functions related to writing back and waiting | 
 |  * upon dirty inodes against superblocks, and writing back dirty | 
 |  * pages against inodes.  ie: data writeback.  Writeout of the | 
 |  * inode itself is not handled here. | 
 |  * | 
 |  * 10Apr2002	Andrew Morton | 
 |  *		Split out of fs/inode.c | 
 |  *		Additions for address_space-based writeback | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/module.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/freezer.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/buffer_head.h> | 
 | #include "internal.h" | 
 |  | 
 | #define inode_to_bdi(inode)	((inode)->i_mapping->backing_dev_info) | 
 |  | 
 | /* | 
 |  * We don't actually have pdflush, but this one is exported though /proc... | 
 |  */ | 
 | int nr_pdflush_threads; | 
 |  | 
 | /* | 
 |  * Passed into wb_writeback(), essentially a subset of writeback_control | 
 |  */ | 
 | struct wb_writeback_args { | 
 | 	long nr_pages; | 
 | 	struct super_block *sb; | 
 | 	enum writeback_sync_modes sync_mode; | 
 | 	int for_kupdate:1; | 
 | 	int range_cyclic:1; | 
 | 	int for_background:1; | 
 | }; | 
 |  | 
 | /* | 
 |  * Work items for the bdi_writeback threads | 
 |  */ | 
 | struct bdi_work { | 
 | 	struct list_head list;		/* pending work list */ | 
 | 	struct rcu_head rcu_head;	/* for RCU free/clear of work */ | 
 |  | 
 | 	unsigned long seen;		/* threads that have seen this work */ | 
 | 	atomic_t pending;		/* number of threads still to do work */ | 
 |  | 
 | 	struct wb_writeback_args args;	/* writeback arguments */ | 
 |  | 
 | 	unsigned long state;		/* flag bits, see WS_* */ | 
 | }; | 
 |  | 
 | enum { | 
 | 	WS_USED_B = 0, | 
 | 	WS_ONSTACK_B, | 
 | }; | 
 |  | 
 | #define WS_USED (1 << WS_USED_B) | 
 | #define WS_ONSTACK (1 << WS_ONSTACK_B) | 
 |  | 
 | static inline bool bdi_work_on_stack(struct bdi_work *work) | 
 | { | 
 | 	return test_bit(WS_ONSTACK_B, &work->state); | 
 | } | 
 |  | 
 | static inline void bdi_work_init(struct bdi_work *work, | 
 | 				 struct wb_writeback_args *args) | 
 | { | 
 | 	INIT_RCU_HEAD(&work->rcu_head); | 
 | 	work->args = *args; | 
 | 	work->state = WS_USED; | 
 | } | 
 |  | 
 | /** | 
 |  * writeback_in_progress - determine whether there is writeback in progress | 
 |  * @bdi: the device's backing_dev_info structure. | 
 |  * | 
 |  * Determine whether there is writeback waiting to be handled against a | 
 |  * backing device. | 
 |  */ | 
 | int writeback_in_progress(struct backing_dev_info *bdi) | 
 | { | 
 | 	return !list_empty(&bdi->work_list); | 
 | } | 
 |  | 
 | static void bdi_work_clear(struct bdi_work *work) | 
 | { | 
 | 	clear_bit(WS_USED_B, &work->state); | 
 | 	smp_mb__after_clear_bit(); | 
 | 	/* | 
 | 	 * work can have disappeared at this point. bit waitq functions | 
 | 	 * should be able to tolerate this, provided bdi_sched_wait does | 
 | 	 * not dereference it's pointer argument. | 
 | 	*/ | 
 | 	wake_up_bit(&work->state, WS_USED_B); | 
 | } | 
 |  | 
 | static void bdi_work_free(struct rcu_head *head) | 
 | { | 
 | 	struct bdi_work *work = container_of(head, struct bdi_work, rcu_head); | 
 |  | 
 | 	if (!bdi_work_on_stack(work)) | 
 | 		kfree(work); | 
 | 	else | 
 | 		bdi_work_clear(work); | 
 | } | 
 |  | 
 | static void wb_work_complete(struct bdi_work *work) | 
 | { | 
 | 	const enum writeback_sync_modes sync_mode = work->args.sync_mode; | 
 | 	int onstack = bdi_work_on_stack(work); | 
 |  | 
 | 	/* | 
 | 	 * For allocated work, we can clear the done/seen bit right here. | 
 | 	 * For on-stack work, we need to postpone both the clear and free | 
 | 	 * to after the RCU grace period, since the stack could be invalidated | 
 | 	 * as soon as bdi_work_clear() has done the wakeup. | 
 | 	 */ | 
 | 	if (!onstack) | 
 | 		bdi_work_clear(work); | 
 | 	if (sync_mode == WB_SYNC_NONE || onstack) | 
 | 		call_rcu(&work->rcu_head, bdi_work_free); | 
 | } | 
 |  | 
 | static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work) | 
 | { | 
 | 	/* | 
 | 	 * The caller has retrieved the work arguments from this work, | 
 | 	 * drop our reference. If this is the last ref, delete and free it | 
 | 	 */ | 
 | 	if (atomic_dec_and_test(&work->pending)) { | 
 | 		struct backing_dev_info *bdi = wb->bdi; | 
 |  | 
 | 		spin_lock(&bdi->wb_lock); | 
 | 		list_del_rcu(&work->list); | 
 | 		spin_unlock(&bdi->wb_lock); | 
 |  | 
 | 		wb_work_complete(work); | 
 | 	} | 
 | } | 
 |  | 
 | static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work) | 
 | { | 
 | 	work->seen = bdi->wb_mask; | 
 | 	BUG_ON(!work->seen); | 
 | 	atomic_set(&work->pending, bdi->wb_cnt); | 
 | 	BUG_ON(!bdi->wb_cnt); | 
 |  | 
 | 	/* | 
 | 	 * list_add_tail_rcu() contains the necessary barriers to | 
 | 	 * make sure the above stores are seen before the item is | 
 | 	 * noticed on the list | 
 | 	 */ | 
 | 	spin_lock(&bdi->wb_lock); | 
 | 	list_add_tail_rcu(&work->list, &bdi->work_list); | 
 | 	spin_unlock(&bdi->wb_lock); | 
 |  | 
 | 	/* | 
 | 	 * If the default thread isn't there, make sure we add it. When | 
 | 	 * it gets created and wakes up, we'll run this work. | 
 | 	 */ | 
 | 	if (unlikely(list_empty_careful(&bdi->wb_list))) | 
 | 		wake_up_process(default_backing_dev_info.wb.task); | 
 | 	else { | 
 | 		struct bdi_writeback *wb = &bdi->wb; | 
 |  | 
 | 		if (wb->task) | 
 | 			wake_up_process(wb->task); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Used for on-stack allocated work items. The caller needs to wait until | 
 |  * the wb threads have acked the work before it's safe to continue. | 
 |  */ | 
 | static void bdi_wait_on_work_clear(struct bdi_work *work) | 
 | { | 
 | 	wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait, | 
 | 		    TASK_UNINTERRUPTIBLE); | 
 | } | 
 |  | 
 | static void bdi_alloc_queue_work(struct backing_dev_info *bdi, | 
 | 				 struct wb_writeback_args *args) | 
 | { | 
 | 	struct bdi_work *work; | 
 |  | 
 | 	/* | 
 | 	 * This is WB_SYNC_NONE writeback, so if allocation fails just | 
 | 	 * wakeup the thread for old dirty data writeback | 
 | 	 */ | 
 | 	work = kmalloc(sizeof(*work), GFP_ATOMIC); | 
 | 	if (work) { | 
 | 		bdi_work_init(work, args); | 
 | 		bdi_queue_work(bdi, work); | 
 | 	} else { | 
 | 		struct bdi_writeback *wb = &bdi->wb; | 
 |  | 
 | 		if (wb->task) | 
 | 			wake_up_process(wb->task); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * bdi_sync_writeback - start and wait for writeback | 
 |  * @bdi: the backing device to write from | 
 |  * @sb: write inodes from this super_block | 
 |  * | 
 |  * Description: | 
 |  *   This does WB_SYNC_ALL data integrity writeback and waits for the | 
 |  *   IO to complete. Callers must hold the sb s_umount semaphore for | 
 |  *   reading, to avoid having the super disappear before we are done. | 
 |  */ | 
 | static void bdi_sync_writeback(struct backing_dev_info *bdi, | 
 | 			       struct super_block *sb) | 
 | { | 
 | 	struct wb_writeback_args args = { | 
 | 		.sb		= sb, | 
 | 		.sync_mode	= WB_SYNC_ALL, | 
 | 		.nr_pages	= LONG_MAX, | 
 | 		.range_cyclic	= 0, | 
 | 	}; | 
 | 	struct bdi_work work; | 
 |  | 
 | 	bdi_work_init(&work, &args); | 
 | 	work.state |= WS_ONSTACK; | 
 |  | 
 | 	bdi_queue_work(bdi, &work); | 
 | 	bdi_wait_on_work_clear(&work); | 
 | } | 
 |  | 
 | /** | 
 |  * bdi_start_writeback - start writeback | 
 |  * @bdi: the backing device to write from | 
 |  * @nr_pages: the number of pages to write | 
 |  * | 
 |  * Description: | 
 |  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only | 
 |  *   started when this function returns, we make no guarentees on | 
 |  *   completion. Caller need not hold sb s_umount semaphore. | 
 |  * | 
 |  */ | 
 | void bdi_start_writeback(struct backing_dev_info *bdi, struct super_block *sb, | 
 | 			 long nr_pages) | 
 | { | 
 | 	struct wb_writeback_args args = { | 
 | 		.sb		= sb, | 
 | 		.sync_mode	= WB_SYNC_NONE, | 
 | 		.nr_pages	= nr_pages, | 
 | 		.range_cyclic	= 1, | 
 | 	}; | 
 |  | 
 | 	/* | 
 | 	 * We treat @nr_pages=0 as the special case to do background writeback, | 
 | 	 * ie. to sync pages until the background dirty threshold is reached. | 
 | 	 */ | 
 | 	if (!nr_pages) { | 
 | 		args.nr_pages = LONG_MAX; | 
 | 		args.for_background = 1; | 
 | 	} | 
 |  | 
 | 	bdi_alloc_queue_work(bdi, &args); | 
 | } | 
 |  | 
 | /* | 
 |  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the | 
 |  * furthest end of its superblock's dirty-inode list. | 
 |  * | 
 |  * Before stamping the inode's ->dirtied_when, we check to see whether it is | 
 |  * already the most-recently-dirtied inode on the b_dirty list.  If that is | 
 |  * the case then the inode must have been redirtied while it was being written | 
 |  * out and we don't reset its dirtied_when. | 
 |  */ | 
 | static void redirty_tail(struct inode *inode) | 
 | { | 
 | 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; | 
 |  | 
 | 	if (!list_empty(&wb->b_dirty)) { | 
 | 		struct inode *tail; | 
 |  | 
 | 		tail = list_entry(wb->b_dirty.next, struct inode, i_list); | 
 | 		if (time_before(inode->dirtied_when, tail->dirtied_when)) | 
 | 			inode->dirtied_when = jiffies; | 
 | 	} | 
 | 	list_move(&inode->i_list, &wb->b_dirty); | 
 | } | 
 |  | 
 | /* | 
 |  * requeue inode for re-scanning after bdi->b_io list is exhausted. | 
 |  */ | 
 | static void requeue_io(struct inode *inode) | 
 | { | 
 | 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; | 
 |  | 
 | 	list_move(&inode->i_list, &wb->b_more_io); | 
 | } | 
 |  | 
 | static void inode_sync_complete(struct inode *inode) | 
 | { | 
 | 	/* | 
 | 	 * Prevent speculative execution through spin_unlock(&inode_lock); | 
 | 	 */ | 
 | 	smp_mb(); | 
 | 	wake_up_bit(&inode->i_state, __I_SYNC); | 
 | } | 
 |  | 
 | static bool inode_dirtied_after(struct inode *inode, unsigned long t) | 
 | { | 
 | 	bool ret = time_after(inode->dirtied_when, t); | 
 | #ifndef CONFIG_64BIT | 
 | 	/* | 
 | 	 * For inodes being constantly redirtied, dirtied_when can get stuck. | 
 | 	 * It _appears_ to be in the future, but is actually in distant past. | 
 | 	 * This test is necessary to prevent such wrapped-around relative times | 
 | 	 * from permanently stopping the whole bdi writeback. | 
 | 	 */ | 
 | 	ret = ret && time_before_eq(inode->dirtied_when, jiffies); | 
 | #endif | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Move expired dirty inodes from @delaying_queue to @dispatch_queue. | 
 |  */ | 
 | static void move_expired_inodes(struct list_head *delaying_queue, | 
 | 			       struct list_head *dispatch_queue, | 
 | 				unsigned long *older_than_this) | 
 | { | 
 | 	LIST_HEAD(tmp); | 
 | 	struct list_head *pos, *node; | 
 | 	struct super_block *sb = NULL; | 
 | 	struct inode *inode; | 
 | 	int do_sb_sort = 0; | 
 |  | 
 | 	while (!list_empty(delaying_queue)) { | 
 | 		inode = list_entry(delaying_queue->prev, struct inode, i_list); | 
 | 		if (older_than_this && | 
 | 		    inode_dirtied_after(inode, *older_than_this)) | 
 | 			break; | 
 | 		if (sb && sb != inode->i_sb) | 
 | 			do_sb_sort = 1; | 
 | 		sb = inode->i_sb; | 
 | 		list_move(&inode->i_list, &tmp); | 
 | 	} | 
 |  | 
 | 	/* just one sb in list, splice to dispatch_queue and we're done */ | 
 | 	if (!do_sb_sort) { | 
 | 		list_splice(&tmp, dispatch_queue); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Move inodes from one superblock together */ | 
 | 	while (!list_empty(&tmp)) { | 
 | 		inode = list_entry(tmp.prev, struct inode, i_list); | 
 | 		sb = inode->i_sb; | 
 | 		list_for_each_prev_safe(pos, node, &tmp) { | 
 | 			inode = list_entry(pos, struct inode, i_list); | 
 | 			if (inode->i_sb == sb) | 
 | 				list_move(&inode->i_list, dispatch_queue); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Queue all expired dirty inodes for io, eldest first. | 
 |  */ | 
 | static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this) | 
 | { | 
 | 	list_splice_init(&wb->b_more_io, wb->b_io.prev); | 
 | 	move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this); | 
 | } | 
 |  | 
 | static int write_inode(struct inode *inode, int sync) | 
 | { | 
 | 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) | 
 | 		return inode->i_sb->s_op->write_inode(inode, sync); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Wait for writeback on an inode to complete. | 
 |  */ | 
 | static void inode_wait_for_writeback(struct inode *inode) | 
 | { | 
 | 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); | 
 | 	wait_queue_head_t *wqh; | 
 |  | 
 | 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC); | 
 | 	do { | 
 | 		spin_unlock(&inode_lock); | 
 | 		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE); | 
 | 		spin_lock(&inode_lock); | 
 | 	} while (inode->i_state & I_SYNC); | 
 | } | 
 |  | 
 | /* | 
 |  * Write out an inode's dirty pages.  Called under inode_lock.  Either the | 
 |  * caller has ref on the inode (either via __iget or via syscall against an fd) | 
 |  * or the inode has I_WILL_FREE set (via generic_forget_inode) | 
 |  * | 
 |  * If `wait' is set, wait on the writeout. | 
 |  * | 
 |  * The whole writeout design is quite complex and fragile.  We want to avoid | 
 |  * starvation of particular inodes when others are being redirtied, prevent | 
 |  * livelocks, etc. | 
 |  * | 
 |  * Called under inode_lock. | 
 |  */ | 
 | static int | 
 | writeback_single_inode(struct inode *inode, struct writeback_control *wbc) | 
 | { | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 | 	int wait = wbc->sync_mode == WB_SYNC_ALL; | 
 | 	unsigned dirty; | 
 | 	int ret; | 
 |  | 
 | 	if (!atomic_read(&inode->i_count)) | 
 | 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); | 
 | 	else | 
 | 		WARN_ON(inode->i_state & I_WILL_FREE); | 
 |  | 
 | 	if (inode->i_state & I_SYNC) { | 
 | 		/* | 
 | 		 * If this inode is locked for writeback and we are not doing | 
 | 		 * writeback-for-data-integrity, move it to b_more_io so that | 
 | 		 * writeback can proceed with the other inodes on s_io. | 
 | 		 * | 
 | 		 * We'll have another go at writing back this inode when we | 
 | 		 * completed a full scan of b_io. | 
 | 		 */ | 
 | 		if (!wait) { | 
 | 			requeue_io(inode); | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * It's a data-integrity sync.  We must wait. | 
 | 		 */ | 
 | 		inode_wait_for_writeback(inode); | 
 | 	} | 
 |  | 
 | 	BUG_ON(inode->i_state & I_SYNC); | 
 |  | 
 | 	/* Set I_SYNC, reset I_DIRTY */ | 
 | 	dirty = inode->i_state & I_DIRTY; | 
 | 	inode->i_state |= I_SYNC; | 
 | 	inode->i_state &= ~I_DIRTY; | 
 |  | 
 | 	spin_unlock(&inode_lock); | 
 |  | 
 | 	ret = do_writepages(mapping, wbc); | 
 |  | 
 | 	/* Don't write the inode if only I_DIRTY_PAGES was set */ | 
 | 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { | 
 | 		int err = write_inode(inode, wait); | 
 | 		if (ret == 0) | 
 | 			ret = err; | 
 | 	} | 
 |  | 
 | 	if (wait) { | 
 | 		int err = filemap_fdatawait(mapping); | 
 | 		if (ret == 0) | 
 | 			ret = err; | 
 | 	} | 
 |  | 
 | 	spin_lock(&inode_lock); | 
 | 	inode->i_state &= ~I_SYNC; | 
 | 	if (!(inode->i_state & (I_FREEING | I_CLEAR))) { | 
 | 		if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) { | 
 | 			/* | 
 | 			 * More pages get dirtied by a fast dirtier. | 
 | 			 */ | 
 | 			goto select_queue; | 
 | 		} else if (inode->i_state & I_DIRTY) { | 
 | 			/* | 
 | 			 * At least XFS will redirty the inode during the | 
 | 			 * writeback (delalloc) and on io completion (isize). | 
 | 			 */ | 
 | 			redirty_tail(inode); | 
 | 		} else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { | 
 | 			/* | 
 | 			 * We didn't write back all the pages.  nfs_writepages() | 
 | 			 * sometimes bales out without doing anything. Redirty | 
 | 			 * the inode; Move it from b_io onto b_more_io/b_dirty. | 
 | 			 */ | 
 | 			/* | 
 | 			 * akpm: if the caller was the kupdate function we put | 
 | 			 * this inode at the head of b_dirty so it gets first | 
 | 			 * consideration.  Otherwise, move it to the tail, for | 
 | 			 * the reasons described there.  I'm not really sure | 
 | 			 * how much sense this makes.  Presumably I had a good | 
 | 			 * reasons for doing it this way, and I'd rather not | 
 | 			 * muck with it at present. | 
 | 			 */ | 
 | 			if (wbc->for_kupdate) { | 
 | 				/* | 
 | 				 * For the kupdate function we move the inode | 
 | 				 * to b_more_io so it will get more writeout as | 
 | 				 * soon as the queue becomes uncongested. | 
 | 				 */ | 
 | 				inode->i_state |= I_DIRTY_PAGES; | 
 | select_queue: | 
 | 				if (wbc->nr_to_write <= 0) { | 
 | 					/* | 
 | 					 * slice used up: queue for next turn | 
 | 					 */ | 
 | 					requeue_io(inode); | 
 | 				} else { | 
 | 					/* | 
 | 					 * somehow blocked: retry later | 
 | 					 */ | 
 | 					redirty_tail(inode); | 
 | 				} | 
 | 			} else { | 
 | 				/* | 
 | 				 * Otherwise fully redirty the inode so that | 
 | 				 * other inodes on this superblock will get some | 
 | 				 * writeout.  Otherwise heavy writing to one | 
 | 				 * file would indefinitely suspend writeout of | 
 | 				 * all the other files. | 
 | 				 */ | 
 | 				inode->i_state |= I_DIRTY_PAGES; | 
 | 				redirty_tail(inode); | 
 | 			} | 
 | 		} else if (atomic_read(&inode->i_count)) { | 
 | 			/* | 
 | 			 * The inode is clean, inuse | 
 | 			 */ | 
 | 			list_move(&inode->i_list, &inode_in_use); | 
 | 		} else { | 
 | 			/* | 
 | 			 * The inode is clean, unused | 
 | 			 */ | 
 | 			list_move(&inode->i_list, &inode_unused); | 
 | 		} | 
 | 	} | 
 | 	inode_sync_complete(inode); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void unpin_sb_for_writeback(struct super_block **psb) | 
 | { | 
 | 	struct super_block *sb = *psb; | 
 |  | 
 | 	if (sb) { | 
 | 		up_read(&sb->s_umount); | 
 | 		put_super(sb); | 
 | 		*psb = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * For WB_SYNC_NONE writeback, the caller does not have the sb pinned | 
 |  * before calling writeback. So make sure that we do pin it, so it doesn't | 
 |  * go away while we are writing inodes from it. | 
 |  * | 
 |  * Returns 0 if the super was successfully pinned (or pinning wasn't needed), | 
 |  * 1 if we failed. | 
 |  */ | 
 | static int pin_sb_for_writeback(struct writeback_control *wbc, | 
 | 				struct inode *inode, struct super_block **psb) | 
 | { | 
 | 	struct super_block *sb = inode->i_sb; | 
 |  | 
 | 	/* | 
 | 	 * If this sb is already pinned, nothing more to do. If not and | 
 | 	 * *psb is non-NULL, unpin the old one first | 
 | 	 */ | 
 | 	if (sb == *psb) | 
 | 		return 0; | 
 | 	else if (*psb) | 
 | 		unpin_sb_for_writeback(psb); | 
 |  | 
 | 	/* | 
 | 	 * Caller must already hold the ref for this | 
 | 	 */ | 
 | 	if (wbc->sync_mode == WB_SYNC_ALL) { | 
 | 		WARN_ON(!rwsem_is_locked(&sb->s_umount)); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	spin_lock(&sb_lock); | 
 | 	sb->s_count++; | 
 | 	if (down_read_trylock(&sb->s_umount)) { | 
 | 		if (sb->s_root) { | 
 | 			spin_unlock(&sb_lock); | 
 | 			goto pinned; | 
 | 		} | 
 | 		/* | 
 | 		 * umounted, drop rwsem again and fall through to failure | 
 | 		 */ | 
 | 		up_read(&sb->s_umount); | 
 | 	} | 
 |  | 
 | 	sb->s_count--; | 
 | 	spin_unlock(&sb_lock); | 
 | 	return 1; | 
 | pinned: | 
 | 	*psb = sb; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void writeback_inodes_wb(struct bdi_writeback *wb, | 
 | 				struct writeback_control *wbc) | 
 | { | 
 | 	struct super_block *sb = wbc->sb, *pin_sb = NULL; | 
 | 	const int is_blkdev_sb = sb_is_blkdev_sb(sb); | 
 | 	const unsigned long start = jiffies;	/* livelock avoidance */ | 
 |  | 
 | 	spin_lock(&inode_lock); | 
 |  | 
 | 	if (!wbc->for_kupdate || list_empty(&wb->b_io)) | 
 | 		queue_io(wb, wbc->older_than_this); | 
 |  | 
 | 	while (!list_empty(&wb->b_io)) { | 
 | 		struct inode *inode = list_entry(wb->b_io.prev, | 
 | 						struct inode, i_list); | 
 | 		long pages_skipped; | 
 |  | 
 | 		/* | 
 | 		 * super block given and doesn't match, skip this inode | 
 | 		 */ | 
 | 		if (sb && sb != inode->i_sb) { | 
 | 			redirty_tail(inode); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (!bdi_cap_writeback_dirty(wb->bdi)) { | 
 | 			redirty_tail(inode); | 
 | 			if (is_blkdev_sb) { | 
 | 				/* | 
 | 				 * Dirty memory-backed blockdev: the ramdisk | 
 | 				 * driver does this.  Skip just this inode | 
 | 				 */ | 
 | 				continue; | 
 | 			} | 
 | 			/* | 
 | 			 * Dirty memory-backed inode against a filesystem other | 
 | 			 * than the kernel-internal bdev filesystem.  Skip the | 
 | 			 * entire superblock. | 
 | 			 */ | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (inode->i_state & (I_NEW | I_WILL_FREE)) { | 
 | 			requeue_io(inode); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (wbc->nonblocking && bdi_write_congested(wb->bdi)) { | 
 | 			wbc->encountered_congestion = 1; | 
 | 			if (!is_blkdev_sb) | 
 | 				break;		/* Skip a congested fs */ | 
 | 			requeue_io(inode); | 
 | 			continue;		/* Skip a congested blockdev */ | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Was this inode dirtied after sync_sb_inodes was called? | 
 | 		 * This keeps sync from extra jobs and livelock. | 
 | 		 */ | 
 | 		if (inode_dirtied_after(inode, start)) | 
 | 			break; | 
 |  | 
 | 		if (pin_sb_for_writeback(wbc, inode, &pin_sb)) { | 
 | 			requeue_io(inode); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		BUG_ON(inode->i_state & (I_FREEING | I_CLEAR)); | 
 | 		__iget(inode); | 
 | 		pages_skipped = wbc->pages_skipped; | 
 | 		writeback_single_inode(inode, wbc); | 
 | 		if (wbc->pages_skipped != pages_skipped) { | 
 | 			/* | 
 | 			 * writeback is not making progress due to locked | 
 | 			 * buffers.  Skip this inode for now. | 
 | 			 */ | 
 | 			redirty_tail(inode); | 
 | 		} | 
 | 		spin_unlock(&inode_lock); | 
 | 		iput(inode); | 
 | 		cond_resched(); | 
 | 		spin_lock(&inode_lock); | 
 | 		if (wbc->nr_to_write <= 0) { | 
 | 			wbc->more_io = 1; | 
 | 			break; | 
 | 		} | 
 | 		if (!list_empty(&wb->b_more_io)) | 
 | 			wbc->more_io = 1; | 
 | 	} | 
 |  | 
 | 	unpin_sb_for_writeback(&pin_sb); | 
 |  | 
 | 	spin_unlock(&inode_lock); | 
 | 	/* Leave any unwritten inodes on b_io */ | 
 | } | 
 |  | 
 | void writeback_inodes_wbc(struct writeback_control *wbc) | 
 | { | 
 | 	struct backing_dev_info *bdi = wbc->bdi; | 
 |  | 
 | 	writeback_inodes_wb(&bdi->wb, wbc); | 
 | } | 
 |  | 
 | /* | 
 |  * The maximum number of pages to writeout in a single bdi flush/kupdate | 
 |  * operation.  We do this so we don't hold I_SYNC against an inode for | 
 |  * enormous amounts of time, which would block a userspace task which has | 
 |  * been forced to throttle against that inode.  Also, the code reevaluates | 
 |  * the dirty each time it has written this many pages. | 
 |  */ | 
 | #define MAX_WRITEBACK_PAGES     1024 | 
 |  | 
 | static inline bool over_bground_thresh(void) | 
 | { | 
 | 	unsigned long background_thresh, dirty_thresh; | 
 |  | 
 | 	get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL); | 
 |  | 
 | 	return (global_page_state(NR_FILE_DIRTY) + | 
 | 		global_page_state(NR_UNSTABLE_NFS) >= background_thresh); | 
 | } | 
 |  | 
 | /* | 
 |  * Explicit flushing or periodic writeback of "old" data. | 
 |  * | 
 |  * Define "old": the first time one of an inode's pages is dirtied, we mark the | 
 |  * dirtying-time in the inode's address_space.  So this periodic writeback code | 
 |  * just walks the superblock inode list, writing back any inodes which are | 
 |  * older than a specific point in time. | 
 |  * | 
 |  * Try to run once per dirty_writeback_interval.  But if a writeback event | 
 |  * takes longer than a dirty_writeback_interval interval, then leave a | 
 |  * one-second gap. | 
 |  * | 
 |  * older_than_this takes precedence over nr_to_write.  So we'll only write back | 
 |  * all dirty pages if they are all attached to "old" mappings. | 
 |  */ | 
 | static long wb_writeback(struct bdi_writeback *wb, | 
 | 			 struct wb_writeback_args *args) | 
 | { | 
 | 	struct writeback_control wbc = { | 
 | 		.bdi			= wb->bdi, | 
 | 		.sb			= args->sb, | 
 | 		.sync_mode		= args->sync_mode, | 
 | 		.older_than_this	= NULL, | 
 | 		.for_kupdate		= args->for_kupdate, | 
 | 		.range_cyclic		= args->range_cyclic, | 
 | 	}; | 
 | 	unsigned long oldest_jif; | 
 | 	long wrote = 0; | 
 | 	struct inode *inode; | 
 |  | 
 | 	if (wbc.for_kupdate) { | 
 | 		wbc.older_than_this = &oldest_jif; | 
 | 		oldest_jif = jiffies - | 
 | 				msecs_to_jiffies(dirty_expire_interval * 10); | 
 | 	} | 
 | 	if (!wbc.range_cyclic) { | 
 | 		wbc.range_start = 0; | 
 | 		wbc.range_end = LLONG_MAX; | 
 | 	} | 
 |  | 
 | 	for (;;) { | 
 | 		/* | 
 | 		 * Stop writeback when nr_pages has been consumed | 
 | 		 */ | 
 | 		if (args->nr_pages <= 0) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * For background writeout, stop when we are below the | 
 | 		 * background dirty threshold | 
 | 		 */ | 
 | 		if (args->for_background && !over_bground_thresh()) | 
 | 			break; | 
 |  | 
 | 		wbc.more_io = 0; | 
 | 		wbc.encountered_congestion = 0; | 
 | 		wbc.nr_to_write = MAX_WRITEBACK_PAGES; | 
 | 		wbc.pages_skipped = 0; | 
 | 		writeback_inodes_wb(wb, &wbc); | 
 | 		args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; | 
 | 		wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write; | 
 |  | 
 | 		/* | 
 | 		 * If we consumed everything, see if we have more | 
 | 		 */ | 
 | 		if (wbc.nr_to_write <= 0) | 
 | 			continue; | 
 | 		/* | 
 | 		 * Didn't write everything and we don't have more IO, bail | 
 | 		 */ | 
 | 		if (!wbc.more_io) | 
 | 			break; | 
 | 		/* | 
 | 		 * Did we write something? Try for more | 
 | 		 */ | 
 | 		if (wbc.nr_to_write < MAX_WRITEBACK_PAGES) | 
 | 			continue; | 
 | 		/* | 
 | 		 * Nothing written. Wait for some inode to | 
 | 		 * become available for writeback. Otherwise | 
 | 		 * we'll just busyloop. | 
 | 		 */ | 
 | 		spin_lock(&inode_lock); | 
 | 		if (!list_empty(&wb->b_more_io))  { | 
 | 			inode = list_entry(wb->b_more_io.prev, | 
 | 						struct inode, i_list); | 
 | 			inode_wait_for_writeback(inode); | 
 | 		} | 
 | 		spin_unlock(&inode_lock); | 
 | 	} | 
 |  | 
 | 	return wrote; | 
 | } | 
 |  | 
 | /* | 
 |  * Return the next bdi_work struct that hasn't been processed by this | 
 |  * wb thread yet. ->seen is initially set for each thread that exists | 
 |  * for this device, when a thread first notices a piece of work it | 
 |  * clears its bit. Depending on writeback type, the thread will notify | 
 |  * completion on either receiving the work (WB_SYNC_NONE) or after | 
 |  * it is done (WB_SYNC_ALL). | 
 |  */ | 
 | static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi, | 
 | 					   struct bdi_writeback *wb) | 
 | { | 
 | 	struct bdi_work *work, *ret = NULL; | 
 |  | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	list_for_each_entry_rcu(work, &bdi->work_list, list) { | 
 | 		if (!test_bit(wb->nr, &work->seen)) | 
 | 			continue; | 
 | 		clear_bit(wb->nr, &work->seen); | 
 |  | 
 | 		ret = work; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	rcu_read_unlock(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static long wb_check_old_data_flush(struct bdi_writeback *wb) | 
 | { | 
 | 	unsigned long expired; | 
 | 	long nr_pages; | 
 |  | 
 | 	expired = wb->last_old_flush + | 
 | 			msecs_to_jiffies(dirty_writeback_interval * 10); | 
 | 	if (time_before(jiffies, expired)) | 
 | 		return 0; | 
 |  | 
 | 	wb->last_old_flush = jiffies; | 
 | 	nr_pages = global_page_state(NR_FILE_DIRTY) + | 
 | 			global_page_state(NR_UNSTABLE_NFS) + | 
 | 			(inodes_stat.nr_inodes - inodes_stat.nr_unused); | 
 |  | 
 | 	if (nr_pages) { | 
 | 		struct wb_writeback_args args = { | 
 | 			.nr_pages	= nr_pages, | 
 | 			.sync_mode	= WB_SYNC_NONE, | 
 | 			.for_kupdate	= 1, | 
 | 			.range_cyclic	= 1, | 
 | 		}; | 
 |  | 
 | 		return wb_writeback(wb, &args); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Retrieve work items and do the writeback they describe | 
 |  */ | 
 | long wb_do_writeback(struct bdi_writeback *wb, int force_wait) | 
 | { | 
 | 	struct backing_dev_info *bdi = wb->bdi; | 
 | 	struct bdi_work *work; | 
 | 	long wrote = 0; | 
 |  | 
 | 	while ((work = get_next_work_item(bdi, wb)) != NULL) { | 
 | 		struct wb_writeback_args args = work->args; | 
 |  | 
 | 		/* | 
 | 		 * Override sync mode, in case we must wait for completion | 
 | 		 */ | 
 | 		if (force_wait) | 
 | 			work->args.sync_mode = args.sync_mode = WB_SYNC_ALL; | 
 |  | 
 | 		/* | 
 | 		 * If this isn't a data integrity operation, just notify | 
 | 		 * that we have seen this work and we are now starting it. | 
 | 		 */ | 
 | 		if (args.sync_mode == WB_SYNC_NONE) | 
 | 			wb_clear_pending(wb, work); | 
 |  | 
 | 		wrote += wb_writeback(wb, &args); | 
 |  | 
 | 		/* | 
 | 		 * This is a data integrity writeback, so only do the | 
 | 		 * notification when we have completed the work. | 
 | 		 */ | 
 | 		if (args.sync_mode == WB_SYNC_ALL) | 
 | 			wb_clear_pending(wb, work); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check for periodic writeback, kupdated() style | 
 | 	 */ | 
 | 	wrote += wb_check_old_data_flush(wb); | 
 |  | 
 | 	return wrote; | 
 | } | 
 |  | 
 | /* | 
 |  * Handle writeback of dirty data for the device backed by this bdi. Also | 
 |  * wakes up periodically and does kupdated style flushing. | 
 |  */ | 
 | int bdi_writeback_task(struct bdi_writeback *wb) | 
 | { | 
 | 	unsigned long last_active = jiffies; | 
 | 	unsigned long wait_jiffies = -1UL; | 
 | 	long pages_written; | 
 |  | 
 | 	while (!kthread_should_stop()) { | 
 | 		pages_written = wb_do_writeback(wb, 0); | 
 |  | 
 | 		if (pages_written) | 
 | 			last_active = jiffies; | 
 | 		else if (wait_jiffies != -1UL) { | 
 | 			unsigned long max_idle; | 
 |  | 
 | 			/* | 
 | 			 * Longest period of inactivity that we tolerate. If we | 
 | 			 * see dirty data again later, the task will get | 
 | 			 * recreated automatically. | 
 | 			 */ | 
 | 			max_idle = max(5UL * 60 * HZ, wait_jiffies); | 
 | 			if (time_after(jiffies, max_idle + last_active)) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10); | 
 | 		schedule_timeout_interruptible(wait_jiffies); | 
 | 		try_to_freeze(); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Schedule writeback for all backing devices. This does WB_SYNC_NONE | 
 |  * writeback, for integrity writeback see bdi_sync_writeback(). | 
 |  */ | 
 | static void bdi_writeback_all(struct super_block *sb, long nr_pages) | 
 | { | 
 | 	struct wb_writeback_args args = { | 
 | 		.sb		= sb, | 
 | 		.nr_pages	= nr_pages, | 
 | 		.sync_mode	= WB_SYNC_NONE, | 
 | 	}; | 
 | 	struct backing_dev_info *bdi; | 
 |  | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { | 
 | 		if (!bdi_has_dirty_io(bdi)) | 
 | 			continue; | 
 |  | 
 | 		bdi_alloc_queue_work(bdi, &args); | 
 | 	} | 
 |  | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | /* | 
 |  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back | 
 |  * the whole world. | 
 |  */ | 
 | void wakeup_flusher_threads(long nr_pages) | 
 | { | 
 | 	if (nr_pages == 0) | 
 | 		nr_pages = global_page_state(NR_FILE_DIRTY) + | 
 | 				global_page_state(NR_UNSTABLE_NFS); | 
 | 	bdi_writeback_all(NULL, nr_pages); | 
 | } | 
 |  | 
 | static noinline void block_dump___mark_inode_dirty(struct inode *inode) | 
 | { | 
 | 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { | 
 | 		struct dentry *dentry; | 
 | 		const char *name = "?"; | 
 |  | 
 | 		dentry = d_find_alias(inode); | 
 | 		if (dentry) { | 
 | 			spin_lock(&dentry->d_lock); | 
 | 			name = (const char *) dentry->d_name.name; | 
 | 		} | 
 | 		printk(KERN_DEBUG | 
 | 		       "%s(%d): dirtied inode %lu (%s) on %s\n", | 
 | 		       current->comm, task_pid_nr(current), inode->i_ino, | 
 | 		       name, inode->i_sb->s_id); | 
 | 		if (dentry) { | 
 | 			spin_unlock(&dentry->d_lock); | 
 | 			dput(dentry); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	__mark_inode_dirty -	internal function | 
 |  *	@inode: inode to mark | 
 |  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC) | 
 |  *	Mark an inode as dirty. Callers should use mark_inode_dirty or | 
 |  *  	mark_inode_dirty_sync. | 
 |  * | 
 |  * Put the inode on the super block's dirty list. | 
 |  * | 
 |  * CAREFUL! We mark it dirty unconditionally, but move it onto the | 
 |  * dirty list only if it is hashed or if it refers to a blockdev. | 
 |  * If it was not hashed, it will never be added to the dirty list | 
 |  * even if it is later hashed, as it will have been marked dirty already. | 
 |  * | 
 |  * In short, make sure you hash any inodes _before_ you start marking | 
 |  * them dirty. | 
 |  * | 
 |  * This function *must* be atomic for the I_DIRTY_PAGES case - | 
 |  * set_page_dirty() is called under spinlock in several places. | 
 |  * | 
 |  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of | 
 |  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of | 
 |  * the kernel-internal blockdev inode represents the dirtying time of the | 
 |  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use | 
 |  * page->mapping->host, so the page-dirtying time is recorded in the internal | 
 |  * blockdev inode. | 
 |  */ | 
 | void __mark_inode_dirty(struct inode *inode, int flags) | 
 | { | 
 | 	struct super_block *sb = inode->i_sb; | 
 |  | 
 | 	/* | 
 | 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually | 
 | 	 * dirty the inode itself | 
 | 	 */ | 
 | 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { | 
 | 		if (sb->s_op->dirty_inode) | 
 | 			sb->s_op->dirty_inode(inode); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * make sure that changes are seen by all cpus before we test i_state | 
 | 	 * -- mikulas | 
 | 	 */ | 
 | 	smp_mb(); | 
 |  | 
 | 	/* avoid the locking if we can */ | 
 | 	if ((inode->i_state & flags) == flags) | 
 | 		return; | 
 |  | 
 | 	if (unlikely(block_dump)) | 
 | 		block_dump___mark_inode_dirty(inode); | 
 |  | 
 | 	spin_lock(&inode_lock); | 
 | 	if ((inode->i_state & flags) != flags) { | 
 | 		const int was_dirty = inode->i_state & I_DIRTY; | 
 |  | 
 | 		inode->i_state |= flags; | 
 |  | 
 | 		/* | 
 | 		 * If the inode is being synced, just update its dirty state. | 
 | 		 * The unlocker will place the inode on the appropriate | 
 | 		 * superblock list, based upon its state. | 
 | 		 */ | 
 | 		if (inode->i_state & I_SYNC) | 
 | 			goto out; | 
 |  | 
 | 		/* | 
 | 		 * Only add valid (hashed) inodes to the superblock's | 
 | 		 * dirty list.  Add blockdev inodes as well. | 
 | 		 */ | 
 | 		if (!S_ISBLK(inode->i_mode)) { | 
 | 			if (hlist_unhashed(&inode->i_hash)) | 
 | 				goto out; | 
 | 		} | 
 | 		if (inode->i_state & (I_FREEING|I_CLEAR)) | 
 | 			goto out; | 
 |  | 
 | 		/* | 
 | 		 * If the inode was already on b_dirty/b_io/b_more_io, don't | 
 | 		 * reposition it (that would break b_dirty time-ordering). | 
 | 		 */ | 
 | 		if (!was_dirty) { | 
 | 			struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; | 
 | 			struct backing_dev_info *bdi = wb->bdi; | 
 |  | 
 | 			if (bdi_cap_writeback_dirty(bdi) && | 
 | 			    !test_bit(BDI_registered, &bdi->state)) { | 
 | 				WARN_ON(1); | 
 | 				printk(KERN_ERR "bdi-%s not registered\n", | 
 | 								bdi->name); | 
 | 			} | 
 |  | 
 | 			inode->dirtied_when = jiffies; | 
 | 			list_move(&inode->i_list, &wb->b_dirty); | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	spin_unlock(&inode_lock); | 
 | } | 
 | EXPORT_SYMBOL(__mark_inode_dirty); | 
 |  | 
 | /* | 
 |  * Write out a superblock's list of dirty inodes.  A wait will be performed | 
 |  * upon no inodes, all inodes or the final one, depending upon sync_mode. | 
 |  * | 
 |  * If older_than_this is non-NULL, then only write out inodes which | 
 |  * had their first dirtying at a time earlier than *older_than_this. | 
 |  * | 
 |  * If `bdi' is non-zero then we're being asked to writeback a specific queue. | 
 |  * This function assumes that the blockdev superblock's inodes are backed by | 
 |  * a variety of queues, so all inodes are searched.  For other superblocks, | 
 |  * assume that all inodes are backed by the same queue. | 
 |  * | 
 |  * The inodes to be written are parked on bdi->b_io.  They are moved back onto | 
 |  * bdi->b_dirty as they are selected for writing.  This way, none can be missed | 
 |  * on the writer throttling path, and we get decent balancing between many | 
 |  * throttled threads: we don't want them all piling up on inode_sync_wait. | 
 |  */ | 
 | static void wait_sb_inodes(struct super_block *sb) | 
 | { | 
 | 	struct inode *inode, *old_inode = NULL; | 
 |  | 
 | 	/* | 
 | 	 * We need to be protected against the filesystem going from | 
 | 	 * r/o to r/w or vice versa. | 
 | 	 */ | 
 | 	WARN_ON(!rwsem_is_locked(&sb->s_umount)); | 
 |  | 
 | 	spin_lock(&inode_lock); | 
 |  | 
 | 	/* | 
 | 	 * Data integrity sync. Must wait for all pages under writeback, | 
 | 	 * because there may have been pages dirtied before our sync | 
 | 	 * call, but which had writeout started before we write it out. | 
 | 	 * In which case, the inode may not be on the dirty list, but | 
 | 	 * we still have to wait for that writeout. | 
 | 	 */ | 
 | 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { | 
 | 		struct address_space *mapping; | 
 |  | 
 | 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW)) | 
 | 			continue; | 
 | 		mapping = inode->i_mapping; | 
 | 		if (mapping->nrpages == 0) | 
 | 			continue; | 
 | 		__iget(inode); | 
 | 		spin_unlock(&inode_lock); | 
 | 		/* | 
 | 		 * We hold a reference to 'inode' so it couldn't have | 
 | 		 * been removed from s_inodes list while we dropped the | 
 | 		 * inode_lock.  We cannot iput the inode now as we can | 
 | 		 * be holding the last reference and we cannot iput it | 
 | 		 * under inode_lock. So we keep the reference and iput | 
 | 		 * it later. | 
 | 		 */ | 
 | 		iput(old_inode); | 
 | 		old_inode = inode; | 
 |  | 
 | 		filemap_fdatawait(mapping); | 
 |  | 
 | 		cond_resched(); | 
 |  | 
 | 		spin_lock(&inode_lock); | 
 | 	} | 
 | 	spin_unlock(&inode_lock); | 
 | 	iput(old_inode); | 
 | } | 
 |  | 
 | /** | 
 |  * writeback_inodes_sb	-	writeback dirty inodes from given super_block | 
 |  * @sb: the superblock | 
 |  * | 
 |  * Start writeback on some inodes on this super_block. No guarantees are made | 
 |  * on how many (if any) will be written, and this function does not wait | 
 |  * for IO completion of submitted IO. The number of pages submitted is | 
 |  * returned. | 
 |  */ | 
 | void writeback_inodes_sb(struct super_block *sb) | 
 | { | 
 | 	unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY); | 
 | 	unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS); | 
 | 	long nr_to_write; | 
 |  | 
 | 	nr_to_write = nr_dirty + nr_unstable + | 
 | 			(inodes_stat.nr_inodes - inodes_stat.nr_unused); | 
 |  | 
 | 	bdi_start_writeback(sb->s_bdi, sb, nr_to_write); | 
 | } | 
 | EXPORT_SYMBOL(writeback_inodes_sb); | 
 |  | 
 | /** | 
 |  * sync_inodes_sb	-	sync sb inode pages | 
 |  * @sb: the superblock | 
 |  * | 
 |  * This function writes and waits on any dirty inode belonging to this | 
 |  * super_block. The number of pages synced is returned. | 
 |  */ | 
 | void sync_inodes_sb(struct super_block *sb) | 
 | { | 
 | 	bdi_sync_writeback(sb->s_bdi, sb); | 
 | 	wait_sb_inodes(sb); | 
 | } | 
 | EXPORT_SYMBOL(sync_inodes_sb); | 
 |  | 
 | /** | 
 |  * write_inode_now	-	write an inode to disk | 
 |  * @inode: inode to write to disk | 
 |  * @sync: whether the write should be synchronous or not | 
 |  * | 
 |  * This function commits an inode to disk immediately if it is dirty. This is | 
 |  * primarily needed by knfsd. | 
 |  * | 
 |  * The caller must either have a ref on the inode or must have set I_WILL_FREE. | 
 |  */ | 
 | int write_inode_now(struct inode *inode, int sync) | 
 | { | 
 | 	int ret; | 
 | 	struct writeback_control wbc = { | 
 | 		.nr_to_write = LONG_MAX, | 
 | 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, | 
 | 		.range_start = 0, | 
 | 		.range_end = LLONG_MAX, | 
 | 	}; | 
 |  | 
 | 	if (!mapping_cap_writeback_dirty(inode->i_mapping)) | 
 | 		wbc.nr_to_write = 0; | 
 |  | 
 | 	might_sleep(); | 
 | 	spin_lock(&inode_lock); | 
 | 	ret = writeback_single_inode(inode, &wbc); | 
 | 	spin_unlock(&inode_lock); | 
 | 	if (sync) | 
 | 		inode_sync_wait(inode); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(write_inode_now); | 
 |  | 
 | /** | 
 |  * sync_inode - write an inode and its pages to disk. | 
 |  * @inode: the inode to sync | 
 |  * @wbc: controls the writeback mode | 
 |  * | 
 |  * sync_inode() will write an inode and its pages to disk.  It will also | 
 |  * correctly update the inode on its superblock's dirty inode lists and will | 
 |  * update inode->i_state. | 
 |  * | 
 |  * The caller must have a ref on the inode. | 
 |  */ | 
 | int sync_inode(struct inode *inode, struct writeback_control *wbc) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	spin_lock(&inode_lock); | 
 | 	ret = writeback_single_inode(inode, wbc); | 
 | 	spin_unlock(&inode_lock); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(sync_inode); |