| /* | 
 |  * Copyright (C) 2007 Oracle.  All rights reserved. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public | 
 |  * License v2 as published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |  * General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public | 
 |  * License along with this program; if not, write to the | 
 |  * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
 |  * Boston, MA 021110-1307, USA. | 
 |  */ | 
 | #include <linux/sched.h> | 
 | #include <linux/bio.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/buffer_head.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/random.h> | 
 | #include <linux/iocontext.h> | 
 | #include <linux/capability.h> | 
 | #include <asm/div64.h> | 
 | #include "compat.h" | 
 | #include "ctree.h" | 
 | #include "extent_map.h" | 
 | #include "disk-io.h" | 
 | #include "transaction.h" | 
 | #include "print-tree.h" | 
 | #include "volumes.h" | 
 | #include "async-thread.h" | 
 |  | 
 | static int init_first_rw_device(struct btrfs_trans_handle *trans, | 
 | 				struct btrfs_root *root, | 
 | 				struct btrfs_device *device); | 
 | static int btrfs_relocate_sys_chunks(struct btrfs_root *root); | 
 |  | 
 | static DEFINE_MUTEX(uuid_mutex); | 
 | static LIST_HEAD(fs_uuids); | 
 |  | 
 | static void lock_chunks(struct btrfs_root *root) | 
 | { | 
 | 	mutex_lock(&root->fs_info->chunk_mutex); | 
 | } | 
 |  | 
 | static void unlock_chunks(struct btrfs_root *root) | 
 | { | 
 | 	mutex_unlock(&root->fs_info->chunk_mutex); | 
 | } | 
 |  | 
 | static void free_fs_devices(struct btrfs_fs_devices *fs_devices) | 
 | { | 
 | 	struct btrfs_device *device; | 
 | 	WARN_ON(fs_devices->opened); | 
 | 	while (!list_empty(&fs_devices->devices)) { | 
 | 		device = list_entry(fs_devices->devices.next, | 
 | 				    struct btrfs_device, dev_list); | 
 | 		list_del(&device->dev_list); | 
 | 		kfree(device->name); | 
 | 		kfree(device); | 
 | 	} | 
 | 	kfree(fs_devices); | 
 | } | 
 |  | 
 | int btrfs_cleanup_fs_uuids(void) | 
 | { | 
 | 	struct btrfs_fs_devices *fs_devices; | 
 |  | 
 | 	while (!list_empty(&fs_uuids)) { | 
 | 		fs_devices = list_entry(fs_uuids.next, | 
 | 					struct btrfs_fs_devices, list); | 
 | 		list_del(&fs_devices->list); | 
 | 		free_fs_devices(fs_devices); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static noinline struct btrfs_device *__find_device(struct list_head *head, | 
 | 						   u64 devid, u8 *uuid) | 
 | { | 
 | 	struct btrfs_device *dev; | 
 |  | 
 | 	list_for_each_entry(dev, head, dev_list) { | 
 | 		if (dev->devid == devid && | 
 | 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { | 
 | 			return dev; | 
 | 		} | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) | 
 | { | 
 | 	struct btrfs_fs_devices *fs_devices; | 
 |  | 
 | 	list_for_each_entry(fs_devices, &fs_uuids, list) { | 
 | 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) | 
 | 			return fs_devices; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void requeue_list(struct btrfs_pending_bios *pending_bios, | 
 | 			struct bio *head, struct bio *tail) | 
 | { | 
 |  | 
 | 	struct bio *old_head; | 
 |  | 
 | 	old_head = pending_bios->head; | 
 | 	pending_bios->head = head; | 
 | 	if (pending_bios->tail) | 
 | 		tail->bi_next = old_head; | 
 | 	else | 
 | 		pending_bios->tail = tail; | 
 | } | 
 |  | 
 | /* | 
 |  * we try to collect pending bios for a device so we don't get a large | 
 |  * number of procs sending bios down to the same device.  This greatly | 
 |  * improves the schedulers ability to collect and merge the bios. | 
 |  * | 
 |  * But, it also turns into a long list of bios to process and that is sure | 
 |  * to eventually make the worker thread block.  The solution here is to | 
 |  * make some progress and then put this work struct back at the end of | 
 |  * the list if the block device is congested.  This way, multiple devices | 
 |  * can make progress from a single worker thread. | 
 |  */ | 
 | static noinline int run_scheduled_bios(struct btrfs_device *device) | 
 | { | 
 | 	struct bio *pending; | 
 | 	struct backing_dev_info *bdi; | 
 | 	struct btrfs_fs_info *fs_info; | 
 | 	struct btrfs_pending_bios *pending_bios; | 
 | 	struct bio *tail; | 
 | 	struct bio *cur; | 
 | 	int again = 0; | 
 | 	unsigned long num_run; | 
 | 	unsigned long batch_run = 0; | 
 | 	unsigned long limit; | 
 | 	unsigned long last_waited = 0; | 
 | 	int force_reg = 0; | 
 | 	int sync_pending = 0; | 
 | 	struct blk_plug plug; | 
 |  | 
 | 	/* | 
 | 	 * this function runs all the bios we've collected for | 
 | 	 * a particular device.  We don't want to wander off to | 
 | 	 * another device without first sending all of these down. | 
 | 	 * So, setup a plug here and finish it off before we return | 
 | 	 */ | 
 | 	blk_start_plug(&plug); | 
 |  | 
 | 	bdi = blk_get_backing_dev_info(device->bdev); | 
 | 	fs_info = device->dev_root->fs_info; | 
 | 	limit = btrfs_async_submit_limit(fs_info); | 
 | 	limit = limit * 2 / 3; | 
 |  | 
 | loop: | 
 | 	spin_lock(&device->io_lock); | 
 |  | 
 | loop_lock: | 
 | 	num_run = 0; | 
 |  | 
 | 	/* take all the bios off the list at once and process them | 
 | 	 * later on (without the lock held).  But, remember the | 
 | 	 * tail and other pointers so the bios can be properly reinserted | 
 | 	 * into the list if we hit congestion | 
 | 	 */ | 
 | 	if (!force_reg && device->pending_sync_bios.head) { | 
 | 		pending_bios = &device->pending_sync_bios; | 
 | 		force_reg = 1; | 
 | 	} else { | 
 | 		pending_bios = &device->pending_bios; | 
 | 		force_reg = 0; | 
 | 	} | 
 |  | 
 | 	pending = pending_bios->head; | 
 | 	tail = pending_bios->tail; | 
 | 	WARN_ON(pending && !tail); | 
 |  | 
 | 	/* | 
 | 	 * if pending was null this time around, no bios need processing | 
 | 	 * at all and we can stop.  Otherwise it'll loop back up again | 
 | 	 * and do an additional check so no bios are missed. | 
 | 	 * | 
 | 	 * device->running_pending is used to synchronize with the | 
 | 	 * schedule_bio code. | 
 | 	 */ | 
 | 	if (device->pending_sync_bios.head == NULL && | 
 | 	    device->pending_bios.head == NULL) { | 
 | 		again = 0; | 
 | 		device->running_pending = 0; | 
 | 	} else { | 
 | 		again = 1; | 
 | 		device->running_pending = 1; | 
 | 	} | 
 |  | 
 | 	pending_bios->head = NULL; | 
 | 	pending_bios->tail = NULL; | 
 |  | 
 | 	spin_unlock(&device->io_lock); | 
 |  | 
 | 	while (pending) { | 
 |  | 
 | 		rmb(); | 
 | 		/* we want to work on both lists, but do more bios on the | 
 | 		 * sync list than the regular list | 
 | 		 */ | 
 | 		if ((num_run > 32 && | 
 | 		    pending_bios != &device->pending_sync_bios && | 
 | 		    device->pending_sync_bios.head) || | 
 | 		   (num_run > 64 && pending_bios == &device->pending_sync_bios && | 
 | 		    device->pending_bios.head)) { | 
 | 			spin_lock(&device->io_lock); | 
 | 			requeue_list(pending_bios, pending, tail); | 
 | 			goto loop_lock; | 
 | 		} | 
 |  | 
 | 		cur = pending; | 
 | 		pending = pending->bi_next; | 
 | 		cur->bi_next = NULL; | 
 | 		atomic_dec(&fs_info->nr_async_bios); | 
 |  | 
 | 		if (atomic_read(&fs_info->nr_async_bios) < limit && | 
 | 		    waitqueue_active(&fs_info->async_submit_wait)) | 
 | 			wake_up(&fs_info->async_submit_wait); | 
 |  | 
 | 		BUG_ON(atomic_read(&cur->bi_cnt) == 0); | 
 |  | 
 | 		/* | 
 | 		 * if we're doing the sync list, record that our | 
 | 		 * plug has some sync requests on it | 
 | 		 * | 
 | 		 * If we're doing the regular list and there are | 
 | 		 * sync requests sitting around, unplug before | 
 | 		 * we add more | 
 | 		 */ | 
 | 		if (pending_bios == &device->pending_sync_bios) { | 
 | 			sync_pending = 1; | 
 | 		} else if (sync_pending) { | 
 | 			blk_finish_plug(&plug); | 
 | 			blk_start_plug(&plug); | 
 | 			sync_pending = 0; | 
 | 		} | 
 |  | 
 | 		submit_bio(cur->bi_rw, cur); | 
 | 		num_run++; | 
 | 		batch_run++; | 
 | 		if (need_resched()) | 
 | 			cond_resched(); | 
 |  | 
 | 		/* | 
 | 		 * we made progress, there is more work to do and the bdi | 
 | 		 * is now congested.  Back off and let other work structs | 
 | 		 * run instead | 
 | 		 */ | 
 | 		if (pending && bdi_write_congested(bdi) && batch_run > 8 && | 
 | 		    fs_info->fs_devices->open_devices > 1) { | 
 | 			struct io_context *ioc; | 
 |  | 
 | 			ioc = current->io_context; | 
 |  | 
 | 			/* | 
 | 			 * the main goal here is that we don't want to | 
 | 			 * block if we're going to be able to submit | 
 | 			 * more requests without blocking. | 
 | 			 * | 
 | 			 * This code does two great things, it pokes into | 
 | 			 * the elevator code from a filesystem _and_ | 
 | 			 * it makes assumptions about how batching works. | 
 | 			 */ | 
 | 			if (ioc && ioc->nr_batch_requests > 0 && | 
 | 			    time_before(jiffies, ioc->last_waited + HZ/50UL) && | 
 | 			    (last_waited == 0 || | 
 | 			     ioc->last_waited == last_waited)) { | 
 | 				/* | 
 | 				 * we want to go through our batch of | 
 | 				 * requests and stop.  So, we copy out | 
 | 				 * the ioc->last_waited time and test | 
 | 				 * against it before looping | 
 | 				 */ | 
 | 				last_waited = ioc->last_waited; | 
 | 				if (need_resched()) | 
 | 					cond_resched(); | 
 | 				continue; | 
 | 			} | 
 | 			spin_lock(&device->io_lock); | 
 | 			requeue_list(pending_bios, pending, tail); | 
 | 			device->running_pending = 1; | 
 |  | 
 | 			spin_unlock(&device->io_lock); | 
 | 			btrfs_requeue_work(&device->work); | 
 | 			goto done; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	cond_resched(); | 
 | 	if (again) | 
 | 		goto loop; | 
 |  | 
 | 	spin_lock(&device->io_lock); | 
 | 	if (device->pending_bios.head || device->pending_sync_bios.head) | 
 | 		goto loop_lock; | 
 | 	spin_unlock(&device->io_lock); | 
 |  | 
 | done: | 
 | 	blk_finish_plug(&plug); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void pending_bios_fn(struct btrfs_work *work) | 
 | { | 
 | 	struct btrfs_device *device; | 
 |  | 
 | 	device = container_of(work, struct btrfs_device, work); | 
 | 	run_scheduled_bios(device); | 
 | } | 
 |  | 
 | static noinline int device_list_add(const char *path, | 
 | 			   struct btrfs_super_block *disk_super, | 
 | 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret) | 
 | { | 
 | 	struct btrfs_device *device; | 
 | 	struct btrfs_fs_devices *fs_devices; | 
 | 	u64 found_transid = btrfs_super_generation(disk_super); | 
 | 	char *name; | 
 |  | 
 | 	fs_devices = find_fsid(disk_super->fsid); | 
 | 	if (!fs_devices) { | 
 | 		fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); | 
 | 		if (!fs_devices) | 
 | 			return -ENOMEM; | 
 | 		INIT_LIST_HEAD(&fs_devices->devices); | 
 | 		INIT_LIST_HEAD(&fs_devices->alloc_list); | 
 | 		list_add(&fs_devices->list, &fs_uuids); | 
 | 		memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE); | 
 | 		fs_devices->latest_devid = devid; | 
 | 		fs_devices->latest_trans = found_transid; | 
 | 		mutex_init(&fs_devices->device_list_mutex); | 
 | 		device = NULL; | 
 | 	} else { | 
 | 		device = __find_device(&fs_devices->devices, devid, | 
 | 				       disk_super->dev_item.uuid); | 
 | 	} | 
 | 	if (!device) { | 
 | 		if (fs_devices->opened) | 
 | 			return -EBUSY; | 
 |  | 
 | 		device = kzalloc(sizeof(*device), GFP_NOFS); | 
 | 		if (!device) { | 
 | 			/* we can safely leave the fs_devices entry around */ | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		device->devid = devid; | 
 | 		device->work.func = pending_bios_fn; | 
 | 		memcpy(device->uuid, disk_super->dev_item.uuid, | 
 | 		       BTRFS_UUID_SIZE); | 
 | 		spin_lock_init(&device->io_lock); | 
 | 		device->name = kstrdup(path, GFP_NOFS); | 
 | 		if (!device->name) { | 
 | 			kfree(device); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		INIT_LIST_HEAD(&device->dev_alloc_list); | 
 |  | 
 | 		/* init readahead state */ | 
 | 		spin_lock_init(&device->reada_lock); | 
 | 		device->reada_curr_zone = NULL; | 
 | 		atomic_set(&device->reada_in_flight, 0); | 
 | 		device->reada_next = 0; | 
 | 		INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT); | 
 | 		INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT); | 
 |  | 
 | 		mutex_lock(&fs_devices->device_list_mutex); | 
 | 		list_add_rcu(&device->dev_list, &fs_devices->devices); | 
 | 		mutex_unlock(&fs_devices->device_list_mutex); | 
 |  | 
 | 		device->fs_devices = fs_devices; | 
 | 		fs_devices->num_devices++; | 
 | 	} else if (!device->name || strcmp(device->name, path)) { | 
 | 		name = kstrdup(path, GFP_NOFS); | 
 | 		if (!name) | 
 | 			return -ENOMEM; | 
 | 		kfree(device->name); | 
 | 		device->name = name; | 
 | 		if (device->missing) { | 
 | 			fs_devices->missing_devices--; | 
 | 			device->missing = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (found_transid > fs_devices->latest_trans) { | 
 | 		fs_devices->latest_devid = devid; | 
 | 		fs_devices->latest_trans = found_transid; | 
 | 	} | 
 | 	*fs_devices_ret = fs_devices; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) | 
 | { | 
 | 	struct btrfs_fs_devices *fs_devices; | 
 | 	struct btrfs_device *device; | 
 | 	struct btrfs_device *orig_dev; | 
 |  | 
 | 	fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); | 
 | 	if (!fs_devices) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	INIT_LIST_HEAD(&fs_devices->devices); | 
 | 	INIT_LIST_HEAD(&fs_devices->alloc_list); | 
 | 	INIT_LIST_HEAD(&fs_devices->list); | 
 | 	mutex_init(&fs_devices->device_list_mutex); | 
 | 	fs_devices->latest_devid = orig->latest_devid; | 
 | 	fs_devices->latest_trans = orig->latest_trans; | 
 | 	memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid)); | 
 |  | 
 | 	/* We have held the volume lock, it is safe to get the devices. */ | 
 | 	list_for_each_entry(orig_dev, &orig->devices, dev_list) { | 
 | 		device = kzalloc(sizeof(*device), GFP_NOFS); | 
 | 		if (!device) | 
 | 			goto error; | 
 |  | 
 | 		device->name = kstrdup(orig_dev->name, GFP_NOFS); | 
 | 		if (!device->name) { | 
 | 			kfree(device); | 
 | 			goto error; | 
 | 		} | 
 |  | 
 | 		device->devid = orig_dev->devid; | 
 | 		device->work.func = pending_bios_fn; | 
 | 		memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid)); | 
 | 		spin_lock_init(&device->io_lock); | 
 | 		INIT_LIST_HEAD(&device->dev_list); | 
 | 		INIT_LIST_HEAD(&device->dev_alloc_list); | 
 |  | 
 | 		list_add(&device->dev_list, &fs_devices->devices); | 
 | 		device->fs_devices = fs_devices; | 
 | 		fs_devices->num_devices++; | 
 | 	} | 
 | 	return fs_devices; | 
 | error: | 
 | 	free_fs_devices(fs_devices); | 
 | 	return ERR_PTR(-ENOMEM); | 
 | } | 
 |  | 
 | int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices) | 
 | { | 
 | 	struct btrfs_device *device, *next; | 
 |  | 
 | 	mutex_lock(&uuid_mutex); | 
 | again: | 
 | 	/* This is the initialized path, it is safe to release the devices. */ | 
 | 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { | 
 | 		if (device->in_fs_metadata) | 
 | 			continue; | 
 |  | 
 | 		if (device->bdev) { | 
 | 			blkdev_put(device->bdev, device->mode); | 
 | 			device->bdev = NULL; | 
 | 			fs_devices->open_devices--; | 
 | 		} | 
 | 		if (device->writeable) { | 
 | 			list_del_init(&device->dev_alloc_list); | 
 | 			device->writeable = 0; | 
 | 			fs_devices->rw_devices--; | 
 | 		} | 
 | 		list_del_init(&device->dev_list); | 
 | 		fs_devices->num_devices--; | 
 | 		kfree(device->name); | 
 | 		kfree(device); | 
 | 	} | 
 |  | 
 | 	if (fs_devices->seed) { | 
 | 		fs_devices = fs_devices->seed; | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&uuid_mutex); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __free_device(struct work_struct *work) | 
 | { | 
 | 	struct btrfs_device *device; | 
 |  | 
 | 	device = container_of(work, struct btrfs_device, rcu_work); | 
 |  | 
 | 	if (device->bdev) | 
 | 		blkdev_put(device->bdev, device->mode); | 
 |  | 
 | 	kfree(device->name); | 
 | 	kfree(device); | 
 | } | 
 |  | 
 | static void free_device(struct rcu_head *head) | 
 | { | 
 | 	struct btrfs_device *device; | 
 |  | 
 | 	device = container_of(head, struct btrfs_device, rcu); | 
 |  | 
 | 	INIT_WORK(&device->rcu_work, __free_device); | 
 | 	schedule_work(&device->rcu_work); | 
 | } | 
 |  | 
 | static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices) | 
 | { | 
 | 	struct btrfs_device *device; | 
 |  | 
 | 	if (--fs_devices->opened > 0) | 
 | 		return 0; | 
 |  | 
 | 	mutex_lock(&fs_devices->device_list_mutex); | 
 | 	list_for_each_entry(device, &fs_devices->devices, dev_list) { | 
 | 		struct btrfs_device *new_device; | 
 |  | 
 | 		if (device->bdev) | 
 | 			fs_devices->open_devices--; | 
 |  | 
 | 		if (device->writeable) { | 
 | 			list_del_init(&device->dev_alloc_list); | 
 | 			fs_devices->rw_devices--; | 
 | 		} | 
 |  | 
 | 		if (device->can_discard) | 
 | 			fs_devices->num_can_discard--; | 
 |  | 
 | 		new_device = kmalloc(sizeof(*new_device), GFP_NOFS); | 
 | 		BUG_ON(!new_device); | 
 | 		memcpy(new_device, device, sizeof(*new_device)); | 
 | 		new_device->name = kstrdup(device->name, GFP_NOFS); | 
 | 		BUG_ON(device->name && !new_device->name); | 
 | 		new_device->bdev = NULL; | 
 | 		new_device->writeable = 0; | 
 | 		new_device->in_fs_metadata = 0; | 
 | 		new_device->can_discard = 0; | 
 | 		list_replace_rcu(&device->dev_list, &new_device->dev_list); | 
 |  | 
 | 		call_rcu(&device->rcu, free_device); | 
 | 	} | 
 | 	mutex_unlock(&fs_devices->device_list_mutex); | 
 |  | 
 | 	WARN_ON(fs_devices->open_devices); | 
 | 	WARN_ON(fs_devices->rw_devices); | 
 | 	fs_devices->opened = 0; | 
 | 	fs_devices->seeding = 0; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) | 
 | { | 
 | 	struct btrfs_fs_devices *seed_devices = NULL; | 
 | 	int ret; | 
 |  | 
 | 	mutex_lock(&uuid_mutex); | 
 | 	ret = __btrfs_close_devices(fs_devices); | 
 | 	if (!fs_devices->opened) { | 
 | 		seed_devices = fs_devices->seed; | 
 | 		fs_devices->seed = NULL; | 
 | 	} | 
 | 	mutex_unlock(&uuid_mutex); | 
 |  | 
 | 	while (seed_devices) { | 
 | 		fs_devices = seed_devices; | 
 | 		seed_devices = fs_devices->seed; | 
 | 		__btrfs_close_devices(fs_devices); | 
 | 		free_fs_devices(fs_devices); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices, | 
 | 				fmode_t flags, void *holder) | 
 | { | 
 | 	struct request_queue *q; | 
 | 	struct block_device *bdev; | 
 | 	struct list_head *head = &fs_devices->devices; | 
 | 	struct btrfs_device *device; | 
 | 	struct block_device *latest_bdev = NULL; | 
 | 	struct buffer_head *bh; | 
 | 	struct btrfs_super_block *disk_super; | 
 | 	u64 latest_devid = 0; | 
 | 	u64 latest_transid = 0; | 
 | 	u64 devid; | 
 | 	int seeding = 1; | 
 | 	int ret = 0; | 
 |  | 
 | 	flags |= FMODE_EXCL; | 
 |  | 
 | 	list_for_each_entry(device, head, dev_list) { | 
 | 		if (device->bdev) | 
 | 			continue; | 
 | 		if (!device->name) | 
 | 			continue; | 
 |  | 
 | 		bdev = blkdev_get_by_path(device->name, flags, holder); | 
 | 		if (IS_ERR(bdev)) { | 
 | 			printk(KERN_INFO "open %s failed\n", device->name); | 
 | 			goto error; | 
 | 		} | 
 | 		set_blocksize(bdev, 4096); | 
 |  | 
 | 		bh = btrfs_read_dev_super(bdev); | 
 | 		if (!bh) | 
 | 			goto error_close; | 
 |  | 
 | 		disk_super = (struct btrfs_super_block *)bh->b_data; | 
 | 		devid = btrfs_stack_device_id(&disk_super->dev_item); | 
 | 		if (devid != device->devid) | 
 | 			goto error_brelse; | 
 |  | 
 | 		if (memcmp(device->uuid, disk_super->dev_item.uuid, | 
 | 			   BTRFS_UUID_SIZE)) | 
 | 			goto error_brelse; | 
 |  | 
 | 		device->generation = btrfs_super_generation(disk_super); | 
 | 		if (!latest_transid || device->generation > latest_transid) { | 
 | 			latest_devid = devid; | 
 | 			latest_transid = device->generation; | 
 | 			latest_bdev = bdev; | 
 | 		} | 
 |  | 
 | 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { | 
 | 			device->writeable = 0; | 
 | 		} else { | 
 | 			device->writeable = !bdev_read_only(bdev); | 
 | 			seeding = 0; | 
 | 		} | 
 |  | 
 | 		q = bdev_get_queue(bdev); | 
 | 		if (blk_queue_discard(q)) { | 
 | 			device->can_discard = 1; | 
 | 			fs_devices->num_can_discard++; | 
 | 		} | 
 |  | 
 | 		device->bdev = bdev; | 
 | 		device->in_fs_metadata = 0; | 
 | 		device->mode = flags; | 
 |  | 
 | 		if (!blk_queue_nonrot(bdev_get_queue(bdev))) | 
 | 			fs_devices->rotating = 1; | 
 |  | 
 | 		fs_devices->open_devices++; | 
 | 		if (device->writeable) { | 
 | 			fs_devices->rw_devices++; | 
 | 			list_add(&device->dev_alloc_list, | 
 | 				 &fs_devices->alloc_list); | 
 | 		} | 
 | 		brelse(bh); | 
 | 		continue; | 
 |  | 
 | error_brelse: | 
 | 		brelse(bh); | 
 | error_close: | 
 | 		blkdev_put(bdev, flags); | 
 | error: | 
 | 		continue; | 
 | 	} | 
 | 	if (fs_devices->open_devices == 0) { | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 | 	fs_devices->seeding = seeding; | 
 | 	fs_devices->opened = 1; | 
 | 	fs_devices->latest_bdev = latest_bdev; | 
 | 	fs_devices->latest_devid = latest_devid; | 
 | 	fs_devices->latest_trans = latest_transid; | 
 | 	fs_devices->total_rw_bytes = 0; | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, | 
 | 		       fmode_t flags, void *holder) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	mutex_lock(&uuid_mutex); | 
 | 	if (fs_devices->opened) { | 
 | 		fs_devices->opened++; | 
 | 		ret = 0; | 
 | 	} else { | 
 | 		ret = __btrfs_open_devices(fs_devices, flags, holder); | 
 | 	} | 
 | 	mutex_unlock(&uuid_mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, | 
 | 			  struct btrfs_fs_devices **fs_devices_ret) | 
 | { | 
 | 	struct btrfs_super_block *disk_super; | 
 | 	struct block_device *bdev; | 
 | 	struct buffer_head *bh; | 
 | 	int ret; | 
 | 	u64 devid; | 
 | 	u64 transid; | 
 |  | 
 | 	mutex_lock(&uuid_mutex); | 
 |  | 
 | 	flags |= FMODE_EXCL; | 
 | 	bdev = blkdev_get_by_path(path, flags, holder); | 
 |  | 
 | 	if (IS_ERR(bdev)) { | 
 | 		ret = PTR_ERR(bdev); | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	ret = set_blocksize(bdev, 4096); | 
 | 	if (ret) | 
 | 		goto error_close; | 
 | 	bh = btrfs_read_dev_super(bdev); | 
 | 	if (!bh) { | 
 | 		ret = -EINVAL; | 
 | 		goto error_close; | 
 | 	} | 
 | 	disk_super = (struct btrfs_super_block *)bh->b_data; | 
 | 	devid = btrfs_stack_device_id(&disk_super->dev_item); | 
 | 	transid = btrfs_super_generation(disk_super); | 
 | 	if (disk_super->label[0]) | 
 | 		printk(KERN_INFO "device label %s ", disk_super->label); | 
 | 	else | 
 | 		printk(KERN_INFO "device fsid %pU ", disk_super->fsid); | 
 | 	printk(KERN_CONT "devid %llu transid %llu %s\n", | 
 | 	       (unsigned long long)devid, (unsigned long long)transid, path); | 
 | 	ret = device_list_add(path, disk_super, devid, fs_devices_ret); | 
 |  | 
 | 	brelse(bh); | 
 | error_close: | 
 | 	blkdev_put(bdev, flags); | 
 | error: | 
 | 	mutex_unlock(&uuid_mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* helper to account the used device space in the range */ | 
 | int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start, | 
 | 				   u64 end, u64 *length) | 
 | { | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_root *root = device->dev_root; | 
 | 	struct btrfs_dev_extent *dev_extent; | 
 | 	struct btrfs_path *path; | 
 | 	u64 extent_end; | 
 | 	int ret; | 
 | 	int slot; | 
 | 	struct extent_buffer *l; | 
 |  | 
 | 	*length = 0; | 
 |  | 
 | 	if (start >= device->total_bytes) | 
 | 		return 0; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 | 	path->reada = 2; | 
 |  | 
 | 	key.objectid = device->devid; | 
 | 	key.offset = start; | 
 | 	key.type = BTRFS_DEV_EXTENT_KEY; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	if (ret > 0) { | 
 | 		ret = btrfs_previous_item(root, path, key.objectid, key.type); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	while (1) { | 
 | 		l = path->nodes[0]; | 
 | 		slot = path->slots[0]; | 
 | 		if (slot >= btrfs_header_nritems(l)) { | 
 | 			ret = btrfs_next_leaf(root, path); | 
 | 			if (ret == 0) | 
 | 				continue; | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 |  | 
 | 			break; | 
 | 		} | 
 | 		btrfs_item_key_to_cpu(l, &key, slot); | 
 |  | 
 | 		if (key.objectid < device->devid) | 
 | 			goto next; | 
 |  | 
 | 		if (key.objectid > device->devid) | 
 | 			break; | 
 |  | 
 | 		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) | 
 | 			goto next; | 
 |  | 
 | 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); | 
 | 		extent_end = key.offset + btrfs_dev_extent_length(l, | 
 | 								  dev_extent); | 
 | 		if (key.offset <= start && extent_end > end) { | 
 | 			*length = end - start + 1; | 
 | 			break; | 
 | 		} else if (key.offset <= start && extent_end > start) | 
 | 			*length += extent_end - start; | 
 | 		else if (key.offset > start && extent_end <= end) | 
 | 			*length += extent_end - key.offset; | 
 | 		else if (key.offset > start && key.offset <= end) { | 
 | 			*length += end - key.offset + 1; | 
 | 			break; | 
 | 		} else if (key.offset > end) | 
 | 			break; | 
 |  | 
 | next: | 
 | 		path->slots[0]++; | 
 | 	} | 
 | 	ret = 0; | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * find_free_dev_extent - find free space in the specified device | 
 |  * @trans:	transaction handler | 
 |  * @device:	the device which we search the free space in | 
 |  * @num_bytes:	the size of the free space that we need | 
 |  * @start:	store the start of the free space. | 
 |  * @len:	the size of the free space. that we find, or the size of the max | 
 |  * 		free space if we don't find suitable free space | 
 |  * | 
 |  * this uses a pretty simple search, the expectation is that it is | 
 |  * called very infrequently and that a given device has a small number | 
 |  * of extents | 
 |  * | 
 |  * @start is used to store the start of the free space if we find. But if we | 
 |  * don't find suitable free space, it will be used to store the start position | 
 |  * of the max free space. | 
 |  * | 
 |  * @len is used to store the size of the free space that we find. | 
 |  * But if we don't find suitable free space, it is used to store the size of | 
 |  * the max free space. | 
 |  */ | 
 | int find_free_dev_extent(struct btrfs_trans_handle *trans, | 
 | 			 struct btrfs_device *device, u64 num_bytes, | 
 | 			 u64 *start, u64 *len) | 
 | { | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_root *root = device->dev_root; | 
 | 	struct btrfs_dev_extent *dev_extent; | 
 | 	struct btrfs_path *path; | 
 | 	u64 hole_size; | 
 | 	u64 max_hole_start; | 
 | 	u64 max_hole_size; | 
 | 	u64 extent_end; | 
 | 	u64 search_start; | 
 | 	u64 search_end = device->total_bytes; | 
 | 	int ret; | 
 | 	int slot; | 
 | 	struct extent_buffer *l; | 
 |  | 
 | 	/* FIXME use last free of some kind */ | 
 |  | 
 | 	/* we don't want to overwrite the superblock on the drive, | 
 | 	 * so we make sure to start at an offset of at least 1MB | 
 | 	 */ | 
 | 	search_start = max(root->fs_info->alloc_start, 1024ull * 1024); | 
 |  | 
 | 	max_hole_start = search_start; | 
 | 	max_hole_size = 0; | 
 | 	hole_size = 0; | 
 |  | 
 | 	if (search_start >= search_end) { | 
 | 		ret = -ENOSPC; | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) { | 
 | 		ret = -ENOMEM; | 
 | 		goto error; | 
 | 	} | 
 | 	path->reada = 2; | 
 |  | 
 | 	key.objectid = device->devid; | 
 | 	key.offset = search_start; | 
 | 	key.type = BTRFS_DEV_EXTENT_KEY; | 
 |  | 
 | 	ret = btrfs_search_slot(trans, root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	if (ret > 0) { | 
 | 		ret = btrfs_previous_item(root, path, key.objectid, key.type); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	while (1) { | 
 | 		l = path->nodes[0]; | 
 | 		slot = path->slots[0]; | 
 | 		if (slot >= btrfs_header_nritems(l)) { | 
 | 			ret = btrfs_next_leaf(root, path); | 
 | 			if (ret == 0) | 
 | 				continue; | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 |  | 
 | 			break; | 
 | 		} | 
 | 		btrfs_item_key_to_cpu(l, &key, slot); | 
 |  | 
 | 		if (key.objectid < device->devid) | 
 | 			goto next; | 
 |  | 
 | 		if (key.objectid > device->devid) | 
 | 			break; | 
 |  | 
 | 		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) | 
 | 			goto next; | 
 |  | 
 | 		if (key.offset > search_start) { | 
 | 			hole_size = key.offset - search_start; | 
 |  | 
 | 			if (hole_size > max_hole_size) { | 
 | 				max_hole_start = search_start; | 
 | 				max_hole_size = hole_size; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * If this free space is greater than which we need, | 
 | 			 * it must be the max free space that we have found | 
 | 			 * until now, so max_hole_start must point to the start | 
 | 			 * of this free space and the length of this free space | 
 | 			 * is stored in max_hole_size. Thus, we return | 
 | 			 * max_hole_start and max_hole_size and go back to the | 
 | 			 * caller. | 
 | 			 */ | 
 | 			if (hole_size >= num_bytes) { | 
 | 				ret = 0; | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); | 
 | 		extent_end = key.offset + btrfs_dev_extent_length(l, | 
 | 								  dev_extent); | 
 | 		if (extent_end > search_start) | 
 | 			search_start = extent_end; | 
 | next: | 
 | 		path->slots[0]++; | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * At this point, search_start should be the end of | 
 | 	 * allocated dev extents, and when shrinking the device, | 
 | 	 * search_end may be smaller than search_start. | 
 | 	 */ | 
 | 	if (search_end > search_start) | 
 | 		hole_size = search_end - search_start; | 
 |  | 
 | 	if (hole_size > max_hole_size) { | 
 | 		max_hole_start = search_start; | 
 | 		max_hole_size = hole_size; | 
 | 	} | 
 |  | 
 | 	/* See above. */ | 
 | 	if (hole_size < num_bytes) | 
 | 		ret = -ENOSPC; | 
 | 	else | 
 | 		ret = 0; | 
 |  | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | error: | 
 | 	*start = max_hole_start; | 
 | 	if (len) | 
 | 		*len = max_hole_size; | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, | 
 | 			  struct btrfs_device *device, | 
 | 			  u64 start) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_root *root = device->dev_root; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key found_key; | 
 | 	struct extent_buffer *leaf = NULL; | 
 | 	struct btrfs_dev_extent *extent = NULL; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	key.objectid = device->devid; | 
 | 	key.offset = start; | 
 | 	key.type = BTRFS_DEV_EXTENT_KEY; | 
 | again: | 
 | 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
 | 	if (ret > 0) { | 
 | 		ret = btrfs_previous_item(root, path, key.objectid, | 
 | 					  BTRFS_DEV_EXTENT_KEY); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 		leaf = path->nodes[0]; | 
 | 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
 | 		extent = btrfs_item_ptr(leaf, path->slots[0], | 
 | 					struct btrfs_dev_extent); | 
 | 		BUG_ON(found_key.offset > start || found_key.offset + | 
 | 		       btrfs_dev_extent_length(leaf, extent) < start); | 
 | 		key = found_key; | 
 | 		btrfs_release_path(path); | 
 | 		goto again; | 
 | 	} else if (ret == 0) { | 
 | 		leaf = path->nodes[0]; | 
 | 		extent = btrfs_item_ptr(leaf, path->slots[0], | 
 | 					struct btrfs_dev_extent); | 
 | 	} | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	if (device->bytes_used > 0) { | 
 | 		u64 len = btrfs_dev_extent_length(leaf, extent); | 
 | 		device->bytes_used -= len; | 
 | 		spin_lock(&root->fs_info->free_chunk_lock); | 
 | 		root->fs_info->free_chunk_space += len; | 
 | 		spin_unlock(&root->fs_info->free_chunk_lock); | 
 | 	} | 
 | 	ret = btrfs_del_item(trans, root, path); | 
 |  | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, | 
 | 			   struct btrfs_device *device, | 
 | 			   u64 chunk_tree, u64 chunk_objectid, | 
 | 			   u64 chunk_offset, u64 start, u64 num_bytes) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_root *root = device->dev_root; | 
 | 	struct btrfs_dev_extent *extent; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_key key; | 
 |  | 
 | 	WARN_ON(!device->in_fs_metadata); | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	key.objectid = device->devid; | 
 | 	key.offset = start; | 
 | 	key.type = BTRFS_DEV_EXTENT_KEY; | 
 | 	ret = btrfs_insert_empty_item(trans, root, path, &key, | 
 | 				      sizeof(*extent)); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	extent = btrfs_item_ptr(leaf, path->slots[0], | 
 | 				struct btrfs_dev_extent); | 
 | 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree); | 
 | 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid); | 
 | 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); | 
 |  | 
 | 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, | 
 | 		    (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent), | 
 | 		    BTRFS_UUID_SIZE); | 
 |  | 
 | 	btrfs_set_dev_extent_length(leaf, extent, num_bytes); | 
 | 	btrfs_mark_buffer_dirty(leaf); | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static noinline int find_next_chunk(struct btrfs_root *root, | 
 | 				    u64 objectid, u64 *offset) | 
 | { | 
 | 	struct btrfs_path *path; | 
 | 	int ret; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_chunk *chunk; | 
 | 	struct btrfs_key found_key; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	key.objectid = objectid; | 
 | 	key.offset = (u64)-1; | 
 | 	key.type = BTRFS_CHUNK_ITEM_KEY; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto error; | 
 |  | 
 | 	BUG_ON(ret == 0); | 
 |  | 
 | 	ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY); | 
 | 	if (ret) { | 
 | 		*offset = 0; | 
 | 	} else { | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &found_key, | 
 | 				      path->slots[0]); | 
 | 		if (found_key.objectid != objectid) | 
 | 			*offset = 0; | 
 | 		else { | 
 | 			chunk = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
 | 					       struct btrfs_chunk); | 
 | 			*offset = found_key.offset + | 
 | 				btrfs_chunk_length(path->nodes[0], chunk); | 
 | 		} | 
 | 	} | 
 | 	ret = 0; | 
 | error: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key found_key; | 
 | 	struct btrfs_path *path; | 
 |  | 
 | 	root = root->fs_info->chunk_root; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | 
 | 	key.type = BTRFS_DEV_ITEM_KEY; | 
 | 	key.offset = (u64)-1; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto error; | 
 |  | 
 | 	BUG_ON(ret == 0); | 
 |  | 
 | 	ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID, | 
 | 				  BTRFS_DEV_ITEM_KEY); | 
 | 	if (ret) { | 
 | 		*objectid = 1; | 
 | 	} else { | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &found_key, | 
 | 				      path->slots[0]); | 
 | 		*objectid = found_key.offset + 1; | 
 | 	} | 
 | 	ret = 0; | 
 | error: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * the device information is stored in the chunk root | 
 |  * the btrfs_device struct should be fully filled in | 
 |  */ | 
 | int btrfs_add_device(struct btrfs_trans_handle *trans, | 
 | 		     struct btrfs_root *root, | 
 | 		     struct btrfs_device *device) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_dev_item *dev_item; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_key key; | 
 | 	unsigned long ptr; | 
 |  | 
 | 	root = root->fs_info->chunk_root; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | 
 | 	key.type = BTRFS_DEV_ITEM_KEY; | 
 | 	key.offset = device->devid; | 
 |  | 
 | 	ret = btrfs_insert_empty_item(trans, root, path, &key, | 
 | 				      sizeof(*dev_item)); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); | 
 |  | 
 | 	btrfs_set_device_id(leaf, dev_item, device->devid); | 
 | 	btrfs_set_device_generation(leaf, dev_item, 0); | 
 | 	btrfs_set_device_type(leaf, dev_item, device->type); | 
 | 	btrfs_set_device_io_align(leaf, dev_item, device->io_align); | 
 | 	btrfs_set_device_io_width(leaf, dev_item, device->io_width); | 
 | 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); | 
 | 	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes); | 
 | 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); | 
 | 	btrfs_set_device_group(leaf, dev_item, 0); | 
 | 	btrfs_set_device_seek_speed(leaf, dev_item, 0); | 
 | 	btrfs_set_device_bandwidth(leaf, dev_item, 0); | 
 | 	btrfs_set_device_start_offset(leaf, dev_item, 0); | 
 |  | 
 | 	ptr = (unsigned long)btrfs_device_uuid(dev_item); | 
 | 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); | 
 | 	ptr = (unsigned long)btrfs_device_fsid(dev_item); | 
 | 	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE); | 
 | 	btrfs_mark_buffer_dirty(leaf); | 
 |  | 
 | 	ret = 0; | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_rm_dev_item(struct btrfs_root *root, | 
 | 			     struct btrfs_device *device) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_trans_handle *trans; | 
 |  | 
 | 	root = root->fs_info->chunk_root; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	trans = btrfs_start_transaction(root, 0); | 
 | 	if (IS_ERR(trans)) { | 
 | 		btrfs_free_path(path); | 
 | 		return PTR_ERR(trans); | 
 | 	} | 
 | 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | 
 | 	key.type = BTRFS_DEV_ITEM_KEY; | 
 | 	key.offset = device->devid; | 
 | 	lock_chunks(root); | 
 |  | 
 | 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	if (ret > 0) { | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_del_item(trans, root, path); | 
 | 	if (ret) | 
 | 		goto out; | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	unlock_chunks(root); | 
 | 	btrfs_commit_transaction(trans, root); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_rm_device(struct btrfs_root *root, char *device_path) | 
 | { | 
 | 	struct btrfs_device *device; | 
 | 	struct btrfs_device *next_device; | 
 | 	struct block_device *bdev; | 
 | 	struct buffer_head *bh = NULL; | 
 | 	struct btrfs_super_block *disk_super; | 
 | 	struct btrfs_fs_devices *cur_devices; | 
 | 	u64 all_avail; | 
 | 	u64 devid; | 
 | 	u64 num_devices; | 
 | 	u8 *dev_uuid; | 
 | 	int ret = 0; | 
 | 	bool clear_super = false; | 
 |  | 
 | 	mutex_lock(&uuid_mutex); | 
 | 	mutex_lock(&root->fs_info->volume_mutex); | 
 |  | 
 | 	all_avail = root->fs_info->avail_data_alloc_bits | | 
 | 		root->fs_info->avail_system_alloc_bits | | 
 | 		root->fs_info->avail_metadata_alloc_bits; | 
 |  | 
 | 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && | 
 | 	    root->fs_info->fs_devices->num_devices <= 4) { | 
 | 		printk(KERN_ERR "btrfs: unable to go below four devices " | 
 | 		       "on raid10\n"); | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && | 
 | 	    root->fs_info->fs_devices->num_devices <= 2) { | 
 | 		printk(KERN_ERR "btrfs: unable to go below two " | 
 | 		       "devices on raid1\n"); | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (strcmp(device_path, "missing") == 0) { | 
 | 		struct list_head *devices; | 
 | 		struct btrfs_device *tmp; | 
 |  | 
 | 		device = NULL; | 
 | 		devices = &root->fs_info->fs_devices->devices; | 
 | 		/* | 
 | 		 * It is safe to read the devices since the volume_mutex | 
 | 		 * is held. | 
 | 		 */ | 
 | 		list_for_each_entry(tmp, devices, dev_list) { | 
 | 			if (tmp->in_fs_metadata && !tmp->bdev) { | 
 | 				device = tmp; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		bdev = NULL; | 
 | 		bh = NULL; | 
 | 		disk_super = NULL; | 
 | 		if (!device) { | 
 | 			printk(KERN_ERR "btrfs: no missing devices found to " | 
 | 			       "remove\n"); | 
 | 			goto out; | 
 | 		} | 
 | 	} else { | 
 | 		bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL, | 
 | 					  root->fs_info->bdev_holder); | 
 | 		if (IS_ERR(bdev)) { | 
 | 			ret = PTR_ERR(bdev); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		set_blocksize(bdev, 4096); | 
 | 		bh = btrfs_read_dev_super(bdev); | 
 | 		if (!bh) { | 
 | 			ret = -EINVAL; | 
 | 			goto error_close; | 
 | 		} | 
 | 		disk_super = (struct btrfs_super_block *)bh->b_data; | 
 | 		devid = btrfs_stack_device_id(&disk_super->dev_item); | 
 | 		dev_uuid = disk_super->dev_item.uuid; | 
 | 		device = btrfs_find_device(root, devid, dev_uuid, | 
 | 					   disk_super->fsid); | 
 | 		if (!device) { | 
 | 			ret = -ENOENT; | 
 | 			goto error_brelse; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) { | 
 | 		printk(KERN_ERR "btrfs: unable to remove the only writeable " | 
 | 		       "device\n"); | 
 | 		ret = -EINVAL; | 
 | 		goto error_brelse; | 
 | 	} | 
 |  | 
 | 	if (device->writeable) { | 
 | 		lock_chunks(root); | 
 | 		list_del_init(&device->dev_alloc_list); | 
 | 		unlock_chunks(root); | 
 | 		root->fs_info->fs_devices->rw_devices--; | 
 | 		clear_super = true; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_shrink_device(device, 0); | 
 | 	if (ret) | 
 | 		goto error_undo; | 
 |  | 
 | 	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device); | 
 | 	if (ret) | 
 | 		goto error_undo; | 
 |  | 
 | 	spin_lock(&root->fs_info->free_chunk_lock); | 
 | 	root->fs_info->free_chunk_space = device->total_bytes - | 
 | 		device->bytes_used; | 
 | 	spin_unlock(&root->fs_info->free_chunk_lock); | 
 |  | 
 | 	device->in_fs_metadata = 0; | 
 | 	btrfs_scrub_cancel_dev(root, device); | 
 |  | 
 | 	/* | 
 | 	 * the device list mutex makes sure that we don't change | 
 | 	 * the device list while someone else is writing out all | 
 | 	 * the device supers. | 
 | 	 */ | 
 |  | 
 | 	cur_devices = device->fs_devices; | 
 | 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex); | 
 | 	list_del_rcu(&device->dev_list); | 
 |  | 
 | 	device->fs_devices->num_devices--; | 
 |  | 
 | 	if (device->missing) | 
 | 		root->fs_info->fs_devices->missing_devices--; | 
 |  | 
 | 	next_device = list_entry(root->fs_info->fs_devices->devices.next, | 
 | 				 struct btrfs_device, dev_list); | 
 | 	if (device->bdev == root->fs_info->sb->s_bdev) | 
 | 		root->fs_info->sb->s_bdev = next_device->bdev; | 
 | 	if (device->bdev == root->fs_info->fs_devices->latest_bdev) | 
 | 		root->fs_info->fs_devices->latest_bdev = next_device->bdev; | 
 |  | 
 | 	if (device->bdev) | 
 | 		device->fs_devices->open_devices--; | 
 |  | 
 | 	call_rcu(&device->rcu, free_device); | 
 | 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); | 
 |  | 
 | 	num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1; | 
 | 	btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices); | 
 |  | 
 | 	if (cur_devices->open_devices == 0) { | 
 | 		struct btrfs_fs_devices *fs_devices; | 
 | 		fs_devices = root->fs_info->fs_devices; | 
 | 		while (fs_devices) { | 
 | 			if (fs_devices->seed == cur_devices) | 
 | 				break; | 
 | 			fs_devices = fs_devices->seed; | 
 | 		} | 
 | 		fs_devices->seed = cur_devices->seed; | 
 | 		cur_devices->seed = NULL; | 
 | 		lock_chunks(root); | 
 | 		__btrfs_close_devices(cur_devices); | 
 | 		unlock_chunks(root); | 
 | 		free_fs_devices(cur_devices); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * at this point, the device is zero sized.  We want to | 
 | 	 * remove it from the devices list and zero out the old super | 
 | 	 */ | 
 | 	if (clear_super) { | 
 | 		/* make sure this device isn't detected as part of | 
 | 		 * the FS anymore | 
 | 		 */ | 
 | 		memset(&disk_super->magic, 0, sizeof(disk_super->magic)); | 
 | 		set_buffer_dirty(bh); | 
 | 		sync_dirty_buffer(bh); | 
 | 	} | 
 |  | 
 | 	ret = 0; | 
 |  | 
 | error_brelse: | 
 | 	brelse(bh); | 
 | error_close: | 
 | 	if (bdev) | 
 | 		blkdev_put(bdev, FMODE_READ | FMODE_EXCL); | 
 | out: | 
 | 	mutex_unlock(&root->fs_info->volume_mutex); | 
 | 	mutex_unlock(&uuid_mutex); | 
 | 	return ret; | 
 | error_undo: | 
 | 	if (device->writeable) { | 
 | 		lock_chunks(root); | 
 | 		list_add(&device->dev_alloc_list, | 
 | 			 &root->fs_info->fs_devices->alloc_list); | 
 | 		unlock_chunks(root); | 
 | 		root->fs_info->fs_devices->rw_devices++; | 
 | 	} | 
 | 	goto error_brelse; | 
 | } | 
 |  | 
 | /* | 
 |  * does all the dirty work required for changing file system's UUID. | 
 |  */ | 
 | static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans, | 
 | 				struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; | 
 | 	struct btrfs_fs_devices *old_devices; | 
 | 	struct btrfs_fs_devices *seed_devices; | 
 | 	struct btrfs_super_block *disk_super = root->fs_info->super_copy; | 
 | 	struct btrfs_device *device; | 
 | 	u64 super_flags; | 
 |  | 
 | 	BUG_ON(!mutex_is_locked(&uuid_mutex)); | 
 | 	if (!fs_devices->seeding) | 
 | 		return -EINVAL; | 
 |  | 
 | 	seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); | 
 | 	if (!seed_devices) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	old_devices = clone_fs_devices(fs_devices); | 
 | 	if (IS_ERR(old_devices)) { | 
 | 		kfree(seed_devices); | 
 | 		return PTR_ERR(old_devices); | 
 | 	} | 
 |  | 
 | 	list_add(&old_devices->list, &fs_uuids); | 
 |  | 
 | 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); | 
 | 	seed_devices->opened = 1; | 
 | 	INIT_LIST_HEAD(&seed_devices->devices); | 
 | 	INIT_LIST_HEAD(&seed_devices->alloc_list); | 
 | 	mutex_init(&seed_devices->device_list_mutex); | 
 |  | 
 | 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex); | 
 | 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, | 
 | 			      synchronize_rcu); | 
 | 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); | 
 |  | 
 | 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); | 
 | 	list_for_each_entry(device, &seed_devices->devices, dev_list) { | 
 | 		device->fs_devices = seed_devices; | 
 | 	} | 
 |  | 
 | 	fs_devices->seeding = 0; | 
 | 	fs_devices->num_devices = 0; | 
 | 	fs_devices->open_devices = 0; | 
 | 	fs_devices->seed = seed_devices; | 
 |  | 
 | 	generate_random_uuid(fs_devices->fsid); | 
 | 	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); | 
 | 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); | 
 | 	super_flags = btrfs_super_flags(disk_super) & | 
 | 		      ~BTRFS_SUPER_FLAG_SEEDING; | 
 | 	btrfs_set_super_flags(disk_super, super_flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * strore the expected generation for seed devices in device items. | 
 |  */ | 
 | static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, | 
 | 			       struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_path *path; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_dev_item *dev_item; | 
 | 	struct btrfs_device *device; | 
 | 	struct btrfs_key key; | 
 | 	u8 fs_uuid[BTRFS_UUID_SIZE]; | 
 | 	u8 dev_uuid[BTRFS_UUID_SIZE]; | 
 | 	u64 devid; | 
 | 	int ret; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	root = root->fs_info->chunk_root; | 
 | 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | 
 | 	key.offset = 0; | 
 | 	key.type = BTRFS_DEV_ITEM_KEY; | 
 |  | 
 | 	while (1) { | 
 | 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1); | 
 | 		if (ret < 0) | 
 | 			goto error; | 
 |  | 
 | 		leaf = path->nodes[0]; | 
 | next_slot: | 
 | 		if (path->slots[0] >= btrfs_header_nritems(leaf)) { | 
 | 			ret = btrfs_next_leaf(root, path); | 
 | 			if (ret > 0) | 
 | 				break; | 
 | 			if (ret < 0) | 
 | 				goto error; | 
 | 			leaf = path->nodes[0]; | 
 | 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
 | 			btrfs_release_path(path); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
 | 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || | 
 | 		    key.type != BTRFS_DEV_ITEM_KEY) | 
 | 			break; | 
 |  | 
 | 		dev_item = btrfs_item_ptr(leaf, path->slots[0], | 
 | 					  struct btrfs_dev_item); | 
 | 		devid = btrfs_device_id(leaf, dev_item); | 
 | 		read_extent_buffer(leaf, dev_uuid, | 
 | 				   (unsigned long)btrfs_device_uuid(dev_item), | 
 | 				   BTRFS_UUID_SIZE); | 
 | 		read_extent_buffer(leaf, fs_uuid, | 
 | 				   (unsigned long)btrfs_device_fsid(dev_item), | 
 | 				   BTRFS_UUID_SIZE); | 
 | 		device = btrfs_find_device(root, devid, dev_uuid, fs_uuid); | 
 | 		BUG_ON(!device); | 
 |  | 
 | 		if (device->fs_devices->seeding) { | 
 | 			btrfs_set_device_generation(leaf, dev_item, | 
 | 						    device->generation); | 
 | 			btrfs_mark_buffer_dirty(leaf); | 
 | 		} | 
 |  | 
 | 		path->slots[0]++; | 
 | 		goto next_slot; | 
 | 	} | 
 | 	ret = 0; | 
 | error: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_init_new_device(struct btrfs_root *root, char *device_path) | 
 | { | 
 | 	struct request_queue *q; | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	struct btrfs_device *device; | 
 | 	struct block_device *bdev; | 
 | 	struct list_head *devices; | 
 | 	struct super_block *sb = root->fs_info->sb; | 
 | 	u64 total_bytes; | 
 | 	int seeding_dev = 0; | 
 | 	int ret = 0; | 
 |  | 
 | 	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding) | 
 | 		return -EINVAL; | 
 |  | 
 | 	bdev = blkdev_get_by_path(device_path, FMODE_EXCL, | 
 | 				  root->fs_info->bdev_holder); | 
 | 	if (IS_ERR(bdev)) | 
 | 		return PTR_ERR(bdev); | 
 |  | 
 | 	if (root->fs_info->fs_devices->seeding) { | 
 | 		seeding_dev = 1; | 
 | 		down_write(&sb->s_umount); | 
 | 		mutex_lock(&uuid_mutex); | 
 | 	} | 
 |  | 
 | 	filemap_write_and_wait(bdev->bd_inode->i_mapping); | 
 | 	mutex_lock(&root->fs_info->volume_mutex); | 
 |  | 
 | 	devices = &root->fs_info->fs_devices->devices; | 
 | 	/* | 
 | 	 * we have the volume lock, so we don't need the extra | 
 | 	 * device list mutex while reading the list here. | 
 | 	 */ | 
 | 	list_for_each_entry(device, devices, dev_list) { | 
 | 		if (device->bdev == bdev) { | 
 | 			ret = -EEXIST; | 
 | 			goto error; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	device = kzalloc(sizeof(*device), GFP_NOFS); | 
 | 	if (!device) { | 
 | 		/* we can safely leave the fs_devices entry around */ | 
 | 		ret = -ENOMEM; | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	device->name = kstrdup(device_path, GFP_NOFS); | 
 | 	if (!device->name) { | 
 | 		kfree(device); | 
 | 		ret = -ENOMEM; | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	ret = find_next_devid(root, &device->devid); | 
 | 	if (ret) { | 
 | 		kfree(device->name); | 
 | 		kfree(device); | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	trans = btrfs_start_transaction(root, 0); | 
 | 	if (IS_ERR(trans)) { | 
 | 		kfree(device->name); | 
 | 		kfree(device); | 
 | 		ret = PTR_ERR(trans); | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	lock_chunks(root); | 
 |  | 
 | 	q = bdev_get_queue(bdev); | 
 | 	if (blk_queue_discard(q)) | 
 | 		device->can_discard = 1; | 
 | 	device->writeable = 1; | 
 | 	device->work.func = pending_bios_fn; | 
 | 	generate_random_uuid(device->uuid); | 
 | 	spin_lock_init(&device->io_lock); | 
 | 	device->generation = trans->transid; | 
 | 	device->io_width = root->sectorsize; | 
 | 	device->io_align = root->sectorsize; | 
 | 	device->sector_size = root->sectorsize; | 
 | 	device->total_bytes = i_size_read(bdev->bd_inode); | 
 | 	device->disk_total_bytes = device->total_bytes; | 
 | 	device->dev_root = root->fs_info->dev_root; | 
 | 	device->bdev = bdev; | 
 | 	device->in_fs_metadata = 1; | 
 | 	device->mode = FMODE_EXCL; | 
 | 	set_blocksize(device->bdev, 4096); | 
 |  | 
 | 	if (seeding_dev) { | 
 | 		sb->s_flags &= ~MS_RDONLY; | 
 | 		ret = btrfs_prepare_sprout(trans, root); | 
 | 		BUG_ON(ret); | 
 | 	} | 
 |  | 
 | 	device->fs_devices = root->fs_info->fs_devices; | 
 |  | 
 | 	/* | 
 | 	 * we don't want write_supers to jump in here with our device | 
 | 	 * half setup | 
 | 	 */ | 
 | 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex); | 
 | 	list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices); | 
 | 	list_add(&device->dev_alloc_list, | 
 | 		 &root->fs_info->fs_devices->alloc_list); | 
 | 	root->fs_info->fs_devices->num_devices++; | 
 | 	root->fs_info->fs_devices->open_devices++; | 
 | 	root->fs_info->fs_devices->rw_devices++; | 
 | 	if (device->can_discard) | 
 | 		root->fs_info->fs_devices->num_can_discard++; | 
 | 	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes; | 
 |  | 
 | 	spin_lock(&root->fs_info->free_chunk_lock); | 
 | 	root->fs_info->free_chunk_space += device->total_bytes; | 
 | 	spin_unlock(&root->fs_info->free_chunk_lock); | 
 |  | 
 | 	if (!blk_queue_nonrot(bdev_get_queue(bdev))) | 
 | 		root->fs_info->fs_devices->rotating = 1; | 
 |  | 
 | 	total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy); | 
 | 	btrfs_set_super_total_bytes(root->fs_info->super_copy, | 
 | 				    total_bytes + device->total_bytes); | 
 |  | 
 | 	total_bytes = btrfs_super_num_devices(root->fs_info->super_copy); | 
 | 	btrfs_set_super_num_devices(root->fs_info->super_copy, | 
 | 				    total_bytes + 1); | 
 | 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); | 
 |  | 
 | 	if (seeding_dev) { | 
 | 		ret = init_first_rw_device(trans, root, device); | 
 | 		BUG_ON(ret); | 
 | 		ret = btrfs_finish_sprout(trans, root); | 
 | 		BUG_ON(ret); | 
 | 	} else { | 
 | 		ret = btrfs_add_device(trans, root, device); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * we've got more storage, clear any full flags on the space | 
 | 	 * infos | 
 | 	 */ | 
 | 	btrfs_clear_space_info_full(root->fs_info); | 
 |  | 
 | 	unlock_chunks(root); | 
 | 	btrfs_commit_transaction(trans, root); | 
 |  | 
 | 	if (seeding_dev) { | 
 | 		mutex_unlock(&uuid_mutex); | 
 | 		up_write(&sb->s_umount); | 
 |  | 
 | 		ret = btrfs_relocate_sys_chunks(root); | 
 | 		BUG_ON(ret); | 
 | 	} | 
 | out: | 
 | 	mutex_unlock(&root->fs_info->volume_mutex); | 
 | 	return ret; | 
 | error: | 
 | 	blkdev_put(bdev, FMODE_EXCL); | 
 | 	if (seeding_dev) { | 
 | 		mutex_unlock(&uuid_mutex); | 
 | 		up_write(&sb->s_umount); | 
 | 	} | 
 | 	goto out; | 
 | } | 
 |  | 
 | static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, | 
 | 					struct btrfs_device *device) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_root *root; | 
 | 	struct btrfs_dev_item *dev_item; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_key key; | 
 |  | 
 | 	root = device->dev_root->fs_info->chunk_root; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | 
 | 	key.type = BTRFS_DEV_ITEM_KEY; | 
 | 	key.offset = device->devid; | 
 |  | 
 | 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	if (ret > 0) { | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); | 
 |  | 
 | 	btrfs_set_device_id(leaf, dev_item, device->devid); | 
 | 	btrfs_set_device_type(leaf, dev_item, device->type); | 
 | 	btrfs_set_device_io_align(leaf, dev_item, device->io_align); | 
 | 	btrfs_set_device_io_width(leaf, dev_item, device->io_width); | 
 | 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); | 
 | 	btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes); | 
 | 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); | 
 | 	btrfs_mark_buffer_dirty(leaf); | 
 |  | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __btrfs_grow_device(struct btrfs_trans_handle *trans, | 
 | 		      struct btrfs_device *device, u64 new_size) | 
 | { | 
 | 	struct btrfs_super_block *super_copy = | 
 | 		device->dev_root->fs_info->super_copy; | 
 | 	u64 old_total = btrfs_super_total_bytes(super_copy); | 
 | 	u64 diff = new_size - device->total_bytes; | 
 |  | 
 | 	if (!device->writeable) | 
 | 		return -EACCES; | 
 | 	if (new_size <= device->total_bytes) | 
 | 		return -EINVAL; | 
 |  | 
 | 	btrfs_set_super_total_bytes(super_copy, old_total + diff); | 
 | 	device->fs_devices->total_rw_bytes += diff; | 
 |  | 
 | 	device->total_bytes = new_size; | 
 | 	device->disk_total_bytes = new_size; | 
 | 	btrfs_clear_space_info_full(device->dev_root->fs_info); | 
 |  | 
 | 	return btrfs_update_device(trans, device); | 
 | } | 
 |  | 
 | int btrfs_grow_device(struct btrfs_trans_handle *trans, | 
 | 		      struct btrfs_device *device, u64 new_size) | 
 | { | 
 | 	int ret; | 
 | 	lock_chunks(device->dev_root); | 
 | 	ret = __btrfs_grow_device(trans, device, new_size); | 
 | 	unlock_chunks(device->dev_root); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_free_chunk(struct btrfs_trans_handle *trans, | 
 | 			    struct btrfs_root *root, | 
 | 			    u64 chunk_tree, u64 chunk_objectid, | 
 | 			    u64 chunk_offset) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_key key; | 
 |  | 
 | 	root = root->fs_info->chunk_root; | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	key.objectid = chunk_objectid; | 
 | 	key.offset = chunk_offset; | 
 | 	key.type = BTRFS_CHUNK_ITEM_KEY; | 
 |  | 
 | 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	ret = btrfs_del_item(trans, root, path); | 
 |  | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64 | 
 | 			chunk_offset) | 
 | { | 
 | 	struct btrfs_super_block *super_copy = root->fs_info->super_copy; | 
 | 	struct btrfs_disk_key *disk_key; | 
 | 	struct btrfs_chunk *chunk; | 
 | 	u8 *ptr; | 
 | 	int ret = 0; | 
 | 	u32 num_stripes; | 
 | 	u32 array_size; | 
 | 	u32 len = 0; | 
 | 	u32 cur; | 
 | 	struct btrfs_key key; | 
 |  | 
 | 	array_size = btrfs_super_sys_array_size(super_copy); | 
 |  | 
 | 	ptr = super_copy->sys_chunk_array; | 
 | 	cur = 0; | 
 |  | 
 | 	while (cur < array_size) { | 
 | 		disk_key = (struct btrfs_disk_key *)ptr; | 
 | 		btrfs_disk_key_to_cpu(&key, disk_key); | 
 |  | 
 | 		len = sizeof(*disk_key); | 
 |  | 
 | 		if (key.type == BTRFS_CHUNK_ITEM_KEY) { | 
 | 			chunk = (struct btrfs_chunk *)(ptr + len); | 
 | 			num_stripes = btrfs_stack_chunk_num_stripes(chunk); | 
 | 			len += btrfs_chunk_item_size(num_stripes); | 
 | 		} else { | 
 | 			ret = -EIO; | 
 | 			break; | 
 | 		} | 
 | 		if (key.objectid == chunk_objectid && | 
 | 		    key.offset == chunk_offset) { | 
 | 			memmove(ptr, ptr + len, array_size - (cur + len)); | 
 | 			array_size -= len; | 
 | 			btrfs_set_super_sys_array_size(super_copy, array_size); | 
 | 		} else { | 
 | 			ptr += len; | 
 | 			cur += len; | 
 | 		} | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_relocate_chunk(struct btrfs_root *root, | 
 | 			 u64 chunk_tree, u64 chunk_objectid, | 
 | 			 u64 chunk_offset) | 
 | { | 
 | 	struct extent_map_tree *em_tree; | 
 | 	struct btrfs_root *extent_root; | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	struct extent_map *em; | 
 | 	struct map_lookup *map; | 
 | 	int ret; | 
 | 	int i; | 
 |  | 
 | 	root = root->fs_info->chunk_root; | 
 | 	extent_root = root->fs_info->extent_root; | 
 | 	em_tree = &root->fs_info->mapping_tree.map_tree; | 
 |  | 
 | 	ret = btrfs_can_relocate(extent_root, chunk_offset); | 
 | 	if (ret) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	/* step one, relocate all the extents inside this chunk */ | 
 | 	ret = btrfs_relocate_block_group(extent_root, chunk_offset); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	trans = btrfs_start_transaction(root, 0); | 
 | 	BUG_ON(IS_ERR(trans)); | 
 |  | 
 | 	lock_chunks(root); | 
 |  | 
 | 	/* | 
 | 	 * step two, delete the device extents and the | 
 | 	 * chunk tree entries | 
 | 	 */ | 
 | 	read_lock(&em_tree->lock); | 
 | 	em = lookup_extent_mapping(em_tree, chunk_offset, 1); | 
 | 	read_unlock(&em_tree->lock); | 
 |  | 
 | 	BUG_ON(em->start > chunk_offset || | 
 | 	       em->start + em->len < chunk_offset); | 
 | 	map = (struct map_lookup *)em->bdev; | 
 |  | 
 | 	for (i = 0; i < map->num_stripes; i++) { | 
 | 		ret = btrfs_free_dev_extent(trans, map->stripes[i].dev, | 
 | 					    map->stripes[i].physical); | 
 | 		BUG_ON(ret); | 
 |  | 
 | 		if (map->stripes[i].dev) { | 
 | 			ret = btrfs_update_device(trans, map->stripes[i].dev); | 
 | 			BUG_ON(ret); | 
 | 		} | 
 | 	} | 
 | 	ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid, | 
 | 			       chunk_offset); | 
 |  | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	trace_btrfs_chunk_free(root, map, chunk_offset, em->len); | 
 |  | 
 | 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { | 
 | 		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset); | 
 | 		BUG_ON(ret); | 
 | 	} | 
 |  | 
 | 	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	write_lock(&em_tree->lock); | 
 | 	remove_extent_mapping(em_tree, em); | 
 | 	write_unlock(&em_tree->lock); | 
 |  | 
 | 	kfree(map); | 
 | 	em->bdev = NULL; | 
 |  | 
 | 	/* once for the tree */ | 
 | 	free_extent_map(em); | 
 | 	/* once for us */ | 
 | 	free_extent_map(em); | 
 |  | 
 | 	unlock_chunks(root); | 
 | 	btrfs_end_transaction(trans, root); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int btrfs_relocate_sys_chunks(struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_root *chunk_root = root->fs_info->chunk_root; | 
 | 	struct btrfs_path *path; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_chunk *chunk; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key found_key; | 
 | 	u64 chunk_tree = chunk_root->root_key.objectid; | 
 | 	u64 chunk_type; | 
 | 	bool retried = false; | 
 | 	int failed = 0; | 
 | 	int ret; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | again: | 
 | 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; | 
 | 	key.offset = (u64)-1; | 
 | 	key.type = BTRFS_CHUNK_ITEM_KEY; | 
 |  | 
 | 	while (1) { | 
 | 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); | 
 | 		if (ret < 0) | 
 | 			goto error; | 
 | 		BUG_ON(ret == 0); | 
 |  | 
 | 		ret = btrfs_previous_item(chunk_root, path, key.objectid, | 
 | 					  key.type); | 
 | 		if (ret < 0) | 
 | 			goto error; | 
 | 		if (ret > 0) | 
 | 			break; | 
 |  | 
 | 		leaf = path->nodes[0]; | 
 | 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
 |  | 
 | 		chunk = btrfs_item_ptr(leaf, path->slots[0], | 
 | 				       struct btrfs_chunk); | 
 | 		chunk_type = btrfs_chunk_type(leaf, chunk); | 
 | 		btrfs_release_path(path); | 
 |  | 
 | 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { | 
 | 			ret = btrfs_relocate_chunk(chunk_root, chunk_tree, | 
 | 						   found_key.objectid, | 
 | 						   found_key.offset); | 
 | 			if (ret == -ENOSPC) | 
 | 				failed++; | 
 | 			else if (ret) | 
 | 				BUG(); | 
 | 		} | 
 |  | 
 | 		if (found_key.offset == 0) | 
 | 			break; | 
 | 		key.offset = found_key.offset - 1; | 
 | 	} | 
 | 	ret = 0; | 
 | 	if (failed && !retried) { | 
 | 		failed = 0; | 
 | 		retried = true; | 
 | 		goto again; | 
 | 	} else if (failed && retried) { | 
 | 		WARN_ON(1); | 
 | 		ret = -ENOSPC; | 
 | 	} | 
 | error: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static u64 div_factor(u64 num, int factor) | 
 | { | 
 | 	if (factor == 10) | 
 | 		return num; | 
 | 	num *= factor; | 
 | 	do_div(num, 10); | 
 | 	return num; | 
 | } | 
 |  | 
 | int btrfs_balance(struct btrfs_root *dev_root) | 
 | { | 
 | 	int ret; | 
 | 	struct list_head *devices = &dev_root->fs_info->fs_devices->devices; | 
 | 	struct btrfs_device *device; | 
 | 	u64 old_size; | 
 | 	u64 size_to_free; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root; | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	struct btrfs_key found_key; | 
 |  | 
 | 	if (dev_root->fs_info->sb->s_flags & MS_RDONLY) | 
 | 		return -EROFS; | 
 |  | 
 | 	if (!capable(CAP_SYS_ADMIN)) | 
 | 		return -EPERM; | 
 |  | 
 | 	mutex_lock(&dev_root->fs_info->volume_mutex); | 
 | 	dev_root = dev_root->fs_info->dev_root; | 
 |  | 
 | 	/* step one make some room on all the devices */ | 
 | 	list_for_each_entry(device, devices, dev_list) { | 
 | 		old_size = device->total_bytes; | 
 | 		size_to_free = div_factor(old_size, 1); | 
 | 		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024); | 
 | 		if (!device->writeable || | 
 | 		    device->total_bytes - device->bytes_used > size_to_free) | 
 | 			continue; | 
 |  | 
 | 		ret = btrfs_shrink_device(device, old_size - size_to_free); | 
 | 		if (ret == -ENOSPC) | 
 | 			break; | 
 | 		BUG_ON(ret); | 
 |  | 
 | 		trans = btrfs_start_transaction(dev_root, 0); | 
 | 		BUG_ON(IS_ERR(trans)); | 
 |  | 
 | 		ret = btrfs_grow_device(trans, device, old_size); | 
 | 		BUG_ON(ret); | 
 |  | 
 | 		btrfs_end_transaction(trans, dev_root); | 
 | 	} | 
 |  | 
 | 	/* step two, relocate all the chunks */ | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) { | 
 | 		ret = -ENOMEM; | 
 | 		goto error; | 
 | 	} | 
 | 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; | 
 | 	key.offset = (u64)-1; | 
 | 	key.type = BTRFS_CHUNK_ITEM_KEY; | 
 |  | 
 | 	while (1) { | 
 | 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); | 
 | 		if (ret < 0) | 
 | 			goto error; | 
 |  | 
 | 		/* | 
 | 		 * this shouldn't happen, it means the last relocate | 
 | 		 * failed | 
 | 		 */ | 
 | 		if (ret == 0) | 
 | 			break; | 
 |  | 
 | 		ret = btrfs_previous_item(chunk_root, path, 0, | 
 | 					  BTRFS_CHUNK_ITEM_KEY); | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &found_key, | 
 | 				      path->slots[0]); | 
 | 		if (found_key.objectid != key.objectid) | 
 | 			break; | 
 |  | 
 | 		/* chunk zero is special */ | 
 | 		if (found_key.offset == 0) | 
 | 			break; | 
 |  | 
 | 		btrfs_release_path(path); | 
 | 		ret = btrfs_relocate_chunk(chunk_root, | 
 | 					   chunk_root->root_key.objectid, | 
 | 					   found_key.objectid, | 
 | 					   found_key.offset); | 
 | 		if (ret && ret != -ENOSPC) | 
 | 			goto error; | 
 | 		key.offset = found_key.offset - 1; | 
 | 	} | 
 | 	ret = 0; | 
 | error: | 
 | 	btrfs_free_path(path); | 
 | 	mutex_unlock(&dev_root->fs_info->volume_mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * shrinking a device means finding all of the device extents past | 
 |  * the new size, and then following the back refs to the chunks. | 
 |  * The chunk relocation code actually frees the device extent | 
 |  */ | 
 | int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) | 
 | { | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	struct btrfs_root *root = device->dev_root; | 
 | 	struct btrfs_dev_extent *dev_extent = NULL; | 
 | 	struct btrfs_path *path; | 
 | 	u64 length; | 
 | 	u64 chunk_tree; | 
 | 	u64 chunk_objectid; | 
 | 	u64 chunk_offset; | 
 | 	int ret; | 
 | 	int slot; | 
 | 	int failed = 0; | 
 | 	bool retried = false; | 
 | 	struct extent_buffer *l; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_super_block *super_copy = root->fs_info->super_copy; | 
 | 	u64 old_total = btrfs_super_total_bytes(super_copy); | 
 | 	u64 old_size = device->total_bytes; | 
 | 	u64 diff = device->total_bytes - new_size; | 
 |  | 
 | 	if (new_size >= device->total_bytes) | 
 | 		return -EINVAL; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	path->reada = 2; | 
 |  | 
 | 	lock_chunks(root); | 
 |  | 
 | 	device->total_bytes = new_size; | 
 | 	if (device->writeable) { | 
 | 		device->fs_devices->total_rw_bytes -= diff; | 
 | 		spin_lock(&root->fs_info->free_chunk_lock); | 
 | 		root->fs_info->free_chunk_space -= diff; | 
 | 		spin_unlock(&root->fs_info->free_chunk_lock); | 
 | 	} | 
 | 	unlock_chunks(root); | 
 |  | 
 | again: | 
 | 	key.objectid = device->devid; | 
 | 	key.offset = (u64)-1; | 
 | 	key.type = BTRFS_DEV_EXTENT_KEY; | 
 |  | 
 | 	while (1) { | 
 | 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 		if (ret < 0) | 
 | 			goto done; | 
 |  | 
 | 		ret = btrfs_previous_item(root, path, 0, key.type); | 
 | 		if (ret < 0) | 
 | 			goto done; | 
 | 		if (ret) { | 
 | 			ret = 0; | 
 | 			btrfs_release_path(path); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		l = path->nodes[0]; | 
 | 		slot = path->slots[0]; | 
 | 		btrfs_item_key_to_cpu(l, &key, path->slots[0]); | 
 |  | 
 | 		if (key.objectid != device->devid) { | 
 | 			btrfs_release_path(path); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); | 
 | 		length = btrfs_dev_extent_length(l, dev_extent); | 
 |  | 
 | 		if (key.offset + length <= new_size) { | 
 | 			btrfs_release_path(path); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent); | 
 | 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); | 
 | 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); | 
 | 		btrfs_release_path(path); | 
 |  | 
 | 		ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid, | 
 | 					   chunk_offset); | 
 | 		if (ret && ret != -ENOSPC) | 
 | 			goto done; | 
 | 		if (ret == -ENOSPC) | 
 | 			failed++; | 
 | 		key.offset -= 1; | 
 | 	} | 
 |  | 
 | 	if (failed && !retried) { | 
 | 		failed = 0; | 
 | 		retried = true; | 
 | 		goto again; | 
 | 	} else if (failed && retried) { | 
 | 		ret = -ENOSPC; | 
 | 		lock_chunks(root); | 
 |  | 
 | 		device->total_bytes = old_size; | 
 | 		if (device->writeable) | 
 | 			device->fs_devices->total_rw_bytes += diff; | 
 | 		spin_lock(&root->fs_info->free_chunk_lock); | 
 | 		root->fs_info->free_chunk_space += diff; | 
 | 		spin_unlock(&root->fs_info->free_chunk_lock); | 
 | 		unlock_chunks(root); | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	/* Shrinking succeeded, else we would be at "done". */ | 
 | 	trans = btrfs_start_transaction(root, 0); | 
 | 	if (IS_ERR(trans)) { | 
 | 		ret = PTR_ERR(trans); | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	lock_chunks(root); | 
 |  | 
 | 	device->disk_total_bytes = new_size; | 
 | 	/* Now btrfs_update_device() will change the on-disk size. */ | 
 | 	ret = btrfs_update_device(trans, device); | 
 | 	if (ret) { | 
 | 		unlock_chunks(root); | 
 | 		btrfs_end_transaction(trans, root); | 
 | 		goto done; | 
 | 	} | 
 | 	WARN_ON(diff > old_total); | 
 | 	btrfs_set_super_total_bytes(super_copy, old_total - diff); | 
 | 	unlock_chunks(root); | 
 | 	btrfs_end_transaction(trans, root); | 
 | done: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans, | 
 | 			   struct btrfs_root *root, | 
 | 			   struct btrfs_key *key, | 
 | 			   struct btrfs_chunk *chunk, int item_size) | 
 | { | 
 | 	struct btrfs_super_block *super_copy = root->fs_info->super_copy; | 
 | 	struct btrfs_disk_key disk_key; | 
 | 	u32 array_size; | 
 | 	u8 *ptr; | 
 |  | 
 | 	array_size = btrfs_super_sys_array_size(super_copy); | 
 | 	if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) | 
 | 		return -EFBIG; | 
 |  | 
 | 	ptr = super_copy->sys_chunk_array + array_size; | 
 | 	btrfs_cpu_key_to_disk(&disk_key, key); | 
 | 	memcpy(ptr, &disk_key, sizeof(disk_key)); | 
 | 	ptr += sizeof(disk_key); | 
 | 	memcpy(ptr, chunk, item_size); | 
 | 	item_size += sizeof(disk_key); | 
 | 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * sort the devices in descending order by max_avail, total_avail | 
 |  */ | 
 | static int btrfs_cmp_device_info(const void *a, const void *b) | 
 | { | 
 | 	const struct btrfs_device_info *di_a = a; | 
 | 	const struct btrfs_device_info *di_b = b; | 
 |  | 
 | 	if (di_a->max_avail > di_b->max_avail) | 
 | 		return -1; | 
 | 	if (di_a->max_avail < di_b->max_avail) | 
 | 		return 1; | 
 | 	if (di_a->total_avail > di_b->total_avail) | 
 | 		return -1; | 
 | 	if (di_a->total_avail < di_b->total_avail) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, | 
 | 			       struct btrfs_root *extent_root, | 
 | 			       struct map_lookup **map_ret, | 
 | 			       u64 *num_bytes_out, u64 *stripe_size_out, | 
 | 			       u64 start, u64 type) | 
 | { | 
 | 	struct btrfs_fs_info *info = extent_root->fs_info; | 
 | 	struct btrfs_fs_devices *fs_devices = info->fs_devices; | 
 | 	struct list_head *cur; | 
 | 	struct map_lookup *map = NULL; | 
 | 	struct extent_map_tree *em_tree; | 
 | 	struct extent_map *em; | 
 | 	struct btrfs_device_info *devices_info = NULL; | 
 | 	u64 total_avail; | 
 | 	int num_stripes;	/* total number of stripes to allocate */ | 
 | 	int sub_stripes;	/* sub_stripes info for map */ | 
 | 	int dev_stripes;	/* stripes per dev */ | 
 | 	int devs_max;		/* max devs to use */ | 
 | 	int devs_min;		/* min devs needed */ | 
 | 	int devs_increment;	/* ndevs has to be a multiple of this */ | 
 | 	int ncopies;		/* how many copies to data has */ | 
 | 	int ret; | 
 | 	u64 max_stripe_size; | 
 | 	u64 max_chunk_size; | 
 | 	u64 stripe_size; | 
 | 	u64 num_bytes; | 
 | 	int ndevs; | 
 | 	int i; | 
 | 	int j; | 
 |  | 
 | 	if ((type & BTRFS_BLOCK_GROUP_RAID1) && | 
 | 	    (type & BTRFS_BLOCK_GROUP_DUP)) { | 
 | 		WARN_ON(1); | 
 | 		type &= ~BTRFS_BLOCK_GROUP_DUP; | 
 | 	} | 
 |  | 
 | 	if (list_empty(&fs_devices->alloc_list)) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	sub_stripes = 1; | 
 | 	dev_stripes = 1; | 
 | 	devs_increment = 1; | 
 | 	ncopies = 1; | 
 | 	devs_max = 0;	/* 0 == as many as possible */ | 
 | 	devs_min = 1; | 
 |  | 
 | 	/* | 
 | 	 * define the properties of each RAID type. | 
 | 	 * FIXME: move this to a global table and use it in all RAID | 
 | 	 * calculation code | 
 | 	 */ | 
 | 	if (type & (BTRFS_BLOCK_GROUP_DUP)) { | 
 | 		dev_stripes = 2; | 
 | 		ncopies = 2; | 
 | 		devs_max = 1; | 
 | 	} else if (type & (BTRFS_BLOCK_GROUP_RAID0)) { | 
 | 		devs_min = 2; | 
 | 	} else if (type & (BTRFS_BLOCK_GROUP_RAID1)) { | 
 | 		devs_increment = 2; | 
 | 		ncopies = 2; | 
 | 		devs_max = 2; | 
 | 		devs_min = 2; | 
 | 	} else if (type & (BTRFS_BLOCK_GROUP_RAID10)) { | 
 | 		sub_stripes = 2; | 
 | 		devs_increment = 2; | 
 | 		ncopies = 2; | 
 | 		devs_min = 4; | 
 | 	} else { | 
 | 		devs_max = 1; | 
 | 	} | 
 |  | 
 | 	if (type & BTRFS_BLOCK_GROUP_DATA) { | 
 | 		max_stripe_size = 1024 * 1024 * 1024; | 
 | 		max_chunk_size = 10 * max_stripe_size; | 
 | 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) { | 
 | 		max_stripe_size = 256 * 1024 * 1024; | 
 | 		max_chunk_size = max_stripe_size; | 
 | 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { | 
 | 		max_stripe_size = 8 * 1024 * 1024; | 
 | 		max_chunk_size = 2 * max_stripe_size; | 
 | 	} else { | 
 | 		printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n", | 
 | 		       type); | 
 | 		BUG_ON(1); | 
 | 	} | 
 |  | 
 | 	/* we don't want a chunk larger than 10% of writeable space */ | 
 | 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), | 
 | 			     max_chunk_size); | 
 |  | 
 | 	devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices, | 
 | 			       GFP_NOFS); | 
 | 	if (!devices_info) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	cur = fs_devices->alloc_list.next; | 
 |  | 
 | 	/* | 
 | 	 * in the first pass through the devices list, we gather information | 
 | 	 * about the available holes on each device. | 
 | 	 */ | 
 | 	ndevs = 0; | 
 | 	while (cur != &fs_devices->alloc_list) { | 
 | 		struct btrfs_device *device; | 
 | 		u64 max_avail; | 
 | 		u64 dev_offset; | 
 |  | 
 | 		device = list_entry(cur, struct btrfs_device, dev_alloc_list); | 
 |  | 
 | 		cur = cur->next; | 
 |  | 
 | 		if (!device->writeable) { | 
 | 			printk(KERN_ERR | 
 | 			       "btrfs: read-only device in alloc_list\n"); | 
 | 			WARN_ON(1); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (!device->in_fs_metadata) | 
 | 			continue; | 
 |  | 
 | 		if (device->total_bytes > device->bytes_used) | 
 | 			total_avail = device->total_bytes - device->bytes_used; | 
 | 		else | 
 | 			total_avail = 0; | 
 |  | 
 | 		/* If there is no space on this device, skip it. */ | 
 | 		if (total_avail == 0) | 
 | 			continue; | 
 |  | 
 | 		ret = find_free_dev_extent(trans, device, | 
 | 					   max_stripe_size * dev_stripes, | 
 | 					   &dev_offset, &max_avail); | 
 | 		if (ret && ret != -ENOSPC) | 
 | 			goto error; | 
 |  | 
 | 		if (ret == 0) | 
 | 			max_avail = max_stripe_size * dev_stripes; | 
 |  | 
 | 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) | 
 | 			continue; | 
 |  | 
 | 		devices_info[ndevs].dev_offset = dev_offset; | 
 | 		devices_info[ndevs].max_avail = max_avail; | 
 | 		devices_info[ndevs].total_avail = total_avail; | 
 | 		devices_info[ndevs].dev = device; | 
 | 		++ndevs; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * now sort the devices by hole size / available space | 
 | 	 */ | 
 | 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info), | 
 | 	     btrfs_cmp_device_info, NULL); | 
 |  | 
 | 	/* round down to number of usable stripes */ | 
 | 	ndevs -= ndevs % devs_increment; | 
 |  | 
 | 	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) { | 
 | 		ret = -ENOSPC; | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	if (devs_max && ndevs > devs_max) | 
 | 		ndevs = devs_max; | 
 | 	/* | 
 | 	 * the primary goal is to maximize the number of stripes, so use as many | 
 | 	 * devices as possible, even if the stripes are not maximum sized. | 
 | 	 */ | 
 | 	stripe_size = devices_info[ndevs-1].max_avail; | 
 | 	num_stripes = ndevs * dev_stripes; | 
 |  | 
 | 	if (stripe_size * num_stripes > max_chunk_size * ncopies) { | 
 | 		stripe_size = max_chunk_size * ncopies; | 
 | 		do_div(stripe_size, num_stripes); | 
 | 	} | 
 |  | 
 | 	do_div(stripe_size, dev_stripes); | 
 | 	do_div(stripe_size, BTRFS_STRIPE_LEN); | 
 | 	stripe_size *= BTRFS_STRIPE_LEN; | 
 |  | 
 | 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); | 
 | 	if (!map) { | 
 | 		ret = -ENOMEM; | 
 | 		goto error; | 
 | 	} | 
 | 	map->num_stripes = num_stripes; | 
 |  | 
 | 	for (i = 0; i < ndevs; ++i) { | 
 | 		for (j = 0; j < dev_stripes; ++j) { | 
 | 			int s = i * dev_stripes + j; | 
 | 			map->stripes[s].dev = devices_info[i].dev; | 
 | 			map->stripes[s].physical = devices_info[i].dev_offset + | 
 | 						   j * stripe_size; | 
 | 		} | 
 | 	} | 
 | 	map->sector_size = extent_root->sectorsize; | 
 | 	map->stripe_len = BTRFS_STRIPE_LEN; | 
 | 	map->io_align = BTRFS_STRIPE_LEN; | 
 | 	map->io_width = BTRFS_STRIPE_LEN; | 
 | 	map->type = type; | 
 | 	map->sub_stripes = sub_stripes; | 
 |  | 
 | 	*map_ret = map; | 
 | 	num_bytes = stripe_size * (num_stripes / ncopies); | 
 |  | 
 | 	*stripe_size_out = stripe_size; | 
 | 	*num_bytes_out = num_bytes; | 
 |  | 
 | 	trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes); | 
 |  | 
 | 	em = alloc_extent_map(); | 
 | 	if (!em) { | 
 | 		ret = -ENOMEM; | 
 | 		goto error; | 
 | 	} | 
 | 	em->bdev = (struct block_device *)map; | 
 | 	em->start = start; | 
 | 	em->len = num_bytes; | 
 | 	em->block_start = 0; | 
 | 	em->block_len = em->len; | 
 |  | 
 | 	em_tree = &extent_root->fs_info->mapping_tree.map_tree; | 
 | 	write_lock(&em_tree->lock); | 
 | 	ret = add_extent_mapping(em_tree, em); | 
 | 	write_unlock(&em_tree->lock); | 
 | 	BUG_ON(ret); | 
 | 	free_extent_map(em); | 
 |  | 
 | 	ret = btrfs_make_block_group(trans, extent_root, 0, type, | 
 | 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID, | 
 | 				     start, num_bytes); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	for (i = 0; i < map->num_stripes; ++i) { | 
 | 		struct btrfs_device *device; | 
 | 		u64 dev_offset; | 
 |  | 
 | 		device = map->stripes[i].dev; | 
 | 		dev_offset = map->stripes[i].physical; | 
 |  | 
 | 		ret = btrfs_alloc_dev_extent(trans, device, | 
 | 				info->chunk_root->root_key.objectid, | 
 | 				BTRFS_FIRST_CHUNK_TREE_OBJECTID, | 
 | 				start, dev_offset, stripe_size); | 
 | 		BUG_ON(ret); | 
 | 	} | 
 |  | 
 | 	kfree(devices_info); | 
 | 	return 0; | 
 |  | 
 | error: | 
 | 	kfree(map); | 
 | 	kfree(devices_info); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __finish_chunk_alloc(struct btrfs_trans_handle *trans, | 
 | 				struct btrfs_root *extent_root, | 
 | 				struct map_lookup *map, u64 chunk_offset, | 
 | 				u64 chunk_size, u64 stripe_size) | 
 | { | 
 | 	u64 dev_offset; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; | 
 | 	struct btrfs_device *device; | 
 | 	struct btrfs_chunk *chunk; | 
 | 	struct btrfs_stripe *stripe; | 
 | 	size_t item_size = btrfs_chunk_item_size(map->num_stripes); | 
 | 	int index = 0; | 
 | 	int ret; | 
 |  | 
 | 	chunk = kzalloc(item_size, GFP_NOFS); | 
 | 	if (!chunk) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	index = 0; | 
 | 	while (index < map->num_stripes) { | 
 | 		device = map->stripes[index].dev; | 
 | 		device->bytes_used += stripe_size; | 
 | 		ret = btrfs_update_device(trans, device); | 
 | 		BUG_ON(ret); | 
 | 		index++; | 
 | 	} | 
 |  | 
 | 	spin_lock(&extent_root->fs_info->free_chunk_lock); | 
 | 	extent_root->fs_info->free_chunk_space -= (stripe_size * | 
 | 						   map->num_stripes); | 
 | 	spin_unlock(&extent_root->fs_info->free_chunk_lock); | 
 |  | 
 | 	index = 0; | 
 | 	stripe = &chunk->stripe; | 
 | 	while (index < map->num_stripes) { | 
 | 		device = map->stripes[index].dev; | 
 | 		dev_offset = map->stripes[index].physical; | 
 |  | 
 | 		btrfs_set_stack_stripe_devid(stripe, device->devid); | 
 | 		btrfs_set_stack_stripe_offset(stripe, dev_offset); | 
 | 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); | 
 | 		stripe++; | 
 | 		index++; | 
 | 	} | 
 |  | 
 | 	btrfs_set_stack_chunk_length(chunk, chunk_size); | 
 | 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); | 
 | 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); | 
 | 	btrfs_set_stack_chunk_type(chunk, map->type); | 
 | 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); | 
 | 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); | 
 | 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); | 
 | 	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize); | 
 | 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); | 
 |  | 
 | 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; | 
 | 	key.type = BTRFS_CHUNK_ITEM_KEY; | 
 | 	key.offset = chunk_offset; | 
 |  | 
 | 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { | 
 | 		ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk, | 
 | 					     item_size); | 
 | 		BUG_ON(ret); | 
 | 	} | 
 |  | 
 | 	kfree(chunk); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Chunk allocation falls into two parts. The first part does works | 
 |  * that make the new allocated chunk useable, but not do any operation | 
 |  * that modifies the chunk tree. The second part does the works that | 
 |  * require modifying the chunk tree. This division is important for the | 
 |  * bootstrap process of adding storage to a seed btrfs. | 
 |  */ | 
 | int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, | 
 | 		      struct btrfs_root *extent_root, u64 type) | 
 | { | 
 | 	u64 chunk_offset; | 
 | 	u64 chunk_size; | 
 | 	u64 stripe_size; | 
 | 	struct map_lookup *map; | 
 | 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; | 
 | 	int ret; | 
 |  | 
 | 	ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID, | 
 | 			      &chunk_offset); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size, | 
 | 				  &stripe_size, chunk_offset, type); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset, | 
 | 				   chunk_size, stripe_size); | 
 | 	BUG_ON(ret); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, | 
 | 					 struct btrfs_root *root, | 
 | 					 struct btrfs_device *device) | 
 | { | 
 | 	u64 chunk_offset; | 
 | 	u64 sys_chunk_offset; | 
 | 	u64 chunk_size; | 
 | 	u64 sys_chunk_size; | 
 | 	u64 stripe_size; | 
 | 	u64 sys_stripe_size; | 
 | 	u64 alloc_profile; | 
 | 	struct map_lookup *map; | 
 | 	struct map_lookup *sys_map; | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct btrfs_root *extent_root = fs_info->extent_root; | 
 | 	int ret; | 
 |  | 
 | 	ret = find_next_chunk(fs_info->chunk_root, | 
 | 			      BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	alloc_profile = BTRFS_BLOCK_GROUP_METADATA | | 
 | 			(fs_info->metadata_alloc_profile & | 
 | 			 fs_info->avail_metadata_alloc_bits); | 
 | 	alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile); | 
 |  | 
 | 	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size, | 
 | 				  &stripe_size, chunk_offset, alloc_profile); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	sys_chunk_offset = chunk_offset + chunk_size; | 
 |  | 
 | 	alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM | | 
 | 			(fs_info->system_alloc_profile & | 
 | 			 fs_info->avail_system_alloc_bits); | 
 | 	alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile); | 
 |  | 
 | 	ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map, | 
 | 				  &sys_chunk_size, &sys_stripe_size, | 
 | 				  sys_chunk_offset, alloc_profile); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	ret = btrfs_add_device(trans, fs_info->chunk_root, device); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	/* | 
 | 	 * Modifying chunk tree needs allocating new blocks from both | 
 | 	 * system block group and metadata block group. So we only can | 
 | 	 * do operations require modifying the chunk tree after both | 
 | 	 * block groups were created. | 
 | 	 */ | 
 | 	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset, | 
 | 				   chunk_size, stripe_size); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	ret = __finish_chunk_alloc(trans, extent_root, sys_map, | 
 | 				   sys_chunk_offset, sys_chunk_size, | 
 | 				   sys_stripe_size); | 
 | 	BUG_ON(ret); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset) | 
 | { | 
 | 	struct extent_map *em; | 
 | 	struct map_lookup *map; | 
 | 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; | 
 | 	int readonly = 0; | 
 | 	int i; | 
 |  | 
 | 	read_lock(&map_tree->map_tree.lock); | 
 | 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); | 
 | 	read_unlock(&map_tree->map_tree.lock); | 
 | 	if (!em) | 
 | 		return 1; | 
 |  | 
 | 	if (btrfs_test_opt(root, DEGRADED)) { | 
 | 		free_extent_map(em); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	map = (struct map_lookup *)em->bdev; | 
 | 	for (i = 0; i < map->num_stripes; i++) { | 
 | 		if (!map->stripes[i].dev->writeable) { | 
 | 			readonly = 1; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	free_extent_map(em); | 
 | 	return readonly; | 
 | } | 
 |  | 
 | void btrfs_mapping_init(struct btrfs_mapping_tree *tree) | 
 | { | 
 | 	extent_map_tree_init(&tree->map_tree); | 
 | } | 
 |  | 
 | void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) | 
 | { | 
 | 	struct extent_map *em; | 
 |  | 
 | 	while (1) { | 
 | 		write_lock(&tree->map_tree.lock); | 
 | 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); | 
 | 		if (em) | 
 | 			remove_extent_mapping(&tree->map_tree, em); | 
 | 		write_unlock(&tree->map_tree.lock); | 
 | 		if (!em) | 
 | 			break; | 
 | 		kfree(em->bdev); | 
 | 		/* once for us */ | 
 | 		free_extent_map(em); | 
 | 		/* once for the tree */ | 
 | 		free_extent_map(em); | 
 | 	} | 
 | } | 
 |  | 
 | int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len) | 
 | { | 
 | 	struct extent_map *em; | 
 | 	struct map_lookup *map; | 
 | 	struct extent_map_tree *em_tree = &map_tree->map_tree; | 
 | 	int ret; | 
 |  | 
 | 	read_lock(&em_tree->lock); | 
 | 	em = lookup_extent_mapping(em_tree, logical, len); | 
 | 	read_unlock(&em_tree->lock); | 
 | 	BUG_ON(!em); | 
 |  | 
 | 	BUG_ON(em->start > logical || em->start + em->len < logical); | 
 | 	map = (struct map_lookup *)em->bdev; | 
 | 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) | 
 | 		ret = map->num_stripes; | 
 | 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10) | 
 | 		ret = map->sub_stripes; | 
 | 	else | 
 | 		ret = 1; | 
 | 	free_extent_map(em); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int find_live_mirror(struct map_lookup *map, int first, int num, | 
 | 			    int optimal) | 
 | { | 
 | 	int i; | 
 | 	if (map->stripes[optimal].dev->bdev) | 
 | 		return optimal; | 
 | 	for (i = first; i < first + num; i++) { | 
 | 		if (map->stripes[i].dev->bdev) | 
 | 			return i; | 
 | 	} | 
 | 	/* we couldn't find one that doesn't fail.  Just return something | 
 | 	 * and the io error handling code will clean up eventually | 
 | 	 */ | 
 | 	return optimal; | 
 | } | 
 |  | 
 | static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, | 
 | 			     u64 logical, u64 *length, | 
 | 			     struct btrfs_bio **bbio_ret, | 
 | 			     int mirror_num) | 
 | { | 
 | 	struct extent_map *em; | 
 | 	struct map_lookup *map; | 
 | 	struct extent_map_tree *em_tree = &map_tree->map_tree; | 
 | 	u64 offset; | 
 | 	u64 stripe_offset; | 
 | 	u64 stripe_end_offset; | 
 | 	u64 stripe_nr; | 
 | 	u64 stripe_nr_orig; | 
 | 	u64 stripe_nr_end; | 
 | 	int stripes_allocated = 8; | 
 | 	int stripes_required = 1; | 
 | 	int stripe_index; | 
 | 	int i; | 
 | 	int num_stripes; | 
 | 	int max_errors = 0; | 
 | 	struct btrfs_bio *bbio = NULL; | 
 |  | 
 | 	if (bbio_ret && !(rw & (REQ_WRITE | REQ_DISCARD))) | 
 | 		stripes_allocated = 1; | 
 | again: | 
 | 	if (bbio_ret) { | 
 | 		bbio = kzalloc(btrfs_bio_size(stripes_allocated), | 
 | 				GFP_NOFS); | 
 | 		if (!bbio) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		atomic_set(&bbio->error, 0); | 
 | 	} | 
 |  | 
 | 	read_lock(&em_tree->lock); | 
 | 	em = lookup_extent_mapping(em_tree, logical, *length); | 
 | 	read_unlock(&em_tree->lock); | 
 |  | 
 | 	if (!em) { | 
 | 		printk(KERN_CRIT "unable to find logical %llu len %llu\n", | 
 | 		       (unsigned long long)logical, | 
 | 		       (unsigned long long)*length); | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	BUG_ON(em->start > logical || em->start + em->len < logical); | 
 | 	map = (struct map_lookup *)em->bdev; | 
 | 	offset = logical - em->start; | 
 |  | 
 | 	if (mirror_num > map->num_stripes) | 
 | 		mirror_num = 0; | 
 |  | 
 | 	/* if our btrfs_bio struct is too small, back off and try again */ | 
 | 	if (rw & REQ_WRITE) { | 
 | 		if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | | 
 | 				 BTRFS_BLOCK_GROUP_DUP)) { | 
 | 			stripes_required = map->num_stripes; | 
 | 			max_errors = 1; | 
 | 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { | 
 | 			stripes_required = map->sub_stripes; | 
 | 			max_errors = 1; | 
 | 		} | 
 | 	} | 
 | 	if (rw & REQ_DISCARD) { | 
 | 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | | 
 | 				 BTRFS_BLOCK_GROUP_RAID1 | | 
 | 				 BTRFS_BLOCK_GROUP_DUP | | 
 | 				 BTRFS_BLOCK_GROUP_RAID10)) { | 
 | 			stripes_required = map->num_stripes; | 
 | 		} | 
 | 	} | 
 | 	if (bbio_ret && (rw & (REQ_WRITE | REQ_DISCARD)) && | 
 | 	    stripes_allocated < stripes_required) { | 
 | 		stripes_allocated = map->num_stripes; | 
 | 		free_extent_map(em); | 
 | 		kfree(bbio); | 
 | 		goto again; | 
 | 	} | 
 | 	stripe_nr = offset; | 
 | 	/* | 
 | 	 * stripe_nr counts the total number of stripes we have to stride | 
 | 	 * to get to this block | 
 | 	 */ | 
 | 	do_div(stripe_nr, map->stripe_len); | 
 |  | 
 | 	stripe_offset = stripe_nr * map->stripe_len; | 
 | 	BUG_ON(offset < stripe_offset); | 
 |  | 
 | 	/* stripe_offset is the offset of this block in its stripe*/ | 
 | 	stripe_offset = offset - stripe_offset; | 
 |  | 
 | 	if (rw & REQ_DISCARD) | 
 | 		*length = min_t(u64, em->len - offset, *length); | 
 | 	else if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | | 
 | 			      BTRFS_BLOCK_GROUP_RAID1 | | 
 | 			      BTRFS_BLOCK_GROUP_RAID10 | | 
 | 			      BTRFS_BLOCK_GROUP_DUP)) { | 
 | 		/* we limit the length of each bio to what fits in a stripe */ | 
 | 		*length = min_t(u64, em->len - offset, | 
 | 				map->stripe_len - stripe_offset); | 
 | 	} else { | 
 | 		*length = em->len - offset; | 
 | 	} | 
 |  | 
 | 	if (!bbio_ret) | 
 | 		goto out; | 
 |  | 
 | 	num_stripes = 1; | 
 | 	stripe_index = 0; | 
 | 	stripe_nr_orig = stripe_nr; | 
 | 	stripe_nr_end = (offset + *length + map->stripe_len - 1) & | 
 | 			(~(map->stripe_len - 1)); | 
 | 	do_div(stripe_nr_end, map->stripe_len); | 
 | 	stripe_end_offset = stripe_nr_end * map->stripe_len - | 
 | 			    (offset + *length); | 
 | 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) { | 
 | 		if (rw & REQ_DISCARD) | 
 | 			num_stripes = min_t(u64, map->num_stripes, | 
 | 					    stripe_nr_end - stripe_nr_orig); | 
 | 		stripe_index = do_div(stripe_nr, map->num_stripes); | 
 | 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { | 
 | 		if (rw & (REQ_WRITE | REQ_DISCARD)) | 
 | 			num_stripes = map->num_stripes; | 
 | 		else if (mirror_num) | 
 | 			stripe_index = mirror_num - 1; | 
 | 		else { | 
 | 			stripe_index = find_live_mirror(map, 0, | 
 | 					    map->num_stripes, | 
 | 					    current->pid % map->num_stripes); | 
 | 			mirror_num = stripe_index + 1; | 
 | 		} | 
 |  | 
 | 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) { | 
 | 		if (rw & (REQ_WRITE | REQ_DISCARD)) { | 
 | 			num_stripes = map->num_stripes; | 
 | 		} else if (mirror_num) { | 
 | 			stripe_index = mirror_num - 1; | 
 | 		} else { | 
 | 			mirror_num = 1; | 
 | 		} | 
 |  | 
 | 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { | 
 | 		int factor = map->num_stripes / map->sub_stripes; | 
 |  | 
 | 		stripe_index = do_div(stripe_nr, factor); | 
 | 		stripe_index *= map->sub_stripes; | 
 |  | 
 | 		if (rw & REQ_WRITE) | 
 | 			num_stripes = map->sub_stripes; | 
 | 		else if (rw & REQ_DISCARD) | 
 | 			num_stripes = min_t(u64, map->sub_stripes * | 
 | 					    (stripe_nr_end - stripe_nr_orig), | 
 | 					    map->num_stripes); | 
 | 		else if (mirror_num) | 
 | 			stripe_index += mirror_num - 1; | 
 | 		else { | 
 | 			stripe_index = find_live_mirror(map, stripe_index, | 
 | 					      map->sub_stripes, stripe_index + | 
 | 					      current->pid % map->sub_stripes); | 
 | 			mirror_num = stripe_index + 1; | 
 | 		} | 
 | 	} else { | 
 | 		/* | 
 | 		 * after this do_div call, stripe_nr is the number of stripes | 
 | 		 * on this device we have to walk to find the data, and | 
 | 		 * stripe_index is the number of our device in the stripe array | 
 | 		 */ | 
 | 		stripe_index = do_div(stripe_nr, map->num_stripes); | 
 | 		mirror_num = stripe_index + 1; | 
 | 	} | 
 | 	BUG_ON(stripe_index >= map->num_stripes); | 
 |  | 
 | 	if (rw & REQ_DISCARD) { | 
 | 		for (i = 0; i < num_stripes; i++) { | 
 | 			bbio->stripes[i].physical = | 
 | 				map->stripes[stripe_index].physical + | 
 | 				stripe_offset + stripe_nr * map->stripe_len; | 
 | 			bbio->stripes[i].dev = map->stripes[stripe_index].dev; | 
 |  | 
 | 			if (map->type & BTRFS_BLOCK_GROUP_RAID0) { | 
 | 				u64 stripes; | 
 | 				u32 last_stripe = 0; | 
 | 				int j; | 
 |  | 
 | 				div_u64_rem(stripe_nr_end - 1, | 
 | 					    map->num_stripes, | 
 | 					    &last_stripe); | 
 |  | 
 | 				for (j = 0; j < map->num_stripes; j++) { | 
 | 					u32 test; | 
 |  | 
 | 					div_u64_rem(stripe_nr_end - 1 - j, | 
 | 						    map->num_stripes, &test); | 
 | 					if (test == stripe_index) | 
 | 						break; | 
 | 				} | 
 | 				stripes = stripe_nr_end - 1 - j; | 
 | 				do_div(stripes, map->num_stripes); | 
 | 				bbio->stripes[i].length = map->stripe_len * | 
 | 					(stripes - stripe_nr + 1); | 
 |  | 
 | 				if (i == 0) { | 
 | 					bbio->stripes[i].length -= | 
 | 						stripe_offset; | 
 | 					stripe_offset = 0; | 
 | 				} | 
 | 				if (stripe_index == last_stripe) | 
 | 					bbio->stripes[i].length -= | 
 | 						stripe_end_offset; | 
 | 			} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { | 
 | 				u64 stripes; | 
 | 				int j; | 
 | 				int factor = map->num_stripes / | 
 | 					     map->sub_stripes; | 
 | 				u32 last_stripe = 0; | 
 |  | 
 | 				div_u64_rem(stripe_nr_end - 1, | 
 | 					    factor, &last_stripe); | 
 | 				last_stripe *= map->sub_stripes; | 
 |  | 
 | 				for (j = 0; j < factor; j++) { | 
 | 					u32 test; | 
 |  | 
 | 					div_u64_rem(stripe_nr_end - 1 - j, | 
 | 						    factor, &test); | 
 |  | 
 | 					if (test == | 
 | 					    stripe_index / map->sub_stripes) | 
 | 						break; | 
 | 				} | 
 | 				stripes = stripe_nr_end - 1 - j; | 
 | 				do_div(stripes, factor); | 
 | 				bbio->stripes[i].length = map->stripe_len * | 
 | 					(stripes - stripe_nr + 1); | 
 |  | 
 | 				if (i < map->sub_stripes) { | 
 | 					bbio->stripes[i].length -= | 
 | 						stripe_offset; | 
 | 					if (i == map->sub_stripes - 1) | 
 | 						stripe_offset = 0; | 
 | 				} | 
 | 				if (stripe_index >= last_stripe && | 
 | 				    stripe_index <= (last_stripe + | 
 | 						     map->sub_stripes - 1)) { | 
 | 					bbio->stripes[i].length -= | 
 | 						stripe_end_offset; | 
 | 				} | 
 | 			} else | 
 | 				bbio->stripes[i].length = *length; | 
 |  | 
 | 			stripe_index++; | 
 | 			if (stripe_index == map->num_stripes) { | 
 | 				/* This could only happen for RAID0/10 */ | 
 | 				stripe_index = 0; | 
 | 				stripe_nr++; | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		for (i = 0; i < num_stripes; i++) { | 
 | 			bbio->stripes[i].physical = | 
 | 				map->stripes[stripe_index].physical + | 
 | 				stripe_offset + | 
 | 				stripe_nr * map->stripe_len; | 
 | 			bbio->stripes[i].dev = | 
 | 				map->stripes[stripe_index].dev; | 
 | 			stripe_index++; | 
 | 		} | 
 | 	} | 
 | 	if (bbio_ret) { | 
 | 		*bbio_ret = bbio; | 
 | 		bbio->num_stripes = num_stripes; | 
 | 		bbio->max_errors = max_errors; | 
 | 		bbio->mirror_num = mirror_num; | 
 | 	} | 
 | out: | 
 | 	free_extent_map(em); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, | 
 | 		      u64 logical, u64 *length, | 
 | 		      struct btrfs_bio **bbio_ret, int mirror_num) | 
 | { | 
 | 	return __btrfs_map_block(map_tree, rw, logical, length, bbio_ret, | 
 | 				 mirror_num); | 
 | } | 
 |  | 
 | int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree, | 
 | 		     u64 chunk_start, u64 physical, u64 devid, | 
 | 		     u64 **logical, int *naddrs, int *stripe_len) | 
 | { | 
 | 	struct extent_map_tree *em_tree = &map_tree->map_tree; | 
 | 	struct extent_map *em; | 
 | 	struct map_lookup *map; | 
 | 	u64 *buf; | 
 | 	u64 bytenr; | 
 | 	u64 length; | 
 | 	u64 stripe_nr; | 
 | 	int i, j, nr = 0; | 
 |  | 
 | 	read_lock(&em_tree->lock); | 
 | 	em = lookup_extent_mapping(em_tree, chunk_start, 1); | 
 | 	read_unlock(&em_tree->lock); | 
 |  | 
 | 	BUG_ON(!em || em->start != chunk_start); | 
 | 	map = (struct map_lookup *)em->bdev; | 
 |  | 
 | 	length = em->len; | 
 | 	if (map->type & BTRFS_BLOCK_GROUP_RAID10) | 
 | 		do_div(length, map->num_stripes / map->sub_stripes); | 
 | 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0) | 
 | 		do_div(length, map->num_stripes); | 
 |  | 
 | 	buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS); | 
 | 	BUG_ON(!buf); | 
 |  | 
 | 	for (i = 0; i < map->num_stripes; i++) { | 
 | 		if (devid && map->stripes[i].dev->devid != devid) | 
 | 			continue; | 
 | 		if (map->stripes[i].physical > physical || | 
 | 		    map->stripes[i].physical + length <= physical) | 
 | 			continue; | 
 |  | 
 | 		stripe_nr = physical - map->stripes[i].physical; | 
 | 		do_div(stripe_nr, map->stripe_len); | 
 |  | 
 | 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) { | 
 | 			stripe_nr = stripe_nr * map->num_stripes + i; | 
 | 			do_div(stripe_nr, map->sub_stripes); | 
 | 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { | 
 | 			stripe_nr = stripe_nr * map->num_stripes + i; | 
 | 		} | 
 | 		bytenr = chunk_start + stripe_nr * map->stripe_len; | 
 | 		WARN_ON(nr >= map->num_stripes); | 
 | 		for (j = 0; j < nr; j++) { | 
 | 			if (buf[j] == bytenr) | 
 | 				break; | 
 | 		} | 
 | 		if (j == nr) { | 
 | 			WARN_ON(nr >= map->num_stripes); | 
 | 			buf[nr++] = bytenr; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	*logical = buf; | 
 | 	*naddrs = nr; | 
 | 	*stripe_len = map->stripe_len; | 
 |  | 
 | 	free_extent_map(em); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void btrfs_end_bio(struct bio *bio, int err) | 
 | { | 
 | 	struct btrfs_bio *bbio = bio->bi_private; | 
 | 	int is_orig_bio = 0; | 
 |  | 
 | 	if (err) | 
 | 		atomic_inc(&bbio->error); | 
 |  | 
 | 	if (bio == bbio->orig_bio) | 
 | 		is_orig_bio = 1; | 
 |  | 
 | 	if (atomic_dec_and_test(&bbio->stripes_pending)) { | 
 | 		if (!is_orig_bio) { | 
 | 			bio_put(bio); | 
 | 			bio = bbio->orig_bio; | 
 | 		} | 
 | 		bio->bi_private = bbio->private; | 
 | 		bio->bi_end_io = bbio->end_io; | 
 | 		bio->bi_bdev = (struct block_device *) | 
 | 					(unsigned long)bbio->mirror_num; | 
 | 		/* only send an error to the higher layers if it is | 
 | 		 * beyond the tolerance of the multi-bio | 
 | 		 */ | 
 | 		if (atomic_read(&bbio->error) > bbio->max_errors) { | 
 | 			err = -EIO; | 
 | 		} else if (err) { | 
 | 			/* | 
 | 			 * this bio is actually up to date, we didn't | 
 | 			 * go over the max number of errors | 
 | 			 */ | 
 | 			set_bit(BIO_UPTODATE, &bio->bi_flags); | 
 | 			err = 0; | 
 | 		} | 
 | 		kfree(bbio); | 
 |  | 
 | 		bio_endio(bio, err); | 
 | 	} else if (!is_orig_bio) { | 
 | 		bio_put(bio); | 
 | 	} | 
 | } | 
 |  | 
 | struct async_sched { | 
 | 	struct bio *bio; | 
 | 	int rw; | 
 | 	struct btrfs_fs_info *info; | 
 | 	struct btrfs_work work; | 
 | }; | 
 |  | 
 | /* | 
 |  * see run_scheduled_bios for a description of why bios are collected for | 
 |  * async submit. | 
 |  * | 
 |  * This will add one bio to the pending list for a device and make sure | 
 |  * the work struct is scheduled. | 
 |  */ | 
 | static noinline int schedule_bio(struct btrfs_root *root, | 
 | 				 struct btrfs_device *device, | 
 | 				 int rw, struct bio *bio) | 
 | { | 
 | 	int should_queue = 1; | 
 | 	struct btrfs_pending_bios *pending_bios; | 
 |  | 
 | 	/* don't bother with additional async steps for reads, right now */ | 
 | 	if (!(rw & REQ_WRITE)) { | 
 | 		bio_get(bio); | 
 | 		submit_bio(rw, bio); | 
 | 		bio_put(bio); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * nr_async_bios allows us to reliably return congestion to the | 
 | 	 * higher layers.  Otherwise, the async bio makes it appear we have | 
 | 	 * made progress against dirty pages when we've really just put it | 
 | 	 * on a queue for later | 
 | 	 */ | 
 | 	atomic_inc(&root->fs_info->nr_async_bios); | 
 | 	WARN_ON(bio->bi_next); | 
 | 	bio->bi_next = NULL; | 
 | 	bio->bi_rw |= rw; | 
 |  | 
 | 	spin_lock(&device->io_lock); | 
 | 	if (bio->bi_rw & REQ_SYNC) | 
 | 		pending_bios = &device->pending_sync_bios; | 
 | 	else | 
 | 		pending_bios = &device->pending_bios; | 
 |  | 
 | 	if (pending_bios->tail) | 
 | 		pending_bios->tail->bi_next = bio; | 
 |  | 
 | 	pending_bios->tail = bio; | 
 | 	if (!pending_bios->head) | 
 | 		pending_bios->head = bio; | 
 | 	if (device->running_pending) | 
 | 		should_queue = 0; | 
 |  | 
 | 	spin_unlock(&device->io_lock); | 
 |  | 
 | 	if (should_queue) | 
 | 		btrfs_queue_worker(&root->fs_info->submit_workers, | 
 | 				   &device->work); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio, | 
 | 		  int mirror_num, int async_submit) | 
 | { | 
 | 	struct btrfs_mapping_tree *map_tree; | 
 | 	struct btrfs_device *dev; | 
 | 	struct bio *first_bio = bio; | 
 | 	u64 logical = (u64)bio->bi_sector << 9; | 
 | 	u64 length = 0; | 
 | 	u64 map_length; | 
 | 	int ret; | 
 | 	int dev_nr = 0; | 
 | 	int total_devs = 1; | 
 | 	struct btrfs_bio *bbio = NULL; | 
 |  | 
 | 	length = bio->bi_size; | 
 | 	map_tree = &root->fs_info->mapping_tree; | 
 | 	map_length = length; | 
 |  | 
 | 	ret = btrfs_map_block(map_tree, rw, logical, &map_length, &bbio, | 
 | 			      mirror_num); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	total_devs = bbio->num_stripes; | 
 | 	if (map_length < length) { | 
 | 		printk(KERN_CRIT "mapping failed logical %llu bio len %llu " | 
 | 		       "len %llu\n", (unsigned long long)logical, | 
 | 		       (unsigned long long)length, | 
 | 		       (unsigned long long)map_length); | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	bbio->orig_bio = first_bio; | 
 | 	bbio->private = first_bio->bi_private; | 
 | 	bbio->end_io = first_bio->bi_end_io; | 
 | 	atomic_set(&bbio->stripes_pending, bbio->num_stripes); | 
 |  | 
 | 	while (dev_nr < total_devs) { | 
 | 		if (dev_nr < total_devs - 1) { | 
 | 			bio = bio_clone(first_bio, GFP_NOFS); | 
 | 			BUG_ON(!bio); | 
 | 		} else { | 
 | 			bio = first_bio; | 
 | 		} | 
 | 		bio->bi_private = bbio; | 
 | 		bio->bi_end_io = btrfs_end_bio; | 
 | 		bio->bi_sector = bbio->stripes[dev_nr].physical >> 9; | 
 | 		dev = bbio->stripes[dev_nr].dev; | 
 | 		if (dev && dev->bdev && (rw != WRITE || dev->writeable)) { | 
 | 			pr_debug("btrfs_map_bio: rw %d, secor=%llu, dev=%lu " | 
 | 				 "(%s id %llu), size=%u\n", rw, | 
 | 				 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev, | 
 | 				 dev->name, dev->devid, bio->bi_size); | 
 | 			bio->bi_bdev = dev->bdev; | 
 | 			if (async_submit) | 
 | 				schedule_bio(root, dev, rw, bio); | 
 | 			else | 
 | 				submit_bio(rw, bio); | 
 | 		} else { | 
 | 			bio->bi_bdev = root->fs_info->fs_devices->latest_bdev; | 
 | 			bio->bi_sector = logical >> 9; | 
 | 			bio_endio(bio, -EIO); | 
 | 		} | 
 | 		dev_nr++; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid, | 
 | 				       u8 *uuid, u8 *fsid) | 
 | { | 
 | 	struct btrfs_device *device; | 
 | 	struct btrfs_fs_devices *cur_devices; | 
 |  | 
 | 	cur_devices = root->fs_info->fs_devices; | 
 | 	while (cur_devices) { | 
 | 		if (!fsid || | 
 | 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) { | 
 | 			device = __find_device(&cur_devices->devices, | 
 | 					       devid, uuid); | 
 | 			if (device) | 
 | 				return device; | 
 | 		} | 
 | 		cur_devices = cur_devices->seed; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static struct btrfs_device *add_missing_dev(struct btrfs_root *root, | 
 | 					    u64 devid, u8 *dev_uuid) | 
 | { | 
 | 	struct btrfs_device *device; | 
 | 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; | 
 |  | 
 | 	device = kzalloc(sizeof(*device), GFP_NOFS); | 
 | 	if (!device) | 
 | 		return NULL; | 
 | 	list_add(&device->dev_list, | 
 | 		 &fs_devices->devices); | 
 | 	device->dev_root = root->fs_info->dev_root; | 
 | 	device->devid = devid; | 
 | 	device->work.func = pending_bios_fn; | 
 | 	device->fs_devices = fs_devices; | 
 | 	device->missing = 1; | 
 | 	fs_devices->num_devices++; | 
 | 	fs_devices->missing_devices++; | 
 | 	spin_lock_init(&device->io_lock); | 
 | 	INIT_LIST_HEAD(&device->dev_alloc_list); | 
 | 	memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE); | 
 | 	return device; | 
 | } | 
 |  | 
 | static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key, | 
 | 			  struct extent_buffer *leaf, | 
 | 			  struct btrfs_chunk *chunk) | 
 | { | 
 | 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; | 
 | 	struct map_lookup *map; | 
 | 	struct extent_map *em; | 
 | 	u64 logical; | 
 | 	u64 length; | 
 | 	u64 devid; | 
 | 	u8 uuid[BTRFS_UUID_SIZE]; | 
 | 	int num_stripes; | 
 | 	int ret; | 
 | 	int i; | 
 |  | 
 | 	logical = key->offset; | 
 | 	length = btrfs_chunk_length(leaf, chunk); | 
 |  | 
 | 	read_lock(&map_tree->map_tree.lock); | 
 | 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); | 
 | 	read_unlock(&map_tree->map_tree.lock); | 
 |  | 
 | 	/* already mapped? */ | 
 | 	if (em && em->start <= logical && em->start + em->len > logical) { | 
 | 		free_extent_map(em); | 
 | 		return 0; | 
 | 	} else if (em) { | 
 | 		free_extent_map(em); | 
 | 	} | 
 |  | 
 | 	em = alloc_extent_map(); | 
 | 	if (!em) | 
 | 		return -ENOMEM; | 
 | 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk); | 
 | 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); | 
 | 	if (!map) { | 
 | 		free_extent_map(em); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	em->bdev = (struct block_device *)map; | 
 | 	em->start = logical; | 
 | 	em->len = length; | 
 | 	em->block_start = 0; | 
 | 	em->block_len = em->len; | 
 |  | 
 | 	map->num_stripes = num_stripes; | 
 | 	map->io_width = btrfs_chunk_io_width(leaf, chunk); | 
 | 	map->io_align = btrfs_chunk_io_align(leaf, chunk); | 
 | 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk); | 
 | 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); | 
 | 	map->type = btrfs_chunk_type(leaf, chunk); | 
 | 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); | 
 | 	for (i = 0; i < num_stripes; i++) { | 
 | 		map->stripes[i].physical = | 
 | 			btrfs_stripe_offset_nr(leaf, chunk, i); | 
 | 		devid = btrfs_stripe_devid_nr(leaf, chunk, i); | 
 | 		read_extent_buffer(leaf, uuid, (unsigned long) | 
 | 				   btrfs_stripe_dev_uuid_nr(chunk, i), | 
 | 				   BTRFS_UUID_SIZE); | 
 | 		map->stripes[i].dev = btrfs_find_device(root, devid, uuid, | 
 | 							NULL); | 
 | 		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) { | 
 | 			kfree(map); | 
 | 			free_extent_map(em); | 
 | 			return -EIO; | 
 | 		} | 
 | 		if (!map->stripes[i].dev) { | 
 | 			map->stripes[i].dev = | 
 | 				add_missing_dev(root, devid, uuid); | 
 | 			if (!map->stripes[i].dev) { | 
 | 				kfree(map); | 
 | 				free_extent_map(em); | 
 | 				return -EIO; | 
 | 			} | 
 | 		} | 
 | 		map->stripes[i].dev->in_fs_metadata = 1; | 
 | 	} | 
 |  | 
 | 	write_lock(&map_tree->map_tree.lock); | 
 | 	ret = add_extent_mapping(&map_tree->map_tree, em); | 
 | 	write_unlock(&map_tree->map_tree.lock); | 
 | 	BUG_ON(ret); | 
 | 	free_extent_map(em); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int fill_device_from_item(struct extent_buffer *leaf, | 
 | 				 struct btrfs_dev_item *dev_item, | 
 | 				 struct btrfs_device *device) | 
 | { | 
 | 	unsigned long ptr; | 
 |  | 
 | 	device->devid = btrfs_device_id(leaf, dev_item); | 
 | 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); | 
 | 	device->total_bytes = device->disk_total_bytes; | 
 | 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); | 
 | 	device->type = btrfs_device_type(leaf, dev_item); | 
 | 	device->io_align = btrfs_device_io_align(leaf, dev_item); | 
 | 	device->io_width = btrfs_device_io_width(leaf, dev_item); | 
 | 	device->sector_size = btrfs_device_sector_size(leaf, dev_item); | 
 |  | 
 | 	ptr = (unsigned long)btrfs_device_uuid(dev_item); | 
 | 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int open_seed_devices(struct btrfs_root *root, u8 *fsid) | 
 | { | 
 | 	struct btrfs_fs_devices *fs_devices; | 
 | 	int ret; | 
 |  | 
 | 	mutex_lock(&uuid_mutex); | 
 |  | 
 | 	fs_devices = root->fs_info->fs_devices->seed; | 
 | 	while (fs_devices) { | 
 | 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) { | 
 | 			ret = 0; | 
 | 			goto out; | 
 | 		} | 
 | 		fs_devices = fs_devices->seed; | 
 | 	} | 
 |  | 
 | 	fs_devices = find_fsid(fsid); | 
 | 	if (!fs_devices) { | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	fs_devices = clone_fs_devices(fs_devices); | 
 | 	if (IS_ERR(fs_devices)) { | 
 | 		ret = PTR_ERR(fs_devices); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = __btrfs_open_devices(fs_devices, FMODE_READ, | 
 | 				   root->fs_info->bdev_holder); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	if (!fs_devices->seeding) { | 
 | 		__btrfs_close_devices(fs_devices); | 
 | 		free_fs_devices(fs_devices); | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	fs_devices->seed = root->fs_info->fs_devices->seed; | 
 | 	root->fs_info->fs_devices->seed = fs_devices; | 
 | out: | 
 | 	mutex_unlock(&uuid_mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int read_one_dev(struct btrfs_root *root, | 
 | 			struct extent_buffer *leaf, | 
 | 			struct btrfs_dev_item *dev_item) | 
 | { | 
 | 	struct btrfs_device *device; | 
 | 	u64 devid; | 
 | 	int ret; | 
 | 	u8 fs_uuid[BTRFS_UUID_SIZE]; | 
 | 	u8 dev_uuid[BTRFS_UUID_SIZE]; | 
 |  | 
 | 	devid = btrfs_device_id(leaf, dev_item); | 
 | 	read_extent_buffer(leaf, dev_uuid, | 
 | 			   (unsigned long)btrfs_device_uuid(dev_item), | 
 | 			   BTRFS_UUID_SIZE); | 
 | 	read_extent_buffer(leaf, fs_uuid, | 
 | 			   (unsigned long)btrfs_device_fsid(dev_item), | 
 | 			   BTRFS_UUID_SIZE); | 
 |  | 
 | 	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) { | 
 | 		ret = open_seed_devices(root, fs_uuid); | 
 | 		if (ret && !btrfs_test_opt(root, DEGRADED)) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	device = btrfs_find_device(root, devid, dev_uuid, fs_uuid); | 
 | 	if (!device || !device->bdev) { | 
 | 		if (!btrfs_test_opt(root, DEGRADED)) | 
 | 			return -EIO; | 
 |  | 
 | 		if (!device) { | 
 | 			printk(KERN_WARNING "warning devid %llu missing\n", | 
 | 			       (unsigned long long)devid); | 
 | 			device = add_missing_dev(root, devid, dev_uuid); | 
 | 			if (!device) | 
 | 				return -ENOMEM; | 
 | 		} else if (!device->missing) { | 
 | 			/* | 
 | 			 * this happens when a device that was properly setup | 
 | 			 * in the device info lists suddenly goes bad. | 
 | 			 * device->bdev is NULL, and so we have to set | 
 | 			 * device->missing to one here | 
 | 			 */ | 
 | 			root->fs_info->fs_devices->missing_devices++; | 
 | 			device->missing = 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (device->fs_devices != root->fs_info->fs_devices) { | 
 | 		BUG_ON(device->writeable); | 
 | 		if (device->generation != | 
 | 		    btrfs_device_generation(leaf, dev_item)) | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	fill_device_from_item(leaf, dev_item, device); | 
 | 	device->dev_root = root->fs_info->dev_root; | 
 | 	device->in_fs_metadata = 1; | 
 | 	if (device->writeable) { | 
 | 		device->fs_devices->total_rw_bytes += device->total_bytes; | 
 | 		spin_lock(&root->fs_info->free_chunk_lock); | 
 | 		root->fs_info->free_chunk_space += device->total_bytes - | 
 | 			device->bytes_used; | 
 | 		spin_unlock(&root->fs_info->free_chunk_lock); | 
 | 	} | 
 | 	ret = 0; | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_read_sys_array(struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_super_block *super_copy = root->fs_info->super_copy; | 
 | 	struct extent_buffer *sb; | 
 | 	struct btrfs_disk_key *disk_key; | 
 | 	struct btrfs_chunk *chunk; | 
 | 	u8 *ptr; | 
 | 	unsigned long sb_ptr; | 
 | 	int ret = 0; | 
 | 	u32 num_stripes; | 
 | 	u32 array_size; | 
 | 	u32 len = 0; | 
 | 	u32 cur; | 
 | 	struct btrfs_key key; | 
 |  | 
 | 	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET, | 
 | 					  BTRFS_SUPER_INFO_SIZE); | 
 | 	if (!sb) | 
 | 		return -ENOMEM; | 
 | 	btrfs_set_buffer_uptodate(sb); | 
 | 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); | 
 |  | 
 | 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); | 
 | 	array_size = btrfs_super_sys_array_size(super_copy); | 
 |  | 
 | 	ptr = super_copy->sys_chunk_array; | 
 | 	sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array); | 
 | 	cur = 0; | 
 |  | 
 | 	while (cur < array_size) { | 
 | 		disk_key = (struct btrfs_disk_key *)ptr; | 
 | 		btrfs_disk_key_to_cpu(&key, disk_key); | 
 |  | 
 | 		len = sizeof(*disk_key); ptr += len; | 
 | 		sb_ptr += len; | 
 | 		cur += len; | 
 |  | 
 | 		if (key.type == BTRFS_CHUNK_ITEM_KEY) { | 
 | 			chunk = (struct btrfs_chunk *)sb_ptr; | 
 | 			ret = read_one_chunk(root, &key, sb, chunk); | 
 | 			if (ret) | 
 | 				break; | 
 | 			num_stripes = btrfs_chunk_num_stripes(sb, chunk); | 
 | 			len = btrfs_chunk_item_size(num_stripes); | 
 | 		} else { | 
 | 			ret = -EIO; | 
 | 			break; | 
 | 		} | 
 | 		ptr += len; | 
 | 		sb_ptr += len; | 
 | 		cur += len; | 
 | 	} | 
 | 	free_extent_buffer(sb); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_read_chunk_tree(struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_path *path; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key found_key; | 
 | 	int ret; | 
 | 	int slot; | 
 |  | 
 | 	root = root->fs_info->chunk_root; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* first we search for all of the device items, and then we | 
 | 	 * read in all of the chunk items.  This way we can create chunk | 
 | 	 * mappings that reference all of the devices that are afound | 
 | 	 */ | 
 | 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | 
 | 	key.offset = 0; | 
 | 	key.type = 0; | 
 | again: | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto error; | 
 | 	while (1) { | 
 | 		leaf = path->nodes[0]; | 
 | 		slot = path->slots[0]; | 
 | 		if (slot >= btrfs_header_nritems(leaf)) { | 
 | 			ret = btrfs_next_leaf(root, path); | 
 | 			if (ret == 0) | 
 | 				continue; | 
 | 			if (ret < 0) | 
 | 				goto error; | 
 | 			break; | 
 | 		} | 
 | 		btrfs_item_key_to_cpu(leaf, &found_key, slot); | 
 | 		if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) { | 
 | 			if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID) | 
 | 				break; | 
 | 			if (found_key.type == BTRFS_DEV_ITEM_KEY) { | 
 | 				struct btrfs_dev_item *dev_item; | 
 | 				dev_item = btrfs_item_ptr(leaf, slot, | 
 | 						  struct btrfs_dev_item); | 
 | 				ret = read_one_dev(root, leaf, dev_item); | 
 | 				if (ret) | 
 | 					goto error; | 
 | 			} | 
 | 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { | 
 | 			struct btrfs_chunk *chunk; | 
 | 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); | 
 | 			ret = read_one_chunk(root, &found_key, leaf, chunk); | 
 | 			if (ret) | 
 | 				goto error; | 
 | 		} | 
 | 		path->slots[0]++; | 
 | 	} | 
 | 	if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) { | 
 | 		key.objectid = 0; | 
 | 		btrfs_release_path(path); | 
 | 		goto again; | 
 | 	} | 
 | 	ret = 0; | 
 | error: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } |