| /* | 
 |  *  kernel/sched.c | 
 |  * | 
 |  *  Kernel scheduler and related syscalls | 
 |  * | 
 |  *  Copyright (C) 1991-2002  Linus Torvalds | 
 |  * | 
 |  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and | 
 |  *		make semaphores SMP safe | 
 |  *  1998-11-19	Implemented schedule_timeout() and related stuff | 
 |  *		by Andrea Arcangeli | 
 |  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar: | 
 |  *		hybrid priority-list and round-robin design with | 
 |  *		an array-switch method of distributing timeslices | 
 |  *		and per-CPU runqueues.  Cleanups and useful suggestions | 
 |  *		by Davide Libenzi, preemptible kernel bits by Robert Love. | 
 |  *  2003-09-03	Interactivity tuning by Con Kolivas. | 
 |  *  2004-04-02	Scheduler domains code by Nick Piggin | 
 |  *  2007-04-15  Work begun on replacing all interactivity tuning with a | 
 |  *              fair scheduling design by Con Kolivas. | 
 |  *  2007-05-05  Load balancing (smp-nice) and other improvements | 
 |  *              by Peter Williams | 
 |  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith | 
 |  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri | 
 |  */ | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/module.h> | 
 | #include <linux/nmi.h> | 
 | #include <linux/init.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/smp_lock.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/capability.h> | 
 | #include <linux/completion.h> | 
 | #include <linux/kernel_stat.h> | 
 | #include <linux/debug_locks.h> | 
 | #include <linux/security.h> | 
 | #include <linux/notifier.h> | 
 | #include <linux/profile.h> | 
 | #include <linux/freezer.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/threads.h> | 
 | #include <linux/timer.h> | 
 | #include <linux/rcupdate.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/cpuset.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/sysctl.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/times.h> | 
 | #include <linux/tsacct_kern.h> | 
 | #include <linux/kprobes.h> | 
 | #include <linux/delayacct.h> | 
 | #include <linux/reciprocal_div.h> | 
 | #include <linux/unistd.h> | 
 |  | 
 | #include <asm/tlb.h> | 
 |  | 
 | /* | 
 |  * Scheduler clock - returns current time in nanosec units. | 
 |  * This is default implementation. | 
 |  * Architectures and sub-architectures can override this. | 
 |  */ | 
 | unsigned long long __attribute__((weak)) sched_clock(void) | 
 | { | 
 | 	return (unsigned long long)jiffies * (1000000000 / HZ); | 
 | } | 
 |  | 
 | /* | 
 |  * Convert user-nice values [ -20 ... 0 ... 19 ] | 
 |  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], | 
 |  * and back. | 
 |  */ | 
 | #define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20) | 
 | #define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20) | 
 | #define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio) | 
 |  | 
 | /* | 
 |  * 'User priority' is the nice value converted to something we | 
 |  * can work with better when scaling various scheduler parameters, | 
 |  * it's a [ 0 ... 39 ] range. | 
 |  */ | 
 | #define USER_PRIO(p)		((p)-MAX_RT_PRIO) | 
 | #define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio) | 
 | #define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO)) | 
 |  | 
 | /* | 
 |  * Some helpers for converting nanosecond timing to jiffy resolution | 
 |  */ | 
 | #define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ)) | 
 | #define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ)) | 
 |  | 
 | #define NICE_0_LOAD		SCHED_LOAD_SCALE | 
 | #define NICE_0_SHIFT		SCHED_LOAD_SHIFT | 
 |  | 
 | /* | 
 |  * These are the 'tuning knobs' of the scheduler: | 
 |  * | 
 |  * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger), | 
 |  * default timeslice is 100 msecs, maximum timeslice is 800 msecs. | 
 |  * Timeslices get refilled after they expire. | 
 |  */ | 
 | #define MIN_TIMESLICE		max(5 * HZ / 1000, 1) | 
 | #define DEF_TIMESLICE		(100 * HZ / 1000) | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | /* | 
 |  * Divide a load by a sched group cpu_power : (load / sg->__cpu_power) | 
 |  * Since cpu_power is a 'constant', we can use a reciprocal divide. | 
 |  */ | 
 | static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load) | 
 | { | 
 | 	return reciprocal_divide(load, sg->reciprocal_cpu_power); | 
 | } | 
 |  | 
 | /* | 
 |  * Each time a sched group cpu_power is changed, | 
 |  * we must compute its reciprocal value | 
 |  */ | 
 | static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val) | 
 | { | 
 | 	sg->__cpu_power += val; | 
 | 	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power); | 
 | } | 
 | #endif | 
 |  | 
 | #define SCALE_PRIO(x, prio) \ | 
 | 	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE) | 
 |  | 
 | /* | 
 |  * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ] | 
 |  * to time slice values: [800ms ... 100ms ... 5ms] | 
 |  */ | 
 | static unsigned int static_prio_timeslice(int static_prio) | 
 | { | 
 | 	if (static_prio == NICE_TO_PRIO(19)) | 
 | 		return 1; | 
 |  | 
 | 	if (static_prio < NICE_TO_PRIO(0)) | 
 | 		return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio); | 
 | 	else | 
 | 		return SCALE_PRIO(DEF_TIMESLICE, static_prio); | 
 | } | 
 |  | 
 | static inline int rt_policy(int policy) | 
 | { | 
 | 	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR)) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int task_has_rt_policy(struct task_struct *p) | 
 | { | 
 | 	return rt_policy(p->policy); | 
 | } | 
 |  | 
 | /* | 
 |  * This is the priority-queue data structure of the RT scheduling class: | 
 |  */ | 
 | struct rt_prio_array { | 
 | 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ | 
 | 	struct list_head queue[MAX_RT_PRIO]; | 
 | }; | 
 |  | 
 | struct load_stat { | 
 | 	struct load_weight load; | 
 | 	u64 load_update_start, load_update_last; | 
 | 	unsigned long delta_fair, delta_exec, delta_stat; | 
 | }; | 
 |  | 
 | /* CFS-related fields in a runqueue */ | 
 | struct cfs_rq { | 
 | 	struct load_weight load; | 
 | 	unsigned long nr_running; | 
 |  | 
 | 	s64 fair_clock; | 
 | 	u64 exec_clock; | 
 | 	s64 wait_runtime; | 
 | 	u64 sleeper_bonus; | 
 | 	unsigned long wait_runtime_overruns, wait_runtime_underruns; | 
 |  | 
 | 	struct rb_root tasks_timeline; | 
 | 	struct rb_node *rb_leftmost; | 
 | 	struct rb_node *rb_load_balance_curr; | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 	/* 'curr' points to currently running entity on this cfs_rq. | 
 | 	 * It is set to NULL otherwise (i.e when none are currently running). | 
 | 	 */ | 
 | 	struct sched_entity *curr; | 
 | 	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */ | 
 |  | 
 | 	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in | 
 | 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities | 
 | 	 * (like users, containers etc.) | 
 | 	 * | 
 | 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This | 
 | 	 * list is used during load balance. | 
 | 	 */ | 
 | 	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */ | 
 | #endif | 
 | }; | 
 |  | 
 | /* Real-Time classes' related field in a runqueue: */ | 
 | struct rt_rq { | 
 | 	struct rt_prio_array active; | 
 | 	int rt_load_balance_idx; | 
 | 	struct list_head *rt_load_balance_head, *rt_load_balance_curr; | 
 | }; | 
 |  | 
 | /* | 
 |  * This is the main, per-CPU runqueue data structure. | 
 |  * | 
 |  * Locking rule: those places that want to lock multiple runqueues | 
 |  * (such as the load balancing or the thread migration code), lock | 
 |  * acquire operations must be ordered by ascending &runqueue. | 
 |  */ | 
 | struct rq { | 
 | 	spinlock_t lock;	/* runqueue lock */ | 
 |  | 
 | 	/* | 
 | 	 * nr_running and cpu_load should be in the same cacheline because | 
 | 	 * remote CPUs use both these fields when doing load calculation. | 
 | 	 */ | 
 | 	unsigned long nr_running; | 
 | 	#define CPU_LOAD_IDX_MAX 5 | 
 | 	unsigned long cpu_load[CPU_LOAD_IDX_MAX]; | 
 | 	unsigned char idle_at_tick; | 
 | #ifdef CONFIG_NO_HZ | 
 | 	unsigned char in_nohz_recently; | 
 | #endif | 
 | 	struct load_stat ls;	/* capture load from *all* tasks on this cpu */ | 
 | 	unsigned long nr_load_updates; | 
 | 	u64 nr_switches; | 
 |  | 
 | 	struct cfs_rq cfs; | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 	struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */ | 
 | #endif | 
 | 	struct rt_rq  rt; | 
 |  | 
 | 	/* | 
 | 	 * This is part of a global counter where only the total sum | 
 | 	 * over all CPUs matters. A task can increase this counter on | 
 | 	 * one CPU and if it got migrated afterwards it may decrease | 
 | 	 * it on another CPU. Always updated under the runqueue lock: | 
 | 	 */ | 
 | 	unsigned long nr_uninterruptible; | 
 |  | 
 | 	struct task_struct *curr, *idle; | 
 | 	unsigned long next_balance; | 
 | 	struct mm_struct *prev_mm; | 
 |  | 
 | 	u64 clock, prev_clock_raw; | 
 | 	s64 clock_max_delta; | 
 |  | 
 | 	unsigned int clock_warps, clock_overflows; | 
 | 	unsigned int clock_unstable_events; | 
 |  | 
 | 	atomic_t nr_iowait; | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	struct sched_domain *sd; | 
 |  | 
 | 	/* For active balancing */ | 
 | 	int active_balance; | 
 | 	int push_cpu; | 
 | 	int cpu;		/* cpu of this runqueue */ | 
 |  | 
 | 	struct task_struct *migration_thread; | 
 | 	struct list_head migration_queue; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SCHEDSTATS | 
 | 	/* latency stats */ | 
 | 	struct sched_info rq_sched_info; | 
 |  | 
 | 	/* sys_sched_yield() stats */ | 
 | 	unsigned long yld_exp_empty; | 
 | 	unsigned long yld_act_empty; | 
 | 	unsigned long yld_both_empty; | 
 | 	unsigned long yld_cnt; | 
 |  | 
 | 	/* schedule() stats */ | 
 | 	unsigned long sched_switch; | 
 | 	unsigned long sched_cnt; | 
 | 	unsigned long sched_goidle; | 
 |  | 
 | 	/* try_to_wake_up() stats */ | 
 | 	unsigned long ttwu_cnt; | 
 | 	unsigned long ttwu_local; | 
 | #endif | 
 | 	struct lock_class_key rq_lock_key; | 
 | }; | 
 |  | 
 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); | 
 | static DEFINE_MUTEX(sched_hotcpu_mutex); | 
 |  | 
 | static inline void check_preempt_curr(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	rq->curr->sched_class->check_preempt_curr(rq, p); | 
 | } | 
 |  | 
 | static inline int cpu_of(struct rq *rq) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	return rq->cpu; | 
 | #else | 
 | 	return 0; | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * Per-runqueue clock, as finegrained as the platform can give us: | 
 |  */ | 
 | static unsigned long long __rq_clock(struct rq *rq) | 
 | { | 
 | 	u64 prev_raw = rq->prev_clock_raw; | 
 | 	u64 now = sched_clock(); | 
 | 	s64 delta = now - prev_raw; | 
 | 	u64 clock = rq->clock; | 
 |  | 
 | 	/* | 
 | 	 * Protect against sched_clock() occasionally going backwards: | 
 | 	 */ | 
 | 	if (unlikely(delta < 0)) { | 
 | 		clock++; | 
 | 		rq->clock_warps++; | 
 | 	} else { | 
 | 		/* | 
 | 		 * Catch too large forward jumps too: | 
 | 		 */ | 
 | 		if (unlikely(delta > 2*TICK_NSEC)) { | 
 | 			clock++; | 
 | 			rq->clock_overflows++; | 
 | 		} else { | 
 | 			if (unlikely(delta > rq->clock_max_delta)) | 
 | 				rq->clock_max_delta = delta; | 
 | 			clock += delta; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rq->prev_clock_raw = now; | 
 | 	rq->clock = clock; | 
 |  | 
 | 	return clock; | 
 | } | 
 |  | 
 | static inline unsigned long long rq_clock(struct rq *rq) | 
 | { | 
 | 	int this_cpu = smp_processor_id(); | 
 |  | 
 | 	if (this_cpu == cpu_of(rq)) | 
 | 		return __rq_clock(rq); | 
 |  | 
 | 	return rq->clock; | 
 | } | 
 |  | 
 | /* | 
 |  * The domain tree (rq->sd) is protected by RCU's quiescent state transition. | 
 |  * See detach_destroy_domains: synchronize_sched for details. | 
 |  * | 
 |  * The domain tree of any CPU may only be accessed from within | 
 |  * preempt-disabled sections. | 
 |  */ | 
 | #define for_each_domain(cpu, __sd) \ | 
 | 	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) | 
 |  | 
 | #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu))) | 
 | #define this_rq()		(&__get_cpu_var(runqueues)) | 
 | #define task_rq(p)		cpu_rq(task_cpu(p)) | 
 | #define cpu_curr(cpu)		(cpu_rq(cpu)->curr) | 
 |  | 
 | /* | 
 |  * For kernel-internal use: high-speed (but slightly incorrect) per-cpu | 
 |  * clock constructed from sched_clock(): | 
 |  */ | 
 | unsigned long long cpu_clock(int cpu) | 
 | { | 
 | 	unsigned long long now; | 
 | 	unsigned long flags; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	now = rq_clock(cpu_rq(cpu)); | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	return now; | 
 | } | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | /* Change a task's ->cfs_rq if it moves across CPUs */ | 
 | static inline void set_task_cfs_rq(struct task_struct *p) | 
 | { | 
 | 	p->se.cfs_rq = &task_rq(p)->cfs; | 
 | } | 
 | #else | 
 | static inline void set_task_cfs_rq(struct task_struct *p) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | #ifndef prepare_arch_switch | 
 | # define prepare_arch_switch(next)	do { } while (0) | 
 | #endif | 
 | #ifndef finish_arch_switch | 
 | # define finish_arch_switch(prev)	do { } while (0) | 
 | #endif | 
 |  | 
 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW | 
 | static inline int task_running(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	return rq->curr == p; | 
 | } | 
 |  | 
 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) | 
 | { | 
 | } | 
 |  | 
 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) | 
 | { | 
 | #ifdef CONFIG_DEBUG_SPINLOCK | 
 | 	/* this is a valid case when another task releases the spinlock */ | 
 | 	rq->lock.owner = current; | 
 | #endif | 
 | 	/* | 
 | 	 * If we are tracking spinlock dependencies then we have to | 
 | 	 * fix up the runqueue lock - which gets 'carried over' from | 
 | 	 * prev into current: | 
 | 	 */ | 
 | 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); | 
 |  | 
 | 	spin_unlock_irq(&rq->lock); | 
 | } | 
 |  | 
 | #else /* __ARCH_WANT_UNLOCKED_CTXSW */ | 
 | static inline int task_running(struct rq *rq, struct task_struct *p) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	return p->oncpu; | 
 | #else | 
 | 	return rq->curr == p; | 
 | #endif | 
 | } | 
 |  | 
 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	/* | 
 | 	 * We can optimise this out completely for !SMP, because the | 
 | 	 * SMP rebalancing from interrupt is the only thing that cares | 
 | 	 * here. | 
 | 	 */ | 
 | 	next->oncpu = 1; | 
 | #endif | 
 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | 
 | 	spin_unlock_irq(&rq->lock); | 
 | #else | 
 | 	spin_unlock(&rq->lock); | 
 | #endif | 
 | } | 
 |  | 
 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	/* | 
 | 	 * After ->oncpu is cleared, the task can be moved to a different CPU. | 
 | 	 * We must ensure this doesn't happen until the switch is completely | 
 | 	 * finished. | 
 | 	 */ | 
 | 	smp_wmb(); | 
 | 	prev->oncpu = 0; | 
 | #endif | 
 | #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW | 
 | 	local_irq_enable(); | 
 | #endif | 
 | } | 
 | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ | 
 |  | 
 | /* | 
 |  * __task_rq_lock - lock the runqueue a given task resides on. | 
 |  * Must be called interrupts disabled. | 
 |  */ | 
 | static inline struct rq *__task_rq_lock(struct task_struct *p) | 
 | 	__acquires(rq->lock) | 
 | { | 
 | 	struct rq *rq; | 
 |  | 
 | repeat_lock_task: | 
 | 	rq = task_rq(p); | 
 | 	spin_lock(&rq->lock); | 
 | 	if (unlikely(rq != task_rq(p))) { | 
 | 		spin_unlock(&rq->lock); | 
 | 		goto repeat_lock_task; | 
 | 	} | 
 | 	return rq; | 
 | } | 
 |  | 
 | /* | 
 |  * task_rq_lock - lock the runqueue a given task resides on and disable | 
 |  * interrupts.  Note the ordering: we can safely lookup the task_rq without | 
 |  * explicitly disabling preemption. | 
 |  */ | 
 | static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) | 
 | 	__acquires(rq->lock) | 
 | { | 
 | 	struct rq *rq; | 
 |  | 
 | repeat_lock_task: | 
 | 	local_irq_save(*flags); | 
 | 	rq = task_rq(p); | 
 | 	spin_lock(&rq->lock); | 
 | 	if (unlikely(rq != task_rq(p))) { | 
 | 		spin_unlock_irqrestore(&rq->lock, *flags); | 
 | 		goto repeat_lock_task; | 
 | 	} | 
 | 	return rq; | 
 | } | 
 |  | 
 | static inline void __task_rq_unlock(struct rq *rq) | 
 | 	__releases(rq->lock) | 
 | { | 
 | 	spin_unlock(&rq->lock); | 
 | } | 
 |  | 
 | static inline void task_rq_unlock(struct rq *rq, unsigned long *flags) | 
 | 	__releases(rq->lock) | 
 | { | 
 | 	spin_unlock_irqrestore(&rq->lock, *flags); | 
 | } | 
 |  | 
 | /* | 
 |  * this_rq_lock - lock this runqueue and disable interrupts. | 
 |  */ | 
 | static inline struct rq *this_rq_lock(void) | 
 | 	__acquires(rq->lock) | 
 | { | 
 | 	struct rq *rq; | 
 |  | 
 | 	local_irq_disable(); | 
 | 	rq = this_rq(); | 
 | 	spin_lock(&rq->lock); | 
 |  | 
 | 	return rq; | 
 | } | 
 |  | 
 | /* | 
 |  * CPU frequency is/was unstable - start new by setting prev_clock_raw: | 
 |  */ | 
 | void sched_clock_unstable_event(void) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct rq *rq; | 
 |  | 
 | 	rq = task_rq_lock(current, &flags); | 
 | 	rq->prev_clock_raw = sched_clock(); | 
 | 	rq->clock_unstable_events++; | 
 | 	task_rq_unlock(rq, &flags); | 
 | } | 
 |  | 
 | /* | 
 |  * resched_task - mark a task 'to be rescheduled now'. | 
 |  * | 
 |  * On UP this means the setting of the need_resched flag, on SMP it | 
 |  * might also involve a cross-CPU call to trigger the scheduler on | 
 |  * the target CPU. | 
 |  */ | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | #ifndef tsk_is_polling | 
 | #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) | 
 | #endif | 
 |  | 
 | static void resched_task(struct task_struct *p) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	assert_spin_locked(&task_rq(p)->lock); | 
 |  | 
 | 	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED))) | 
 | 		return; | 
 |  | 
 | 	set_tsk_thread_flag(p, TIF_NEED_RESCHED); | 
 |  | 
 | 	cpu = task_cpu(p); | 
 | 	if (cpu == smp_processor_id()) | 
 | 		return; | 
 |  | 
 | 	/* NEED_RESCHED must be visible before we test polling */ | 
 | 	smp_mb(); | 
 | 	if (!tsk_is_polling(p)) | 
 | 		smp_send_reschedule(cpu); | 
 | } | 
 |  | 
 | static void resched_cpu(int cpu) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!spin_trylock_irqsave(&rq->lock, flags)) | 
 | 		return; | 
 | 	resched_task(cpu_curr(cpu)); | 
 | 	spin_unlock_irqrestore(&rq->lock, flags); | 
 | } | 
 | #else | 
 | static inline void resched_task(struct task_struct *p) | 
 | { | 
 | 	assert_spin_locked(&task_rq(p)->lock); | 
 | 	set_tsk_need_resched(p); | 
 | } | 
 | #endif | 
 |  | 
 | static u64 div64_likely32(u64 divident, unsigned long divisor) | 
 | { | 
 | #if BITS_PER_LONG == 32 | 
 | 	if (likely(divident <= 0xffffffffULL)) | 
 | 		return (u32)divident / divisor; | 
 | 	do_div(divident, divisor); | 
 |  | 
 | 	return divident; | 
 | #else | 
 | 	return divident / divisor; | 
 | #endif | 
 | } | 
 |  | 
 | #if BITS_PER_LONG == 32 | 
 | # define WMULT_CONST	(~0UL) | 
 | #else | 
 | # define WMULT_CONST	(1UL << 32) | 
 | #endif | 
 |  | 
 | #define WMULT_SHIFT	32 | 
 |  | 
 | static inline unsigned long | 
 | calc_delta_mine(unsigned long delta_exec, unsigned long weight, | 
 | 		struct load_weight *lw) | 
 | { | 
 | 	u64 tmp; | 
 |  | 
 | 	if (unlikely(!lw->inv_weight)) | 
 | 		lw->inv_weight = WMULT_CONST / lw->weight; | 
 |  | 
 | 	tmp = (u64)delta_exec * weight; | 
 | 	/* | 
 | 	 * Check whether we'd overflow the 64-bit multiplication: | 
 | 	 */ | 
 | 	if (unlikely(tmp > WMULT_CONST)) { | 
 | 		tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight) | 
 | 				>> (WMULT_SHIFT/2); | 
 | 	} else { | 
 | 		tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT; | 
 | 	} | 
 |  | 
 | 	return (unsigned long)min(tmp, (u64)sysctl_sched_runtime_limit); | 
 | } | 
 |  | 
 | static inline unsigned long | 
 | calc_delta_fair(unsigned long delta_exec, struct load_weight *lw) | 
 | { | 
 | 	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw); | 
 | } | 
 |  | 
 | static void update_load_add(struct load_weight *lw, unsigned long inc) | 
 | { | 
 | 	lw->weight += inc; | 
 | 	lw->inv_weight = 0; | 
 | } | 
 |  | 
 | static void update_load_sub(struct load_weight *lw, unsigned long dec) | 
 | { | 
 | 	lw->weight -= dec; | 
 | 	lw->inv_weight = 0; | 
 | } | 
 |  | 
 | static void __update_curr_load(struct rq *rq, struct load_stat *ls) | 
 | { | 
 | 	if (rq->curr != rq->idle && ls->load.weight) { | 
 | 		ls->delta_exec += ls->delta_stat; | 
 | 		ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load); | 
 | 		ls->delta_stat = 0; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Update delta_exec, delta_fair fields for rq. | 
 |  * | 
 |  * delta_fair clock advances at a rate inversely proportional to | 
 |  * total load (rq->ls.load.weight) on the runqueue, while | 
 |  * delta_exec advances at the same rate as wall-clock (provided | 
 |  * cpu is not idle). | 
 |  * | 
 |  * delta_exec / delta_fair is a measure of the (smoothened) load on this | 
 |  * runqueue over any given interval. This (smoothened) load is used | 
 |  * during load balance. | 
 |  * | 
 |  * This function is called /before/ updating rq->ls.load | 
 |  * and when switching tasks. | 
 |  */ | 
 | static void update_curr_load(struct rq *rq, u64 now) | 
 | { | 
 | 	struct load_stat *ls = &rq->ls; | 
 | 	u64 start; | 
 |  | 
 | 	start = ls->load_update_start; | 
 | 	ls->load_update_start = now; | 
 | 	ls->delta_stat += now - start; | 
 | 	/* | 
 | 	 * Stagger updates to ls->delta_fair. Very frequent updates | 
 | 	 * can be expensive. | 
 | 	 */ | 
 | 	if (ls->delta_stat >= sysctl_sched_stat_granularity) | 
 | 		__update_curr_load(rq, ls); | 
 | } | 
 |  | 
 | /* | 
 |  * To aid in avoiding the subversion of "niceness" due to uneven distribution | 
 |  * of tasks with abnormal "nice" values across CPUs the contribution that | 
 |  * each task makes to its run queue's load is weighted according to its | 
 |  * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a | 
 |  * scaled version of the new time slice allocation that they receive on time | 
 |  * slice expiry etc. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE | 
 |  * If static_prio_timeslice() is ever changed to break this assumption then | 
 |  * this code will need modification | 
 |  */ | 
 | #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE | 
 | #define load_weight(lp) \ | 
 | 	(((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO) | 
 | #define PRIO_TO_LOAD_WEIGHT(prio) \ | 
 | 	load_weight(static_prio_timeslice(prio)) | 
 | #define RTPRIO_TO_LOAD_WEIGHT(rp) \ | 
 | 	(PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + load_weight(rp)) | 
 |  | 
 | #define WEIGHT_IDLEPRIO		2 | 
 | #define WMULT_IDLEPRIO		(1 << 31) | 
 |  | 
 | /* | 
 |  * Nice levels are multiplicative, with a gentle 10% change for every | 
 |  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to | 
 |  * nice 1, it will get ~10% less CPU time than another CPU-bound task | 
 |  * that remained on nice 0. | 
 |  * | 
 |  * The "10% effect" is relative and cumulative: from _any_ nice level, | 
 |  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level | 
 |  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. | 
 |  * If a task goes up by ~10% and another task goes down by ~10% then | 
 |  * the relative distance between them is ~25%.) | 
 |  */ | 
 | static const int prio_to_weight[40] = { | 
 | /* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921, | 
 | /* -10 */  9537,  7629,  6103,  4883,  3906,  3125,  2500,  2000,  1600,  1280, | 
 | /*   0 */  NICE_0_LOAD /* 1024 */, | 
 | /*   1 */          819,   655,   524,   419,   336,   268,   215,   172,   137, | 
 | /*  10 */   110,    87,    70,    56,    45,    36,    29,    23,    18,    15, | 
 | }; | 
 |  | 
 | /* | 
 |  * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. | 
 |  * | 
 |  * In cases where the weight does not change often, we can use the | 
 |  * precalculated inverse to speed up arithmetics by turning divisions | 
 |  * into multiplications: | 
 |  */ | 
 | static const u32 prio_to_wmult[40] = { | 
 | /* -20 */     48356,     60446,     75558,     94446,    118058, | 
 | /* -15 */    147573,    184467,    230589,    288233,    360285, | 
 | /* -10 */    450347,    562979,    703746,    879575,   1099582, | 
 | /*  -5 */   1374389,   1717986,   2147483,   2684354,   3355443, | 
 | /*   0 */   4194304,   5244160,   6557201,   8196502,  10250518, | 
 | /*   5 */  12782640,  16025997,  19976592,  24970740,  31350126, | 
 | /*  10 */  39045157,  49367440,  61356675,  76695844,  95443717, | 
 | /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153, | 
 | }; | 
 |  | 
 | static inline void | 
 | inc_load(struct rq *rq, const struct task_struct *p, u64 now) | 
 | { | 
 | 	update_curr_load(rq, now); | 
 | 	update_load_add(&rq->ls.load, p->se.load.weight); | 
 | } | 
 |  | 
 | static inline void | 
 | dec_load(struct rq *rq, const struct task_struct *p, u64 now) | 
 | { | 
 | 	update_curr_load(rq, now); | 
 | 	update_load_sub(&rq->ls.load, p->se.load.weight); | 
 | } | 
 |  | 
 | static inline void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now) | 
 | { | 
 | 	rq->nr_running++; | 
 | 	inc_load(rq, p, now); | 
 | } | 
 |  | 
 | static inline void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now) | 
 | { | 
 | 	rq->nr_running--; | 
 | 	dec_load(rq, p, now); | 
 | } | 
 |  | 
 | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup); | 
 |  | 
 | /* | 
 |  * runqueue iterator, to support SMP load-balancing between different | 
 |  * scheduling classes, without having to expose their internal data | 
 |  * structures to the load-balancing proper: | 
 |  */ | 
 | struct rq_iterator { | 
 | 	void *arg; | 
 | 	struct task_struct *(*start)(void *); | 
 | 	struct task_struct *(*next)(void *); | 
 | }; | 
 |  | 
 | static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | 
 | 		      unsigned long max_nr_move, unsigned long max_load_move, | 
 | 		      struct sched_domain *sd, enum cpu_idle_type idle, | 
 | 		      int *all_pinned, unsigned long *load_moved, | 
 | 		      int this_best_prio, int best_prio, int best_prio_seen, | 
 | 		      struct rq_iterator *iterator); | 
 |  | 
 | #include "sched_stats.h" | 
 | #include "sched_rt.c" | 
 | #include "sched_fair.c" | 
 | #include "sched_idletask.c" | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | # include "sched_debug.c" | 
 | #endif | 
 |  | 
 | #define sched_class_highest (&rt_sched_class) | 
 |  | 
 | static void set_load_weight(struct task_struct *p) | 
 | { | 
 | 	task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime; | 
 | 	p->se.wait_runtime = 0; | 
 |  | 
 | 	if (task_has_rt_policy(p)) { | 
 | 		p->se.load.weight = prio_to_weight[0] * 2; | 
 | 		p->se.load.inv_weight = prio_to_wmult[0] >> 1; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * SCHED_IDLE tasks get minimal weight: | 
 | 	 */ | 
 | 	if (p->policy == SCHED_IDLE) { | 
 | 		p->se.load.weight = WEIGHT_IDLEPRIO; | 
 | 		p->se.load.inv_weight = WMULT_IDLEPRIO; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO]; | 
 | 	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO]; | 
 | } | 
 |  | 
 | static void | 
 | enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now) | 
 | { | 
 | 	sched_info_queued(p); | 
 | 	p->sched_class->enqueue_task(rq, p, wakeup, now); | 
 | 	p->se.on_rq = 1; | 
 | } | 
 |  | 
 | static void | 
 | dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now) | 
 | { | 
 | 	p->sched_class->dequeue_task(rq, p, sleep, now); | 
 | 	p->se.on_rq = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * __normal_prio - return the priority that is based on the static prio | 
 |  */ | 
 | static inline int __normal_prio(struct task_struct *p) | 
 | { | 
 | 	return p->static_prio; | 
 | } | 
 |  | 
 | /* | 
 |  * Calculate the expected normal priority: i.e. priority | 
 |  * without taking RT-inheritance into account. Might be | 
 |  * boosted by interactivity modifiers. Changes upon fork, | 
 |  * setprio syscalls, and whenever the interactivity | 
 |  * estimator recalculates. | 
 |  */ | 
 | static inline int normal_prio(struct task_struct *p) | 
 | { | 
 | 	int prio; | 
 |  | 
 | 	if (task_has_rt_policy(p)) | 
 | 		prio = MAX_RT_PRIO-1 - p->rt_priority; | 
 | 	else | 
 | 		prio = __normal_prio(p); | 
 | 	return prio; | 
 | } | 
 |  | 
 | /* | 
 |  * Calculate the current priority, i.e. the priority | 
 |  * taken into account by the scheduler. This value might | 
 |  * be boosted by RT tasks, or might be boosted by | 
 |  * interactivity modifiers. Will be RT if the task got | 
 |  * RT-boosted. If not then it returns p->normal_prio. | 
 |  */ | 
 | static int effective_prio(struct task_struct *p) | 
 | { | 
 | 	p->normal_prio = normal_prio(p); | 
 | 	/* | 
 | 	 * If we are RT tasks or we were boosted to RT priority, | 
 | 	 * keep the priority unchanged. Otherwise, update priority | 
 | 	 * to the normal priority: | 
 | 	 */ | 
 | 	if (!rt_prio(p->prio)) | 
 | 		return p->normal_prio; | 
 | 	return p->prio; | 
 | } | 
 |  | 
 | /* | 
 |  * activate_task - move a task to the runqueue. | 
 |  */ | 
 | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) | 
 | { | 
 | 	u64 now = rq_clock(rq); | 
 |  | 
 | 	if (p->state == TASK_UNINTERRUPTIBLE) | 
 | 		rq->nr_uninterruptible--; | 
 |  | 
 | 	enqueue_task(rq, p, wakeup, now); | 
 | 	inc_nr_running(p, rq, now); | 
 | } | 
 |  | 
 | /* | 
 |  * activate_idle_task - move idle task to the _front_ of runqueue. | 
 |  */ | 
 | static inline void activate_idle_task(struct task_struct *p, struct rq *rq) | 
 | { | 
 | 	u64 now = rq_clock(rq); | 
 |  | 
 | 	if (p->state == TASK_UNINTERRUPTIBLE) | 
 | 		rq->nr_uninterruptible--; | 
 |  | 
 | 	enqueue_task(rq, p, 0, now); | 
 | 	inc_nr_running(p, rq, now); | 
 | } | 
 |  | 
 | /* | 
 |  * deactivate_task - remove a task from the runqueue. | 
 |  */ | 
 | static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) | 
 | { | 
 | 	u64 now = rq_clock(rq); | 
 |  | 
 | 	if (p->state == TASK_UNINTERRUPTIBLE) | 
 | 		rq->nr_uninterruptible++; | 
 |  | 
 | 	dequeue_task(rq, p, sleep, now); | 
 | 	dec_nr_running(p, rq, now); | 
 | } | 
 |  | 
 | /** | 
 |  * task_curr - is this task currently executing on a CPU? | 
 |  * @p: the task in question. | 
 |  */ | 
 | inline int task_curr(const struct task_struct *p) | 
 | { | 
 | 	return cpu_curr(task_cpu(p)) == p; | 
 | } | 
 |  | 
 | /* Used instead of source_load when we know the type == 0 */ | 
 | unsigned long weighted_cpuload(const int cpu) | 
 | { | 
 | 	return cpu_rq(cpu)->ls.load.weight; | 
 | } | 
 |  | 
 | static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	task_thread_info(p)->cpu = cpu; | 
 | 	set_task_cfs_rq(p); | 
 | #endif | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | void set_task_cpu(struct task_struct *p, unsigned int new_cpu) | 
 | { | 
 | 	int old_cpu = task_cpu(p); | 
 | 	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu); | 
 | 	u64 clock_offset, fair_clock_offset; | 
 |  | 
 | 	clock_offset = old_rq->clock - new_rq->clock; | 
 | 	fair_clock_offset = old_rq->cfs.fair_clock - | 
 | 						 new_rq->cfs.fair_clock; | 
 | 	if (p->se.wait_start) | 
 | 		p->se.wait_start -= clock_offset; | 
 | 	if (p->se.wait_start_fair) | 
 | 		p->se.wait_start_fair -= fair_clock_offset; | 
 | 	if (p->se.sleep_start) | 
 | 		p->se.sleep_start -= clock_offset; | 
 | 	if (p->se.block_start) | 
 | 		p->se.block_start -= clock_offset; | 
 | 	if (p->se.sleep_start_fair) | 
 | 		p->se.sleep_start_fair -= fair_clock_offset; | 
 |  | 
 | 	__set_task_cpu(p, new_cpu); | 
 | } | 
 |  | 
 | struct migration_req { | 
 | 	struct list_head list; | 
 |  | 
 | 	struct task_struct *task; | 
 | 	int dest_cpu; | 
 |  | 
 | 	struct completion done; | 
 | }; | 
 |  | 
 | /* | 
 |  * The task's runqueue lock must be held. | 
 |  * Returns true if you have to wait for migration thread. | 
 |  */ | 
 | static int | 
 | migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req) | 
 | { | 
 | 	struct rq *rq = task_rq(p); | 
 |  | 
 | 	/* | 
 | 	 * If the task is not on a runqueue (and not running), then | 
 | 	 * it is sufficient to simply update the task's cpu field. | 
 | 	 */ | 
 | 	if (!p->se.on_rq && !task_running(rq, p)) { | 
 | 		set_task_cpu(p, dest_cpu); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	init_completion(&req->done); | 
 | 	req->task = p; | 
 | 	req->dest_cpu = dest_cpu; | 
 | 	list_add(&req->list, &rq->migration_queue); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * wait_task_inactive - wait for a thread to unschedule. | 
 |  * | 
 |  * The caller must ensure that the task *will* unschedule sometime soon, | 
 |  * else this function might spin for a *long* time. This function can't | 
 |  * be called with interrupts off, or it may introduce deadlock with | 
 |  * smp_call_function() if an IPI is sent by the same process we are | 
 |  * waiting to become inactive. | 
 |  */ | 
 | void wait_task_inactive(struct task_struct *p) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int running, on_rq; | 
 | 	struct rq *rq; | 
 |  | 
 | repeat: | 
 | 	/* | 
 | 	 * We do the initial early heuristics without holding | 
 | 	 * any task-queue locks at all. We'll only try to get | 
 | 	 * the runqueue lock when things look like they will | 
 | 	 * work out! | 
 | 	 */ | 
 | 	rq = task_rq(p); | 
 |  | 
 | 	/* | 
 | 	 * If the task is actively running on another CPU | 
 | 	 * still, just relax and busy-wait without holding | 
 | 	 * any locks. | 
 | 	 * | 
 | 	 * NOTE! Since we don't hold any locks, it's not | 
 | 	 * even sure that "rq" stays as the right runqueue! | 
 | 	 * But we don't care, since "task_running()" will | 
 | 	 * return false if the runqueue has changed and p | 
 | 	 * is actually now running somewhere else! | 
 | 	 */ | 
 | 	while (task_running(rq, p)) | 
 | 		cpu_relax(); | 
 |  | 
 | 	/* | 
 | 	 * Ok, time to look more closely! We need the rq | 
 | 	 * lock now, to be *sure*. If we're wrong, we'll | 
 | 	 * just go back and repeat. | 
 | 	 */ | 
 | 	rq = task_rq_lock(p, &flags); | 
 | 	running = task_running(rq, p); | 
 | 	on_rq = p->se.on_rq; | 
 | 	task_rq_unlock(rq, &flags); | 
 |  | 
 | 	/* | 
 | 	 * Was it really running after all now that we | 
 | 	 * checked with the proper locks actually held? | 
 | 	 * | 
 | 	 * Oops. Go back and try again.. | 
 | 	 */ | 
 | 	if (unlikely(running)) { | 
 | 		cpu_relax(); | 
 | 		goto repeat; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * It's not enough that it's not actively running, | 
 | 	 * it must be off the runqueue _entirely_, and not | 
 | 	 * preempted! | 
 | 	 * | 
 | 	 * So if it wa still runnable (but just not actively | 
 | 	 * running right now), it's preempted, and we should | 
 | 	 * yield - it could be a while. | 
 | 	 */ | 
 | 	if (unlikely(on_rq)) { | 
 | 		yield(); | 
 | 		goto repeat; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Ahh, all good. It wasn't running, and it wasn't | 
 | 	 * runnable, which means that it will never become | 
 | 	 * running in the future either. We're all done! | 
 | 	 */ | 
 | } | 
 |  | 
 | /*** | 
 |  * kick_process - kick a running thread to enter/exit the kernel | 
 |  * @p: the to-be-kicked thread | 
 |  * | 
 |  * Cause a process which is running on another CPU to enter | 
 |  * kernel-mode, without any delay. (to get signals handled.) | 
 |  * | 
 |  * NOTE: this function doesnt have to take the runqueue lock, | 
 |  * because all it wants to ensure is that the remote task enters | 
 |  * the kernel. If the IPI races and the task has been migrated | 
 |  * to another CPU then no harm is done and the purpose has been | 
 |  * achieved as well. | 
 |  */ | 
 | void kick_process(struct task_struct *p) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	preempt_disable(); | 
 | 	cpu = task_cpu(p); | 
 | 	if ((cpu != smp_processor_id()) && task_curr(p)) | 
 | 		smp_send_reschedule(cpu); | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | /* | 
 |  * Return a low guess at the load of a migration-source cpu weighted | 
 |  * according to the scheduling class and "nice" value. | 
 |  * | 
 |  * We want to under-estimate the load of migration sources, to | 
 |  * balance conservatively. | 
 |  */ | 
 | static inline unsigned long source_load(int cpu, int type) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	unsigned long total = weighted_cpuload(cpu); | 
 |  | 
 | 	if (type == 0) | 
 | 		return total; | 
 |  | 
 | 	return min(rq->cpu_load[type-1], total); | 
 | } | 
 |  | 
 | /* | 
 |  * Return a high guess at the load of a migration-target cpu weighted | 
 |  * according to the scheduling class and "nice" value. | 
 |  */ | 
 | static inline unsigned long target_load(int cpu, int type) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	unsigned long total = weighted_cpuload(cpu); | 
 |  | 
 | 	if (type == 0) | 
 | 		return total; | 
 |  | 
 | 	return max(rq->cpu_load[type-1], total); | 
 | } | 
 |  | 
 | /* | 
 |  * Return the average load per task on the cpu's run queue | 
 |  */ | 
 | static inline unsigned long cpu_avg_load_per_task(int cpu) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	unsigned long total = weighted_cpuload(cpu); | 
 | 	unsigned long n = rq->nr_running; | 
 |  | 
 | 	return n ? total / n : SCHED_LOAD_SCALE; | 
 | } | 
 |  | 
 | /* | 
 |  * find_idlest_group finds and returns the least busy CPU group within the | 
 |  * domain. | 
 |  */ | 
 | static struct sched_group * | 
 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) | 
 | { | 
 | 	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups; | 
 | 	unsigned long min_load = ULONG_MAX, this_load = 0; | 
 | 	int load_idx = sd->forkexec_idx; | 
 | 	int imbalance = 100 + (sd->imbalance_pct-100)/2; | 
 |  | 
 | 	do { | 
 | 		unsigned long load, avg_load; | 
 | 		int local_group; | 
 | 		int i; | 
 |  | 
 | 		/* Skip over this group if it has no CPUs allowed */ | 
 | 		if (!cpus_intersects(group->cpumask, p->cpus_allowed)) | 
 | 			goto nextgroup; | 
 |  | 
 | 		local_group = cpu_isset(this_cpu, group->cpumask); | 
 |  | 
 | 		/* Tally up the load of all CPUs in the group */ | 
 | 		avg_load = 0; | 
 |  | 
 | 		for_each_cpu_mask(i, group->cpumask) { | 
 | 			/* Bias balancing toward cpus of our domain */ | 
 | 			if (local_group) | 
 | 				load = source_load(i, load_idx); | 
 | 			else | 
 | 				load = target_load(i, load_idx); | 
 |  | 
 | 			avg_load += load; | 
 | 		} | 
 |  | 
 | 		/* Adjust by relative CPU power of the group */ | 
 | 		avg_load = sg_div_cpu_power(group, | 
 | 				avg_load * SCHED_LOAD_SCALE); | 
 |  | 
 | 		if (local_group) { | 
 | 			this_load = avg_load; | 
 | 			this = group; | 
 | 		} else if (avg_load < min_load) { | 
 | 			min_load = avg_load; | 
 | 			idlest = group; | 
 | 		} | 
 | nextgroup: | 
 | 		group = group->next; | 
 | 	} while (group != sd->groups); | 
 |  | 
 | 	if (!idlest || 100*this_load < imbalance*min_load) | 
 | 		return NULL; | 
 | 	return idlest; | 
 | } | 
 |  | 
 | /* | 
 |  * find_idlest_cpu - find the idlest cpu among the cpus in group. | 
 |  */ | 
 | static int | 
 | find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) | 
 | { | 
 | 	cpumask_t tmp; | 
 | 	unsigned long load, min_load = ULONG_MAX; | 
 | 	int idlest = -1; | 
 | 	int i; | 
 |  | 
 | 	/* Traverse only the allowed CPUs */ | 
 | 	cpus_and(tmp, group->cpumask, p->cpus_allowed); | 
 |  | 
 | 	for_each_cpu_mask(i, tmp) { | 
 | 		load = weighted_cpuload(i); | 
 |  | 
 | 		if (load < min_load || (load == min_load && i == this_cpu)) { | 
 | 			min_load = load; | 
 | 			idlest = i; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return idlest; | 
 | } | 
 |  | 
 | /* | 
 |  * sched_balance_self: balance the current task (running on cpu) in domains | 
 |  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and | 
 |  * SD_BALANCE_EXEC. | 
 |  * | 
 |  * Balance, ie. select the least loaded group. | 
 |  * | 
 |  * Returns the target CPU number, or the same CPU if no balancing is needed. | 
 |  * | 
 |  * preempt must be disabled. | 
 |  */ | 
 | static int sched_balance_self(int cpu, int flag) | 
 | { | 
 | 	struct task_struct *t = current; | 
 | 	struct sched_domain *tmp, *sd = NULL; | 
 |  | 
 | 	for_each_domain(cpu, tmp) { | 
 | 		/* | 
 | 		 * If power savings logic is enabled for a domain, stop there. | 
 | 		 */ | 
 | 		if (tmp->flags & SD_POWERSAVINGS_BALANCE) | 
 | 			break; | 
 | 		if (tmp->flags & flag) | 
 | 			sd = tmp; | 
 | 	} | 
 |  | 
 | 	while (sd) { | 
 | 		cpumask_t span; | 
 | 		struct sched_group *group; | 
 | 		int new_cpu, weight; | 
 |  | 
 | 		if (!(sd->flags & flag)) { | 
 | 			sd = sd->child; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		span = sd->span; | 
 | 		group = find_idlest_group(sd, t, cpu); | 
 | 		if (!group) { | 
 | 			sd = sd->child; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		new_cpu = find_idlest_cpu(group, t, cpu); | 
 | 		if (new_cpu == -1 || new_cpu == cpu) { | 
 | 			/* Now try balancing at a lower domain level of cpu */ | 
 | 			sd = sd->child; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* Now try balancing at a lower domain level of new_cpu */ | 
 | 		cpu = new_cpu; | 
 | 		sd = NULL; | 
 | 		weight = cpus_weight(span); | 
 | 		for_each_domain(cpu, tmp) { | 
 | 			if (weight <= cpus_weight(tmp->span)) | 
 | 				break; | 
 | 			if (tmp->flags & flag) | 
 | 				sd = tmp; | 
 | 		} | 
 | 		/* while loop will break here if sd == NULL */ | 
 | 	} | 
 |  | 
 | 	return cpu; | 
 | } | 
 |  | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | /* | 
 |  * wake_idle() will wake a task on an idle cpu if task->cpu is | 
 |  * not idle and an idle cpu is available.  The span of cpus to | 
 |  * search starts with cpus closest then further out as needed, | 
 |  * so we always favor a closer, idle cpu. | 
 |  * | 
 |  * Returns the CPU we should wake onto. | 
 |  */ | 
 | #if defined(ARCH_HAS_SCHED_WAKE_IDLE) | 
 | static int wake_idle(int cpu, struct task_struct *p) | 
 | { | 
 | 	cpumask_t tmp; | 
 | 	struct sched_domain *sd; | 
 | 	int i; | 
 |  | 
 | 	/* | 
 | 	 * If it is idle, then it is the best cpu to run this task. | 
 | 	 * | 
 | 	 * This cpu is also the best, if it has more than one task already. | 
 | 	 * Siblings must be also busy(in most cases) as they didn't already | 
 | 	 * pickup the extra load from this cpu and hence we need not check | 
 | 	 * sibling runqueue info. This will avoid the checks and cache miss | 
 | 	 * penalities associated with that. | 
 | 	 */ | 
 | 	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1) | 
 | 		return cpu; | 
 |  | 
 | 	for_each_domain(cpu, sd) { | 
 | 		if (sd->flags & SD_WAKE_IDLE) { | 
 | 			cpus_and(tmp, sd->span, p->cpus_allowed); | 
 | 			for_each_cpu_mask(i, tmp) { | 
 | 				if (idle_cpu(i)) | 
 | 					return i; | 
 | 			} | 
 | 		} else { | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	return cpu; | 
 | } | 
 | #else | 
 | static inline int wake_idle(int cpu, struct task_struct *p) | 
 | { | 
 | 	return cpu; | 
 | } | 
 | #endif | 
 |  | 
 | /*** | 
 |  * try_to_wake_up - wake up a thread | 
 |  * @p: the to-be-woken-up thread | 
 |  * @state: the mask of task states that can be woken | 
 |  * @sync: do a synchronous wakeup? | 
 |  * | 
 |  * Put it on the run-queue if it's not already there. The "current" | 
 |  * thread is always on the run-queue (except when the actual | 
 |  * re-schedule is in progress), and as such you're allowed to do | 
 |  * the simpler "current->state = TASK_RUNNING" to mark yourself | 
 |  * runnable without the overhead of this. | 
 |  * | 
 |  * returns failure only if the task is already active. | 
 |  */ | 
 | static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) | 
 | { | 
 | 	int cpu, this_cpu, success = 0; | 
 | 	unsigned long flags; | 
 | 	long old_state; | 
 | 	struct rq *rq; | 
 | #ifdef CONFIG_SMP | 
 | 	struct sched_domain *sd, *this_sd = NULL; | 
 | 	unsigned long load, this_load; | 
 | 	int new_cpu; | 
 | #endif | 
 |  | 
 | 	rq = task_rq_lock(p, &flags); | 
 | 	old_state = p->state; | 
 | 	if (!(old_state & state)) | 
 | 		goto out; | 
 |  | 
 | 	if (p->se.on_rq) | 
 | 		goto out_running; | 
 |  | 
 | 	cpu = task_cpu(p); | 
 | 	this_cpu = smp_processor_id(); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	if (unlikely(task_running(rq, p))) | 
 | 		goto out_activate; | 
 |  | 
 | 	new_cpu = cpu; | 
 |  | 
 | 	schedstat_inc(rq, ttwu_cnt); | 
 | 	if (cpu == this_cpu) { | 
 | 		schedstat_inc(rq, ttwu_local); | 
 | 		goto out_set_cpu; | 
 | 	} | 
 |  | 
 | 	for_each_domain(this_cpu, sd) { | 
 | 		if (cpu_isset(cpu, sd->span)) { | 
 | 			schedstat_inc(sd, ttwu_wake_remote); | 
 | 			this_sd = sd; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed))) | 
 | 		goto out_set_cpu; | 
 |  | 
 | 	/* | 
 | 	 * Check for affine wakeup and passive balancing possibilities. | 
 | 	 */ | 
 | 	if (this_sd) { | 
 | 		int idx = this_sd->wake_idx; | 
 | 		unsigned int imbalance; | 
 |  | 
 | 		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2; | 
 |  | 
 | 		load = source_load(cpu, idx); | 
 | 		this_load = target_load(this_cpu, idx); | 
 |  | 
 | 		new_cpu = this_cpu; /* Wake to this CPU if we can */ | 
 |  | 
 | 		if (this_sd->flags & SD_WAKE_AFFINE) { | 
 | 			unsigned long tl = this_load; | 
 | 			unsigned long tl_per_task; | 
 |  | 
 | 			tl_per_task = cpu_avg_load_per_task(this_cpu); | 
 |  | 
 | 			/* | 
 | 			 * If sync wakeup then subtract the (maximum possible) | 
 | 			 * effect of the currently running task from the load | 
 | 			 * of the current CPU: | 
 | 			 */ | 
 | 			if (sync) | 
 | 				tl -= current->se.load.weight; | 
 |  | 
 | 			if ((tl <= load && | 
 | 				tl + target_load(cpu, idx) <= tl_per_task) || | 
 | 			       100*(tl + p->se.load.weight) <= imbalance*load) { | 
 | 				/* | 
 | 				 * This domain has SD_WAKE_AFFINE and | 
 | 				 * p is cache cold in this domain, and | 
 | 				 * there is no bad imbalance. | 
 | 				 */ | 
 | 				schedstat_inc(this_sd, ttwu_move_affine); | 
 | 				goto out_set_cpu; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Start passive balancing when half the imbalance_pct | 
 | 		 * limit is reached. | 
 | 		 */ | 
 | 		if (this_sd->flags & SD_WAKE_BALANCE) { | 
 | 			if (imbalance*this_load <= 100*load) { | 
 | 				schedstat_inc(this_sd, ttwu_move_balance); | 
 | 				goto out_set_cpu; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */ | 
 | out_set_cpu: | 
 | 	new_cpu = wake_idle(new_cpu, p); | 
 | 	if (new_cpu != cpu) { | 
 | 		set_task_cpu(p, new_cpu); | 
 | 		task_rq_unlock(rq, &flags); | 
 | 		/* might preempt at this point */ | 
 | 		rq = task_rq_lock(p, &flags); | 
 | 		old_state = p->state; | 
 | 		if (!(old_state & state)) | 
 | 			goto out; | 
 | 		if (p->se.on_rq) | 
 | 			goto out_running; | 
 |  | 
 | 		this_cpu = smp_processor_id(); | 
 | 		cpu = task_cpu(p); | 
 | 	} | 
 |  | 
 | out_activate: | 
 | #endif /* CONFIG_SMP */ | 
 | 	activate_task(rq, p, 1); | 
 | 	/* | 
 | 	 * Sync wakeups (i.e. those types of wakeups where the waker | 
 | 	 * has indicated that it will leave the CPU in short order) | 
 | 	 * don't trigger a preemption, if the woken up task will run on | 
 | 	 * this cpu. (in this case the 'I will reschedule' promise of | 
 | 	 * the waker guarantees that the freshly woken up task is going | 
 | 	 * to be considered on this CPU.) | 
 | 	 */ | 
 | 	if (!sync || cpu != this_cpu) | 
 | 		check_preempt_curr(rq, p); | 
 | 	success = 1; | 
 |  | 
 | out_running: | 
 | 	p->state = TASK_RUNNING; | 
 | out: | 
 | 	task_rq_unlock(rq, &flags); | 
 |  | 
 | 	return success; | 
 | } | 
 |  | 
 | int fastcall wake_up_process(struct task_struct *p) | 
 | { | 
 | 	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED | | 
 | 				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0); | 
 | } | 
 | EXPORT_SYMBOL(wake_up_process); | 
 |  | 
 | int fastcall wake_up_state(struct task_struct *p, unsigned int state) | 
 | { | 
 | 	return try_to_wake_up(p, state, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Perform scheduler related setup for a newly forked process p. | 
 |  * p is forked by current. | 
 |  * | 
 |  * __sched_fork() is basic setup used by init_idle() too: | 
 |  */ | 
 | static void __sched_fork(struct task_struct *p) | 
 | { | 
 | 	p->se.wait_start_fair		= 0; | 
 | 	p->se.wait_start		= 0; | 
 | 	p->se.exec_start		= 0; | 
 | 	p->se.sum_exec_runtime		= 0; | 
 | 	p->se.delta_exec		= 0; | 
 | 	p->se.delta_fair_run		= 0; | 
 | 	p->se.delta_fair_sleep		= 0; | 
 | 	p->se.wait_runtime		= 0; | 
 | 	p->se.sum_wait_runtime		= 0; | 
 | 	p->se.sum_sleep_runtime		= 0; | 
 | 	p->se.sleep_start		= 0; | 
 | 	p->se.sleep_start_fair		= 0; | 
 | 	p->se.block_start		= 0; | 
 | 	p->se.sleep_max			= 0; | 
 | 	p->se.block_max			= 0; | 
 | 	p->se.exec_max			= 0; | 
 | 	p->se.wait_max			= 0; | 
 | 	p->se.wait_runtime_overruns	= 0; | 
 | 	p->se.wait_runtime_underruns	= 0; | 
 |  | 
 | 	INIT_LIST_HEAD(&p->run_list); | 
 | 	p->se.on_rq = 0; | 
 |  | 
 | #ifdef CONFIG_PREEMPT_NOTIFIERS | 
 | 	INIT_HLIST_HEAD(&p->preempt_notifiers); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * We mark the process as running here, but have not actually | 
 | 	 * inserted it onto the runqueue yet. This guarantees that | 
 | 	 * nobody will actually run it, and a signal or other external | 
 | 	 * event cannot wake it up and insert it on the runqueue either. | 
 | 	 */ | 
 | 	p->state = TASK_RUNNING; | 
 | } | 
 |  | 
 | /* | 
 |  * fork()/clone()-time setup: | 
 |  */ | 
 | void sched_fork(struct task_struct *p, int clone_flags) | 
 | { | 
 | 	int cpu = get_cpu(); | 
 |  | 
 | 	__sched_fork(p); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	cpu = sched_balance_self(cpu, SD_BALANCE_FORK); | 
 | #endif | 
 | 	__set_task_cpu(p, cpu); | 
 |  | 
 | 	/* | 
 | 	 * Make sure we do not leak PI boosting priority to the child: | 
 | 	 */ | 
 | 	p->prio = current->normal_prio; | 
 |  | 
 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) | 
 | 	if (likely(sched_info_on())) | 
 | 		memset(&p->sched_info, 0, sizeof(p->sched_info)); | 
 | #endif | 
 | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) | 
 | 	p->oncpu = 0; | 
 | #endif | 
 | #ifdef CONFIG_PREEMPT | 
 | 	/* Want to start with kernel preemption disabled. */ | 
 | 	task_thread_info(p)->preempt_count = 1; | 
 | #endif | 
 | 	put_cpu(); | 
 | } | 
 |  | 
 | /* | 
 |  * After fork, child runs first. (default) If set to 0 then | 
 |  * parent will (try to) run first. | 
 |  */ | 
 | unsigned int __read_mostly sysctl_sched_child_runs_first = 1; | 
 |  | 
 | /* | 
 |  * wake_up_new_task - wake up a newly created task for the first time. | 
 |  * | 
 |  * This function will do some initial scheduler statistics housekeeping | 
 |  * that must be done for every newly created context, then puts the task | 
 |  * on the runqueue and wakes it. | 
 |  */ | 
 | void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct rq *rq; | 
 | 	int this_cpu; | 
 |  | 
 | 	rq = task_rq_lock(p, &flags); | 
 | 	BUG_ON(p->state != TASK_RUNNING); | 
 | 	this_cpu = smp_processor_id(); /* parent's CPU */ | 
 |  | 
 | 	p->prio = effective_prio(p); | 
 |  | 
 | 	if (!sysctl_sched_child_runs_first || (clone_flags & CLONE_VM) || | 
 | 			task_cpu(p) != this_cpu || !current->se.on_rq) { | 
 | 		activate_task(rq, p, 0); | 
 | 	} else { | 
 | 		/* | 
 | 		 * Let the scheduling class do new task startup | 
 | 		 * management (if any): | 
 | 		 */ | 
 | 		p->sched_class->task_new(rq, p); | 
 | 	} | 
 | 	check_preempt_curr(rq, p); | 
 | 	task_rq_unlock(rq, &flags); | 
 | } | 
 |  | 
 | #ifdef CONFIG_PREEMPT_NOTIFIERS | 
 |  | 
 | /** | 
 |  * preempt_notifier_register - tell me when current is being being preempted | 
 |  *                         and rescheduled | 
 |  */ | 
 | void preempt_notifier_register(struct preempt_notifier *notifier) | 
 | { | 
 | 	hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); | 
 | } | 
 | EXPORT_SYMBOL_GPL(preempt_notifier_register); | 
 |  | 
 | /** | 
 |  * preempt_notifier_unregister - no longer interested in preemption notifications | 
 |  * | 
 |  * This is safe to call from within a preemption notifier. | 
 |  */ | 
 | void preempt_notifier_unregister(struct preempt_notifier *notifier) | 
 | { | 
 | 	hlist_del(¬ifier->link); | 
 | } | 
 | EXPORT_SYMBOL_GPL(preempt_notifier_unregister); | 
 |  | 
 | static void fire_sched_in_preempt_notifiers(struct task_struct *curr) | 
 | { | 
 | 	struct preempt_notifier *notifier; | 
 | 	struct hlist_node *node; | 
 |  | 
 | 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) | 
 | 		notifier->ops->sched_in(notifier, raw_smp_processor_id()); | 
 | } | 
 |  | 
 | static void | 
 | fire_sched_out_preempt_notifiers(struct task_struct *curr, | 
 | 				 struct task_struct *next) | 
 | { | 
 | 	struct preempt_notifier *notifier; | 
 | 	struct hlist_node *node; | 
 |  | 
 | 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) | 
 | 		notifier->ops->sched_out(notifier, next); | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static void fire_sched_in_preempt_notifiers(struct task_struct *curr) | 
 | { | 
 | } | 
 |  | 
 | static void | 
 | fire_sched_out_preempt_notifiers(struct task_struct *curr, | 
 | 				 struct task_struct *next) | 
 | { | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | /** | 
 |  * prepare_task_switch - prepare to switch tasks | 
 |  * @rq: the runqueue preparing to switch | 
 |  * @next: the task we are going to switch to. | 
 |  * | 
 |  * This is called with the rq lock held and interrupts off. It must | 
 |  * be paired with a subsequent finish_task_switch after the context | 
 |  * switch. | 
 |  * | 
 |  * prepare_task_switch sets up locking and calls architecture specific | 
 |  * hooks. | 
 |  */ | 
 | static inline void | 
 | prepare_task_switch(struct rq *rq, struct task_struct *prev, | 
 | 		    struct task_struct *next) | 
 | { | 
 | 	fire_sched_out_preempt_notifiers(prev, next); | 
 | 	prepare_lock_switch(rq, next); | 
 | 	prepare_arch_switch(next); | 
 | } | 
 |  | 
 | /** | 
 |  * finish_task_switch - clean up after a task-switch | 
 |  * @rq: runqueue associated with task-switch | 
 |  * @prev: the thread we just switched away from. | 
 |  * | 
 |  * finish_task_switch must be called after the context switch, paired | 
 |  * with a prepare_task_switch call before the context switch. | 
 |  * finish_task_switch will reconcile locking set up by prepare_task_switch, | 
 |  * and do any other architecture-specific cleanup actions. | 
 |  * | 
 |  * Note that we may have delayed dropping an mm in context_switch(). If | 
 |  * so, we finish that here outside of the runqueue lock.  (Doing it | 
 |  * with the lock held can cause deadlocks; see schedule() for | 
 |  * details.) | 
 |  */ | 
 | static inline void finish_task_switch(struct rq *rq, struct task_struct *prev) | 
 | 	__releases(rq->lock) | 
 | { | 
 | 	struct mm_struct *mm = rq->prev_mm; | 
 | 	long prev_state; | 
 |  | 
 | 	rq->prev_mm = NULL; | 
 |  | 
 | 	/* | 
 | 	 * A task struct has one reference for the use as "current". | 
 | 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls | 
 | 	 * schedule one last time. The schedule call will never return, and | 
 | 	 * the scheduled task must drop that reference. | 
 | 	 * The test for TASK_DEAD must occur while the runqueue locks are | 
 | 	 * still held, otherwise prev could be scheduled on another cpu, die | 
 | 	 * there before we look at prev->state, and then the reference would | 
 | 	 * be dropped twice. | 
 | 	 *		Manfred Spraul <manfred@colorfullife.com> | 
 | 	 */ | 
 | 	prev_state = prev->state; | 
 | 	finish_arch_switch(prev); | 
 | 	finish_lock_switch(rq, prev); | 
 | 	fire_sched_in_preempt_notifiers(current); | 
 | 	if (mm) | 
 | 		mmdrop(mm); | 
 | 	if (unlikely(prev_state == TASK_DEAD)) { | 
 | 		/* | 
 | 		 * Remove function-return probe instances associated with this | 
 | 		 * task and put them back on the free list. | 
 | 		 */ | 
 | 		kprobe_flush_task(prev); | 
 | 		put_task_struct(prev); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * schedule_tail - first thing a freshly forked thread must call. | 
 |  * @prev: the thread we just switched away from. | 
 |  */ | 
 | asmlinkage void schedule_tail(struct task_struct *prev) | 
 | 	__releases(rq->lock) | 
 | { | 
 | 	struct rq *rq = this_rq(); | 
 |  | 
 | 	finish_task_switch(rq, prev); | 
 | #ifdef __ARCH_WANT_UNLOCKED_CTXSW | 
 | 	/* In this case, finish_task_switch does not reenable preemption */ | 
 | 	preempt_enable(); | 
 | #endif | 
 | 	if (current->set_child_tid) | 
 | 		put_user(current->pid, current->set_child_tid); | 
 | } | 
 |  | 
 | /* | 
 |  * context_switch - switch to the new MM and the new | 
 |  * thread's register state. | 
 |  */ | 
 | static inline void | 
 | context_switch(struct rq *rq, struct task_struct *prev, | 
 | 	       struct task_struct *next) | 
 | { | 
 | 	struct mm_struct *mm, *oldmm; | 
 |  | 
 | 	prepare_task_switch(rq, prev, next); | 
 | 	mm = next->mm; | 
 | 	oldmm = prev->active_mm; | 
 | 	/* | 
 | 	 * For paravirt, this is coupled with an exit in switch_to to | 
 | 	 * combine the page table reload and the switch backend into | 
 | 	 * one hypercall. | 
 | 	 */ | 
 | 	arch_enter_lazy_cpu_mode(); | 
 |  | 
 | 	if (unlikely(!mm)) { | 
 | 		next->active_mm = oldmm; | 
 | 		atomic_inc(&oldmm->mm_count); | 
 | 		enter_lazy_tlb(oldmm, next); | 
 | 	} else | 
 | 		switch_mm(oldmm, mm, next); | 
 |  | 
 | 	if (unlikely(!prev->mm)) { | 
 | 		prev->active_mm = NULL; | 
 | 		rq->prev_mm = oldmm; | 
 | 	} | 
 | 	/* | 
 | 	 * Since the runqueue lock will be released by the next | 
 | 	 * task (which is an invalid locking op but in the case | 
 | 	 * of the scheduler it's an obvious special-case), so we | 
 | 	 * do an early lockdep release here: | 
 | 	 */ | 
 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW | 
 | 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_); | 
 | #endif | 
 |  | 
 | 	/* Here we just switch the register state and the stack. */ | 
 | 	switch_to(prev, next, prev); | 
 |  | 
 | 	barrier(); | 
 | 	/* | 
 | 	 * this_rq must be evaluated again because prev may have moved | 
 | 	 * CPUs since it called schedule(), thus the 'rq' on its stack | 
 | 	 * frame will be invalid. | 
 | 	 */ | 
 | 	finish_task_switch(this_rq(), prev); | 
 | } | 
 |  | 
 | /* | 
 |  * nr_running, nr_uninterruptible and nr_context_switches: | 
 |  * | 
 |  * externally visible scheduler statistics: current number of runnable | 
 |  * threads, current number of uninterruptible-sleeping threads, total | 
 |  * number of context switches performed since bootup. | 
 |  */ | 
 | unsigned long nr_running(void) | 
 | { | 
 | 	unsigned long i, sum = 0; | 
 |  | 
 | 	for_each_online_cpu(i) | 
 | 		sum += cpu_rq(i)->nr_running; | 
 |  | 
 | 	return sum; | 
 | } | 
 |  | 
 | unsigned long nr_uninterruptible(void) | 
 | { | 
 | 	unsigned long i, sum = 0; | 
 |  | 
 | 	for_each_possible_cpu(i) | 
 | 		sum += cpu_rq(i)->nr_uninterruptible; | 
 |  | 
 | 	/* | 
 | 	 * Since we read the counters lockless, it might be slightly | 
 | 	 * inaccurate. Do not allow it to go below zero though: | 
 | 	 */ | 
 | 	if (unlikely((long)sum < 0)) | 
 | 		sum = 0; | 
 |  | 
 | 	return sum; | 
 | } | 
 |  | 
 | unsigned long long nr_context_switches(void) | 
 | { | 
 | 	int i; | 
 | 	unsigned long long sum = 0; | 
 |  | 
 | 	for_each_possible_cpu(i) | 
 | 		sum += cpu_rq(i)->nr_switches; | 
 |  | 
 | 	return sum; | 
 | } | 
 |  | 
 | unsigned long nr_iowait(void) | 
 | { | 
 | 	unsigned long i, sum = 0; | 
 |  | 
 | 	for_each_possible_cpu(i) | 
 | 		sum += atomic_read(&cpu_rq(i)->nr_iowait); | 
 |  | 
 | 	return sum; | 
 | } | 
 |  | 
 | unsigned long nr_active(void) | 
 | { | 
 | 	unsigned long i, running = 0, uninterruptible = 0; | 
 |  | 
 | 	for_each_online_cpu(i) { | 
 | 		running += cpu_rq(i)->nr_running; | 
 | 		uninterruptible += cpu_rq(i)->nr_uninterruptible; | 
 | 	} | 
 |  | 
 | 	if (unlikely((long)uninterruptible < 0)) | 
 | 		uninterruptible = 0; | 
 |  | 
 | 	return running + uninterruptible; | 
 | } | 
 |  | 
 | /* | 
 |  * Update rq->cpu_load[] statistics. This function is usually called every | 
 |  * scheduler tick (TICK_NSEC). | 
 |  */ | 
 | static void update_cpu_load(struct rq *this_rq) | 
 | { | 
 | 	u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64; | 
 | 	unsigned long total_load = this_rq->ls.load.weight; | 
 | 	unsigned long this_load =  total_load; | 
 | 	struct load_stat *ls = &this_rq->ls; | 
 | 	u64 now = __rq_clock(this_rq); | 
 | 	int i, scale; | 
 |  | 
 | 	this_rq->nr_load_updates++; | 
 | 	if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD))) | 
 | 		goto do_avg; | 
 |  | 
 | 	/* Update delta_fair/delta_exec fields first */ | 
 | 	update_curr_load(this_rq, now); | 
 |  | 
 | 	fair_delta64 = ls->delta_fair + 1; | 
 | 	ls->delta_fair = 0; | 
 |  | 
 | 	exec_delta64 = ls->delta_exec + 1; | 
 | 	ls->delta_exec = 0; | 
 |  | 
 | 	sample_interval64 = now - ls->load_update_last; | 
 | 	ls->load_update_last = now; | 
 |  | 
 | 	if ((s64)sample_interval64 < (s64)TICK_NSEC) | 
 | 		sample_interval64 = TICK_NSEC; | 
 |  | 
 | 	if (exec_delta64 > sample_interval64) | 
 | 		exec_delta64 = sample_interval64; | 
 |  | 
 | 	idle_delta64 = sample_interval64 - exec_delta64; | 
 |  | 
 | 	tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64); | 
 | 	tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64); | 
 |  | 
 | 	this_load = (unsigned long)tmp64; | 
 |  | 
 | do_avg: | 
 |  | 
 | 	/* Update our load: */ | 
 | 	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { | 
 | 		unsigned long old_load, new_load; | 
 |  | 
 | 		/* scale is effectively 1 << i now, and >> i divides by scale */ | 
 |  | 
 | 		old_load = this_rq->cpu_load[i]; | 
 | 		new_load = this_load; | 
 |  | 
 | 		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i; | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | /* | 
 |  * double_rq_lock - safely lock two runqueues | 
 |  * | 
 |  * Note this does not disable interrupts like task_rq_lock, | 
 |  * you need to do so manually before calling. | 
 |  */ | 
 | static void double_rq_lock(struct rq *rq1, struct rq *rq2) | 
 | 	__acquires(rq1->lock) | 
 | 	__acquires(rq2->lock) | 
 | { | 
 | 	BUG_ON(!irqs_disabled()); | 
 | 	if (rq1 == rq2) { | 
 | 		spin_lock(&rq1->lock); | 
 | 		__acquire(rq2->lock);	/* Fake it out ;) */ | 
 | 	} else { | 
 | 		if (rq1 < rq2) { | 
 | 			spin_lock(&rq1->lock); | 
 | 			spin_lock(&rq2->lock); | 
 | 		} else { | 
 | 			spin_lock(&rq2->lock); | 
 | 			spin_lock(&rq1->lock); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * double_rq_unlock - safely unlock two runqueues | 
 |  * | 
 |  * Note this does not restore interrupts like task_rq_unlock, | 
 |  * you need to do so manually after calling. | 
 |  */ | 
 | static void double_rq_unlock(struct rq *rq1, struct rq *rq2) | 
 | 	__releases(rq1->lock) | 
 | 	__releases(rq2->lock) | 
 | { | 
 | 	spin_unlock(&rq1->lock); | 
 | 	if (rq1 != rq2) | 
 | 		spin_unlock(&rq2->lock); | 
 | 	else | 
 | 		__release(rq2->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | 
 |  */ | 
 | static void double_lock_balance(struct rq *this_rq, struct rq *busiest) | 
 | 	__releases(this_rq->lock) | 
 | 	__acquires(busiest->lock) | 
 | 	__acquires(this_rq->lock) | 
 | { | 
 | 	if (unlikely(!irqs_disabled())) { | 
 | 		/* printk() doesn't work good under rq->lock */ | 
 | 		spin_unlock(&this_rq->lock); | 
 | 		BUG_ON(1); | 
 | 	} | 
 | 	if (unlikely(!spin_trylock(&busiest->lock))) { | 
 | 		if (busiest < this_rq) { | 
 | 			spin_unlock(&this_rq->lock); | 
 | 			spin_lock(&busiest->lock); | 
 | 			spin_lock(&this_rq->lock); | 
 | 		} else | 
 | 			spin_lock(&busiest->lock); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * If dest_cpu is allowed for this process, migrate the task to it. | 
 |  * This is accomplished by forcing the cpu_allowed mask to only | 
 |  * allow dest_cpu, which will force the cpu onto dest_cpu.  Then | 
 |  * the cpu_allowed mask is restored. | 
 |  */ | 
 | static void sched_migrate_task(struct task_struct *p, int dest_cpu) | 
 | { | 
 | 	struct migration_req req; | 
 | 	unsigned long flags; | 
 | 	struct rq *rq; | 
 |  | 
 | 	rq = task_rq_lock(p, &flags); | 
 | 	if (!cpu_isset(dest_cpu, p->cpus_allowed) | 
 | 	    || unlikely(cpu_is_offline(dest_cpu))) | 
 | 		goto out; | 
 |  | 
 | 	/* force the process onto the specified CPU */ | 
 | 	if (migrate_task(p, dest_cpu, &req)) { | 
 | 		/* Need to wait for migration thread (might exit: take ref). */ | 
 | 		struct task_struct *mt = rq->migration_thread; | 
 |  | 
 | 		get_task_struct(mt); | 
 | 		task_rq_unlock(rq, &flags); | 
 | 		wake_up_process(mt); | 
 | 		put_task_struct(mt); | 
 | 		wait_for_completion(&req.done); | 
 |  | 
 | 		return; | 
 | 	} | 
 | out: | 
 | 	task_rq_unlock(rq, &flags); | 
 | } | 
 |  | 
 | /* | 
 |  * sched_exec - execve() is a valuable balancing opportunity, because at | 
 |  * this point the task has the smallest effective memory and cache footprint. | 
 |  */ | 
 | void sched_exec(void) | 
 | { | 
 | 	int new_cpu, this_cpu = get_cpu(); | 
 | 	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC); | 
 | 	put_cpu(); | 
 | 	if (new_cpu != this_cpu) | 
 | 		sched_migrate_task(current, new_cpu); | 
 | } | 
 |  | 
 | /* | 
 |  * pull_task - move a task from a remote runqueue to the local runqueue. | 
 |  * Both runqueues must be locked. | 
 |  */ | 
 | static void pull_task(struct rq *src_rq, struct task_struct *p, | 
 | 		      struct rq *this_rq, int this_cpu) | 
 | { | 
 | 	deactivate_task(src_rq, p, 0); | 
 | 	set_task_cpu(p, this_cpu); | 
 | 	activate_task(this_rq, p, 0); | 
 | 	/* | 
 | 	 * Note that idle threads have a prio of MAX_PRIO, for this test | 
 | 	 * to be always true for them. | 
 | 	 */ | 
 | 	check_preempt_curr(this_rq, p); | 
 | } | 
 |  | 
 | /* | 
 |  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | 
 |  */ | 
 | static | 
 | int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | 
 | 		     struct sched_domain *sd, enum cpu_idle_type idle, | 
 | 		     int *all_pinned) | 
 | { | 
 | 	/* | 
 | 	 * We do not migrate tasks that are: | 
 | 	 * 1) running (obviously), or | 
 | 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or | 
 | 	 * 3) are cache-hot on their current CPU. | 
 | 	 */ | 
 | 	if (!cpu_isset(this_cpu, p->cpus_allowed)) | 
 | 		return 0; | 
 | 	*all_pinned = 0; | 
 |  | 
 | 	if (task_running(rq, p)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Aggressive migration if too many balance attempts have failed: | 
 | 	 */ | 
 | 	if (sd->nr_balance_failed > sd->cache_nice_tries) | 
 | 		return 1; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | 
 | 		      unsigned long max_nr_move, unsigned long max_load_move, | 
 | 		      struct sched_domain *sd, enum cpu_idle_type idle, | 
 | 		      int *all_pinned, unsigned long *load_moved, | 
 | 		      int this_best_prio, int best_prio, int best_prio_seen, | 
 | 		      struct rq_iterator *iterator) | 
 | { | 
 | 	int pulled = 0, pinned = 0, skip_for_load; | 
 | 	struct task_struct *p; | 
 | 	long rem_load_move = max_load_move; | 
 |  | 
 | 	if (max_nr_move == 0 || max_load_move == 0) | 
 | 		goto out; | 
 |  | 
 | 	pinned = 1; | 
 |  | 
 | 	/* | 
 | 	 * Start the load-balancing iterator: | 
 | 	 */ | 
 | 	p = iterator->start(iterator->arg); | 
 | next: | 
 | 	if (!p) | 
 | 		goto out; | 
 | 	/* | 
 | 	 * To help distribute high priority tasks accross CPUs we don't | 
 | 	 * skip a task if it will be the highest priority task (i.e. smallest | 
 | 	 * prio value) on its new queue regardless of its load weight | 
 | 	 */ | 
 | 	skip_for_load = (p->se.load.weight >> 1) > rem_load_move + | 
 | 							 SCHED_LOAD_SCALE_FUZZ; | 
 | 	if (skip_for_load && p->prio < this_best_prio) | 
 | 		skip_for_load = !best_prio_seen && p->prio == best_prio; | 
 | 	if (skip_for_load || | 
 | 	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { | 
 |  | 
 | 		best_prio_seen |= p->prio == best_prio; | 
 | 		p = iterator->next(iterator->arg); | 
 | 		goto next; | 
 | 	} | 
 |  | 
 | 	pull_task(busiest, p, this_rq, this_cpu); | 
 | 	pulled++; | 
 | 	rem_load_move -= p->se.load.weight; | 
 |  | 
 | 	/* | 
 | 	 * We only want to steal up to the prescribed number of tasks | 
 | 	 * and the prescribed amount of weighted load. | 
 | 	 */ | 
 | 	if (pulled < max_nr_move && rem_load_move > 0) { | 
 | 		if (p->prio < this_best_prio) | 
 | 			this_best_prio = p->prio; | 
 | 		p = iterator->next(iterator->arg); | 
 | 		goto next; | 
 | 	} | 
 | out: | 
 | 	/* | 
 | 	 * Right now, this is the only place pull_task() is called, | 
 | 	 * so we can safely collect pull_task() stats here rather than | 
 | 	 * inside pull_task(). | 
 | 	 */ | 
 | 	schedstat_add(sd, lb_gained[idle], pulled); | 
 |  | 
 | 	if (all_pinned) | 
 | 		*all_pinned = pinned; | 
 | 	*load_moved = max_load_move - rem_load_move; | 
 | 	return pulled; | 
 | } | 
 |  | 
 | /* | 
 |  * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted | 
 |  * load from busiest to this_rq, as part of a balancing operation within | 
 |  * "domain". Returns the number of tasks moved. | 
 |  * | 
 |  * Called with both runqueues locked. | 
 |  */ | 
 | static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | 
 | 		      unsigned long max_nr_move, unsigned long max_load_move, | 
 | 		      struct sched_domain *sd, enum cpu_idle_type idle, | 
 | 		      int *all_pinned) | 
 | { | 
 | 	struct sched_class *class = sched_class_highest; | 
 | 	unsigned long load_moved, total_nr_moved = 0, nr_moved; | 
 | 	long rem_load_move = max_load_move; | 
 |  | 
 | 	do { | 
 | 		nr_moved = class->load_balance(this_rq, this_cpu, busiest, | 
 | 				max_nr_move, (unsigned long)rem_load_move, | 
 | 				sd, idle, all_pinned, &load_moved); | 
 | 		total_nr_moved += nr_moved; | 
 | 		max_nr_move -= nr_moved; | 
 | 		rem_load_move -= load_moved; | 
 | 		class = class->next; | 
 | 	} while (class && max_nr_move && rem_load_move > 0); | 
 |  | 
 | 	return total_nr_moved; | 
 | } | 
 |  | 
 | /* | 
 |  * find_busiest_group finds and returns the busiest CPU group within the | 
 |  * domain. It calculates and returns the amount of weighted load which | 
 |  * should be moved to restore balance via the imbalance parameter. | 
 |  */ | 
 | static struct sched_group * | 
 | find_busiest_group(struct sched_domain *sd, int this_cpu, | 
 | 		   unsigned long *imbalance, enum cpu_idle_type idle, | 
 | 		   int *sd_idle, cpumask_t *cpus, int *balance) | 
 | { | 
 | 	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups; | 
 | 	unsigned long max_load, avg_load, total_load, this_load, total_pwr; | 
 | 	unsigned long max_pull; | 
 | 	unsigned long busiest_load_per_task, busiest_nr_running; | 
 | 	unsigned long this_load_per_task, this_nr_running; | 
 | 	int load_idx; | 
 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 
 | 	int power_savings_balance = 1; | 
 | 	unsigned long leader_nr_running = 0, min_load_per_task = 0; | 
 | 	unsigned long min_nr_running = ULONG_MAX; | 
 | 	struct sched_group *group_min = NULL, *group_leader = NULL; | 
 | #endif | 
 |  | 
 | 	max_load = this_load = total_load = total_pwr = 0; | 
 | 	busiest_load_per_task = busiest_nr_running = 0; | 
 | 	this_load_per_task = this_nr_running = 0; | 
 | 	if (idle == CPU_NOT_IDLE) | 
 | 		load_idx = sd->busy_idx; | 
 | 	else if (idle == CPU_NEWLY_IDLE) | 
 | 		load_idx = sd->newidle_idx; | 
 | 	else | 
 | 		load_idx = sd->idle_idx; | 
 |  | 
 | 	do { | 
 | 		unsigned long load, group_capacity; | 
 | 		int local_group; | 
 | 		int i; | 
 | 		unsigned int balance_cpu = -1, first_idle_cpu = 0; | 
 | 		unsigned long sum_nr_running, sum_weighted_load; | 
 |  | 
 | 		local_group = cpu_isset(this_cpu, group->cpumask); | 
 |  | 
 | 		if (local_group) | 
 | 			balance_cpu = first_cpu(group->cpumask); | 
 |  | 
 | 		/* Tally up the load of all CPUs in the group */ | 
 | 		sum_weighted_load = sum_nr_running = avg_load = 0; | 
 |  | 
 | 		for_each_cpu_mask(i, group->cpumask) { | 
 | 			struct rq *rq; | 
 |  | 
 | 			if (!cpu_isset(i, *cpus)) | 
 | 				continue; | 
 |  | 
 | 			rq = cpu_rq(i); | 
 |  | 
 | 			if (*sd_idle && rq->nr_running) | 
 | 				*sd_idle = 0; | 
 |  | 
 | 			/* Bias balancing toward cpus of our domain */ | 
 | 			if (local_group) { | 
 | 				if (idle_cpu(i) && !first_idle_cpu) { | 
 | 					first_idle_cpu = 1; | 
 | 					balance_cpu = i; | 
 | 				} | 
 |  | 
 | 				load = target_load(i, load_idx); | 
 | 			} else | 
 | 				load = source_load(i, load_idx); | 
 |  | 
 | 			avg_load += load; | 
 | 			sum_nr_running += rq->nr_running; | 
 | 			sum_weighted_load += weighted_cpuload(i); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * First idle cpu or the first cpu(busiest) in this sched group | 
 | 		 * is eligible for doing load balancing at this and above | 
 | 		 * domains. In the newly idle case, we will allow all the cpu's | 
 | 		 * to do the newly idle load balance. | 
 | 		 */ | 
 | 		if (idle != CPU_NEWLY_IDLE && local_group && | 
 | 		    balance_cpu != this_cpu && balance) { | 
 | 			*balance = 0; | 
 | 			goto ret; | 
 | 		} | 
 |  | 
 | 		total_load += avg_load; | 
 | 		total_pwr += group->__cpu_power; | 
 |  | 
 | 		/* Adjust by relative CPU power of the group */ | 
 | 		avg_load = sg_div_cpu_power(group, | 
 | 				avg_load * SCHED_LOAD_SCALE); | 
 |  | 
 | 		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE; | 
 |  | 
 | 		if (local_group) { | 
 | 			this_load = avg_load; | 
 | 			this = group; | 
 | 			this_nr_running = sum_nr_running; | 
 | 			this_load_per_task = sum_weighted_load; | 
 | 		} else if (avg_load > max_load && | 
 | 			   sum_nr_running > group_capacity) { | 
 | 			max_load = avg_load; | 
 | 			busiest = group; | 
 | 			busiest_nr_running = sum_nr_running; | 
 | 			busiest_load_per_task = sum_weighted_load; | 
 | 		} | 
 |  | 
 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 
 | 		/* | 
 | 		 * Busy processors will not participate in power savings | 
 | 		 * balance. | 
 | 		 */ | 
 | 		if (idle == CPU_NOT_IDLE || | 
 | 				!(sd->flags & SD_POWERSAVINGS_BALANCE)) | 
 | 			goto group_next; | 
 |  | 
 | 		/* | 
 | 		 * If the local group is idle or completely loaded | 
 | 		 * no need to do power savings balance at this domain | 
 | 		 */ | 
 | 		if (local_group && (this_nr_running >= group_capacity || | 
 | 				    !this_nr_running)) | 
 | 			power_savings_balance = 0; | 
 |  | 
 | 		/* | 
 | 		 * If a group is already running at full capacity or idle, | 
 | 		 * don't include that group in power savings calculations | 
 | 		 */ | 
 | 		if (!power_savings_balance || sum_nr_running >= group_capacity | 
 | 		    || !sum_nr_running) | 
 | 			goto group_next; | 
 |  | 
 | 		/* | 
 | 		 * Calculate the group which has the least non-idle load. | 
 | 		 * This is the group from where we need to pick up the load | 
 | 		 * for saving power | 
 | 		 */ | 
 | 		if ((sum_nr_running < min_nr_running) || | 
 | 		    (sum_nr_running == min_nr_running && | 
 | 		     first_cpu(group->cpumask) < | 
 | 		     first_cpu(group_min->cpumask))) { | 
 | 			group_min = group; | 
 | 			min_nr_running = sum_nr_running; | 
 | 			min_load_per_task = sum_weighted_load / | 
 | 						sum_nr_running; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Calculate the group which is almost near its | 
 | 		 * capacity but still has some space to pick up some load | 
 | 		 * from other group and save more power | 
 | 		 */ | 
 | 		if (sum_nr_running <= group_capacity - 1) { | 
 | 			if (sum_nr_running > leader_nr_running || | 
 | 			    (sum_nr_running == leader_nr_running && | 
 | 			     first_cpu(group->cpumask) > | 
 | 			      first_cpu(group_leader->cpumask))) { | 
 | 				group_leader = group; | 
 | 				leader_nr_running = sum_nr_running; | 
 | 			} | 
 | 		} | 
 | group_next: | 
 | #endif | 
 | 		group = group->next; | 
 | 	} while (group != sd->groups); | 
 |  | 
 | 	if (!busiest || this_load >= max_load || busiest_nr_running == 0) | 
 | 		goto out_balanced; | 
 |  | 
 | 	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr; | 
 |  | 
 | 	if (this_load >= avg_load || | 
 | 			100*max_load <= sd->imbalance_pct*this_load) | 
 | 		goto out_balanced; | 
 |  | 
 | 	busiest_load_per_task /= busiest_nr_running; | 
 | 	/* | 
 | 	 * We're trying to get all the cpus to the average_load, so we don't | 
 | 	 * want to push ourselves above the average load, nor do we wish to | 
 | 	 * reduce the max loaded cpu below the average load, as either of these | 
 | 	 * actions would just result in more rebalancing later, and ping-pong | 
 | 	 * tasks around. Thus we look for the minimum possible imbalance. | 
 | 	 * Negative imbalances (*we* are more loaded than anyone else) will | 
 | 	 * be counted as no imbalance for these purposes -- we can't fix that | 
 | 	 * by pulling tasks to us.  Be careful of negative numbers as they'll | 
 | 	 * appear as very large values with unsigned longs. | 
 | 	 */ | 
 | 	if (max_load <= busiest_load_per_task) | 
 | 		goto out_balanced; | 
 |  | 
 | 	/* | 
 | 	 * In the presence of smp nice balancing, certain scenarios can have | 
 | 	 * max load less than avg load(as we skip the groups at or below | 
 | 	 * its cpu_power, while calculating max_load..) | 
 | 	 */ | 
 | 	if (max_load < avg_load) { | 
 | 		*imbalance = 0; | 
 | 		goto small_imbalance; | 
 | 	} | 
 |  | 
 | 	/* Don't want to pull so many tasks that a group would go idle */ | 
 | 	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task); | 
 |  | 
 | 	/* How much load to actually move to equalise the imbalance */ | 
 | 	*imbalance = min(max_pull * busiest->__cpu_power, | 
 | 				(avg_load - this_load) * this->__cpu_power) | 
 | 			/ SCHED_LOAD_SCALE; | 
 |  | 
 | 	/* | 
 | 	 * if *imbalance is less than the average load per runnable task | 
 | 	 * there is no gaurantee that any tasks will be moved so we'll have | 
 | 	 * a think about bumping its value to force at least one task to be | 
 | 	 * moved | 
 | 	 */ | 
 | 	if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) { | 
 | 		unsigned long tmp, pwr_now, pwr_move; | 
 | 		unsigned int imbn; | 
 |  | 
 | small_imbalance: | 
 | 		pwr_move = pwr_now = 0; | 
 | 		imbn = 2; | 
 | 		if (this_nr_running) { | 
 | 			this_load_per_task /= this_nr_running; | 
 | 			if (busiest_load_per_task > this_load_per_task) | 
 | 				imbn = 1; | 
 | 		} else | 
 | 			this_load_per_task = SCHED_LOAD_SCALE; | 
 |  | 
 | 		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >= | 
 | 					busiest_load_per_task * imbn) { | 
 | 			*imbalance = busiest_load_per_task; | 
 | 			return busiest; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * OK, we don't have enough imbalance to justify moving tasks, | 
 | 		 * however we may be able to increase total CPU power used by | 
 | 		 * moving them. | 
 | 		 */ | 
 |  | 
 | 		pwr_now += busiest->__cpu_power * | 
 | 				min(busiest_load_per_task, max_load); | 
 | 		pwr_now += this->__cpu_power * | 
 | 				min(this_load_per_task, this_load); | 
 | 		pwr_now /= SCHED_LOAD_SCALE; | 
 |  | 
 | 		/* Amount of load we'd subtract */ | 
 | 		tmp = sg_div_cpu_power(busiest, | 
 | 				busiest_load_per_task * SCHED_LOAD_SCALE); | 
 | 		if (max_load > tmp) | 
 | 			pwr_move += busiest->__cpu_power * | 
 | 				min(busiest_load_per_task, max_load - tmp); | 
 |  | 
 | 		/* Amount of load we'd add */ | 
 | 		if (max_load * busiest->__cpu_power < | 
 | 				busiest_load_per_task * SCHED_LOAD_SCALE) | 
 | 			tmp = sg_div_cpu_power(this, | 
 | 					max_load * busiest->__cpu_power); | 
 | 		else | 
 | 			tmp = sg_div_cpu_power(this, | 
 | 				busiest_load_per_task * SCHED_LOAD_SCALE); | 
 | 		pwr_move += this->__cpu_power * | 
 | 				min(this_load_per_task, this_load + tmp); | 
 | 		pwr_move /= SCHED_LOAD_SCALE; | 
 |  | 
 | 		/* Move if we gain throughput */ | 
 | 		if (pwr_move <= pwr_now) | 
 | 			goto out_balanced; | 
 |  | 
 | 		*imbalance = busiest_load_per_task; | 
 | 	} | 
 |  | 
 | 	return busiest; | 
 |  | 
 | out_balanced: | 
 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 
 | 	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) | 
 | 		goto ret; | 
 |  | 
 | 	if (this == group_leader && group_leader != group_min) { | 
 | 		*imbalance = min_load_per_task; | 
 | 		return group_min; | 
 | 	} | 
 | #endif | 
 | ret: | 
 | 	*imbalance = 0; | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * find_busiest_queue - find the busiest runqueue among the cpus in group. | 
 |  */ | 
 | static struct rq * | 
 | find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle, | 
 | 		   unsigned long imbalance, cpumask_t *cpus) | 
 | { | 
 | 	struct rq *busiest = NULL, *rq; | 
 | 	unsigned long max_load = 0; | 
 | 	int i; | 
 |  | 
 | 	for_each_cpu_mask(i, group->cpumask) { | 
 | 		unsigned long wl; | 
 |  | 
 | 		if (!cpu_isset(i, *cpus)) | 
 | 			continue; | 
 |  | 
 | 		rq = cpu_rq(i); | 
 | 		wl = weighted_cpuload(i); | 
 |  | 
 | 		if (rq->nr_running == 1 && wl > imbalance) | 
 | 			continue; | 
 |  | 
 | 		if (wl > max_load) { | 
 | 			max_load = wl; | 
 | 			busiest = rq; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return busiest; | 
 | } | 
 |  | 
 | /* | 
 |  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | 
 |  * so long as it is large enough. | 
 |  */ | 
 | #define MAX_PINNED_INTERVAL	512 | 
 |  | 
 | static inline unsigned long minus_1_or_zero(unsigned long n) | 
 | { | 
 | 	return n > 0 ? n - 1 : 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Check this_cpu to ensure it is balanced within domain. Attempt to move | 
 |  * tasks if there is an imbalance. | 
 |  */ | 
 | static int load_balance(int this_cpu, struct rq *this_rq, | 
 | 			struct sched_domain *sd, enum cpu_idle_type idle, | 
 | 			int *balance) | 
 | { | 
 | 	int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0; | 
 | 	struct sched_group *group; | 
 | 	unsigned long imbalance; | 
 | 	struct rq *busiest; | 
 | 	cpumask_t cpus = CPU_MASK_ALL; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* | 
 | 	 * When power savings policy is enabled for the parent domain, idle | 
 | 	 * sibling can pick up load irrespective of busy siblings. In this case, | 
 | 	 * let the state of idle sibling percolate up as CPU_IDLE, instead of | 
 | 	 * portraying it as CPU_NOT_IDLE. | 
 | 	 */ | 
 | 	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER && | 
 | 	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | 
 | 		sd_idle = 1; | 
 |  | 
 | 	schedstat_inc(sd, lb_cnt[idle]); | 
 |  | 
 | redo: | 
 | 	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle, | 
 | 				   &cpus, balance); | 
 |  | 
 | 	if (*balance == 0) | 
 | 		goto out_balanced; | 
 |  | 
 | 	if (!group) { | 
 | 		schedstat_inc(sd, lb_nobusyg[idle]); | 
 | 		goto out_balanced; | 
 | 	} | 
 |  | 
 | 	busiest = find_busiest_queue(group, idle, imbalance, &cpus); | 
 | 	if (!busiest) { | 
 | 		schedstat_inc(sd, lb_nobusyq[idle]); | 
 | 		goto out_balanced; | 
 | 	} | 
 |  | 
 | 	BUG_ON(busiest == this_rq); | 
 |  | 
 | 	schedstat_add(sd, lb_imbalance[idle], imbalance); | 
 |  | 
 | 	nr_moved = 0; | 
 | 	if (busiest->nr_running > 1) { | 
 | 		/* | 
 | 		 * Attempt to move tasks. If find_busiest_group has found | 
 | 		 * an imbalance but busiest->nr_running <= 1, the group is | 
 | 		 * still unbalanced. nr_moved simply stays zero, so it is | 
 | 		 * correctly treated as an imbalance. | 
 | 		 */ | 
 | 		local_irq_save(flags); | 
 | 		double_rq_lock(this_rq, busiest); | 
 | 		nr_moved = move_tasks(this_rq, this_cpu, busiest, | 
 | 				      minus_1_or_zero(busiest->nr_running), | 
 | 				      imbalance, sd, idle, &all_pinned); | 
 | 		double_rq_unlock(this_rq, busiest); | 
 | 		local_irq_restore(flags); | 
 |  | 
 | 		/* | 
 | 		 * some other cpu did the load balance for us. | 
 | 		 */ | 
 | 		if (nr_moved && this_cpu != smp_processor_id()) | 
 | 			resched_cpu(this_cpu); | 
 |  | 
 | 		/* All tasks on this runqueue were pinned by CPU affinity */ | 
 | 		if (unlikely(all_pinned)) { | 
 | 			cpu_clear(cpu_of(busiest), cpus); | 
 | 			if (!cpus_empty(cpus)) | 
 | 				goto redo; | 
 | 			goto out_balanced; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!nr_moved) { | 
 | 		schedstat_inc(sd, lb_failed[idle]); | 
 | 		sd->nr_balance_failed++; | 
 |  | 
 | 		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) { | 
 |  | 
 | 			spin_lock_irqsave(&busiest->lock, flags); | 
 |  | 
 | 			/* don't kick the migration_thread, if the curr | 
 | 			 * task on busiest cpu can't be moved to this_cpu | 
 | 			 */ | 
 | 			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) { | 
 | 				spin_unlock_irqrestore(&busiest->lock, flags); | 
 | 				all_pinned = 1; | 
 | 				goto out_one_pinned; | 
 | 			} | 
 |  | 
 | 			if (!busiest->active_balance) { | 
 | 				busiest->active_balance = 1; | 
 | 				busiest->push_cpu = this_cpu; | 
 | 				active_balance = 1; | 
 | 			} | 
 | 			spin_unlock_irqrestore(&busiest->lock, flags); | 
 | 			if (active_balance) | 
 | 				wake_up_process(busiest->migration_thread); | 
 |  | 
 | 			/* | 
 | 			 * We've kicked active balancing, reset the failure | 
 | 			 * counter. | 
 | 			 */ | 
 | 			sd->nr_balance_failed = sd->cache_nice_tries+1; | 
 | 		} | 
 | 	} else | 
 | 		sd->nr_balance_failed = 0; | 
 |  | 
 | 	if (likely(!active_balance)) { | 
 | 		/* We were unbalanced, so reset the balancing interval */ | 
 | 		sd->balance_interval = sd->min_interval; | 
 | 	} else { | 
 | 		/* | 
 | 		 * If we've begun active balancing, start to back off. This | 
 | 		 * case may not be covered by the all_pinned logic if there | 
 | 		 * is only 1 task on the busy runqueue (because we don't call | 
 | 		 * move_tasks). | 
 | 		 */ | 
 | 		if (sd->balance_interval < sd->max_interval) | 
 | 			sd->balance_interval *= 2; | 
 | 	} | 
 |  | 
 | 	if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER && | 
 | 	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | 
 | 		return -1; | 
 | 	return nr_moved; | 
 |  | 
 | out_balanced: | 
 | 	schedstat_inc(sd, lb_balanced[idle]); | 
 |  | 
 | 	sd->nr_balance_failed = 0; | 
 |  | 
 | out_one_pinned: | 
 | 	/* tune up the balancing interval */ | 
 | 	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) || | 
 | 			(sd->balance_interval < sd->max_interval)) | 
 | 		sd->balance_interval *= 2; | 
 |  | 
 | 	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | 
 | 	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | 
 | 		return -1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Check this_cpu to ensure it is balanced within domain. Attempt to move | 
 |  * tasks if there is an imbalance. | 
 |  * | 
 |  * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE). | 
 |  * this_rq is locked. | 
 |  */ | 
 | static int | 
 | load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd) | 
 | { | 
 | 	struct sched_group *group; | 
 | 	struct rq *busiest = NULL; | 
 | 	unsigned long imbalance; | 
 | 	int nr_moved = 0; | 
 | 	int sd_idle = 0; | 
 | 	int all_pinned = 0; | 
 | 	cpumask_t cpus = CPU_MASK_ALL; | 
 |  | 
 | 	/* | 
 | 	 * When power savings policy is enabled for the parent domain, idle | 
 | 	 * sibling can pick up load irrespective of busy siblings. In this case, | 
 | 	 * let the state of idle sibling percolate up as IDLE, instead of | 
 | 	 * portraying it as CPU_NOT_IDLE. | 
 | 	 */ | 
 | 	if (sd->flags & SD_SHARE_CPUPOWER && | 
 | 	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | 
 | 		sd_idle = 1; | 
 |  | 
 | 	schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]); | 
 | redo: | 
 | 	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE, | 
 | 				   &sd_idle, &cpus, NULL); | 
 | 	if (!group) { | 
 | 		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]); | 
 | 		goto out_balanced; | 
 | 	} | 
 |  | 
 | 	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, | 
 | 				&cpus); | 
 | 	if (!busiest) { | 
 | 		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]); | 
 | 		goto out_balanced; | 
 | 	} | 
 |  | 
 | 	BUG_ON(busiest == this_rq); | 
 |  | 
 | 	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance); | 
 |  | 
 | 	nr_moved = 0; | 
 | 	if (busiest->nr_running > 1) { | 
 | 		/* Attempt to move tasks */ | 
 | 		double_lock_balance(this_rq, busiest); | 
 | 		nr_moved = move_tasks(this_rq, this_cpu, busiest, | 
 | 					minus_1_or_zero(busiest->nr_running), | 
 | 					imbalance, sd, CPU_NEWLY_IDLE, | 
 | 					&all_pinned); | 
 | 		spin_unlock(&busiest->lock); | 
 |  | 
 | 		if (unlikely(all_pinned)) { | 
 | 			cpu_clear(cpu_of(busiest), cpus); | 
 | 			if (!cpus_empty(cpus)) | 
 | 				goto redo; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!nr_moved) { | 
 | 		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]); | 
 | 		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | 
 | 		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | 
 | 			return -1; | 
 | 	} else | 
 | 		sd->nr_balance_failed = 0; | 
 |  | 
 | 	return nr_moved; | 
 |  | 
 | out_balanced: | 
 | 	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]); | 
 | 	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | 
 | 	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | 
 | 		return -1; | 
 | 	sd->nr_balance_failed = 0; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * idle_balance is called by schedule() if this_cpu is about to become | 
 |  * idle. Attempts to pull tasks from other CPUs. | 
 |  */ | 
 | static void idle_balance(int this_cpu, struct rq *this_rq) | 
 | { | 
 | 	struct sched_domain *sd; | 
 | 	int pulled_task = -1; | 
 | 	unsigned long next_balance = jiffies + HZ; | 
 |  | 
 | 	for_each_domain(this_cpu, sd) { | 
 | 		unsigned long interval; | 
 |  | 
 | 		if (!(sd->flags & SD_LOAD_BALANCE)) | 
 | 			continue; | 
 |  | 
 | 		if (sd->flags & SD_BALANCE_NEWIDLE) | 
 | 			/* If we've pulled tasks over stop searching: */ | 
 | 			pulled_task = load_balance_newidle(this_cpu, | 
 | 								this_rq, sd); | 
 |  | 
 | 		interval = msecs_to_jiffies(sd->balance_interval); | 
 | 		if (time_after(next_balance, sd->last_balance + interval)) | 
 | 			next_balance = sd->last_balance + interval; | 
 | 		if (pulled_task) | 
 | 			break; | 
 | 	} | 
 | 	if (pulled_task || time_after(jiffies, this_rq->next_balance)) { | 
 | 		/* | 
 | 		 * We are going idle. next_balance may be set based on | 
 | 		 * a busy processor. So reset next_balance. | 
 | 		 */ | 
 | 		this_rq->next_balance = next_balance; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * active_load_balance is run by migration threads. It pushes running tasks | 
 |  * off the busiest CPU onto idle CPUs. It requires at least 1 task to be | 
 |  * running on each physical CPU where possible, and avoids physical / | 
 |  * logical imbalances. | 
 |  * | 
 |  * Called with busiest_rq locked. | 
 |  */ | 
 | static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) | 
 | { | 
 | 	int target_cpu = busiest_rq->push_cpu; | 
 | 	struct sched_domain *sd; | 
 | 	struct rq *target_rq; | 
 |  | 
 | 	/* Is there any task to move? */ | 
 | 	if (busiest_rq->nr_running <= 1) | 
 | 		return; | 
 |  | 
 | 	target_rq = cpu_rq(target_cpu); | 
 |  | 
 | 	/* | 
 | 	 * This condition is "impossible", if it occurs | 
 | 	 * we need to fix it.  Originally reported by | 
 | 	 * Bjorn Helgaas on a 128-cpu setup. | 
 | 	 */ | 
 | 	BUG_ON(busiest_rq == target_rq); | 
 |  | 
 | 	/* move a task from busiest_rq to target_rq */ | 
 | 	double_lock_balance(busiest_rq, target_rq); | 
 |  | 
 | 	/* Search for an sd spanning us and the target CPU. */ | 
 | 	for_each_domain(target_cpu, sd) { | 
 | 		if ((sd->flags & SD_LOAD_BALANCE) && | 
 | 		    cpu_isset(busiest_cpu, sd->span)) | 
 | 				break; | 
 | 	} | 
 |  | 
 | 	if (likely(sd)) { | 
 | 		schedstat_inc(sd, alb_cnt); | 
 |  | 
 | 		if (move_tasks(target_rq, target_cpu, busiest_rq, 1, | 
 | 			       RTPRIO_TO_LOAD_WEIGHT(100), sd, CPU_IDLE, | 
 | 			       NULL)) | 
 | 			schedstat_inc(sd, alb_pushed); | 
 | 		else | 
 | 			schedstat_inc(sd, alb_failed); | 
 | 	} | 
 | 	spin_unlock(&target_rq->lock); | 
 | } | 
 |  | 
 | #ifdef CONFIG_NO_HZ | 
 | static struct { | 
 | 	atomic_t load_balancer; | 
 | 	cpumask_t  cpu_mask; | 
 | } nohz ____cacheline_aligned = { | 
 | 	.load_balancer = ATOMIC_INIT(-1), | 
 | 	.cpu_mask = CPU_MASK_NONE, | 
 | }; | 
 |  | 
 | /* | 
 |  * This routine will try to nominate the ilb (idle load balancing) | 
 |  * owner among the cpus whose ticks are stopped. ilb owner will do the idle | 
 |  * load balancing on behalf of all those cpus. If all the cpus in the system | 
 |  * go into this tickless mode, then there will be no ilb owner (as there is | 
 |  * no need for one) and all the cpus will sleep till the next wakeup event | 
 |  * arrives... | 
 |  * | 
 |  * For the ilb owner, tick is not stopped. And this tick will be used | 
 |  * for idle load balancing. ilb owner will still be part of | 
 |  * nohz.cpu_mask.. | 
 |  * | 
 |  * While stopping the tick, this cpu will become the ilb owner if there | 
 |  * is no other owner. And will be the owner till that cpu becomes busy | 
 |  * or if all cpus in the system stop their ticks at which point | 
 |  * there is no need for ilb owner. | 
 |  * | 
 |  * When the ilb owner becomes busy, it nominates another owner, during the | 
 |  * next busy scheduler_tick() | 
 |  */ | 
 | int select_nohz_load_balancer(int stop_tick) | 
 | { | 
 | 	int cpu = smp_processor_id(); | 
 |  | 
 | 	if (stop_tick) { | 
 | 		cpu_set(cpu, nohz.cpu_mask); | 
 | 		cpu_rq(cpu)->in_nohz_recently = 1; | 
 |  | 
 | 		/* | 
 | 		 * If we are going offline and still the leader, give up! | 
 | 		 */ | 
 | 		if (cpu_is_offline(cpu) && | 
 | 		    atomic_read(&nohz.load_balancer) == cpu) { | 
 | 			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) | 
 | 				BUG(); | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		/* time for ilb owner also to sleep */ | 
 | 		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) { | 
 | 			if (atomic_read(&nohz.load_balancer) == cpu) | 
 | 				atomic_set(&nohz.load_balancer, -1); | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		if (atomic_read(&nohz.load_balancer) == -1) { | 
 | 			/* make me the ilb owner */ | 
 | 			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1) | 
 | 				return 1; | 
 | 		} else if (atomic_read(&nohz.load_balancer) == cpu) | 
 | 			return 1; | 
 | 	} else { | 
 | 		if (!cpu_isset(cpu, nohz.cpu_mask)) | 
 | 			return 0; | 
 |  | 
 | 		cpu_clear(cpu, nohz.cpu_mask); | 
 |  | 
 | 		if (atomic_read(&nohz.load_balancer) == cpu) | 
 | 			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) | 
 | 				BUG(); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static DEFINE_SPINLOCK(balancing); | 
 |  | 
 | /* | 
 |  * It checks each scheduling domain to see if it is due to be balanced, | 
 |  * and initiates a balancing operation if so. | 
 |  * | 
 |  * Balancing parameters are set up in arch_init_sched_domains. | 
 |  */ | 
 | static inline void rebalance_domains(int cpu, enum cpu_idle_type idle) | 
 | { | 
 | 	int balance = 1; | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	unsigned long interval; | 
 | 	struct sched_domain *sd; | 
 | 	/* Earliest time when we have to do rebalance again */ | 
 | 	unsigned long next_balance = jiffies + 60*HZ; | 
 |  | 
 | 	for_each_domain(cpu, sd) { | 
 | 		if (!(sd->flags & SD_LOAD_BALANCE)) | 
 | 			continue; | 
 |  | 
 | 		interval = sd->balance_interval; | 
 | 		if (idle != CPU_IDLE) | 
 | 			interval *= sd->busy_factor; | 
 |  | 
 | 		/* scale ms to jiffies */ | 
 | 		interval = msecs_to_jiffies(interval); | 
 | 		if (unlikely(!interval)) | 
 | 			interval = 1; | 
 | 		if (interval > HZ*NR_CPUS/10) | 
 | 			interval = HZ*NR_CPUS/10; | 
 |  | 
 |  | 
 | 		if (sd->flags & SD_SERIALIZE) { | 
 | 			if (!spin_trylock(&balancing)) | 
 | 				goto out; | 
 | 		} | 
 |  | 
 | 		if (time_after_eq(jiffies, sd->last_balance + interval)) { | 
 | 			if (load_balance(cpu, rq, sd, idle, &balance)) { | 
 | 				/* | 
 | 				 * We've pulled tasks over so either we're no | 
 | 				 * longer idle, or one of our SMT siblings is | 
 | 				 * not idle. | 
 | 				 */ | 
 | 				idle = CPU_NOT_IDLE; | 
 | 			} | 
 | 			sd->last_balance = jiffies; | 
 | 		} | 
 | 		if (sd->flags & SD_SERIALIZE) | 
 | 			spin_unlock(&balancing); | 
 | out: | 
 | 		if (time_after(next_balance, sd->last_balance + interval)) | 
 | 			next_balance = sd->last_balance + interval; | 
 |  | 
 | 		/* | 
 | 		 * Stop the load balance at this level. There is another | 
 | 		 * CPU in our sched group which is doing load balancing more | 
 | 		 * actively. | 
 | 		 */ | 
 | 		if (!balance) | 
 | 			break; | 
 | 	} | 
 | 	rq->next_balance = next_balance; | 
 | } | 
 |  | 
 | /* | 
 |  * run_rebalance_domains is triggered when needed from the scheduler tick. | 
 |  * In CONFIG_NO_HZ case, the idle load balance owner will do the | 
 |  * rebalancing for all the cpus for whom scheduler ticks are stopped. | 
 |  */ | 
 | static void run_rebalance_domains(struct softirq_action *h) | 
 | { | 
 | 	int this_cpu = smp_processor_id(); | 
 | 	struct rq *this_rq = cpu_rq(this_cpu); | 
 | 	enum cpu_idle_type idle = this_rq->idle_at_tick ? | 
 | 						CPU_IDLE : CPU_NOT_IDLE; | 
 |  | 
 | 	rebalance_domains(this_cpu, idle); | 
 |  | 
 | #ifdef CONFIG_NO_HZ | 
 | 	/* | 
 | 	 * If this cpu is the owner for idle load balancing, then do the | 
 | 	 * balancing on behalf of the other idle cpus whose ticks are | 
 | 	 * stopped. | 
 | 	 */ | 
 | 	if (this_rq->idle_at_tick && | 
 | 	    atomic_read(&nohz.load_balancer) == this_cpu) { | 
 | 		cpumask_t cpus = nohz.cpu_mask; | 
 | 		struct rq *rq; | 
 | 		int balance_cpu; | 
 |  | 
 | 		cpu_clear(this_cpu, cpus); | 
 | 		for_each_cpu_mask(balance_cpu, cpus) { | 
 | 			/* | 
 | 			 * If this cpu gets work to do, stop the load balancing | 
 | 			 * work being done for other cpus. Next load | 
 | 			 * balancing owner will pick it up. | 
 | 			 */ | 
 | 			if (need_resched()) | 
 | 				break; | 
 |  | 
 | 			rebalance_domains(balance_cpu, SCHED_IDLE); | 
 |  | 
 | 			rq = cpu_rq(balance_cpu); | 
 | 			if (time_after(this_rq->next_balance, rq->next_balance)) | 
 | 				this_rq->next_balance = rq->next_balance; | 
 | 		} | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | 
 |  * | 
 |  * In case of CONFIG_NO_HZ, this is the place where we nominate a new | 
 |  * idle load balancing owner or decide to stop the periodic load balancing, | 
 |  * if the whole system is idle. | 
 |  */ | 
 | static inline void trigger_load_balance(struct rq *rq, int cpu) | 
 | { | 
 | #ifdef CONFIG_NO_HZ | 
 | 	/* | 
 | 	 * If we were in the nohz mode recently and busy at the current | 
 | 	 * scheduler tick, then check if we need to nominate new idle | 
 | 	 * load balancer. | 
 | 	 */ | 
 | 	if (rq->in_nohz_recently && !rq->idle_at_tick) { | 
 | 		rq->in_nohz_recently = 0; | 
 |  | 
 | 		if (atomic_read(&nohz.load_balancer) == cpu) { | 
 | 			cpu_clear(cpu, nohz.cpu_mask); | 
 | 			atomic_set(&nohz.load_balancer, -1); | 
 | 		} | 
 |  | 
 | 		if (atomic_read(&nohz.load_balancer) == -1) { | 
 | 			/* | 
 | 			 * simple selection for now: Nominate the | 
 | 			 * first cpu in the nohz list to be the next | 
 | 			 * ilb owner. | 
 | 			 * | 
 | 			 * TBD: Traverse the sched domains and nominate | 
 | 			 * the nearest cpu in the nohz.cpu_mask. | 
 | 			 */ | 
 | 			int ilb = first_cpu(nohz.cpu_mask); | 
 |  | 
 | 			if (ilb != NR_CPUS) | 
 | 				resched_cpu(ilb); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If this cpu is idle and doing idle load balancing for all the | 
 | 	 * cpus with ticks stopped, is it time for that to stop? | 
 | 	 */ | 
 | 	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu && | 
 | 	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) { | 
 | 		resched_cpu(cpu); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If this cpu is idle and the idle load balancing is done by | 
 | 	 * someone else, then no need raise the SCHED_SOFTIRQ | 
 | 	 */ | 
 | 	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu && | 
 | 	    cpu_isset(cpu, nohz.cpu_mask)) | 
 | 		return; | 
 | #endif | 
 | 	if (time_after_eq(jiffies, rq->next_balance)) | 
 | 		raise_softirq(SCHED_SOFTIRQ); | 
 | } | 
 |  | 
 | #else	/* CONFIG_SMP */ | 
 |  | 
 | /* | 
 |  * on UP we do not need to balance between CPUs: | 
 |  */ | 
 | static inline void idle_balance(int cpu, struct rq *rq) | 
 | { | 
 | } | 
 |  | 
 | /* Avoid "used but not defined" warning on UP */ | 
 | static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | 
 | 		      unsigned long max_nr_move, unsigned long max_load_move, | 
 | 		      struct sched_domain *sd, enum cpu_idle_type idle, | 
 | 		      int *all_pinned, unsigned long *load_moved, | 
 | 		      int this_best_prio, int best_prio, int best_prio_seen, | 
 | 		      struct rq_iterator *iterator) | 
 | { | 
 | 	*load_moved = 0; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | DEFINE_PER_CPU(struct kernel_stat, kstat); | 
 |  | 
 | EXPORT_PER_CPU_SYMBOL(kstat); | 
 |  | 
 | /* | 
 |  * Return p->sum_exec_runtime plus any more ns on the sched_clock | 
 |  * that have not yet been banked in case the task is currently running. | 
 |  */ | 
 | unsigned long long task_sched_runtime(struct task_struct *p) | 
 | { | 
 | 	unsigned long flags; | 
 | 	u64 ns, delta_exec; | 
 | 	struct rq *rq; | 
 |  | 
 | 	rq = task_rq_lock(p, &flags); | 
 | 	ns = p->se.sum_exec_runtime; | 
 | 	if (rq->curr == p) { | 
 | 		delta_exec = rq_clock(rq) - p->se.exec_start; | 
 | 		if ((s64)delta_exec > 0) | 
 | 			ns += delta_exec; | 
 | 	} | 
 | 	task_rq_unlock(rq, &flags); | 
 |  | 
 | 	return ns; | 
 | } | 
 |  | 
 | /* | 
 |  * Account user cpu time to a process. | 
 |  * @p: the process that the cpu time gets accounted to | 
 |  * @hardirq_offset: the offset to subtract from hardirq_count() | 
 |  * @cputime: the cpu time spent in user space since the last update | 
 |  */ | 
 | void account_user_time(struct task_struct *p, cputime_t cputime) | 
 | { | 
 | 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 
 | 	cputime64_t tmp; | 
 |  | 
 | 	p->utime = cputime_add(p->utime, cputime); | 
 |  | 
 | 	/* Add user time to cpustat. */ | 
 | 	tmp = cputime_to_cputime64(cputime); | 
 | 	if (TASK_NICE(p) > 0) | 
 | 		cpustat->nice = cputime64_add(cpustat->nice, tmp); | 
 | 	else | 
 | 		cpustat->user = cputime64_add(cpustat->user, tmp); | 
 | } | 
 |  | 
 | /* | 
 |  * Account system cpu time to a process. | 
 |  * @p: the process that the cpu time gets accounted to | 
 |  * @hardirq_offset: the offset to subtract from hardirq_count() | 
 |  * @cputime: the cpu time spent in kernel space since the last update | 
 |  */ | 
 | void account_system_time(struct task_struct *p, int hardirq_offset, | 
 | 			 cputime_t cputime) | 
 | { | 
 | 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 
 | 	struct rq *rq = this_rq(); | 
 | 	cputime64_t tmp; | 
 |  | 
 | 	p->stime = cputime_add(p->stime, cputime); | 
 |  | 
 | 	/* Add system time to cpustat. */ | 
 | 	tmp = cputime_to_cputime64(cputime); | 
 | 	if (hardirq_count() - hardirq_offset) | 
 | 		cpustat->irq = cputime64_add(cpustat->irq, tmp); | 
 | 	else if (softirq_count()) | 
 | 		cpustat->softirq = cputime64_add(cpustat->softirq, tmp); | 
 | 	else if (p != rq->idle) | 
 | 		cpustat->system = cputime64_add(cpustat->system, tmp); | 
 | 	else if (atomic_read(&rq->nr_iowait) > 0) | 
 | 		cpustat->iowait = cputime64_add(cpustat->iowait, tmp); | 
 | 	else | 
 | 		cpustat->idle = cputime64_add(cpustat->idle, tmp); | 
 | 	/* Account for system time used */ | 
 | 	acct_update_integrals(p); | 
 | } | 
 |  | 
 | /* | 
 |  * Account for involuntary wait time. | 
 |  * @p: the process from which the cpu time has been stolen | 
 |  * @steal: the cpu time spent in involuntary wait | 
 |  */ | 
 | void account_steal_time(struct task_struct *p, cputime_t steal) | 
 | { | 
 | 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 
 | 	cputime64_t tmp = cputime_to_cputime64(steal); | 
 | 	struct rq *rq = this_rq(); | 
 |  | 
 | 	if (p == rq->idle) { | 
 | 		p->stime = cputime_add(p->stime, steal); | 
 | 		if (atomic_read(&rq->nr_iowait) > 0) | 
 | 			cpustat->iowait = cputime64_add(cpustat->iowait, tmp); | 
 | 		else | 
 | 			cpustat->idle = cputime64_add(cpustat->idle, tmp); | 
 | 	} else | 
 | 		cpustat->steal = cputime64_add(cpustat->steal, tmp); | 
 | } | 
 |  | 
 | /* | 
 |  * This function gets called by the timer code, with HZ frequency. | 
 |  * We call it with interrupts disabled. | 
 |  * | 
 |  * It also gets called by the fork code, when changing the parent's | 
 |  * timeslices. | 
 |  */ | 
 | void scheduler_tick(void) | 
 | { | 
 | 	int cpu = smp_processor_id(); | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	struct task_struct *curr = rq->curr; | 
 |  | 
 | 	spin_lock(&rq->lock); | 
 | 	if (curr != rq->idle) /* FIXME: needed? */ | 
 | 		curr->sched_class->task_tick(rq, curr); | 
 | 	update_cpu_load(rq); | 
 | 	spin_unlock(&rq->lock); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	rq->idle_at_tick = idle_cpu(cpu); | 
 | 	trigger_load_balance(rq, cpu); | 
 | #endif | 
 | } | 
 |  | 
 | #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT) | 
 |  | 
 | void fastcall add_preempt_count(int val) | 
 | { | 
 | 	/* | 
 | 	 * Underflow? | 
 | 	 */ | 
 | 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) | 
 | 		return; | 
 | 	preempt_count() += val; | 
 | 	/* | 
 | 	 * Spinlock count overflowing soon? | 
 | 	 */ | 
 | 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= | 
 | 				PREEMPT_MASK - 10); | 
 | } | 
 | EXPORT_SYMBOL(add_preempt_count); | 
 |  | 
 | void fastcall sub_preempt_count(int val) | 
 | { | 
 | 	/* | 
 | 	 * Underflow? | 
 | 	 */ | 
 | 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) | 
 | 		return; | 
 | 	/* | 
 | 	 * Is the spinlock portion underflowing? | 
 | 	 */ | 
 | 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && | 
 | 			!(preempt_count() & PREEMPT_MASK))) | 
 | 		return; | 
 |  | 
 | 	preempt_count() -= val; | 
 | } | 
 | EXPORT_SYMBOL(sub_preempt_count); | 
 |  | 
 | #endif | 
 |  | 
 | /* | 
 |  * Print scheduling while atomic bug: | 
 |  */ | 
 | static noinline void __schedule_bug(struct task_struct *prev) | 
 | { | 
 | 	printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n", | 
 | 		prev->comm, preempt_count(), prev->pid); | 
 | 	debug_show_held_locks(prev); | 
 | 	if (irqs_disabled()) | 
 | 		print_irqtrace_events(prev); | 
 | 	dump_stack(); | 
 | } | 
 |  | 
 | /* | 
 |  * Various schedule()-time debugging checks and statistics: | 
 |  */ | 
 | static inline void schedule_debug(struct task_struct *prev) | 
 | { | 
 | 	/* | 
 | 	 * Test if we are atomic.  Since do_exit() needs to call into | 
 | 	 * schedule() atomically, we ignore that path for now. | 
 | 	 * Otherwise, whine if we are scheduling when we should not be. | 
 | 	 */ | 
 | 	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state)) | 
 | 		__schedule_bug(prev); | 
 |  | 
 | 	profile_hit(SCHED_PROFILING, __builtin_return_address(0)); | 
 |  | 
 | 	schedstat_inc(this_rq(), sched_cnt); | 
 | } | 
 |  | 
 | /* | 
 |  * Pick up the highest-prio task: | 
 |  */ | 
 | static inline struct task_struct * | 
 | pick_next_task(struct rq *rq, struct task_struct *prev, u64 now) | 
 | { | 
 | 	struct sched_class *class; | 
 | 	struct task_struct *p; | 
 |  | 
 | 	/* | 
 | 	 * Optimization: we know that if all tasks are in | 
 | 	 * the fair class we can call that function directly: | 
 | 	 */ | 
 | 	if (likely(rq->nr_running == rq->cfs.nr_running)) { | 
 | 		p = fair_sched_class.pick_next_task(rq, now); | 
 | 		if (likely(p)) | 
 | 			return p; | 
 | 	} | 
 |  | 
 | 	class = sched_class_highest; | 
 | 	for ( ; ; ) { | 
 | 		p = class->pick_next_task(rq, now); | 
 | 		if (p) | 
 | 			return p; | 
 | 		/* | 
 | 		 * Will never be NULL as the idle class always | 
 | 		 * returns a non-NULL p: | 
 | 		 */ | 
 | 		class = class->next; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * schedule() is the main scheduler function. | 
 |  */ | 
 | asmlinkage void __sched schedule(void) | 
 | { | 
 | 	struct task_struct *prev, *next; | 
 | 	long *switch_count; | 
 | 	struct rq *rq; | 
 | 	u64 now; | 
 | 	int cpu; | 
 |  | 
 | need_resched: | 
 | 	preempt_disable(); | 
 | 	cpu = smp_processor_id(); | 
 | 	rq = cpu_rq(cpu); | 
 | 	rcu_qsctr_inc(cpu); | 
 | 	prev = rq->curr; | 
 | 	switch_count = &prev->nivcsw; | 
 |  | 
 | 	release_kernel_lock(prev); | 
 | need_resched_nonpreemptible: | 
 |  | 
 | 	schedule_debug(prev); | 
 |  | 
 | 	spin_lock_irq(&rq->lock); | 
 | 	clear_tsk_need_resched(prev); | 
 |  | 
 | 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { | 
 | 		if (unlikely((prev->state & TASK_INTERRUPTIBLE) && | 
 | 				unlikely(signal_pending(prev)))) { | 
 | 			prev->state = TASK_RUNNING; | 
 | 		} else { | 
 | 			deactivate_task(rq, prev, 1); | 
 | 		} | 
 | 		switch_count = &prev->nvcsw; | 
 | 	} | 
 |  | 
 | 	if (unlikely(!rq->nr_running)) | 
 | 		idle_balance(cpu, rq); | 
 |  | 
 | 	now = __rq_clock(rq); | 
 | 	prev->sched_class->put_prev_task(rq, prev, now); | 
 | 	next = pick_next_task(rq, prev, now); | 
 |  | 
 | 	sched_info_switch(prev, next); | 
 |  | 
 | 	if (likely(prev != next)) { | 
 | 		rq->nr_switches++; | 
 | 		rq->curr = next; | 
 | 		++*switch_count; | 
 |  | 
 | 		context_switch(rq, prev, next); /* unlocks the rq */ | 
 | 	} else | 
 | 		spin_unlock_irq(&rq->lock); | 
 |  | 
 | 	if (unlikely(reacquire_kernel_lock(current) < 0)) { | 
 | 		cpu = smp_processor_id(); | 
 | 		rq = cpu_rq(cpu); | 
 | 		goto need_resched_nonpreemptible; | 
 | 	} | 
 | 	preempt_enable_no_resched(); | 
 | 	if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) | 
 | 		goto need_resched; | 
 | } | 
 | EXPORT_SYMBOL(schedule); | 
 |  | 
 | #ifdef CONFIG_PREEMPT | 
 | /* | 
 |  * this is the entry point to schedule() from in-kernel preemption | 
 |  * off of preempt_enable.  Kernel preemptions off return from interrupt | 
 |  * occur there and call schedule directly. | 
 |  */ | 
 | asmlinkage void __sched preempt_schedule(void) | 
 | { | 
 | 	struct thread_info *ti = current_thread_info(); | 
 | #ifdef CONFIG_PREEMPT_BKL | 
 | 	struct task_struct *task = current; | 
 | 	int saved_lock_depth; | 
 | #endif | 
 | 	/* | 
 | 	 * If there is a non-zero preempt_count or interrupts are disabled, | 
 | 	 * we do not want to preempt the current task.  Just return.. | 
 | 	 */ | 
 | 	if (likely(ti->preempt_count || irqs_disabled())) | 
 | 		return; | 
 |  | 
 | need_resched: | 
 | 	add_preempt_count(PREEMPT_ACTIVE); | 
 | 	/* | 
 | 	 * We keep the big kernel semaphore locked, but we | 
 | 	 * clear ->lock_depth so that schedule() doesnt | 
 | 	 * auto-release the semaphore: | 
 | 	 */ | 
 | #ifdef CONFIG_PREEMPT_BKL | 
 | 	saved_lock_depth = task->lock_depth; | 
 | 	task->lock_depth = -1; | 
 | #endif | 
 | 	schedule(); | 
 | #ifdef CONFIG_PREEMPT_BKL | 
 | 	task->lock_depth = saved_lock_depth; | 
 | #endif | 
 | 	sub_preempt_count(PREEMPT_ACTIVE); | 
 |  | 
 | 	/* we could miss a preemption opportunity between schedule and now */ | 
 | 	barrier(); | 
 | 	if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) | 
 | 		goto need_resched; | 
 | } | 
 | EXPORT_SYMBOL(preempt_schedule); | 
 |  | 
 | /* | 
 |  * this is the entry point to schedule() from kernel preemption | 
 |  * off of irq context. | 
 |  * Note, that this is called and return with irqs disabled. This will | 
 |  * protect us against recursive calling from irq. | 
 |  */ | 
 | asmlinkage void __sched preempt_schedule_irq(void) | 
 | { | 
 | 	struct thread_info *ti = current_thread_info(); | 
 | #ifdef CONFIG_PREEMPT_BKL | 
 | 	struct task_struct *task = current; | 
 | 	int saved_lock_depth; | 
 | #endif | 
 | 	/* Catch callers which need to be fixed */ | 
 | 	BUG_ON(ti->preempt_count || !irqs_disabled()); | 
 |  | 
 | need_resched: | 
 | 	add_preempt_count(PREEMPT_ACTIVE); | 
 | 	/* | 
 | 	 * We keep the big kernel semaphore locked, but we | 
 | 	 * clear ->lock_depth so that schedule() doesnt | 
 | 	 * auto-release the semaphore: | 
 | 	 */ | 
 | #ifdef CONFIG_PREEMPT_BKL | 
 | 	saved_lock_depth = task->lock_depth; | 
 | 	task->lock_depth = -1; | 
 | #endif | 
 | 	local_irq_enable(); | 
 | 	schedule(); | 
 | 	local_irq_disable(); | 
 | #ifdef CONFIG_PREEMPT_BKL | 
 | 	task->lock_depth = saved_lock_depth; | 
 | #endif | 
 | 	sub_preempt_count(PREEMPT_ACTIVE); | 
 |  | 
 | 	/* we could miss a preemption opportunity between schedule and now */ | 
 | 	barrier(); | 
 | 	if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) | 
 | 		goto need_resched; | 
 | } | 
 |  | 
 | #endif /* CONFIG_PREEMPT */ | 
 |  | 
 | int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, | 
 | 			  void *key) | 
 | { | 
 | 	return try_to_wake_up(curr->private, mode, sync); | 
 | } | 
 | EXPORT_SYMBOL(default_wake_function); | 
 |  | 
 | /* | 
 |  * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just | 
 |  * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve | 
 |  * number) then we wake all the non-exclusive tasks and one exclusive task. | 
 |  * | 
 |  * There are circumstances in which we can try to wake a task which has already | 
 |  * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns | 
 |  * zero in this (rare) case, and we handle it by continuing to scan the queue. | 
 |  */ | 
 | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, | 
 | 			     int nr_exclusive, int sync, void *key) | 
 | { | 
 | 	struct list_head *tmp, *next; | 
 |  | 
 | 	list_for_each_safe(tmp, next, &q->task_list) { | 
 | 		wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list); | 
 | 		unsigned flags = curr->flags; | 
 |  | 
 | 		if (curr->func(curr, mode, sync, key) && | 
 | 				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) | 
 | 			break; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * __wake_up - wake up threads blocked on a waitqueue. | 
 |  * @q: the waitqueue | 
 |  * @mode: which threads | 
 |  * @nr_exclusive: how many wake-one or wake-many threads to wake up | 
 |  * @key: is directly passed to the wakeup function | 
 |  */ | 
 | void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode, | 
 | 			int nr_exclusive, void *key) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&q->lock, flags); | 
 | 	__wake_up_common(q, mode, nr_exclusive, 0, key); | 
 | 	spin_unlock_irqrestore(&q->lock, flags); | 
 | } | 
 | EXPORT_SYMBOL(__wake_up); | 
 |  | 
 | /* | 
 |  * Same as __wake_up but called with the spinlock in wait_queue_head_t held. | 
 |  */ | 
 | void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode) | 
 | { | 
 | 	__wake_up_common(q, mode, 1, 0, NULL); | 
 | } | 
 |  | 
 | /** | 
 |  * __wake_up_sync - wake up threads blocked on a waitqueue. | 
 |  * @q: the waitqueue | 
 |  * @mode: which threads | 
 |  * @nr_exclusive: how many wake-one or wake-many threads to wake up | 
 |  * | 
 |  * The sync wakeup differs that the waker knows that it will schedule | 
 |  * away soon, so while the target thread will be woken up, it will not | 
 |  * be migrated to another CPU - ie. the two threads are 'synchronized' | 
 |  * with each other. This can prevent needless bouncing between CPUs. | 
 |  * | 
 |  * On UP it can prevent extra preemption. | 
 |  */ | 
 | void fastcall | 
 | __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int sync = 1; | 
 |  | 
 | 	if (unlikely(!q)) | 
 | 		return; | 
 |  | 
 | 	if (unlikely(!nr_exclusive)) | 
 | 		sync = 0; | 
 |  | 
 | 	spin_lock_irqsave(&q->lock, flags); | 
 | 	__wake_up_common(q, mode, nr_exclusive, sync, NULL); | 
 | 	spin_unlock_irqrestore(&q->lock, flags); | 
 | } | 
 | EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */ | 
 |  | 
 | void fastcall complete(struct completion *x) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&x->wait.lock, flags); | 
 | 	x->done++; | 
 | 	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, | 
 | 			 1, 0, NULL); | 
 | 	spin_unlock_irqrestore(&x->wait.lock, flags); | 
 | } | 
 | EXPORT_SYMBOL(complete); | 
 |  | 
 | void fastcall complete_all(struct completion *x) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&x->wait.lock, flags); | 
 | 	x->done += UINT_MAX/2; | 
 | 	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, | 
 | 			 0, 0, NULL); | 
 | 	spin_unlock_irqrestore(&x->wait.lock, flags); | 
 | } | 
 | EXPORT_SYMBOL(complete_all); | 
 |  | 
 | void fastcall __sched wait_for_completion(struct completion *x) | 
 | { | 
 | 	might_sleep(); | 
 |  | 
 | 	spin_lock_irq(&x->wait.lock); | 
 | 	if (!x->done) { | 
 | 		DECLARE_WAITQUEUE(wait, current); | 
 |  | 
 | 		wait.flags |= WQ_FLAG_EXCLUSIVE; | 
 | 		__add_wait_queue_tail(&x->wait, &wait); | 
 | 		do { | 
 | 			__set_current_state(TASK_UNINTERRUPTIBLE); | 
 | 			spin_unlock_irq(&x->wait.lock); | 
 | 			schedule(); | 
 | 			spin_lock_irq(&x->wait.lock); | 
 | 		} while (!x->done); | 
 | 		__remove_wait_queue(&x->wait, &wait); | 
 | 	} | 
 | 	x->done--; | 
 | 	spin_unlock_irq(&x->wait.lock); | 
 | } | 
 | EXPORT_SYMBOL(wait_for_completion); | 
 |  | 
 | unsigned long fastcall __sched | 
 | wait_for_completion_timeout(struct completion *x, unsigned long timeout) | 
 | { | 
 | 	might_sleep(); | 
 |  | 
 | 	spin_lock_irq(&x->wait.lock); | 
 | 	if (!x->done) { | 
 | 		DECLARE_WAITQUEUE(wait, current); | 
 |  | 
 | 		wait.flags |= WQ_FLAG_EXCLUSIVE; | 
 | 		__add_wait_queue_tail(&x->wait, &wait); | 
 | 		do { | 
 | 			__set_current_state(TASK_UNINTERRUPTIBLE); | 
 | 			spin_unlock_irq(&x->wait.lock); | 
 | 			timeout = schedule_timeout(timeout); | 
 | 			spin_lock_irq(&x->wait.lock); | 
 | 			if (!timeout) { | 
 | 				__remove_wait_queue(&x->wait, &wait); | 
 | 				goto out; | 
 | 			} | 
 | 		} while (!x->done); | 
 | 		__remove_wait_queue(&x->wait, &wait); | 
 | 	} | 
 | 	x->done--; | 
 | out: | 
 | 	spin_unlock_irq(&x->wait.lock); | 
 | 	return timeout; | 
 | } | 
 | EXPORT_SYMBOL(wait_for_completion_timeout); | 
 |  | 
 | int fastcall __sched wait_for_completion_interruptible(struct completion *x) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	might_sleep(); | 
 |  | 
 | 	spin_lock_irq(&x->wait.lock); | 
 | 	if (!x->done) { | 
 | 		DECLARE_WAITQUEUE(wait, current); | 
 |  | 
 | 		wait.flags |= WQ_FLAG_EXCLUSIVE; | 
 | 		__add_wait_queue_tail(&x->wait, &wait); | 
 | 		do { | 
 | 			if (signal_pending(current)) { | 
 | 				ret = -ERESTARTSYS; | 
 | 				__remove_wait_queue(&x->wait, &wait); | 
 | 				goto out; | 
 | 			} | 
 | 			__set_current_state(TASK_INTERRUPTIBLE); | 
 | 			spin_unlock_irq(&x->wait.lock); | 
 | 			schedule(); | 
 | 			spin_lock_irq(&x->wait.lock); | 
 | 		} while (!x->done); | 
 | 		__remove_wait_queue(&x->wait, &wait); | 
 | 	} | 
 | 	x->done--; | 
 | out: | 
 | 	spin_unlock_irq(&x->wait.lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(wait_for_completion_interruptible); | 
 |  | 
 | unsigned long fastcall __sched | 
 | wait_for_completion_interruptible_timeout(struct completion *x, | 
 | 					  unsigned long timeout) | 
 | { | 
 | 	might_sleep(); | 
 |  | 
 | 	spin_lock_irq(&x->wait.lock); | 
 | 	if (!x->done) { | 
 | 		DECLARE_WAITQUEUE(wait, current); | 
 |  | 
 | 		wait.flags |= WQ_FLAG_EXCLUSIVE; | 
 | 		__add_wait_queue_tail(&x->wait, &wait); | 
 | 		do { | 
 | 			if (signal_pending(current)) { | 
 | 				timeout = -ERESTARTSYS; | 
 | 				__remove_wait_queue(&x->wait, &wait); | 
 | 				goto out; | 
 | 			} | 
 | 			__set_current_state(TASK_INTERRUPTIBLE); | 
 | 			spin_unlock_irq(&x->wait.lock); | 
 | 			timeout = schedule_timeout(timeout); | 
 | 			spin_lock_irq(&x->wait.lock); | 
 | 			if (!timeout) { | 
 | 				__remove_wait_queue(&x->wait, &wait); | 
 | 				goto out; | 
 | 			} | 
 | 		} while (!x->done); | 
 | 		__remove_wait_queue(&x->wait, &wait); | 
 | 	} | 
 | 	x->done--; | 
 | out: | 
 | 	spin_unlock_irq(&x->wait.lock); | 
 | 	return timeout; | 
 | } | 
 | EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); | 
 |  | 
 | static inline void | 
 | sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags) | 
 | { | 
 | 	spin_lock_irqsave(&q->lock, *flags); | 
 | 	__add_wait_queue(q, wait); | 
 | 	spin_unlock(&q->lock); | 
 | } | 
 |  | 
 | static inline void | 
 | sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags) | 
 | { | 
 | 	spin_lock_irq(&q->lock); | 
 | 	__remove_wait_queue(q, wait); | 
 | 	spin_unlock_irqrestore(&q->lock, *flags); | 
 | } | 
 |  | 
 | void __sched interruptible_sleep_on(wait_queue_head_t *q) | 
 | { | 
 | 	unsigned long flags; | 
 | 	wait_queue_t wait; | 
 |  | 
 | 	init_waitqueue_entry(&wait, current); | 
 |  | 
 | 	current->state = TASK_INTERRUPTIBLE; | 
 |  | 
 | 	sleep_on_head(q, &wait, &flags); | 
 | 	schedule(); | 
 | 	sleep_on_tail(q, &wait, &flags); | 
 | } | 
 | EXPORT_SYMBOL(interruptible_sleep_on); | 
 |  | 
 | long __sched | 
 | interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) | 
 | { | 
 | 	unsigned long flags; | 
 | 	wait_queue_t wait; | 
 |  | 
 | 	init_waitqueue_entry(&wait, current); | 
 |  | 
 | 	current->state = TASK_INTERRUPTIBLE; | 
 |  | 
 | 	sleep_on_head(q, &wait, &flags); | 
 | 	timeout = schedule_timeout(timeout); | 
 | 	sleep_on_tail(q, &wait, &flags); | 
 |  | 
 | 	return timeout; | 
 | } | 
 | EXPORT_SYMBOL(interruptible_sleep_on_timeout); | 
 |  | 
 | void __sched sleep_on(wait_queue_head_t *q) | 
 | { | 
 | 	unsigned long flags; | 
 | 	wait_queue_t wait; | 
 |  | 
 | 	init_waitqueue_entry(&wait, current); | 
 |  | 
 | 	current->state = TASK_UNINTERRUPTIBLE; | 
 |  | 
 | 	sleep_on_head(q, &wait, &flags); | 
 | 	schedule(); | 
 | 	sleep_on_tail(q, &wait, &flags); | 
 | } | 
 | EXPORT_SYMBOL(sleep_on); | 
 |  | 
 | long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) | 
 | { | 
 | 	unsigned long flags; | 
 | 	wait_queue_t wait; | 
 |  | 
 | 	init_waitqueue_entry(&wait, current); | 
 |  | 
 | 	current->state = TASK_UNINTERRUPTIBLE; | 
 |  | 
 | 	sleep_on_head(q, &wait, &flags); | 
 | 	timeout = schedule_timeout(timeout); | 
 | 	sleep_on_tail(q, &wait, &flags); | 
 |  | 
 | 	return timeout; | 
 | } | 
 | EXPORT_SYMBOL(sleep_on_timeout); | 
 |  | 
 | #ifdef CONFIG_RT_MUTEXES | 
 |  | 
 | /* | 
 |  * rt_mutex_setprio - set the current priority of a task | 
 |  * @p: task | 
 |  * @prio: prio value (kernel-internal form) | 
 |  * | 
 |  * This function changes the 'effective' priority of a task. It does | 
 |  * not touch ->normal_prio like __setscheduler(). | 
 |  * | 
 |  * Used by the rt_mutex code to implement priority inheritance logic. | 
 |  */ | 
 | void rt_mutex_setprio(struct task_struct *p, int prio) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int oldprio, on_rq; | 
 | 	struct rq *rq; | 
 | 	u64 now; | 
 |  | 
 | 	BUG_ON(prio < 0 || prio > MAX_PRIO); | 
 |  | 
 | 	rq = task_rq_lock(p, &flags); | 
 | 	now = rq_clock(rq); | 
 |  | 
 | 	oldprio = p->prio; | 
 | 	on_rq = p->se.on_rq; | 
 | 	if (on_rq) | 
 | 		dequeue_task(rq, p, 0, now); | 
 |  | 
 | 	if (rt_prio(prio)) | 
 | 		p->sched_class = &rt_sched_class; | 
 | 	else | 
 | 		p->sched_class = &fair_sched_class; | 
 |  | 
 | 	p->prio = prio; | 
 |  | 
 | 	if (on_rq) { | 
 | 		enqueue_task(rq, p, 0, now); | 
 | 		/* | 
 | 		 * Reschedule if we are currently running on this runqueue and | 
 | 		 * our priority decreased, or if we are not currently running on | 
 | 		 * this runqueue and our priority is higher than the current's | 
 | 		 */ | 
 | 		if (task_running(rq, p)) { | 
 | 			if (p->prio > oldprio) | 
 | 				resched_task(rq->curr); | 
 | 		} else { | 
 | 			check_preempt_curr(rq, p); | 
 | 		} | 
 | 	} | 
 | 	task_rq_unlock(rq, &flags); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | void set_user_nice(struct task_struct *p, long nice) | 
 | { | 
 | 	int old_prio, delta, on_rq; | 
 | 	unsigned long flags; | 
 | 	struct rq *rq; | 
 | 	u64 now; | 
 |  | 
 | 	if (TASK_NICE(p) == nice || nice < -20 || nice > 19) | 
 | 		return; | 
 | 	/* | 
 | 	 * We have to be careful, if called from sys_setpriority(), | 
 | 	 * the task might be in the middle of scheduling on another CPU. | 
 | 	 */ | 
 | 	rq = task_rq_lock(p, &flags); | 
 | 	now = rq_clock(rq); | 
 | 	/* | 
 | 	 * The RT priorities are set via sched_setscheduler(), but we still | 
 | 	 * allow the 'normal' nice value to be set - but as expected | 
 | 	 * it wont have any effect on scheduling until the task is | 
 | 	 * SCHED_FIFO/SCHED_RR: | 
 | 	 */ | 
 | 	if (task_has_rt_policy(p)) { | 
 | 		p->static_prio = NICE_TO_PRIO(nice); | 
 | 		goto out_unlock; | 
 | 	} | 
 | 	on_rq = p->se.on_rq; | 
 | 	if (on_rq) { | 
 | 		dequeue_task(rq, p, 0, now); | 
 | 		dec_load(rq, p, now); | 
 | 	} | 
 |  | 
 | 	p->static_prio = NICE_TO_PRIO(nice); | 
 | 	set_load_weight(p); | 
 | 	old_prio = p->prio; | 
 | 	p->prio = effective_prio(p); | 
 | 	delta = p->prio - old_prio; | 
 |  | 
 | 	if (on_rq) { | 
 | 		enqueue_task(rq, p, 0, now); | 
 | 		inc_load(rq, p, now); | 
 | 		/* | 
 | 		 * If the task increased its priority or is running and | 
 | 		 * lowered its priority, then reschedule its CPU: | 
 | 		 */ | 
 | 		if (delta < 0 || (delta > 0 && task_running(rq, p))) | 
 | 			resched_task(rq->curr); | 
 | 	} | 
 | out_unlock: | 
 | 	task_rq_unlock(rq, &flags); | 
 | } | 
 | EXPORT_SYMBOL(set_user_nice); | 
 |  | 
 | /* | 
 |  * can_nice - check if a task can reduce its nice value | 
 |  * @p: task | 
 |  * @nice: nice value | 
 |  */ | 
 | int can_nice(const struct task_struct *p, const int nice) | 
 | { | 
 | 	/* convert nice value [19,-20] to rlimit style value [1,40] */ | 
 | 	int nice_rlim = 20 - nice; | 
 |  | 
 | 	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur || | 
 | 		capable(CAP_SYS_NICE)); | 
 | } | 
 |  | 
 | #ifdef __ARCH_WANT_SYS_NICE | 
 |  | 
 | /* | 
 |  * sys_nice - change the priority of the current process. | 
 |  * @increment: priority increment | 
 |  * | 
 |  * sys_setpriority is a more generic, but much slower function that | 
 |  * does similar things. | 
 |  */ | 
 | asmlinkage long sys_nice(int increment) | 
 | { | 
 | 	long nice, retval; | 
 |  | 
 | 	/* | 
 | 	 * Setpriority might change our priority at the same moment. | 
 | 	 * We don't have to worry. Conceptually one call occurs first | 
 | 	 * and we have a single winner. | 
 | 	 */ | 
 | 	if (increment < -40) | 
 | 		increment = -40; | 
 | 	if (increment > 40) | 
 | 		increment = 40; | 
 |  | 
 | 	nice = PRIO_TO_NICE(current->static_prio) + increment; | 
 | 	if (nice < -20) | 
 | 		nice = -20; | 
 | 	if (nice > 19) | 
 | 		nice = 19; | 
 |  | 
 | 	if (increment < 0 && !can_nice(current, nice)) | 
 | 		return -EPERM; | 
 |  | 
 | 	retval = security_task_setnice(current, nice); | 
 | 	if (retval) | 
 | 		return retval; | 
 |  | 
 | 	set_user_nice(current, nice); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | /** | 
 |  * task_prio - return the priority value of a given task. | 
 |  * @p: the task in question. | 
 |  * | 
 |  * This is the priority value as seen by users in /proc. | 
 |  * RT tasks are offset by -200. Normal tasks are centered | 
 |  * around 0, value goes from -16 to +15. | 
 |  */ | 
 | int task_prio(const struct task_struct *p) | 
 | { | 
 | 	return p->prio - MAX_RT_PRIO; | 
 | } | 
 |  | 
 | /** | 
 |  * task_nice - return the nice value of a given task. | 
 |  * @p: the task in question. | 
 |  */ | 
 | int task_nice(const struct task_struct *p) | 
 | { | 
 | 	return TASK_NICE(p); | 
 | } | 
 | EXPORT_SYMBOL_GPL(task_nice); | 
 |  | 
 | /** | 
 |  * idle_cpu - is a given cpu idle currently? | 
 |  * @cpu: the processor in question. | 
 |  */ | 
 | int idle_cpu(int cpu) | 
 | { | 
 | 	return cpu_curr(cpu) == cpu_rq(cpu)->idle; | 
 | } | 
 |  | 
 | /** | 
 |  * idle_task - return the idle task for a given cpu. | 
 |  * @cpu: the processor in question. | 
 |  */ | 
 | struct task_struct *idle_task(int cpu) | 
 | { | 
 | 	return cpu_rq(cpu)->idle; | 
 | } | 
 |  | 
 | /** | 
 |  * find_process_by_pid - find a process with a matching PID value. | 
 |  * @pid: the pid in question. | 
 |  */ | 
 | static inline struct task_struct *find_process_by_pid(pid_t pid) | 
 | { | 
 | 	return pid ? find_task_by_pid(pid) : current; | 
 | } | 
 |  | 
 | /* Actually do priority change: must hold rq lock. */ | 
 | static void | 
 | __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) | 
 | { | 
 | 	BUG_ON(p->se.on_rq); | 
 |  | 
 | 	p->policy = policy; | 
 | 	switch (p->policy) { | 
 | 	case SCHED_NORMAL: | 
 | 	case SCHED_BATCH: | 
 | 	case SCHED_IDLE: | 
 | 		p->sched_class = &fair_sched_class; | 
 | 		break; | 
 | 	case SCHED_FIFO: | 
 | 	case SCHED_RR: | 
 | 		p->sched_class = &rt_sched_class; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	p->rt_priority = prio; | 
 | 	p->normal_prio = normal_prio(p); | 
 | 	/* we are holding p->pi_lock already */ | 
 | 	p->prio = rt_mutex_getprio(p); | 
 | 	set_load_weight(p); | 
 | } | 
 |  | 
 | /** | 
 |  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. | 
 |  * @p: the task in question. | 
 |  * @policy: new policy. | 
 |  * @param: structure containing the new RT priority. | 
 |  * | 
 |  * NOTE that the task may be already dead. | 
 |  */ | 
 | int sched_setscheduler(struct task_struct *p, int policy, | 
 | 		       struct sched_param *param) | 
 | { | 
 | 	int retval, oldprio, oldpolicy = -1, on_rq; | 
 | 	unsigned long flags; | 
 | 	struct rq *rq; | 
 |  | 
 | 	/* may grab non-irq protected spin_locks */ | 
 | 	BUG_ON(in_interrupt()); | 
 | recheck: | 
 | 	/* double check policy once rq lock held */ | 
 | 	if (policy < 0) | 
 | 		policy = oldpolicy = p->policy; | 
 | 	else if (policy != SCHED_FIFO && policy != SCHED_RR && | 
 | 			policy != SCHED_NORMAL && policy != SCHED_BATCH && | 
 | 			policy != SCHED_IDLE) | 
 | 		return -EINVAL; | 
 | 	/* | 
 | 	 * Valid priorities for SCHED_FIFO and SCHED_RR are | 
 | 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, | 
 | 	 * SCHED_BATCH and SCHED_IDLE is 0. | 
 | 	 */ | 
 | 	if (param->sched_priority < 0 || | 
 | 	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || | 
 | 	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) | 
 | 		return -EINVAL; | 
 | 	if (rt_policy(policy) != (param->sched_priority != 0)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Allow unprivileged RT tasks to decrease priority: | 
 | 	 */ | 
 | 	if (!capable(CAP_SYS_NICE)) { | 
 | 		if (rt_policy(policy)) { | 
 | 			unsigned long rlim_rtprio; | 
 |  | 
 | 			if (!lock_task_sighand(p, &flags)) | 
 | 				return -ESRCH; | 
 | 			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur; | 
 | 			unlock_task_sighand(p, &flags); | 
 |  | 
 | 			/* can't set/change the rt policy */ | 
 | 			if (policy != p->policy && !rlim_rtprio) | 
 | 				return -EPERM; | 
 |  | 
 | 			/* can't increase priority */ | 
 | 			if (param->sched_priority > p->rt_priority && | 
 | 			    param->sched_priority > rlim_rtprio) | 
 | 				return -EPERM; | 
 | 		} | 
 | 		/* | 
 | 		 * Like positive nice levels, dont allow tasks to | 
 | 		 * move out of SCHED_IDLE either: | 
 | 		 */ | 
 | 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) | 
 | 			return -EPERM; | 
 |  | 
 | 		/* can't change other user's priorities */ | 
 | 		if ((current->euid != p->euid) && | 
 | 		    (current->euid != p->uid)) | 
 | 			return -EPERM; | 
 | 	} | 
 |  | 
 | 	retval = security_task_setscheduler(p, policy, param); | 
 | 	if (retval) | 
 | 		return retval; | 
 | 	/* | 
 | 	 * make sure no PI-waiters arrive (or leave) while we are | 
 | 	 * changing the priority of the task: | 
 | 	 */ | 
 | 	spin_lock_irqsave(&p->pi_lock, flags); | 
 | 	/* | 
 | 	 * To be able to change p->policy safely, the apropriate | 
 | 	 * runqueue lock must be held. | 
 | 	 */ | 
 | 	rq = __task_rq_lock(p); | 
 | 	/* recheck policy now with rq lock held */ | 
 | 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { | 
 | 		policy = oldpolicy = -1; | 
 | 		__task_rq_unlock(rq); | 
 | 		spin_unlock_irqrestore(&p->pi_lock, flags); | 
 | 		goto recheck; | 
 | 	} | 
 | 	on_rq = p->se.on_rq; | 
 | 	if (on_rq) | 
 | 		deactivate_task(rq, p, 0); | 
 | 	oldprio = p->prio; | 
 | 	__setscheduler(rq, p, policy, param->sched_priority); | 
 | 	if (on_rq) { | 
 | 		activate_task(rq, p, 0); | 
 | 		/* | 
 | 		 * Reschedule if we are currently running on this runqueue and | 
 | 		 * our priority decreased, or if we are not currently running on | 
 | 		 * this runqueue and our priority is higher than the current's | 
 | 		 */ | 
 | 		if (task_running(rq, p)) { | 
 | 			if (p->prio > oldprio) | 
 | 				resched_task(rq->curr); | 
 | 		} else { | 
 | 			check_preempt_curr(rq, p); | 
 | 		} | 
 | 	} | 
 | 	__task_rq_unlock(rq); | 
 | 	spin_unlock_irqrestore(&p->pi_lock, flags); | 
 |  | 
 | 	rt_mutex_adjust_pi(p); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(sched_setscheduler); | 
 |  | 
 | static int | 
 | do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) | 
 | { | 
 | 	struct sched_param lparam; | 
 | 	struct task_struct *p; | 
 | 	int retval; | 
 |  | 
 | 	if (!param || pid < 0) | 
 | 		return -EINVAL; | 
 | 	if (copy_from_user(&lparam, param, sizeof(struct sched_param))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	retval = -ESRCH; | 
 | 	p = find_process_by_pid(pid); | 
 | 	if (p != NULL) | 
 | 		retval = sched_setscheduler(p, policy, &lparam); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_setscheduler - set/change the scheduler policy and RT priority | 
 |  * @pid: the pid in question. | 
 |  * @policy: new policy. | 
 |  * @param: structure containing the new RT priority. | 
 |  */ | 
 | asmlinkage long sys_sched_setscheduler(pid_t pid, int policy, | 
 | 				       struct sched_param __user *param) | 
 | { | 
 | 	/* negative values for policy are not valid */ | 
 | 	if (policy < 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return do_sched_setscheduler(pid, policy, param); | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_setparam - set/change the RT priority of a thread | 
 |  * @pid: the pid in question. | 
 |  * @param: structure containing the new RT priority. | 
 |  */ | 
 | asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param) | 
 | { | 
 | 	return do_sched_setscheduler(pid, -1, param); | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_getscheduler - get the policy (scheduling class) of a thread | 
 |  * @pid: the pid in question. | 
 |  */ | 
 | asmlinkage long sys_sched_getscheduler(pid_t pid) | 
 | { | 
 | 	struct task_struct *p; | 
 | 	int retval = -EINVAL; | 
 |  | 
 | 	if (pid < 0) | 
 | 		goto out_nounlock; | 
 |  | 
 | 	retval = -ESRCH; | 
 | 	read_lock(&tasklist_lock); | 
 | 	p = find_process_by_pid(pid); | 
 | 	if (p) { | 
 | 		retval = security_task_getscheduler(p); | 
 | 		if (!retval) | 
 | 			retval = p->policy; | 
 | 	} | 
 | 	read_unlock(&tasklist_lock); | 
 |  | 
 | out_nounlock: | 
 | 	return retval; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_getscheduler - get the RT priority of a thread | 
 |  * @pid: the pid in question. | 
 |  * @param: structure containing the RT priority. | 
 |  */ | 
 | asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param) | 
 | { | 
 | 	struct sched_param lp; | 
 | 	struct task_struct *p; | 
 | 	int retval = -EINVAL; | 
 |  | 
 | 	if (!param || pid < 0) | 
 | 		goto out_nounlock; | 
 |  | 
 | 	read_lock(&tasklist_lock); | 
 | 	p = find_process_by_pid(pid); | 
 | 	retval = -ESRCH; | 
 | 	if (!p) | 
 | 		goto out_unlock; | 
 |  | 
 | 	retval = security_task_getscheduler(p); | 
 | 	if (retval) | 
 | 		goto out_unlock; | 
 |  | 
 | 	lp.sched_priority = p->rt_priority; | 
 | 	read_unlock(&tasklist_lock); | 
 |  | 
 | 	/* | 
 | 	 * This one might sleep, we cannot do it with a spinlock held ... | 
 | 	 */ | 
 | 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; | 
 |  | 
 | out_nounlock: | 
 | 	return retval; | 
 |  | 
 | out_unlock: | 
 | 	read_unlock(&tasklist_lock); | 
 | 	return retval; | 
 | } | 
 |  | 
 | long sched_setaffinity(pid_t pid, cpumask_t new_mask) | 
 | { | 
 | 	cpumask_t cpus_allowed; | 
 | 	struct task_struct *p; | 
 | 	int retval; | 
 |  | 
 | 	mutex_lock(&sched_hotcpu_mutex); | 
 | 	read_lock(&tasklist_lock); | 
 |  | 
 | 	p = find_process_by_pid(pid); | 
 | 	if (!p) { | 
 | 		read_unlock(&tasklist_lock); | 
 | 		mutex_unlock(&sched_hotcpu_mutex); | 
 | 		return -ESRCH; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * It is not safe to call set_cpus_allowed with the | 
 | 	 * tasklist_lock held.  We will bump the task_struct's | 
 | 	 * usage count and then drop tasklist_lock. | 
 | 	 */ | 
 | 	get_task_struct(p); | 
 | 	read_unlock(&tasklist_lock); | 
 |  | 
 | 	retval = -EPERM; | 
 | 	if ((current->euid != p->euid) && (current->euid != p->uid) && | 
 | 			!capable(CAP_SYS_NICE)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	retval = security_task_setscheduler(p, 0, NULL); | 
 | 	if (retval) | 
 | 		goto out_unlock; | 
 |  | 
 | 	cpus_allowed = cpuset_cpus_allowed(p); | 
 | 	cpus_and(new_mask, new_mask, cpus_allowed); | 
 | 	retval = set_cpus_allowed(p, new_mask); | 
 |  | 
 | out_unlock: | 
 | 	put_task_struct(p); | 
 | 	mutex_unlock(&sched_hotcpu_mutex); | 
 | 	return retval; | 
 | } | 
 |  | 
 | static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, | 
 | 			     cpumask_t *new_mask) | 
 | { | 
 | 	if (len < sizeof(cpumask_t)) { | 
 | 		memset(new_mask, 0, sizeof(cpumask_t)); | 
 | 	} else if (len > sizeof(cpumask_t)) { | 
 | 		len = sizeof(cpumask_t); | 
 | 	} | 
 | 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_setaffinity - set the cpu affinity of a process | 
 |  * @pid: pid of the process | 
 |  * @len: length in bytes of the bitmask pointed to by user_mask_ptr | 
 |  * @user_mask_ptr: user-space pointer to the new cpu mask | 
 |  */ | 
 | asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len, | 
 | 				      unsigned long __user *user_mask_ptr) | 
 | { | 
 | 	cpumask_t new_mask; | 
 | 	int retval; | 
 |  | 
 | 	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask); | 
 | 	if (retval) | 
 | 		return retval; | 
 |  | 
 | 	return sched_setaffinity(pid, new_mask); | 
 | } | 
 |  | 
 | /* | 
 |  * Represents all cpu's present in the system | 
 |  * In systems capable of hotplug, this map could dynamically grow | 
 |  * as new cpu's are detected in the system via any platform specific | 
 |  * method, such as ACPI for e.g. | 
 |  */ | 
 |  | 
 | cpumask_t cpu_present_map __read_mostly; | 
 | EXPORT_SYMBOL(cpu_present_map); | 
 |  | 
 | #ifndef CONFIG_SMP | 
 | cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL; | 
 | EXPORT_SYMBOL(cpu_online_map); | 
 |  | 
 | cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL; | 
 | EXPORT_SYMBOL(cpu_possible_map); | 
 | #endif | 
 |  | 
 | long sched_getaffinity(pid_t pid, cpumask_t *mask) | 
 | { | 
 | 	struct task_struct *p; | 
 | 	int retval; | 
 |  | 
 | 	mutex_lock(&sched_hotcpu_mutex); | 
 | 	read_lock(&tasklist_lock); | 
 |  | 
 | 	retval = -ESRCH; | 
 | 	p = find_process_by_pid(pid); | 
 | 	if (!p) | 
 | 		goto out_unlock; | 
 |  | 
 | 	retval = security_task_getscheduler(p); | 
 | 	if (retval) | 
 | 		goto out_unlock; | 
 |  | 
 | 	cpus_and(*mask, p->cpus_allowed, cpu_online_map); | 
 |  | 
 | out_unlock: | 
 | 	read_unlock(&tasklist_lock); | 
 | 	mutex_unlock(&sched_hotcpu_mutex); | 
 | 	if (retval) | 
 | 		return retval; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_getaffinity - get the cpu affinity of a process | 
 |  * @pid: pid of the process | 
 |  * @len: length in bytes of the bitmask pointed to by user_mask_ptr | 
 |  * @user_mask_ptr: user-space pointer to hold the current cpu mask | 
 |  */ | 
 | asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len, | 
 | 				      unsigned long __user *user_mask_ptr) | 
 | { | 
 | 	int ret; | 
 | 	cpumask_t mask; | 
 |  | 
 | 	if (len < sizeof(cpumask_t)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ret = sched_getaffinity(pid, &mask); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	return sizeof(cpumask_t); | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_yield - yield the current processor to other threads. | 
 |  * | 
 |  * This function yields the current CPU to other tasks. If there are no | 
 |  * other threads running on this CPU then this function will return. | 
 |  */ | 
 | asmlinkage long sys_sched_yield(void) | 
 | { | 
 | 	struct rq *rq = this_rq_lock(); | 
 |  | 
 | 	schedstat_inc(rq, yld_cnt); | 
 | 	if (unlikely(rq->nr_running == 1)) | 
 | 		schedstat_inc(rq, yld_act_empty); | 
 | 	else | 
 | 		current->sched_class->yield_task(rq, current); | 
 |  | 
 | 	/* | 
 | 	 * Since we are going to call schedule() anyway, there's | 
 | 	 * no need to preempt or enable interrupts: | 
 | 	 */ | 
 | 	__release(rq->lock); | 
 | 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_); | 
 | 	_raw_spin_unlock(&rq->lock); | 
 | 	preempt_enable_no_resched(); | 
 |  | 
 | 	schedule(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __cond_resched(void) | 
 | { | 
 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP | 
 | 	__might_sleep(__FILE__, __LINE__); | 
 | #endif | 
 | 	/* | 
 | 	 * The BKS might be reacquired before we have dropped | 
 | 	 * PREEMPT_ACTIVE, which could trigger a second | 
 | 	 * cond_resched() call. | 
 | 	 */ | 
 | 	do { | 
 | 		add_preempt_count(PREEMPT_ACTIVE); | 
 | 		schedule(); | 
 | 		sub_preempt_count(PREEMPT_ACTIVE); | 
 | 	} while (need_resched()); | 
 | } | 
 |  | 
 | int __sched cond_resched(void) | 
 | { | 
 | 	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) && | 
 | 					system_state == SYSTEM_RUNNING) { | 
 | 		__cond_resched(); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(cond_resched); | 
 |  | 
 | /* | 
 |  * cond_resched_lock() - if a reschedule is pending, drop the given lock, | 
 |  * call schedule, and on return reacquire the lock. | 
 |  * | 
 |  * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level | 
 |  * operations here to prevent schedule() from being called twice (once via | 
 |  * spin_unlock(), once by hand). | 
 |  */ | 
 | int cond_resched_lock(spinlock_t *lock) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	if (need_lockbreak(lock)) { | 
 | 		spin_unlock(lock); | 
 | 		cpu_relax(); | 
 | 		ret = 1; | 
 | 		spin_lock(lock); | 
 | 	} | 
 | 	if (need_resched() && system_state == SYSTEM_RUNNING) { | 
 | 		spin_release(&lock->dep_map, 1, _THIS_IP_); | 
 | 		_raw_spin_unlock(lock); | 
 | 		preempt_enable_no_resched(); | 
 | 		__cond_resched(); | 
 | 		ret = 1; | 
 | 		spin_lock(lock); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(cond_resched_lock); | 
 |  | 
 | int __sched cond_resched_softirq(void) | 
 | { | 
 | 	BUG_ON(!in_softirq()); | 
 |  | 
 | 	if (need_resched() && system_state == SYSTEM_RUNNING) { | 
 | 		local_bh_enable(); | 
 | 		__cond_resched(); | 
 | 		local_bh_disable(); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(cond_resched_softirq); | 
 |  | 
 | /** | 
 |  * yield - yield the current processor to other threads. | 
 |  * | 
 |  * This is a shortcut for kernel-space yielding - it marks the | 
 |  * thread runnable and calls sys_sched_yield(). | 
 |  */ | 
 | void __sched yield(void) | 
 | { | 
 | 	set_current_state(TASK_RUNNING); | 
 | 	sys_sched_yield(); | 
 | } | 
 | EXPORT_SYMBOL(yield); | 
 |  | 
 | /* | 
 |  * This task is about to go to sleep on IO.  Increment rq->nr_iowait so | 
 |  * that process accounting knows that this is a task in IO wait state. | 
 |  * | 
 |  * But don't do that if it is a deliberate, throttling IO wait (this task | 
 |  * has set its backing_dev_info: the queue against which it should throttle) | 
 |  */ | 
 | void __sched io_schedule(void) | 
 | { | 
 | 	struct rq *rq = &__raw_get_cpu_var(runqueues); | 
 |  | 
 | 	delayacct_blkio_start(); | 
 | 	atomic_inc(&rq->nr_iowait); | 
 | 	schedule(); | 
 | 	atomic_dec(&rq->nr_iowait); | 
 | 	delayacct_blkio_end(); | 
 | } | 
 | EXPORT_SYMBOL(io_schedule); | 
 |  | 
 | long __sched io_schedule_timeout(long timeout) | 
 | { | 
 | 	struct rq *rq = &__raw_get_cpu_var(runqueues); | 
 | 	long ret; | 
 |  | 
 | 	delayacct_blkio_start(); | 
 | 	atomic_inc(&rq->nr_iowait); | 
 | 	ret = schedule_timeout(timeout); | 
 | 	atomic_dec(&rq->nr_iowait); | 
 | 	delayacct_blkio_end(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_get_priority_max - return maximum RT priority. | 
 |  * @policy: scheduling class. | 
 |  * | 
 |  * this syscall returns the maximum rt_priority that can be used | 
 |  * by a given scheduling class. | 
 |  */ | 
 | asmlinkage long sys_sched_get_priority_max(int policy) | 
 | { | 
 | 	int ret = -EINVAL; | 
 |  | 
 | 	switch (policy) { | 
 | 	case SCHED_FIFO: | 
 | 	case SCHED_RR: | 
 | 		ret = MAX_USER_RT_PRIO-1; | 
 | 		break; | 
 | 	case SCHED_NORMAL: | 
 | 	case SCHED_BATCH: | 
 | 	case SCHED_IDLE: | 
 | 		ret = 0; | 
 | 		break; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_get_priority_min - return minimum RT priority. | 
 |  * @policy: scheduling class. | 
 |  * | 
 |  * this syscall returns the minimum rt_priority that can be used | 
 |  * by a given scheduling class. | 
 |  */ | 
 | asmlinkage long sys_sched_get_priority_min(int policy) | 
 | { | 
 | 	int ret = -EINVAL; | 
 |  | 
 | 	switch (policy) { | 
 | 	case SCHED_FIFO: | 
 | 	case SCHED_RR: | 
 | 		ret = 1; | 
 | 		break; | 
 | 	case SCHED_NORMAL: | 
 | 	case SCHED_BATCH: | 
 | 	case SCHED_IDLE: | 
 | 		ret = 0; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_rr_get_interval - return the default timeslice of a process. | 
 |  * @pid: pid of the process. | 
 |  * @interval: userspace pointer to the timeslice value. | 
 |  * | 
 |  * this syscall writes the default timeslice value of a given process | 
 |  * into the user-space timespec buffer. A value of '0' means infinity. | 
 |  */ | 
 | asmlinkage | 
 | long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval) | 
 | { | 
 | 	struct task_struct *p; | 
 | 	int retval = -EINVAL; | 
 | 	struct timespec t; | 
 |  | 
 | 	if (pid < 0) | 
 | 		goto out_nounlock; | 
 |  | 
 | 	retval = -ESRCH; | 
 | 	read_lock(&tasklist_lock); | 
 | 	p = find_process_by_pid(pid); | 
 | 	if (!p) | 
 | 		goto out_unlock; | 
 |  | 
 | 	retval = security_task_getscheduler(p); | 
 | 	if (retval) | 
 | 		goto out_unlock; | 
 |  | 
 | 	jiffies_to_timespec(p->policy == SCHED_FIFO ? | 
 | 				0 : static_prio_timeslice(p->static_prio), &t); | 
 | 	read_unlock(&tasklist_lock); | 
 | 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; | 
 | out_nounlock: | 
 | 	return retval; | 
 | out_unlock: | 
 | 	read_unlock(&tasklist_lock); | 
 | 	return retval; | 
 | } | 
 |  | 
 | static const char stat_nam[] = "RSDTtZX"; | 
 |  | 
 | static void show_task(struct task_struct *p) | 
 | { | 
 | 	unsigned long free = 0; | 
 | 	unsigned state; | 
 |  | 
 | 	state = p->state ? __ffs(p->state) + 1 : 0; | 
 | 	printk("%-13.13s %c", p->comm, | 
 | 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); | 
 | #if BITS_PER_LONG == 32 | 
 | 	if (state == TASK_RUNNING) | 
 | 		printk(" running  "); | 
 | 	else | 
 | 		printk(" %08lx ", thread_saved_pc(p)); | 
 | #else | 
 | 	if (state == TASK_RUNNING) | 
 | 		printk("  running task    "); | 
 | 	else | 
 | 		printk(" %016lx ", thread_saved_pc(p)); | 
 | #endif | 
 | #ifdef CONFIG_DEBUG_STACK_USAGE | 
 | 	{ | 
 | 		unsigned long *n = end_of_stack(p); | 
 | 		while (!*n) | 
 | 			n++; | 
 | 		free = (unsigned long)n - (unsigned long)end_of_stack(p); | 
 | 	} | 
 | #endif | 
 | 	printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid); | 
 |  | 
 | 	if (state != TASK_RUNNING) | 
 | 		show_stack(p, NULL); | 
 | } | 
 |  | 
 | void show_state_filter(unsigned long state_filter) | 
 | { | 
 | 	struct task_struct *g, *p; | 
 |  | 
 | #if BITS_PER_LONG == 32 | 
 | 	printk(KERN_INFO | 
 | 		"  task                PC stack   pid father\n"); | 
 | #else | 
 | 	printk(KERN_INFO | 
 | 		"  task                        PC stack   pid father\n"); | 
 | #endif | 
 | 	read_lock(&tasklist_lock); | 
 | 	do_each_thread(g, p) { | 
 | 		/* | 
 | 		 * reset the NMI-timeout, listing all files on a slow | 
 | 		 * console might take alot of time: | 
 | 		 */ | 
 | 		touch_nmi_watchdog(); | 
 | 		if (!state_filter || (p->state & state_filter)) | 
 | 			show_task(p); | 
 | 	} while_each_thread(g, p); | 
 |  | 
 | 	touch_all_softlockup_watchdogs(); | 
 |  | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | 	sysrq_sched_debug_show(); | 
 | #endif | 
 | 	read_unlock(&tasklist_lock); | 
 | 	/* | 
 | 	 * Only show locks if all tasks are dumped: | 
 | 	 */ | 
 | 	if (state_filter == -1) | 
 | 		debug_show_all_locks(); | 
 | } | 
 |  | 
 | void __cpuinit init_idle_bootup_task(struct task_struct *idle) | 
 | { | 
 | 	idle->sched_class = &idle_sched_class; | 
 | } | 
 |  | 
 | /** | 
 |  * init_idle - set up an idle thread for a given CPU | 
 |  * @idle: task in question | 
 |  * @cpu: cpu the idle task belongs to | 
 |  * | 
 |  * NOTE: this function does not set the idle thread's NEED_RESCHED | 
 |  * flag, to make booting more robust. | 
 |  */ | 
 | void __cpuinit init_idle(struct task_struct *idle, int cpu) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	unsigned long flags; | 
 |  | 
 | 	__sched_fork(idle); | 
 | 	idle->se.exec_start = sched_clock(); | 
 |  | 
 | 	idle->prio = idle->normal_prio = MAX_PRIO; | 
 | 	idle->cpus_allowed = cpumask_of_cpu(cpu); | 
 | 	__set_task_cpu(idle, cpu); | 
 |  | 
 | 	spin_lock_irqsave(&rq->lock, flags); | 
 | 	rq->curr = rq->idle = idle; | 
 | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) | 
 | 	idle->oncpu = 1; | 
 | #endif | 
 | 	spin_unlock_irqrestore(&rq->lock, flags); | 
 |  | 
 | 	/* Set the preempt count _outside_ the spinlocks! */ | 
 | #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL) | 
 | 	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0); | 
 | #else | 
 | 	task_thread_info(idle)->preempt_count = 0; | 
 | #endif | 
 | 	/* | 
 | 	 * The idle tasks have their own, simple scheduling class: | 
 | 	 */ | 
 | 	idle->sched_class = &idle_sched_class; | 
 | } | 
 |  | 
 | /* | 
 |  * In a system that switches off the HZ timer nohz_cpu_mask | 
 |  * indicates which cpus entered this state. This is used | 
 |  * in the rcu update to wait only for active cpus. For system | 
 |  * which do not switch off the HZ timer nohz_cpu_mask should | 
 |  * always be CPU_MASK_NONE. | 
 |  */ | 
 | cpumask_t nohz_cpu_mask = CPU_MASK_NONE; | 
 |  | 
 | /* | 
 |  * Increase the granularity value when there are more CPUs, | 
 |  * because with more CPUs the 'effective latency' as visible | 
 |  * to users decreases. But the relationship is not linear, | 
 |  * so pick a second-best guess by going with the log2 of the | 
 |  * number of CPUs. | 
 |  * | 
 |  * This idea comes from the SD scheduler of Con Kolivas: | 
 |  */ | 
 | static inline void sched_init_granularity(void) | 
 | { | 
 | 	unsigned int factor = 1 + ilog2(num_online_cpus()); | 
 | 	const unsigned long gran_limit = 100000000; | 
 |  | 
 | 	sysctl_sched_granularity *= factor; | 
 | 	if (sysctl_sched_granularity > gran_limit) | 
 | 		sysctl_sched_granularity = gran_limit; | 
 |  | 
 | 	sysctl_sched_runtime_limit = sysctl_sched_granularity * 4; | 
 | 	sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | /* | 
 |  * This is how migration works: | 
 |  * | 
 |  * 1) we queue a struct migration_req structure in the source CPU's | 
 |  *    runqueue and wake up that CPU's migration thread. | 
 |  * 2) we down() the locked semaphore => thread blocks. | 
 |  * 3) migration thread wakes up (implicitly it forces the migrated | 
 |  *    thread off the CPU) | 
 |  * 4) it gets the migration request and checks whether the migrated | 
 |  *    task is still in the wrong runqueue. | 
 |  * 5) if it's in the wrong runqueue then the migration thread removes | 
 |  *    it and puts it into the right queue. | 
 |  * 6) migration thread up()s the semaphore. | 
 |  * 7) we wake up and the migration is done. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Change a given task's CPU affinity. Migrate the thread to a | 
 |  * proper CPU and schedule it away if the CPU it's executing on | 
 |  * is removed from the allowed bitmask. | 
 |  * | 
 |  * NOTE: the caller must have a valid reference to the task, the | 
 |  * task must not exit() & deallocate itself prematurely.  The | 
 |  * call is not atomic; no spinlocks may be held. | 
 |  */ | 
 | int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) | 
 | { | 
 | 	struct migration_req req; | 
 | 	unsigned long flags; | 
 | 	struct rq *rq; | 
 | 	int ret = 0; | 
 |  | 
 | 	rq = task_rq_lock(p, &flags); | 
 | 	if (!cpus_intersects(new_mask, cpu_online_map)) { | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	p->cpus_allowed = new_mask; | 
 | 	/* Can the task run on the task's current CPU? If so, we're done */ | 
 | 	if (cpu_isset(task_cpu(p), new_mask)) | 
 | 		goto out; | 
 |  | 
 | 	if (migrate_task(p, any_online_cpu(new_mask), &req)) { | 
 | 		/* Need help from migration thread: drop lock and wait. */ | 
 | 		task_rq_unlock(rq, &flags); | 
 | 		wake_up_process(rq->migration_thread); | 
 | 		wait_for_completion(&req.done); | 
 | 		tlb_migrate_finish(p->mm); | 
 | 		return 0; | 
 | 	} | 
 | out: | 
 | 	task_rq_unlock(rq, &flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(set_cpus_allowed); | 
 |  | 
 | /* | 
 |  * Move (not current) task off this cpu, onto dest cpu.  We're doing | 
 |  * this because either it can't run here any more (set_cpus_allowed() | 
 |  * away from this CPU, or CPU going down), or because we're | 
 |  * attempting to rebalance this task on exec (sched_exec). | 
 |  * | 
 |  * So we race with normal scheduler movements, but that's OK, as long | 
 |  * as the task is no longer on this CPU. | 
 |  * | 
 |  * Returns non-zero if task was successfully migrated. | 
 |  */ | 
 | static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) | 
 | { | 
 | 	struct rq *rq_dest, *rq_src; | 
 | 	int ret = 0, on_rq; | 
 |  | 
 | 	if (unlikely(cpu_is_offline(dest_cpu))) | 
 | 		return ret; | 
 |  | 
 | 	rq_src = cpu_rq(src_cpu); | 
 | 	rq_dest = cpu_rq(dest_cpu); | 
 |  | 
 | 	double_rq_lock(rq_src, rq_dest); | 
 | 	/* Already moved. */ | 
 | 	if (task_cpu(p) != src_cpu) | 
 | 		goto out; | 
 | 	/* Affinity changed (again). */ | 
 | 	if (!cpu_isset(dest_cpu, p->cpus_allowed)) | 
 | 		goto out; | 
 |  | 
 | 	on_rq = p->se.on_rq; | 
 | 	if (on_rq) | 
 | 		deactivate_task(rq_src, p, 0); | 
 | 	set_task_cpu(p, dest_cpu); | 
 | 	if (on_rq) { | 
 | 		activate_task(rq_dest, p, 0); | 
 | 		check_preempt_curr(rq_dest, p); | 
 | 	} | 
 | 	ret = 1; | 
 | out: | 
 | 	double_rq_unlock(rq_src, rq_dest); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * migration_thread - this is a highprio system thread that performs | 
 |  * thread migration by bumping thread off CPU then 'pushing' onto | 
 |  * another runqueue. | 
 |  */ | 
 | static int migration_thread(void *data) | 
 | { | 
 | 	int cpu = (long)data; | 
 | 	struct rq *rq; | 
 |  | 
 | 	rq = cpu_rq(cpu); | 
 | 	BUG_ON(rq->migration_thread != current); | 
 |  | 
 | 	set_current_state(TASK_INTERRUPTIBLE); | 
 | 	while (!kthread_should_stop()) { | 
 | 		struct migration_req *req; | 
 | 		struct list_head *head; | 
 |  | 
 | 		spin_lock_irq(&rq->lock); | 
 |  | 
 | 		if (cpu_is_offline(cpu)) { | 
 | 			spin_unlock_irq(&rq->lock); | 
 | 			goto wait_to_die; | 
 | 		} | 
 |  | 
 | 		if (rq->active_balance) { | 
 | 			active_load_balance(rq, cpu); | 
 | 			rq->active_balance = 0; | 
 | 		} | 
 |  | 
 | 		head = &rq->migration_queue; | 
 |  | 
 | 		if (list_empty(head)) { | 
 | 			spin_unlock_irq(&rq->lock); | 
 | 			schedule(); | 
 | 			set_current_state(TASK_INTERRUPTIBLE); | 
 | 			continue; | 
 | 		} | 
 | 		req = list_entry(head->next, struct migration_req, list); | 
 | 		list_del_init(head->next); | 
 |  | 
 | 		spin_unlock(&rq->lock); | 
 | 		__migrate_task(req->task, cpu, req->dest_cpu); | 
 | 		local_irq_enable(); | 
 |  | 
 | 		complete(&req->done); | 
 | 	} | 
 | 	__set_current_state(TASK_RUNNING); | 
 | 	return 0; | 
 |  | 
 | wait_to_die: | 
 | 	/* Wait for kthread_stop */ | 
 | 	set_current_state(TASK_INTERRUPTIBLE); | 
 | 	while (!kthread_should_stop()) { | 
 | 		schedule(); | 
 | 		set_current_state(TASK_INTERRUPTIBLE); | 
 | 	} | 
 | 	__set_current_state(TASK_RUNNING); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | /* | 
 |  * Figure out where task on dead CPU should go, use force if neccessary. | 
 |  * NOTE: interrupts should be disabled by the caller | 
 |  */ | 
 | static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) | 
 | { | 
 | 	unsigned long flags; | 
 | 	cpumask_t mask; | 
 | 	struct rq *rq; | 
 | 	int dest_cpu; | 
 |  | 
 | restart: | 
 | 	/* On same node? */ | 
 | 	mask = node_to_cpumask(cpu_to_node(dead_cpu)); | 
 | 	cpus_and(mask, mask, p->cpus_allowed); | 
 | 	dest_cpu = any_online_cpu(mask); | 
 |  | 
 | 	/* On any allowed CPU? */ | 
 | 	if (dest_cpu == NR_CPUS) | 
 | 		dest_cpu = any_online_cpu(p->cpus_allowed); | 
 |  | 
 | 	/* No more Mr. Nice Guy. */ | 
 | 	if (dest_cpu == NR_CPUS) { | 
 | 		rq = task_rq_lock(p, &flags); | 
 | 		cpus_setall(p->cpus_allowed); | 
 | 		dest_cpu = any_online_cpu(p->cpus_allowed); | 
 | 		task_rq_unlock(rq, &flags); | 
 |  | 
 | 		/* | 
 | 		 * Don't tell them about moving exiting tasks or | 
 | 		 * kernel threads (both mm NULL), since they never | 
 | 		 * leave kernel. | 
 | 		 */ | 
 | 		if (p->mm && printk_ratelimit()) | 
 | 			printk(KERN_INFO "process %d (%s) no " | 
 | 			       "longer affine to cpu%d\n", | 
 | 			       p->pid, p->comm, dead_cpu); | 
 | 	} | 
 | 	if (!__migrate_task(p, dead_cpu, dest_cpu)) | 
 | 		goto restart; | 
 | } | 
 |  | 
 | /* | 
 |  * While a dead CPU has no uninterruptible tasks queued at this point, | 
 |  * it might still have a nonzero ->nr_uninterruptible counter, because | 
 |  * for performance reasons the counter is not stricly tracking tasks to | 
 |  * their home CPUs. So we just add the counter to another CPU's counter, | 
 |  * to keep the global sum constant after CPU-down: | 
 |  */ | 
 | static void migrate_nr_uninterruptible(struct rq *rq_src) | 
 | { | 
 | 	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL)); | 
 | 	unsigned long flags; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	double_rq_lock(rq_src, rq_dest); | 
 | 	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; | 
 | 	rq_src->nr_uninterruptible = 0; | 
 | 	double_rq_unlock(rq_src, rq_dest); | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | /* Run through task list and migrate tasks from the dead cpu. */ | 
 | static void migrate_live_tasks(int src_cpu) | 
 | { | 
 | 	struct task_struct *p, *t; | 
 |  | 
 | 	write_lock_irq(&tasklist_lock); | 
 |  | 
 | 	do_each_thread(t, p) { | 
 | 		if (p == current) | 
 | 			continue; | 
 |  | 
 | 		if (task_cpu(p) == src_cpu) | 
 | 			move_task_off_dead_cpu(src_cpu, p); | 
 | 	} while_each_thread(t, p); | 
 |  | 
 | 	write_unlock_irq(&tasklist_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Schedules idle task to be the next runnable task on current CPU. | 
 |  * It does so by boosting its priority to highest possible and adding it to | 
 |  * the _front_ of the runqueue. Used by CPU offline code. | 
 |  */ | 
 | void sched_idle_next(void) | 
 | { | 
 | 	int this_cpu = smp_processor_id(); | 
 | 	struct rq *rq = cpu_rq(this_cpu); | 
 | 	struct task_struct *p = rq->idle; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* cpu has to be offline */ | 
 | 	BUG_ON(cpu_online(this_cpu)); | 
 |  | 
 | 	/* | 
 | 	 * Strictly not necessary since rest of the CPUs are stopped by now | 
 | 	 * and interrupts disabled on the current cpu. | 
 | 	 */ | 
 | 	spin_lock_irqsave(&rq->lock, flags); | 
 |  | 
 | 	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); | 
 |  | 
 | 	/* Add idle task to the _front_ of its priority queue: */ | 
 | 	activate_idle_task(p, rq); | 
 |  | 
 | 	spin_unlock_irqrestore(&rq->lock, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Ensures that the idle task is using init_mm right before its cpu goes | 
 |  * offline. | 
 |  */ | 
 | void idle_task_exit(void) | 
 | { | 
 | 	struct mm_struct *mm = current->active_mm; | 
 |  | 
 | 	BUG_ON(cpu_online(smp_processor_id())); | 
 |  | 
 | 	if (mm != &init_mm) | 
 | 		switch_mm(mm, &init_mm, current); | 
 | 	mmdrop(mm); | 
 | } | 
 |  | 
 | /* called under rq->lock with disabled interrupts */ | 
 | static void migrate_dead(unsigned int dead_cpu, struct task_struct *p) | 
 | { | 
 | 	struct rq *rq = cpu_rq(dead_cpu); | 
 |  | 
 | 	/* Must be exiting, otherwise would be on tasklist. */ | 
 | 	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD); | 
 |  | 
 | 	/* Cannot have done final schedule yet: would have vanished. */ | 
 | 	BUG_ON(p->state == TASK_DEAD); | 
 |  | 
 | 	get_task_struct(p); | 
 |  | 
 | 	/* | 
 | 	 * Drop lock around migration; if someone else moves it, | 
 | 	 * that's OK.  No task can be added to this CPU, so iteration is | 
 | 	 * fine. | 
 | 	 * NOTE: interrupts should be left disabled  --dev@ | 
 | 	 */ | 
 | 	spin_unlock(&rq->lock); | 
 | 	move_task_off_dead_cpu(dead_cpu, p); | 
 | 	spin_lock(&rq->lock); | 
 |  | 
 | 	put_task_struct(p); | 
 | } | 
 |  | 
 | /* release_task() removes task from tasklist, so we won't find dead tasks. */ | 
 | static void migrate_dead_tasks(unsigned int dead_cpu) | 
 | { | 
 | 	struct rq *rq = cpu_rq(dead_cpu); | 
 | 	struct task_struct *next; | 
 |  | 
 | 	for ( ; ; ) { | 
 | 		if (!rq->nr_running) | 
 | 			break; | 
 | 		next = pick_next_task(rq, rq->curr, rq_clock(rq)); | 
 | 		if (!next) | 
 | 			break; | 
 | 		migrate_dead(dead_cpu, next); | 
 |  | 
 | 	} | 
 | } | 
 | #endif /* CONFIG_HOTPLUG_CPU */ | 
 |  | 
 | #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) | 
 |  | 
 | static struct ctl_table sd_ctl_dir[] = { | 
 | 	{CTL_UNNUMBERED, "sched_domain", NULL, 0, 0755, NULL, }, | 
 | 	{0,}, | 
 | }; | 
 |  | 
 | static struct ctl_table sd_ctl_root[] = { | 
 | 	{CTL_UNNUMBERED, "kernel", NULL, 0, 0755, sd_ctl_dir, }, | 
 | 	{0,}, | 
 | }; | 
 |  | 
 | static struct ctl_table *sd_alloc_ctl_entry(int n) | 
 | { | 
 | 	struct ctl_table *entry = | 
 | 		kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL); | 
 |  | 
 | 	BUG_ON(!entry); | 
 | 	memset(entry, 0, n * sizeof(struct ctl_table)); | 
 |  | 
 | 	return entry; | 
 | } | 
 |  | 
 | static void | 
 | set_table_entry(struct ctl_table *entry, int ctl_name, | 
 | 		const char *procname, void *data, int maxlen, | 
 | 		mode_t mode, proc_handler *proc_handler) | 
 | { | 
 | 	entry->ctl_name = ctl_name; | 
 | 	entry->procname = procname; | 
 | 	entry->data = data; | 
 | 	entry->maxlen = maxlen; | 
 | 	entry->mode = mode; | 
 | 	entry->proc_handler = proc_handler; | 
 | } | 
 |  | 
 | static struct ctl_table * | 
 | sd_alloc_ctl_domain_table(struct sched_domain *sd) | 
 | { | 
 | 	struct ctl_table *table = sd_alloc_ctl_entry(14); | 
 |  | 
 | 	set_table_entry(&table[0], 1, "min_interval", &sd->min_interval, | 
 | 		sizeof(long), 0644, proc_doulongvec_minmax); | 
 | 	set_table_entry(&table[1], 2, "max_interval", &sd->max_interval, | 
 | 		sizeof(long), 0644, proc_doulongvec_minmax); | 
 | 	set_table_entry(&table[2], 3, "busy_idx", &sd->busy_idx, | 
 | 		sizeof(int), 0644, proc_dointvec_minmax); | 
 | 	set_table_entry(&table[3], 4, "idle_idx", &sd->idle_idx, | 
 | 		sizeof(int), 0644, proc_dointvec_minmax); | 
 | 	set_table_entry(&table[4], 5, "newidle_idx", &sd->newidle_idx, | 
 | 		sizeof(int), 0644, proc_dointvec_minmax); | 
 | 	set_table_entry(&table[5], 6, "wake_idx", &sd->wake_idx, | 
 | 		sizeof(int), 0644, proc_dointvec_minmax); | 
 | 	set_table_entry(&table[6], 7, "forkexec_idx", &sd->forkexec_idx, | 
 | 		sizeof(int), 0644, proc_dointvec_minmax); | 
 | 	set_table_entry(&table[7], 8, "busy_factor", &sd->busy_factor, | 
 | 		sizeof(int), 0644, proc_dointvec_minmax); | 
 | 	set_table_entry(&table[8], 9, "imbalance_pct", &sd->imbalance_pct, | 
 | 		sizeof(int), 0644, proc_dointvec_minmax); | 
 | 	set_table_entry(&table[9], 10, "cache_hot_time", &sd->cache_hot_time, | 
 | 		sizeof(long long), 0644, proc_doulongvec_minmax); | 
 | 	set_table_entry(&table[10], 11, "cache_nice_tries", | 
 | 		&sd->cache_nice_tries, | 
 | 		sizeof(int), 0644, proc_dointvec_minmax); | 
 | 	set_table_entry(&table[12], 13, "flags", &sd->flags, | 
 | 		sizeof(int), 0644, proc_dointvec_minmax); | 
 |  | 
 | 	return table; | 
 | } | 
 |  | 
 | static ctl_table *sd_alloc_ctl_cpu_table(int cpu) | 
 | { | 
 | 	struct ctl_table *entry, *table; | 
 | 	struct sched_domain *sd; | 
 | 	int domain_num = 0, i; | 
 | 	char buf[32]; | 
 |  | 
 | 	for_each_domain(cpu, sd) | 
 | 		domain_num++; | 
 | 	entry = table = sd_alloc_ctl_entry(domain_num + 1); | 
 |  | 
 | 	i = 0; | 
 | 	for_each_domain(cpu, sd) { | 
 | 		snprintf(buf, 32, "domain%d", i); | 
 | 		entry->ctl_name = i + 1; | 
 | 		entry->procname = kstrdup(buf, GFP_KERNEL); | 
 | 		entry->mode = 0755; | 
 | 		entry->child = sd_alloc_ctl_domain_table(sd); | 
 | 		entry++; | 
 | 		i++; | 
 | 	} | 
 | 	return table; | 
 | } | 
 |  | 
 | static struct ctl_table_header *sd_sysctl_header; | 
 | static void init_sched_domain_sysctl(void) | 
 | { | 
 | 	int i, cpu_num = num_online_cpus(); | 
 | 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); | 
 | 	char buf[32]; | 
 |  | 
 | 	sd_ctl_dir[0].child = entry; | 
 |  | 
 | 	for (i = 0; i < cpu_num; i++, entry++) { | 
 | 		snprintf(buf, 32, "cpu%d", i); | 
 | 		entry->ctl_name = i + 1; | 
 | 		entry->procname = kstrdup(buf, GFP_KERNEL); | 
 | 		entry->mode = 0755; | 
 | 		entry->child = sd_alloc_ctl_cpu_table(i); | 
 | 	} | 
 | 	sd_sysctl_header = register_sysctl_table(sd_ctl_root); | 
 | } | 
 | #else | 
 | static void init_sched_domain_sysctl(void) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * migration_call - callback that gets triggered when a CPU is added. | 
 |  * Here we can start up the necessary migration thread for the new CPU. | 
 |  */ | 
 | static int __cpuinit | 
 | migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | 
 | { | 
 | 	struct task_struct *p; | 
 | 	int cpu = (long)hcpu; | 
 | 	unsigned long flags; | 
 | 	struct rq *rq; | 
 |  | 
 | 	switch (action) { | 
 | 	case CPU_LOCK_ACQUIRE: | 
 | 		mutex_lock(&sched_hotcpu_mutex); | 
 | 		break; | 
 |  | 
 | 	case CPU_UP_PREPARE: | 
 | 	case CPU_UP_PREPARE_FROZEN: | 
 | 		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu); | 
 | 		if (IS_ERR(p)) | 
 | 			return NOTIFY_BAD; | 
 | 		kthread_bind(p, cpu); | 
 | 		/* Must be high prio: stop_machine expects to yield to it. */ | 
 | 		rq = task_rq_lock(p, &flags); | 
 | 		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); | 
 | 		task_rq_unlock(rq, &flags); | 
 | 		cpu_rq(cpu)->migration_thread = p; | 
 | 		break; | 
 |  | 
 | 	case CPU_ONLINE: | 
 | 	case CPU_ONLINE_FROZEN: | 
 | 		/* Strictly unneccessary, as first user will wake it. */ | 
 | 		wake_up_process(cpu_rq(cpu)->migration_thread); | 
 | 		break; | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | 	case CPU_UP_CANCELED: | 
 | 	case CPU_UP_CANCELED_FROZEN: | 
 | 		if (!cpu_rq(cpu)->migration_thread) | 
 | 			break; | 
 | 		/* Unbind it from offline cpu so it can run.  Fall thru. */ | 
 | 		kthread_bind(cpu_rq(cpu)->migration_thread, | 
 | 			     any_online_cpu(cpu_online_map)); | 
 | 		kthread_stop(cpu_rq(cpu)->migration_thread); | 
 | 		cpu_rq(cpu)->migration_thread = NULL; | 
 | 		break; | 
 |  | 
 | 	case CPU_DEAD: | 
 | 	case CPU_DEAD_FROZEN: | 
 | 		migrate_live_tasks(cpu); | 
 | 		rq = cpu_rq(cpu); | 
 | 		kthread_stop(rq->migration_thread); | 
 | 		rq->migration_thread = NULL; | 
 | 		/* Idle task back to normal (off runqueue, low prio) */ | 
 | 		rq = task_rq_lock(rq->idle, &flags); | 
 | 		deactivate_task(rq, rq->idle, 0); | 
 | 		rq->idle->static_prio = MAX_PRIO; | 
 | 		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0); | 
 | 		rq->idle->sched_class = &idle_sched_class; | 
 | 		migrate_dead_tasks(cpu); | 
 | 		task_rq_unlock(rq, &flags); | 
 | 		migrate_nr_uninterruptible(rq); | 
 | 		BUG_ON(rq->nr_running != 0); | 
 |  | 
 | 		/* No need to migrate the tasks: it was best-effort if | 
 | 		 * they didn't take sched_hotcpu_mutex.  Just wake up | 
 | 		 * the requestors. */ | 
 | 		spin_lock_irq(&rq->lock); | 
 | 		while (!list_empty(&rq->migration_queue)) { | 
 | 			struct migration_req *req; | 
 |  | 
 | 			req = list_entry(rq->migration_queue.next, | 
 | 					 struct migration_req, list); | 
 | 			list_del_init(&req->list); | 
 | 			complete(&req->done); | 
 | 		} | 
 | 		spin_unlock_irq(&rq->lock); | 
 | 		break; | 
 | #endif | 
 | 	case CPU_LOCK_RELEASE: | 
 | 		mutex_unlock(&sched_hotcpu_mutex); | 
 | 		break; | 
 | 	} | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | /* Register at highest priority so that task migration (migrate_all_tasks) | 
 |  * happens before everything else. | 
 |  */ | 
 | static struct notifier_block __cpuinitdata migration_notifier = { | 
 | 	.notifier_call = migration_call, | 
 | 	.priority = 10 | 
 | }; | 
 |  | 
 | int __init migration_init(void) | 
 | { | 
 | 	void *cpu = (void *)(long)smp_processor_id(); | 
 | 	int err; | 
 |  | 
 | 	/* Start one for the boot CPU: */ | 
 | 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); | 
 | 	BUG_ON(err == NOTIFY_BAD); | 
 | 	migration_call(&migration_notifier, CPU_ONLINE, cpu); | 
 | 	register_cpu_notifier(&migration_notifier); | 
 |  | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | /* Number of possible processor ids */ | 
 | int nr_cpu_ids __read_mostly = NR_CPUS; | 
 | EXPORT_SYMBOL(nr_cpu_ids); | 
 |  | 
 | #undef SCHED_DOMAIN_DEBUG | 
 | #ifdef SCHED_DOMAIN_DEBUG | 
 | static void sched_domain_debug(struct sched_domain *sd, int cpu) | 
 | { | 
 | 	int level = 0; | 
 |  | 
 | 	if (!sd) { | 
 | 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); | 
 |  | 
 | 	do { | 
 | 		int i; | 
 | 		char str[NR_CPUS]; | 
 | 		struct sched_group *group = sd->groups; | 
 | 		cpumask_t groupmask; | 
 |  | 
 | 		cpumask_scnprintf(str, NR_CPUS, sd->span); | 
 | 		cpus_clear(groupmask); | 
 |  | 
 | 		printk(KERN_DEBUG); | 
 | 		for (i = 0; i < level + 1; i++) | 
 | 			printk(" "); | 
 | 		printk("domain %d: ", level); | 
 |  | 
 | 		if (!(sd->flags & SD_LOAD_BALANCE)) { | 
 | 			printk("does not load-balance\n"); | 
 | 			if (sd->parent) | 
 | 				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" | 
 | 						" has parent"); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		printk("span %s\n", str); | 
 |  | 
 | 		if (!cpu_isset(cpu, sd->span)) | 
 | 			printk(KERN_ERR "ERROR: domain->span does not contain " | 
 | 					"CPU%d\n", cpu); | 
 | 		if (!cpu_isset(cpu, group->cpumask)) | 
 | 			printk(KERN_ERR "ERROR: domain->groups does not contain" | 
 | 					" CPU%d\n", cpu); | 
 |  | 
 | 		printk(KERN_DEBUG); | 
 | 		for (i = 0; i < level + 2; i++) | 
 | 			printk(" "); | 
 | 		printk("groups:"); | 
 | 		do { | 
 | 			if (!group) { | 
 | 				printk("\n"); | 
 | 				printk(KERN_ERR "ERROR: group is NULL\n"); | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			if (!group->__cpu_power) { | 
 | 				printk("\n"); | 
 | 				printk(KERN_ERR "ERROR: domain->cpu_power not " | 
 | 						"set\n"); | 
 | 			} | 
 |  | 
 | 			if (!cpus_weight(group->cpumask)) { | 
 | 				printk("\n"); | 
 | 				printk(KERN_ERR "ERROR: empty group\n"); | 
 | 			} | 
 |  | 
 | 			if (cpus_intersects(groupmask, group->cpumask)) { | 
 | 				printk("\n"); | 
 | 				printk(KERN_ERR "ERROR: repeated CPUs\n"); | 
 | 			} | 
 |  | 
 | 			cpus_or(groupmask, groupmask, group->cpumask); | 
 |  | 
 | 			cpumask_scnprintf(str, NR_CPUS, group->cpumask); | 
 | 			printk(" %s", str); | 
 |  | 
 | 			group = group->next; | 
 | 		} while (group != sd->groups); | 
 | 		printk("\n"); | 
 |  | 
 | 		if (!cpus_equal(sd->span, groupmask)) | 
 | 			printk(KERN_ERR "ERROR: groups don't span " | 
 | 					"domain->span\n"); | 
 |  | 
 | 		level++; | 
 | 		sd = sd->parent; | 
 | 		if (!sd) | 
 | 			continue; | 
 |  | 
 | 		if (!cpus_subset(groupmask, sd->span)) | 
 | 			printk(KERN_ERR "ERROR: parent span is not a superset " | 
 | 				"of domain->span\n"); | 
 |  | 
 | 	} while (sd); | 
 | } | 
 | #else | 
 | # define sched_domain_debug(sd, cpu) do { } while (0) | 
 | #endif | 
 |  | 
 | static int sd_degenerate(struct sched_domain *sd) | 
 | { | 
 | 	if (cpus_weight(sd->span) == 1) | 
 | 		return 1; | 
 |  | 
 | 	/* Following flags need at least 2 groups */ | 
 | 	if (sd->flags & (SD_LOAD_BALANCE | | 
 | 			 SD_BALANCE_NEWIDLE | | 
 | 			 SD_BALANCE_FORK | | 
 | 			 SD_BALANCE_EXEC | | 
 | 			 SD_SHARE_CPUPOWER | | 
 | 			 SD_SHARE_PKG_RESOURCES)) { | 
 | 		if (sd->groups != sd->groups->next) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	/* Following flags don't use groups */ | 
 | 	if (sd->flags & (SD_WAKE_IDLE | | 
 | 			 SD_WAKE_AFFINE | | 
 | 			 SD_WAKE_BALANCE)) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int | 
 | sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) | 
 | { | 
 | 	unsigned long cflags = sd->flags, pflags = parent->flags; | 
 |  | 
 | 	if (sd_degenerate(parent)) | 
 | 		return 1; | 
 |  | 
 | 	if (!cpus_equal(sd->span, parent->span)) | 
 | 		return 0; | 
 |  | 
 | 	/* Does parent contain flags not in child? */ | 
 | 	/* WAKE_BALANCE is a subset of WAKE_AFFINE */ | 
 | 	if (cflags & SD_WAKE_AFFINE) | 
 | 		pflags &= ~SD_WAKE_BALANCE; | 
 | 	/* Flags needing groups don't count if only 1 group in parent */ | 
 | 	if (parent->groups == parent->groups->next) { | 
 | 		pflags &= ~(SD_LOAD_BALANCE | | 
 | 				SD_BALANCE_NEWIDLE | | 
 | 				SD_BALANCE_FORK | | 
 | 				SD_BALANCE_EXEC | | 
 | 				SD_SHARE_CPUPOWER | | 
 | 				SD_SHARE_PKG_RESOURCES); | 
 | 	} | 
 | 	if (~cflags & pflags) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must | 
 |  * hold the hotplug lock. | 
 |  */ | 
 | static void cpu_attach_domain(struct sched_domain *sd, int cpu) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	struct sched_domain *tmp; | 
 |  | 
 | 	/* Remove the sched domains which do not contribute to scheduling. */ | 
 | 	for (tmp = sd; tmp; tmp = tmp->parent) { | 
 | 		struct sched_domain *parent = tmp->parent; | 
 | 		if (!parent) | 
 | 			break; | 
 | 		if (sd_parent_degenerate(tmp, parent)) { | 
 | 			tmp->parent = parent->parent; | 
 | 			if (parent->parent) | 
 | 				parent->parent->child = tmp; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (sd && sd_degenerate(sd)) { | 
 | 		sd = sd->parent; | 
 | 		if (sd) | 
 | 			sd->child = NULL; | 
 | 	} | 
 |  | 
 | 	sched_domain_debug(sd, cpu); | 
 |  | 
 | 	rcu_assign_pointer(rq->sd, sd); | 
 | } | 
 |  | 
 | /* cpus with isolated domains */ | 
 | static cpumask_t cpu_isolated_map = CPU_MASK_NONE; | 
 |  | 
 | /* Setup the mask of cpus configured for isolated domains */ | 
 | static int __init isolated_cpu_setup(char *str) | 
 | { | 
 | 	int ints[NR_CPUS], i; | 
 |  | 
 | 	str = get_options(str, ARRAY_SIZE(ints), ints); | 
 | 	cpus_clear(cpu_isolated_map); | 
 | 	for (i = 1; i <= ints[0]; i++) | 
 | 		if (ints[i] < NR_CPUS) | 
 | 			cpu_set(ints[i], cpu_isolated_map); | 
 | 	return 1; | 
 | } | 
 |  | 
 | __setup ("isolcpus=", isolated_cpu_setup); | 
 |  | 
 | /* | 
 |  * init_sched_build_groups takes the cpumask we wish to span, and a pointer | 
 |  * to a function which identifies what group(along with sched group) a CPU | 
 |  * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS | 
 |  * (due to the fact that we keep track of groups covered with a cpumask_t). | 
 |  * | 
 |  * init_sched_build_groups will build a circular linked list of the groups | 
 |  * covered by the given span, and will set each group's ->cpumask correctly, | 
 |  * and ->cpu_power to 0. | 
 |  */ | 
 | static void | 
 | init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map, | 
 | 			int (*group_fn)(int cpu, const cpumask_t *cpu_map, | 
 | 					struct sched_group **sg)) | 
 | { | 
 | 	struct sched_group *first = NULL, *last = NULL; | 
 | 	cpumask_t covered = CPU_MASK_NONE; | 
 | 	int i; | 
 |  | 
 | 	for_each_cpu_mask(i, span) { | 
 | 		struct sched_group *sg; | 
 | 		int group = group_fn(i, cpu_map, &sg); | 
 | 		int j; | 
 |  | 
 | 		if (cpu_isset(i, covered)) | 
 | 			continue; | 
 |  | 
 | 		sg->cpumask = CPU_MASK_NONE; | 
 | 		sg->__cpu_power = 0; | 
 |  | 
 | 		for_each_cpu_mask(j, span) { | 
 | 			if (group_fn(j, cpu_map, NULL) != group) | 
 | 				continue; | 
 |  | 
 | 			cpu_set(j, covered); | 
 | 			cpu_set(j, sg->cpumask); | 
 | 		} | 
 | 		if (!first) | 
 | 			first = sg; | 
 | 		if (last) | 
 | 			last->next = sg; | 
 | 		last = sg; | 
 | 	} | 
 | 	last->next = first; | 
 | } | 
 |  | 
 | #define SD_NODES_PER_DOMAIN 16 | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 |  | 
 | /** | 
 |  * find_next_best_node - find the next node to include in a sched_domain | 
 |  * @node: node whose sched_domain we're building | 
 |  * @used_nodes: nodes already in the sched_domain | 
 |  * | 
 |  * Find the next node to include in a given scheduling domain.  Simply | 
 |  * finds the closest node not already in the @used_nodes map. | 
 |  * | 
 |  * Should use nodemask_t. | 
 |  */ | 
 | static int find_next_best_node(int node, unsigned long *used_nodes) | 
 | { | 
 | 	int i, n, val, min_val, best_node = 0; | 
 |  | 
 | 	min_val = INT_MAX; | 
 |  | 
 | 	for (i = 0; i < MAX_NUMNODES; i++) { | 
 | 		/* Start at @node */ | 
 | 		n = (node + i) % MAX_NUMNODES; | 
 |  | 
 | 		if (!nr_cpus_node(n)) | 
 | 			continue; | 
 |  | 
 | 		/* Skip already used nodes */ | 
 | 		if (test_bit(n, used_nodes)) | 
 | 			continue; | 
 |  | 
 | 		/* Simple min distance search */ | 
 | 		val = node_distance(node, n); | 
 |  | 
 | 		if (val < min_val) { | 
 | 			min_val = val; | 
 | 			best_node = n; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	set_bit(best_node, used_nodes); | 
 | 	return best_node; | 
 | } | 
 |  | 
 | /** | 
 |  * sched_domain_node_span - get a cpumask for a node's sched_domain | 
 |  * @node: node whose cpumask we're constructing | 
 |  * @size: number of nodes to include in this span | 
 |  * | 
 |  * Given a node, construct a good cpumask for its sched_domain to span.  It | 
 |  * should be one that prevents unnecessary balancing, but also spreads tasks | 
 |  * out optimally. | 
 |  */ | 
 | static cpumask_t sched_domain_node_span(int node) | 
 | { | 
 | 	DECLARE_BITMAP(used_nodes, MAX_NUMNODES); | 
 | 	cpumask_t span, nodemask; | 
 | 	int i; | 
 |  | 
 | 	cpus_clear(span); | 
 | 	bitmap_zero(used_nodes, MAX_NUMNODES); | 
 |  | 
 | 	nodemask = node_to_cpumask(node); | 
 | 	cpus_or(span, span, nodemask); | 
 | 	set_bit(node, used_nodes); | 
 |  | 
 | 	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { | 
 | 		int next_node = find_next_best_node(node, used_nodes); | 
 |  | 
 | 		nodemask = node_to_cpumask(next_node); | 
 | 		cpus_or(span, span, nodemask); | 
 | 	} | 
 |  | 
 | 	return span; | 
 | } | 
 | #endif | 
 |  | 
 | int sched_smt_power_savings = 0, sched_mc_power_savings = 0; | 
 |  | 
 | /* | 
 |  * SMT sched-domains: | 
 |  */ | 
 | #ifdef CONFIG_SCHED_SMT | 
 | static DEFINE_PER_CPU(struct sched_domain, cpu_domains); | 
 | static DEFINE_PER_CPU(struct sched_group, sched_group_cpus); | 
 |  | 
 | static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, | 
 | 			    struct sched_group **sg) | 
 | { | 
 | 	if (sg) | 
 | 		*sg = &per_cpu(sched_group_cpus, cpu); | 
 | 	return cpu; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * multi-core sched-domains: | 
 |  */ | 
 | #ifdef CONFIG_SCHED_MC | 
 | static DEFINE_PER_CPU(struct sched_domain, core_domains); | 
 | static DEFINE_PER_CPU(struct sched_group, sched_group_core); | 
 | #endif | 
 |  | 
 | #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT) | 
 | static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map, | 
 | 			     struct sched_group **sg) | 
 | { | 
 | 	int group; | 
 | 	cpumask_t mask = cpu_sibling_map[cpu]; | 
 | 	cpus_and(mask, mask, *cpu_map); | 
 | 	group = first_cpu(mask); | 
 | 	if (sg) | 
 | 		*sg = &per_cpu(sched_group_core, group); | 
 | 	return group; | 
 | } | 
 | #elif defined(CONFIG_SCHED_MC) | 
 | static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map, | 
 | 			     struct sched_group **sg) | 
 | { | 
 | 	if (sg) | 
 | 		*sg = &per_cpu(sched_group_core, cpu); | 
 | 	return cpu; | 
 | } | 
 | #endif | 
 |  | 
 | static DEFINE_PER_CPU(struct sched_domain, phys_domains); | 
 | static DEFINE_PER_CPU(struct sched_group, sched_group_phys); | 
 |  | 
 | static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, | 
 | 			     struct sched_group **sg) | 
 | { | 
 | 	int group; | 
 | #ifdef CONFIG_SCHED_MC | 
 | 	cpumask_t mask = cpu_coregroup_map(cpu); | 
 | 	cpus_and(mask, mask, *cpu_map); | 
 | 	group = first_cpu(mask); | 
 | #elif defined(CONFIG_SCHED_SMT) | 
 | 	cpumask_t mask = cpu_sibling_map[cpu]; | 
 | 	cpus_and(mask, mask, *cpu_map); | 
 | 	group = first_cpu(mask); | 
 | #else | 
 | 	group = cpu; | 
 | #endif | 
 | 	if (sg) | 
 | 		*sg = &per_cpu(sched_group_phys, group); | 
 | 	return group; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | /* | 
 |  * The init_sched_build_groups can't handle what we want to do with node | 
 |  * groups, so roll our own. Now each node has its own list of groups which | 
 |  * gets dynamically allocated. | 
 |  */ | 
 | static DEFINE_PER_CPU(struct sched_domain, node_domains); | 
 | static struct sched_group **sched_group_nodes_bycpu[NR_CPUS]; | 
 |  | 
 | static DEFINE_PER_CPU(struct sched_domain, allnodes_domains); | 
 | static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes); | 
 |  | 
 | static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map, | 
 | 				 struct sched_group **sg) | 
 | { | 
 | 	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu)); | 
 | 	int group; | 
 |  | 
 | 	cpus_and(nodemask, nodemask, *cpu_map); | 
 | 	group = first_cpu(nodemask); | 
 |  | 
 | 	if (sg) | 
 | 		*sg = &per_cpu(sched_group_allnodes, group); | 
 | 	return group; | 
 | } | 
 |  | 
 | static void init_numa_sched_groups_power(struct sched_group *group_head) | 
 | { | 
 | 	struct sched_group *sg = group_head; | 
 | 	int j; | 
 |  | 
 | 	if (!sg) | 
 | 		return; | 
 | next_sg: | 
 | 	for_each_cpu_mask(j, sg->cpumask) { | 
 | 		struct sched_domain *sd; | 
 |  | 
 | 		sd = &per_cpu(phys_domains, j); | 
 | 		if (j != first_cpu(sd->groups->cpumask)) { | 
 | 			/* | 
 | 			 * Only add "power" once for each | 
 | 			 * physical package. | 
 | 			 */ | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		sg_inc_cpu_power(sg, sd->groups->__cpu_power); | 
 | 	} | 
 | 	sg = sg->next; | 
 | 	if (sg != group_head) | 
 | 		goto next_sg; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | /* Free memory allocated for various sched_group structures */ | 
 | static void free_sched_groups(const cpumask_t *cpu_map) | 
 | { | 
 | 	int cpu, i; | 
 |  | 
 | 	for_each_cpu_mask(cpu, *cpu_map) { | 
 | 		struct sched_group **sched_group_nodes | 
 | 			= sched_group_nodes_bycpu[cpu]; | 
 |  | 
 | 		if (!sched_group_nodes) | 
 | 			continue; | 
 |  | 
 | 		for (i = 0; i < MAX_NUMNODES; i++) { | 
 | 			cpumask_t nodemask = node_to_cpumask(i); | 
 | 			struct sched_group *oldsg, *sg = sched_group_nodes[i]; | 
 |  | 
 | 			cpus_and(nodemask, nodemask, *cpu_map); | 
 | 			if (cpus_empty(nodemask)) | 
 | 				continue; | 
 |  | 
 | 			if (sg == NULL) | 
 | 				continue; | 
 | 			sg = sg->next; | 
 | next_sg: | 
 | 			oldsg = sg; | 
 | 			sg = sg->next; | 
 | 			kfree(oldsg); | 
 | 			if (oldsg != sched_group_nodes[i]) | 
 | 				goto next_sg; | 
 | 		} | 
 | 		kfree(sched_group_nodes); | 
 | 		sched_group_nodes_bycpu[cpu] = NULL; | 
 | 	} | 
 | } | 
 | #else | 
 | static void free_sched_groups(const cpumask_t *cpu_map) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Initialize sched groups cpu_power. | 
 |  * | 
 |  * cpu_power indicates the capacity of sched group, which is used while | 
 |  * distributing the load between different sched groups in a sched domain. | 
 |  * Typically cpu_power for all the groups in a sched domain will be same unless | 
 |  * there are asymmetries in the topology. If there are asymmetries, group | 
 |  * having more cpu_power will pickup more load compared to the group having | 
 |  * less cpu_power. | 
 |  * | 
 |  * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents | 
 |  * the maximum number of tasks a group can handle in the presence of other idle | 
 |  * or lightly loaded groups in the same sched domain. | 
 |  */ | 
 | static void init_sched_groups_power(int cpu, struct sched_domain *sd) | 
 | { | 
 | 	struct sched_domain *child; | 
 | 	struct sched_group *group; | 
 |  | 
 | 	WARN_ON(!sd || !sd->groups); | 
 |  | 
 | 	if (cpu != first_cpu(sd->groups->cpumask)) | 
 | 		return; | 
 |  | 
 | 	child = sd->child; | 
 |  | 
 | 	sd->groups->__cpu_power = 0; | 
 |  | 
 | 	/* | 
 | 	 * For perf policy, if the groups in child domain share resources | 
 | 	 * (for example cores sharing some portions of the cache hierarchy | 
 | 	 * or SMT), then set this domain groups cpu_power such that each group | 
 | 	 * can handle only one task, when there are other idle groups in the | 
 | 	 * same sched domain. | 
 | 	 */ | 
 | 	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) && | 
 | 		       (child->flags & | 
 | 			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) { | 
 | 		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * add cpu_power of each child group to this groups cpu_power | 
 | 	 */ | 
 | 	group = child->groups; | 
 | 	do { | 
 | 		sg_inc_cpu_power(sd->groups, group->__cpu_power); | 
 | 		group = group->next; | 
 | 	} while (group != child->groups); | 
 | } | 
 |  | 
 | /* | 
 |  * Build sched domains for a given set of cpus and attach the sched domains | 
 |  * to the individual cpus | 
 |  */ | 
 | static int build_sched_domains(const cpumask_t *cpu_map) | 
 | { | 
 | 	int i; | 
 | #ifdef CONFIG_NUMA | 
 | 	struct sched_group **sched_group_nodes = NULL; | 
 | 	int sd_allnodes = 0; | 
 |  | 
 | 	/* | 
 | 	 * Allocate the per-node list of sched groups | 
 | 	 */ | 
 | 	sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES, | 
 | 					   GFP_KERNEL); | 
 | 	if (!sched_group_nodes) { | 
 | 		printk(KERN_WARNING "Can not alloc sched group node list\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes; | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Set up domains for cpus specified by the cpu_map. | 
 | 	 */ | 
 | 	for_each_cpu_mask(i, *cpu_map) { | 
 | 		struct sched_domain *sd = NULL, *p; | 
 | 		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i)); | 
 |  | 
 | 		cpus_and(nodemask, nodemask, *cpu_map); | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | 		if (cpus_weight(*cpu_map) > | 
 | 				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) { | 
 | 			sd = &per_cpu(allnodes_domains, i); | 
 | 			*sd = SD_ALLNODES_INIT; | 
 | 			sd->span = *cpu_map; | 
 | 			cpu_to_allnodes_group(i, cpu_map, &sd->groups); | 
 | 			p = sd; | 
 | 			sd_allnodes = 1; | 
 | 		} else | 
 | 			p = NULL; | 
 |  | 
 | 		sd = &per_cpu(node_domains, i); | 
 | 		*sd = SD_NODE_INIT; | 
 | 		sd->span = sched_domain_node_span(cpu_to_node(i)); | 
 | 		sd->parent = p; | 
 | 		if (p) | 
 | 			p->child = sd; | 
 | 		cpus_and(sd->span, sd->span, *cpu_map); | 
 | #endif | 
 |  | 
 | 		p = sd; | 
 | 		sd = &per_cpu(phys_domains, i); | 
 | 		*sd = SD_CPU_INIT; | 
 | 		sd->span = nodemask; | 
 | 		sd->parent = p; | 
 | 		if (p) | 
 | 			p->child = sd; | 
 | 		cpu_to_phys_group(i, cpu_map, &sd->groups); | 
 |  | 
 | #ifdef CONFIG_SCHED_MC | 
 | 		p = sd; | 
 | 		sd = &per_cpu(core_domains, i); | 
 | 		*sd = SD_MC_INIT; | 
 | 		sd->span = cpu_coregroup_map(i); | 
 | 		cpus_and(sd->span, sd->span, *cpu_map); | 
 | 		sd->parent = p; | 
 | 		p->child = sd; | 
 | 		cpu_to_core_group(i, cpu_map, &sd->groups); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SCHED_SMT | 
 | 		p = sd; | 
 | 		sd = &per_cpu(cpu_domains, i); | 
 | 		*sd = SD_SIBLING_INIT; | 
 | 		sd->span = cpu_sibling_map[i]; | 
 | 		cpus_and(sd->span, sd->span, *cpu_map); | 
 | 		sd->parent = p; | 
 | 		p->child = sd; | 
 | 		cpu_to_cpu_group(i, cpu_map, &sd->groups); | 
 | #endif | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_SCHED_SMT | 
 | 	/* Set up CPU (sibling) groups */ | 
 | 	for_each_cpu_mask(i, *cpu_map) { | 
 | 		cpumask_t this_sibling_map = cpu_sibling_map[i]; | 
 | 		cpus_and(this_sibling_map, this_sibling_map, *cpu_map); | 
 | 		if (i != first_cpu(this_sibling_map)) | 
 | 			continue; | 
 |  | 
 | 		init_sched_build_groups(this_sibling_map, cpu_map, | 
 | 					&cpu_to_cpu_group); | 
 | 	} | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SCHED_MC | 
 | 	/* Set up multi-core groups */ | 
 | 	for_each_cpu_mask(i, *cpu_map) { | 
 | 		cpumask_t this_core_map = cpu_coregroup_map(i); | 
 | 		cpus_and(this_core_map, this_core_map, *cpu_map); | 
 | 		if (i != first_cpu(this_core_map)) | 
 | 			continue; | 
 | 		init_sched_build_groups(this_core_map, cpu_map, | 
 | 					&cpu_to_core_group); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* Set up physical groups */ | 
 | 	for (i = 0; i < MAX_NUMNODES; i++) { | 
 | 		cpumask_t nodemask = node_to_cpumask(i); | 
 |  | 
 | 		cpus_and(nodemask, nodemask, *cpu_map); | 
 | 		if (cpus_empty(nodemask)) | 
 | 			continue; | 
 |  | 
 | 		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group); | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | 	/* Set up node groups */ | 
 | 	if (sd_allnodes) | 
 | 		init_sched_build_groups(*cpu_map, cpu_map, | 
 | 					&cpu_to_allnodes_group); | 
 |  | 
 | 	for (i = 0; i < MAX_NUMNODES; i++) { | 
 | 		/* Set up node groups */ | 
 | 		struct sched_group *sg, *prev; | 
 | 		cpumask_t nodemask = node_to_cpumask(i); | 
 | 		cpumask_t domainspan; | 
 | 		cpumask_t covered = CPU_MASK_NONE; | 
 | 		int j; | 
 |  | 
 | 		cpus_and(nodemask, nodemask, *cpu_map); | 
 | 		if (cpus_empty(nodemask)) { | 
 | 			sched_group_nodes[i] = NULL; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		domainspan = sched_domain_node_span(i); | 
 | 		cpus_and(domainspan, domainspan, *cpu_map); | 
 |  | 
 | 		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i); | 
 | 		if (!sg) { | 
 | 			printk(KERN_WARNING "Can not alloc domain group for " | 
 | 				"node %d\n", i); | 
 | 			goto error; | 
 | 		} | 
 | 		sched_group_nodes[i] = sg; | 
 | 		for_each_cpu_mask(j, nodemask) { | 
 | 			struct sched_domain *sd; | 
 |  | 
 | 			sd = &per_cpu(node_domains, j); | 
 | 			sd->groups = sg; | 
 | 		} | 
 | 		sg->__cpu_power = 0; | 
 | 		sg->cpumask = nodemask; | 
 | 		sg->next = sg; | 
 | 		cpus_or(covered, covered, nodemask); | 
 | 		prev = sg; | 
 |  | 
 | 		for (j = 0; j < MAX_NUMNODES; j++) { | 
 | 			cpumask_t tmp, notcovered; | 
 | 			int n = (i + j) % MAX_NUMNODES; | 
 |  | 
 | 			cpus_complement(notcovered, covered); | 
 | 			cpus_and(tmp, notcovered, *cpu_map); | 
 | 			cpus_and(tmp, tmp, domainspan); | 
 | 			if (cpus_empty(tmp)) | 
 | 				break; | 
 |  | 
 | 			nodemask = node_to_cpumask(n); | 
 | 			cpus_and(tmp, tmp, nodemask); | 
 | 			if (cpus_empty(tmp)) | 
 | 				continue; | 
 |  | 
 | 			sg = kmalloc_node(sizeof(struct sched_group), | 
 | 					  GFP_KERNEL, i); | 
 | 			if (!sg) { | 
 | 				printk(KERN_WARNING | 
 | 				"Can not alloc domain group for node %d\n", j); | 
 | 				goto error; | 
 | 			} | 
 | 			sg->__cpu_power = 0; | 
 | 			sg->cpumask = tmp; | 
 | 			sg->next = prev->next; | 
 | 			cpus_or(covered, covered, tmp); | 
 | 			prev->next = sg; | 
 | 			prev = sg; | 
 | 		} | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* Calculate CPU power for physical packages and nodes */ | 
 | #ifdef CONFIG_SCHED_SMT | 
 | 	for_each_cpu_mask(i, *cpu_map) { | 
 | 		struct sched_domain *sd = &per_cpu(cpu_domains, i); | 
 |  | 
 | 		init_sched_groups_power(i, sd); | 
 | 	} | 
 | #endif | 
 | #ifdef CONFIG_SCHED_MC | 
 | 	for_each_cpu_mask(i, *cpu_map) { | 
 | 		struct sched_domain *sd = &per_cpu(core_domains, i); | 
 |  | 
 | 		init_sched_groups_power(i, sd); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	for_each_cpu_mask(i, *cpu_map) { | 
 | 		struct sched_domain *sd = &per_cpu(phys_domains, i); | 
 |  | 
 | 		init_sched_groups_power(i, sd); | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | 	for (i = 0; i < MAX_NUMNODES; i++) | 
 | 		init_numa_sched_groups_power(sched_group_nodes[i]); | 
 |  | 
 | 	if (sd_allnodes) { | 
 | 		struct sched_group *sg; | 
 |  | 
 | 		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg); | 
 | 		init_numa_sched_groups_power(sg); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* Attach the domains */ | 
 | 	for_each_cpu_mask(i, *cpu_map) { | 
 | 		struct sched_domain *sd; | 
 | #ifdef CONFIG_SCHED_SMT | 
 | 		sd = &per_cpu(cpu_domains, i); | 
 | #elif defined(CONFIG_SCHED_MC) | 
 | 		sd = &per_cpu(core_domains, i); | 
 | #else | 
 | 		sd = &per_cpu(phys_domains, i); | 
 | #endif | 
 | 		cpu_attach_domain(sd, i); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | error: | 
 | 	free_sched_groups(cpu_map); | 
 | 	return -ENOMEM; | 
 | #endif | 
 | } | 
 | /* | 
 |  * Set up scheduler domains and groups.  Callers must hold the hotplug lock. | 
 |  */ | 
 | static int arch_init_sched_domains(const cpumask_t *cpu_map) | 
 | { | 
 | 	cpumask_t cpu_default_map; | 
 | 	int err; | 
 |  | 
 | 	/* | 
 | 	 * Setup mask for cpus without special case scheduling requirements. | 
 | 	 * For now this just excludes isolated cpus, but could be used to | 
 | 	 * exclude other special cases in the future. | 
 | 	 */ | 
 | 	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map); | 
 |  | 
 | 	err = build_sched_domains(&cpu_default_map); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static void arch_destroy_sched_domains(const cpumask_t *cpu_map) | 
 | { | 
 | 	free_sched_groups(cpu_map); | 
 | } | 
 |  | 
 | /* | 
 |  * Detach sched domains from a group of cpus specified in cpu_map | 
 |  * These cpus will now be attached to the NULL domain | 
 |  */ | 
 | static void detach_destroy_domains(const cpumask_t *cpu_map) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for_each_cpu_mask(i, *cpu_map) | 
 | 		cpu_attach_domain(NULL, i); | 
 | 	synchronize_sched(); | 
 | 	arch_destroy_sched_domains(cpu_map); | 
 | } | 
 |  | 
 | /* | 
 |  * Partition sched domains as specified by the cpumasks below. | 
 |  * This attaches all cpus from the cpumasks to the NULL domain, | 
 |  * waits for a RCU quiescent period, recalculates sched | 
 |  * domain information and then attaches them back to the | 
 |  * correct sched domains | 
 |  * Call with hotplug lock held | 
 |  */ | 
 | int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2) | 
 | { | 
 | 	cpumask_t change_map; | 
 | 	int err = 0; | 
 |  | 
 | 	cpus_and(*partition1, *partition1, cpu_online_map); | 
 | 	cpus_and(*partition2, *partition2, cpu_online_map); | 
 | 	cpus_or(change_map, *partition1, *partition2); | 
 |  | 
 | 	/* Detach sched domains from all of the affected cpus */ | 
 | 	detach_destroy_domains(&change_map); | 
 | 	if (!cpus_empty(*partition1)) | 
 | 		err = build_sched_domains(partition1); | 
 | 	if (!err && !cpus_empty(*partition2)) | 
 | 		err = build_sched_domains(partition2); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 
 | int arch_reinit_sched_domains(void) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	mutex_lock(&sched_hotcpu_mutex); | 
 | 	detach_destroy_domains(&cpu_online_map); | 
 | 	err = arch_init_sched_domains(&cpu_online_map); | 
 | 	mutex_unlock(&sched_hotcpu_mutex); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (buf[0] != '0' && buf[0] != '1') | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (smt) | 
 | 		sched_smt_power_savings = (buf[0] == '1'); | 
 | 	else | 
 | 		sched_mc_power_savings = (buf[0] == '1'); | 
 |  | 
 | 	ret = arch_reinit_sched_domains(); | 
 |  | 
 | 	return ret ? ret : count; | 
 | } | 
 |  | 
 | int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls) | 
 | { | 
 | 	int err = 0; | 
 |  | 
 | #ifdef CONFIG_SCHED_SMT | 
 | 	if (smt_capable()) | 
 | 		err = sysfs_create_file(&cls->kset.kobj, | 
 | 					&attr_sched_smt_power_savings.attr); | 
 | #endif | 
 | #ifdef CONFIG_SCHED_MC | 
 | 	if (!err && mc_capable()) | 
 | 		err = sysfs_create_file(&cls->kset.kobj, | 
 | 					&attr_sched_mc_power_savings.attr); | 
 | #endif | 
 | 	return err; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SCHED_MC | 
 | static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page) | 
 | { | 
 | 	return sprintf(page, "%u\n", sched_mc_power_savings); | 
 | } | 
 | static ssize_t sched_mc_power_savings_store(struct sys_device *dev, | 
 | 					    const char *buf, size_t count) | 
 | { | 
 | 	return sched_power_savings_store(buf, count, 0); | 
 | } | 
 | SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show, | 
 | 	    sched_mc_power_savings_store); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SCHED_SMT | 
 | static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page) | 
 | { | 
 | 	return sprintf(page, "%u\n", sched_smt_power_savings); | 
 | } | 
 | static ssize_t sched_smt_power_savings_store(struct sys_device *dev, | 
 | 					     const char *buf, size_t count) | 
 | { | 
 | 	return sched_power_savings_store(buf, count, 1); | 
 | } | 
 | SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show, | 
 | 	    sched_smt_power_savings_store); | 
 | #endif | 
 |  | 
 | /* | 
 |  * Force a reinitialization of the sched domains hierarchy.  The domains | 
 |  * and groups cannot be updated in place without racing with the balancing | 
 |  * code, so we temporarily attach all running cpus to the NULL domain | 
 |  * which will prevent rebalancing while the sched domains are recalculated. | 
 |  */ | 
 | static int update_sched_domains(struct notifier_block *nfb, | 
 | 				unsigned long action, void *hcpu) | 
 | { | 
 | 	switch (action) { | 
 | 	case CPU_UP_PREPARE: | 
 | 	case CPU_UP_PREPARE_FROZEN: | 
 | 	case CPU_DOWN_PREPARE: | 
 | 	case CPU_DOWN_PREPARE_FROZEN: | 
 | 		detach_destroy_domains(&cpu_online_map); | 
 | 		return NOTIFY_OK; | 
 |  | 
 | 	case CPU_UP_CANCELED: | 
 | 	case CPU_UP_CANCELED_FROZEN: | 
 | 	case CPU_DOWN_FAILED: | 
 | 	case CPU_DOWN_FAILED_FROZEN: | 
 | 	case CPU_ONLINE: | 
 | 	case CPU_ONLINE_FROZEN: | 
 | 	case CPU_DEAD: | 
 | 	case CPU_DEAD_FROZEN: | 
 | 		/* | 
 | 		 * Fall through and re-initialise the domains. | 
 | 		 */ | 
 | 		break; | 
 | 	default: | 
 | 		return NOTIFY_DONE; | 
 | 	} | 
 |  | 
 | 	/* The hotplug lock is already held by cpu_up/cpu_down */ | 
 | 	arch_init_sched_domains(&cpu_online_map); | 
 |  | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | void __init sched_init_smp(void) | 
 | { | 
 | 	cpumask_t non_isolated_cpus; | 
 |  | 
 | 	mutex_lock(&sched_hotcpu_mutex); | 
 | 	arch_init_sched_domains(&cpu_online_map); | 
 | 	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map); | 
 | 	if (cpus_empty(non_isolated_cpus)) | 
 | 		cpu_set(smp_processor_id(), non_isolated_cpus); | 
 | 	mutex_unlock(&sched_hotcpu_mutex); | 
 | 	/* XXX: Theoretical race here - CPU may be hotplugged now */ | 
 | 	hotcpu_notifier(update_sched_domains, 0); | 
 |  | 
 | 	init_sched_domain_sysctl(); | 
 |  | 
 | 	/* Move init over to a non-isolated CPU */ | 
 | 	if (set_cpus_allowed(current, non_isolated_cpus) < 0) | 
 | 		BUG(); | 
 | 	sched_init_granularity(); | 
 | } | 
 | #else | 
 | void __init sched_init_smp(void) | 
 | { | 
 | 	sched_init_granularity(); | 
 | } | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | int in_sched_functions(unsigned long addr) | 
 | { | 
 | 	/* Linker adds these: start and end of __sched functions */ | 
 | 	extern char __sched_text_start[], __sched_text_end[]; | 
 |  | 
 | 	return in_lock_functions(addr) || | 
 | 		(addr >= (unsigned long)__sched_text_start | 
 | 		&& addr < (unsigned long)__sched_text_end); | 
 | } | 
 |  | 
 | static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq) | 
 | { | 
 | 	cfs_rq->tasks_timeline = RB_ROOT; | 
 | 	cfs_rq->fair_clock = 1; | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 	cfs_rq->rq = rq; | 
 | #endif | 
 | } | 
 |  | 
 | void __init sched_init(void) | 
 | { | 
 | 	u64 now = sched_clock(); | 
 | 	int highest_cpu = 0; | 
 | 	int i, j; | 
 |  | 
 | 	/* | 
 | 	 * Link up the scheduling class hierarchy: | 
 | 	 */ | 
 | 	rt_sched_class.next = &fair_sched_class; | 
 | 	fair_sched_class.next = &idle_sched_class; | 
 | 	idle_sched_class.next = NULL; | 
 |  | 
 | 	for_each_possible_cpu(i) { | 
 | 		struct rt_prio_array *array; | 
 | 		struct rq *rq; | 
 |  | 
 | 		rq = cpu_rq(i); | 
 | 		spin_lock_init(&rq->lock); | 
 | 		lockdep_set_class(&rq->lock, &rq->rq_lock_key); | 
 | 		rq->nr_running = 0; | 
 | 		rq->clock = 1; | 
 | 		init_cfs_rq(&rq->cfs, rq); | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); | 
 | 		list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list); | 
 | #endif | 
 | 		rq->ls.load_update_last = now; | 
 | 		rq->ls.load_update_start = now; | 
 |  | 
 | 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++) | 
 | 			rq->cpu_load[j] = 0; | 
 | #ifdef CONFIG_SMP | 
 | 		rq->sd = NULL; | 
 | 		rq->active_balance = 0; | 
 | 		rq->next_balance = jiffies; | 
 | 		rq->push_cpu = 0; | 
 | 		rq->cpu = i; | 
 | 		rq->migration_thread = NULL; | 
 | 		INIT_LIST_HEAD(&rq->migration_queue); | 
 | #endif | 
 | 		atomic_set(&rq->nr_iowait, 0); | 
 |  | 
 | 		array = &rq->rt.active; | 
 | 		for (j = 0; j < MAX_RT_PRIO; j++) { | 
 | 			INIT_LIST_HEAD(array->queue + j); | 
 | 			__clear_bit(j, array->bitmap); | 
 | 		} | 
 | 		highest_cpu = i; | 
 | 		/* delimiter for bitsearch: */ | 
 | 		__set_bit(MAX_RT_PRIO, array->bitmap); | 
 | 	} | 
 |  | 
 | 	set_load_weight(&init_task); | 
 |  | 
 | #ifdef CONFIG_PREEMPT_NOTIFIERS | 
 | 	INIT_HLIST_HEAD(&init_task.preempt_notifiers); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	nr_cpu_ids = highest_cpu + 1; | 
 | 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_RT_MUTEXES | 
 | 	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * The boot idle thread does lazy MMU switching as well: | 
 | 	 */ | 
 | 	atomic_inc(&init_mm.mm_count); | 
 | 	enter_lazy_tlb(&init_mm, current); | 
 |  | 
 | 	/* | 
 | 	 * Make us the idle thread. Technically, schedule() should not be | 
 | 	 * called from this thread, however somewhere below it might be, | 
 | 	 * but because we are the idle thread, we just pick up running again | 
 | 	 * when this runqueue becomes "idle". | 
 | 	 */ | 
 | 	init_idle(current, smp_processor_id()); | 
 | 	/* | 
 | 	 * During early bootup we pretend to be a normal task: | 
 | 	 */ | 
 | 	current->sched_class = &fair_sched_class; | 
 | } | 
 |  | 
 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP | 
 | void __might_sleep(char *file, int line) | 
 | { | 
 | #ifdef in_atomic | 
 | 	static unsigned long prev_jiffy;	/* ratelimiting */ | 
 |  | 
 | 	if ((in_atomic() || irqs_disabled()) && | 
 | 	    system_state == SYSTEM_RUNNING && !oops_in_progress) { | 
 | 		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) | 
 | 			return; | 
 | 		prev_jiffy = jiffies; | 
 | 		printk(KERN_ERR "BUG: sleeping function called from invalid" | 
 | 				" context at %s:%d\n", file, line); | 
 | 		printk("in_atomic():%d, irqs_disabled():%d\n", | 
 | 			in_atomic(), irqs_disabled()); | 
 | 		debug_show_held_locks(current); | 
 | 		if (irqs_disabled()) | 
 | 			print_irqtrace_events(current); | 
 | 		dump_stack(); | 
 | 	} | 
 | #endif | 
 | } | 
 | EXPORT_SYMBOL(__might_sleep); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_MAGIC_SYSRQ | 
 | void normalize_rt_tasks(void) | 
 | { | 
 | 	struct task_struct *g, *p; | 
 | 	unsigned long flags; | 
 | 	struct rq *rq; | 
 | 	int on_rq; | 
 |  | 
 | 	read_lock_irq(&tasklist_lock); | 
 | 	do_each_thread(g, p) { | 
 | 		p->se.fair_key			= 0; | 
 | 		p->se.wait_runtime		= 0; | 
 | 		p->se.wait_start_fair		= 0; | 
 | 		p->se.wait_start		= 0; | 
 | 		p->se.exec_start		= 0; | 
 | 		p->se.sleep_start		= 0; | 
 | 		p->se.sleep_start_fair		= 0; | 
 | 		p->se.block_start		= 0; | 
 | 		task_rq(p)->cfs.fair_clock	= 0; | 
 | 		task_rq(p)->clock		= 0; | 
 |  | 
 | 		if (!rt_task(p)) { | 
 | 			/* | 
 | 			 * Renice negative nice level userspace | 
 | 			 * tasks back to 0: | 
 | 			 */ | 
 | 			if (TASK_NICE(p) < 0 && p->mm) | 
 | 				set_user_nice(p, 0); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		spin_lock_irqsave(&p->pi_lock, flags); | 
 | 		rq = __task_rq_lock(p); | 
 | #ifdef CONFIG_SMP | 
 | 		/* | 
 | 		 * Do not touch the migration thread: | 
 | 		 */ | 
 | 		if (p == rq->migration_thread) | 
 | 			goto out_unlock; | 
 | #endif | 
 |  | 
 | 		on_rq = p->se.on_rq; | 
 | 		if (on_rq) | 
 | 			deactivate_task(task_rq(p), p, 0); | 
 | 		__setscheduler(rq, p, SCHED_NORMAL, 0); | 
 | 		if (on_rq) { | 
 | 			activate_task(task_rq(p), p, 0); | 
 | 			resched_task(rq->curr); | 
 | 		} | 
 | #ifdef CONFIG_SMP | 
 |  out_unlock: | 
 | #endif | 
 | 		__task_rq_unlock(rq); | 
 | 		spin_unlock_irqrestore(&p->pi_lock, flags); | 
 | 	} while_each_thread(g, p); | 
 |  | 
 | 	read_unlock_irq(&tasklist_lock); | 
 | } | 
 |  | 
 | #endif /* CONFIG_MAGIC_SYSRQ */ | 
 |  | 
 | #ifdef CONFIG_IA64 | 
 | /* | 
 |  * These functions are only useful for the IA64 MCA handling. | 
 |  * | 
 |  * They can only be called when the whole system has been | 
 |  * stopped - every CPU needs to be quiescent, and no scheduling | 
 |  * activity can take place. Using them for anything else would | 
 |  * be a serious bug, and as a result, they aren't even visible | 
 |  * under any other configuration. | 
 |  */ | 
 |  | 
 | /** | 
 |  * curr_task - return the current task for a given cpu. | 
 |  * @cpu: the processor in question. | 
 |  * | 
 |  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | 
 |  */ | 
 | struct task_struct *curr_task(int cpu) | 
 | { | 
 | 	return cpu_curr(cpu); | 
 | } | 
 |  | 
 | /** | 
 |  * set_curr_task - set the current task for a given cpu. | 
 |  * @cpu: the processor in question. | 
 |  * @p: the task pointer to set. | 
 |  * | 
 |  * Description: This function must only be used when non-maskable interrupts | 
 |  * are serviced on a separate stack.  It allows the architecture to switch the | 
 |  * notion of the current task on a cpu in a non-blocking manner.  This function | 
 |  * must be called with all CPU's synchronized, and interrupts disabled, the | 
 |  * and caller must save the original value of the current task (see | 
 |  * curr_task() above) and restore that value before reenabling interrupts and | 
 |  * re-starting the system. | 
 |  * | 
 |  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | 
 |  */ | 
 | void set_curr_task(int cpu, struct task_struct *p) | 
 | { | 
 | 	cpu_curr(cpu) = p; | 
 | } | 
 |  | 
 | #endif |