| /* | 
 |  * Copyright (c) 2006, Intel Corporation. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify it | 
 |  * under the terms and conditions of the GNU General Public License, | 
 |  * version 2, as published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope it will be useful, but WITHOUT | 
 |  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
 |  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
 |  * more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License along with | 
 |  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple | 
 |  * Place - Suite 330, Boston, MA 02111-1307 USA. | 
 |  * | 
 |  * Copyright (C) 2006-2008 Intel Corporation | 
 |  * Author: Ashok Raj <ashok.raj@intel.com> | 
 |  * Author: Shaohua Li <shaohua.li@intel.com> | 
 |  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> | 
 |  * | 
 |  * This file implements early detection/parsing of Remapping Devices | 
 |  * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI | 
 |  * tables. | 
 |  * | 
 |  * These routines are used by both DMA-remapping and Interrupt-remapping | 
 |  */ | 
 |  | 
 | #include <linux/pci.h> | 
 | #include <linux/dmar.h> | 
 | #include <linux/iova.h> | 
 | #include <linux/intel-iommu.h> | 
 | #include <linux/timer.h> | 
 |  | 
 | #undef PREFIX | 
 | #define PREFIX "DMAR:" | 
 |  | 
 | /* No locks are needed as DMA remapping hardware unit | 
 |  * list is constructed at boot time and hotplug of | 
 |  * these units are not supported by the architecture. | 
 |  */ | 
 | LIST_HEAD(dmar_drhd_units); | 
 |  | 
 | static struct acpi_table_header * __initdata dmar_tbl; | 
 |  | 
 | static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd) | 
 | { | 
 | 	/* | 
 | 	 * add INCLUDE_ALL at the tail, so scan the list will find it at | 
 | 	 * the very end. | 
 | 	 */ | 
 | 	if (drhd->include_all) | 
 | 		list_add_tail(&drhd->list, &dmar_drhd_units); | 
 | 	else | 
 | 		list_add(&drhd->list, &dmar_drhd_units); | 
 | } | 
 |  | 
 | static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope, | 
 | 					   struct pci_dev **dev, u16 segment) | 
 | { | 
 | 	struct pci_bus *bus; | 
 | 	struct pci_dev *pdev = NULL; | 
 | 	struct acpi_dmar_pci_path *path; | 
 | 	int count; | 
 |  | 
 | 	bus = pci_find_bus(segment, scope->bus); | 
 | 	path = (struct acpi_dmar_pci_path *)(scope + 1); | 
 | 	count = (scope->length - sizeof(struct acpi_dmar_device_scope)) | 
 | 		/ sizeof(struct acpi_dmar_pci_path); | 
 |  | 
 | 	while (count) { | 
 | 		if (pdev) | 
 | 			pci_dev_put(pdev); | 
 | 		/* | 
 | 		 * Some BIOSes list non-exist devices in DMAR table, just | 
 | 		 * ignore it | 
 | 		 */ | 
 | 		if (!bus) { | 
 | 			printk(KERN_WARNING | 
 | 			PREFIX "Device scope bus [%d] not found\n", | 
 | 			scope->bus); | 
 | 			break; | 
 | 		} | 
 | 		pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn)); | 
 | 		if (!pdev) { | 
 | 			printk(KERN_WARNING PREFIX | 
 | 			"Device scope device [%04x:%02x:%02x.%02x] not found\n", | 
 | 				segment, bus->number, path->dev, path->fn); | 
 | 			break; | 
 | 		} | 
 | 		path ++; | 
 | 		count --; | 
 | 		bus = pdev->subordinate; | 
 | 	} | 
 | 	if (!pdev) { | 
 | 		printk(KERN_WARNING PREFIX | 
 | 		"Device scope device [%04x:%02x:%02x.%02x] not found\n", | 
 | 		segment, scope->bus, path->dev, path->fn); | 
 | 		*dev = NULL; | 
 | 		return 0; | 
 | 	} | 
 | 	if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \ | 
 | 			pdev->subordinate) || (scope->entry_type == \ | 
 | 			ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) { | 
 | 		pci_dev_put(pdev); | 
 | 		printk(KERN_WARNING PREFIX | 
 | 			"Device scope type does not match for %s\n", | 
 | 			 pci_name(pdev)); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	*dev = pdev; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt, | 
 | 				       struct pci_dev ***devices, u16 segment) | 
 | { | 
 | 	struct acpi_dmar_device_scope *scope; | 
 | 	void * tmp = start; | 
 | 	int index; | 
 | 	int ret; | 
 |  | 
 | 	*cnt = 0; | 
 | 	while (start < end) { | 
 | 		scope = start; | 
 | 		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT || | 
 | 		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) | 
 | 			(*cnt)++; | 
 | 		else | 
 | 			printk(KERN_WARNING PREFIX | 
 | 				"Unsupported device scope\n"); | 
 | 		start += scope->length; | 
 | 	} | 
 | 	if (*cnt == 0) | 
 | 		return 0; | 
 |  | 
 | 	*devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL); | 
 | 	if (!*devices) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	start = tmp; | 
 | 	index = 0; | 
 | 	while (start < end) { | 
 | 		scope = start; | 
 | 		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT || | 
 | 		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) { | 
 | 			ret = dmar_parse_one_dev_scope(scope, | 
 | 				&(*devices)[index], segment); | 
 | 			if (ret) { | 
 | 				kfree(*devices); | 
 | 				return ret; | 
 | 			} | 
 | 			index ++; | 
 | 		} | 
 | 		start += scope->length; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition | 
 |  * structure which uniquely represent one DMA remapping hardware unit | 
 |  * present in the platform | 
 |  */ | 
 | static int __init | 
 | dmar_parse_one_drhd(struct acpi_dmar_header *header) | 
 | { | 
 | 	struct acpi_dmar_hardware_unit *drhd; | 
 | 	struct dmar_drhd_unit *dmaru; | 
 | 	int ret = 0; | 
 |  | 
 | 	dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL); | 
 | 	if (!dmaru) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	dmaru->hdr = header; | 
 | 	drhd = (struct acpi_dmar_hardware_unit *)header; | 
 | 	dmaru->reg_base_addr = drhd->address; | 
 | 	dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */ | 
 |  | 
 | 	ret = alloc_iommu(dmaru); | 
 | 	if (ret) { | 
 | 		kfree(dmaru); | 
 | 		return ret; | 
 | 	} | 
 | 	dmar_register_drhd_unit(dmaru); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru) | 
 | { | 
 | 	struct acpi_dmar_hardware_unit *drhd; | 
 | 	int ret = 0; | 
 |  | 
 | 	drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr; | 
 |  | 
 | 	if (dmaru->include_all) | 
 | 		return 0; | 
 |  | 
 | 	ret = dmar_parse_dev_scope((void *)(drhd + 1), | 
 | 				((void *)drhd) + drhd->header.length, | 
 | 				&dmaru->devices_cnt, &dmaru->devices, | 
 | 				drhd->segment); | 
 | 	if (ret) { | 
 | 		list_del(&dmaru->list); | 
 | 		kfree(dmaru); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef CONFIG_DMAR | 
 | LIST_HEAD(dmar_rmrr_units); | 
 |  | 
 | static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr) | 
 | { | 
 | 	list_add(&rmrr->list, &dmar_rmrr_units); | 
 | } | 
 |  | 
 |  | 
 | static int __init | 
 | dmar_parse_one_rmrr(struct acpi_dmar_header *header) | 
 | { | 
 | 	struct acpi_dmar_reserved_memory *rmrr; | 
 | 	struct dmar_rmrr_unit *rmrru; | 
 |  | 
 | 	rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL); | 
 | 	if (!rmrru) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	rmrru->hdr = header; | 
 | 	rmrr = (struct acpi_dmar_reserved_memory *)header; | 
 | 	rmrru->base_address = rmrr->base_address; | 
 | 	rmrru->end_address = rmrr->end_address; | 
 |  | 
 | 	dmar_register_rmrr_unit(rmrru); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __init | 
 | rmrr_parse_dev(struct dmar_rmrr_unit *rmrru) | 
 | { | 
 | 	struct acpi_dmar_reserved_memory *rmrr; | 
 | 	int ret; | 
 |  | 
 | 	rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr; | 
 | 	ret = dmar_parse_dev_scope((void *)(rmrr + 1), | 
 | 		((void *)rmrr) + rmrr->header.length, | 
 | 		&rmrru->devices_cnt, &rmrru->devices, rmrr->segment); | 
 |  | 
 | 	if (ret || (rmrru->devices_cnt == 0)) { | 
 | 		list_del(&rmrru->list); | 
 | 		kfree(rmrru); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 | #endif | 
 |  | 
 | static void __init | 
 | dmar_table_print_dmar_entry(struct acpi_dmar_header *header) | 
 | { | 
 | 	struct acpi_dmar_hardware_unit *drhd; | 
 | 	struct acpi_dmar_reserved_memory *rmrr; | 
 |  | 
 | 	switch (header->type) { | 
 | 	case ACPI_DMAR_TYPE_HARDWARE_UNIT: | 
 | 		drhd = (struct acpi_dmar_hardware_unit *)header; | 
 | 		printk (KERN_INFO PREFIX | 
 | 			"DRHD (flags: 0x%08x)base: 0x%016Lx\n", | 
 | 			drhd->flags, (unsigned long long)drhd->address); | 
 | 		break; | 
 | 	case ACPI_DMAR_TYPE_RESERVED_MEMORY: | 
 | 		rmrr = (struct acpi_dmar_reserved_memory *)header; | 
 |  | 
 | 		printk (KERN_INFO PREFIX | 
 | 			"RMRR base: 0x%016Lx end: 0x%016Lx\n", | 
 | 			(unsigned long long)rmrr->base_address, | 
 | 			(unsigned long long)rmrr->end_address); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * dmar_table_detect - checks to see if the platform supports DMAR devices | 
 |  */ | 
 | static int __init dmar_table_detect(void) | 
 | { | 
 | 	acpi_status status = AE_OK; | 
 |  | 
 | 	/* if we could find DMAR table, then there are DMAR devices */ | 
 | 	status = acpi_get_table(ACPI_SIG_DMAR, 0, | 
 | 				(struct acpi_table_header **)&dmar_tbl); | 
 |  | 
 | 	if (ACPI_SUCCESS(status) && !dmar_tbl) { | 
 | 		printk (KERN_WARNING PREFIX "Unable to map DMAR\n"); | 
 | 		status = AE_NOT_FOUND; | 
 | 	} | 
 |  | 
 | 	return (ACPI_SUCCESS(status) ? 1 : 0); | 
 | } | 
 |  | 
 | /** | 
 |  * parse_dmar_table - parses the DMA reporting table | 
 |  */ | 
 | static int __init | 
 | parse_dmar_table(void) | 
 | { | 
 | 	struct acpi_table_dmar *dmar; | 
 | 	struct acpi_dmar_header *entry_header; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * Do it again, earlier dmar_tbl mapping could be mapped with | 
 | 	 * fixed map. | 
 | 	 */ | 
 | 	dmar_table_detect(); | 
 |  | 
 | 	dmar = (struct acpi_table_dmar *)dmar_tbl; | 
 | 	if (!dmar) | 
 | 		return -ENODEV; | 
 |  | 
 | 	if (dmar->width < PAGE_SHIFT - 1) { | 
 | 		printk(KERN_WARNING PREFIX "Invalid DMAR haw\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	printk (KERN_INFO PREFIX "Host address width %d\n", | 
 | 		dmar->width + 1); | 
 |  | 
 | 	entry_header = (struct acpi_dmar_header *)(dmar + 1); | 
 | 	while (((unsigned long)entry_header) < | 
 | 			(((unsigned long)dmar) + dmar_tbl->length)) { | 
 | 		dmar_table_print_dmar_entry(entry_header); | 
 |  | 
 | 		switch (entry_header->type) { | 
 | 		case ACPI_DMAR_TYPE_HARDWARE_UNIT: | 
 | 			ret = dmar_parse_one_drhd(entry_header); | 
 | 			break; | 
 | 		case ACPI_DMAR_TYPE_RESERVED_MEMORY: | 
 | #ifdef CONFIG_DMAR | 
 | 			ret = dmar_parse_one_rmrr(entry_header); | 
 | #endif | 
 | 			break; | 
 | 		default: | 
 | 			printk(KERN_WARNING PREFIX | 
 | 				"Unknown DMAR structure type\n"); | 
 | 			ret = 0; /* for forward compatibility */ | 
 | 			break; | 
 | 		} | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		entry_header = ((void *)entry_header + entry_header->length); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | int dmar_pci_device_match(struct pci_dev *devices[], int cnt, | 
 | 			  struct pci_dev *dev) | 
 | { | 
 | 	int index; | 
 |  | 
 | 	while (dev) { | 
 | 		for (index = 0; index < cnt; index++) | 
 | 			if (dev == devices[index]) | 
 | 				return 1; | 
 |  | 
 | 		/* Check our parent */ | 
 | 		dev = dev->bus->self; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct dmar_drhd_unit * | 
 | dmar_find_matched_drhd_unit(struct pci_dev *dev) | 
 | { | 
 | 	struct dmar_drhd_unit *dmaru = NULL; | 
 | 	struct acpi_dmar_hardware_unit *drhd; | 
 |  | 
 | 	list_for_each_entry(dmaru, &dmar_drhd_units, list) { | 
 | 		drhd = container_of(dmaru->hdr, | 
 | 				    struct acpi_dmar_hardware_unit, | 
 | 				    header); | 
 |  | 
 | 		if (dmaru->include_all && | 
 | 		    drhd->segment == pci_domain_nr(dev->bus)) | 
 | 			return dmaru; | 
 |  | 
 | 		if (dmar_pci_device_match(dmaru->devices, | 
 | 					  dmaru->devices_cnt, dev)) | 
 | 			return dmaru; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | int __init dmar_dev_scope_init(void) | 
 | { | 
 | 	struct dmar_drhd_unit *drhd, *drhd_n; | 
 | 	int ret = -ENODEV; | 
 |  | 
 | 	list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) { | 
 | 		ret = dmar_parse_dev(drhd); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_DMAR | 
 | 	{ | 
 | 		struct dmar_rmrr_unit *rmrr, *rmrr_n; | 
 | 		list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) { | 
 | 			ret = rmrr_parse_dev(rmrr); | 
 | 			if (ret) | 
 | 				return ret; | 
 | 		} | 
 | 	} | 
 | #endif | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 |  | 
 | int __init dmar_table_init(void) | 
 | { | 
 | 	static int dmar_table_initialized; | 
 | 	int ret; | 
 |  | 
 | 	if (dmar_table_initialized) | 
 | 		return 0; | 
 |  | 
 | 	dmar_table_initialized = 1; | 
 |  | 
 | 	ret = parse_dmar_table(); | 
 | 	if (ret) { | 
 | 		if (ret != -ENODEV) | 
 | 			printk(KERN_INFO PREFIX "parse DMAR table failure.\n"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	if (list_empty(&dmar_drhd_units)) { | 
 | 		printk(KERN_INFO PREFIX "No DMAR devices found\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_DMAR | 
 | 	if (list_empty(&dmar_rmrr_units)) | 
 | 		printk(KERN_INFO PREFIX "No RMRR found\n"); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_INTR_REMAP | 
 | 	parse_ioapics_under_ir(); | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __init detect_intel_iommu(void) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = dmar_table_detect(); | 
 |  | 
 | 	{ | 
 | #ifdef CONFIG_INTR_REMAP | 
 | 		struct acpi_table_dmar *dmar; | 
 | 		/* | 
 | 		 * for now we will disable dma-remapping when interrupt | 
 | 		 * remapping is enabled. | 
 | 		 * When support for queued invalidation for IOTLB invalidation | 
 | 		 * is added, we will not need this any more. | 
 | 		 */ | 
 | 		dmar = (struct acpi_table_dmar *) dmar_tbl; | 
 | 		if (ret && cpu_has_x2apic && dmar->flags & 0x1) | 
 | 			printk(KERN_INFO | 
 | 			       "Queued invalidation will be enabled to support " | 
 | 			       "x2apic and Intr-remapping.\n"); | 
 | #endif | 
 | #ifdef CONFIG_DMAR | 
 | 		if (ret && !no_iommu && !iommu_detected && !swiotlb && | 
 | 		    !dmar_disabled) | 
 | 			iommu_detected = 1; | 
 | #endif | 
 | 	} | 
 | 	dmar_tbl = NULL; | 
 | } | 
 |  | 
 |  | 
 | int alloc_iommu(struct dmar_drhd_unit *drhd) | 
 | { | 
 | 	struct intel_iommu *iommu; | 
 | 	int map_size; | 
 | 	u32 ver; | 
 | 	static int iommu_allocated = 0; | 
 | 	int agaw; | 
 |  | 
 | 	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL); | 
 | 	if (!iommu) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	iommu->seq_id = iommu_allocated++; | 
 |  | 
 | 	iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE); | 
 | 	if (!iommu->reg) { | 
 | 		printk(KERN_ERR "IOMMU: can't map the region\n"); | 
 | 		goto error; | 
 | 	} | 
 | 	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG); | 
 | 	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG); | 
 |  | 
 | 	agaw = iommu_calculate_agaw(iommu); | 
 | 	if (agaw < 0) { | 
 | 		printk(KERN_ERR | 
 | 			"Cannot get a valid agaw for iommu (seq_id = %d)\n", | 
 | 			iommu->seq_id); | 
 | 		goto error; | 
 | 	} | 
 | 	iommu->agaw = agaw; | 
 |  | 
 | 	/* the registers might be more than one page */ | 
 | 	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap), | 
 | 		cap_max_fault_reg_offset(iommu->cap)); | 
 | 	map_size = VTD_PAGE_ALIGN(map_size); | 
 | 	if (map_size > VTD_PAGE_SIZE) { | 
 | 		iounmap(iommu->reg); | 
 | 		iommu->reg = ioremap(drhd->reg_base_addr, map_size); | 
 | 		if (!iommu->reg) { | 
 | 			printk(KERN_ERR "IOMMU: can't map the region\n"); | 
 | 			goto error; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ver = readl(iommu->reg + DMAR_VER_REG); | 
 | 	pr_debug("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n", | 
 | 		(unsigned long long)drhd->reg_base_addr, | 
 | 		DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver), | 
 | 		(unsigned long long)iommu->cap, | 
 | 		(unsigned long long)iommu->ecap); | 
 |  | 
 | 	spin_lock_init(&iommu->register_lock); | 
 |  | 
 | 	drhd->iommu = iommu; | 
 | 	return 0; | 
 | error: | 
 | 	kfree(iommu); | 
 | 	return -1; | 
 | } | 
 |  | 
 | void free_iommu(struct intel_iommu *iommu) | 
 | { | 
 | 	if (!iommu) | 
 | 		return; | 
 |  | 
 | #ifdef CONFIG_DMAR | 
 | 	free_dmar_iommu(iommu); | 
 | #endif | 
 |  | 
 | 	if (iommu->reg) | 
 | 		iounmap(iommu->reg); | 
 | 	kfree(iommu); | 
 | } | 
 |  | 
 | /* | 
 |  * Reclaim all the submitted descriptors which have completed its work. | 
 |  */ | 
 | static inline void reclaim_free_desc(struct q_inval *qi) | 
 | { | 
 | 	while (qi->desc_status[qi->free_tail] == QI_DONE) { | 
 | 		qi->desc_status[qi->free_tail] = QI_FREE; | 
 | 		qi->free_tail = (qi->free_tail + 1) % QI_LENGTH; | 
 | 		qi->free_cnt++; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Submit the queued invalidation descriptor to the remapping | 
 |  * hardware unit and wait for its completion. | 
 |  */ | 
 | void qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu) | 
 | { | 
 | 	struct q_inval *qi = iommu->qi; | 
 | 	struct qi_desc *hw, wait_desc; | 
 | 	int wait_index, index; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!qi) | 
 | 		return; | 
 |  | 
 | 	hw = qi->desc; | 
 |  | 
 | 	spin_lock_irqsave(&qi->q_lock, flags); | 
 | 	while (qi->free_cnt < 3) { | 
 | 		spin_unlock_irqrestore(&qi->q_lock, flags); | 
 | 		cpu_relax(); | 
 | 		spin_lock_irqsave(&qi->q_lock, flags); | 
 | 	} | 
 |  | 
 | 	index = qi->free_head; | 
 | 	wait_index = (index + 1) % QI_LENGTH; | 
 |  | 
 | 	qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE; | 
 |  | 
 | 	hw[index] = *desc; | 
 |  | 
 | 	wait_desc.low = QI_IWD_STATUS_DATA(2) | QI_IWD_STATUS_WRITE | QI_IWD_TYPE; | 
 | 	wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]); | 
 |  | 
 | 	hw[wait_index] = wait_desc; | 
 |  | 
 | 	__iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc)); | 
 | 	__iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc)); | 
 |  | 
 | 	qi->free_head = (qi->free_head + 2) % QI_LENGTH; | 
 | 	qi->free_cnt -= 2; | 
 |  | 
 | 	spin_lock(&iommu->register_lock); | 
 | 	/* | 
 | 	 * update the HW tail register indicating the presence of | 
 | 	 * new descriptors. | 
 | 	 */ | 
 | 	writel(qi->free_head << 4, iommu->reg + DMAR_IQT_REG); | 
 | 	spin_unlock(&iommu->register_lock); | 
 |  | 
 | 	while (qi->desc_status[wait_index] != QI_DONE) { | 
 | 		/* | 
 | 		 * We will leave the interrupts disabled, to prevent interrupt | 
 | 		 * context to queue another cmd while a cmd is already submitted | 
 | 		 * and waiting for completion on this cpu. This is to avoid | 
 | 		 * a deadlock where the interrupt context can wait indefinitely | 
 | 		 * for free slots in the queue. | 
 | 		 */ | 
 | 		spin_unlock(&qi->q_lock); | 
 | 		cpu_relax(); | 
 | 		spin_lock(&qi->q_lock); | 
 | 	} | 
 |  | 
 | 	qi->desc_status[index] = QI_DONE; | 
 |  | 
 | 	reclaim_free_desc(qi); | 
 | 	spin_unlock_irqrestore(&qi->q_lock, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Flush the global interrupt entry cache. | 
 |  */ | 
 | void qi_global_iec(struct intel_iommu *iommu) | 
 | { | 
 | 	struct qi_desc desc; | 
 |  | 
 | 	desc.low = QI_IEC_TYPE; | 
 | 	desc.high = 0; | 
 |  | 
 | 	qi_submit_sync(&desc, iommu); | 
 | } | 
 |  | 
 | int qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm, | 
 | 		     u64 type, int non_present_entry_flush) | 
 | { | 
 |  | 
 | 	struct qi_desc desc; | 
 |  | 
 | 	if (non_present_entry_flush) { | 
 | 		if (!cap_caching_mode(iommu->cap)) | 
 | 			return 1; | 
 | 		else | 
 | 			did = 0; | 
 | 	} | 
 |  | 
 | 	desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did) | 
 | 			| QI_CC_GRAN(type) | QI_CC_TYPE; | 
 | 	desc.high = 0; | 
 |  | 
 | 	qi_submit_sync(&desc, iommu); | 
 |  | 
 | 	return 0; | 
 |  | 
 | } | 
 |  | 
 | int qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr, | 
 | 		   unsigned int size_order, u64 type, | 
 | 		   int non_present_entry_flush) | 
 | { | 
 | 	u8 dw = 0, dr = 0; | 
 |  | 
 | 	struct qi_desc desc; | 
 | 	int ih = 0; | 
 |  | 
 | 	if (non_present_entry_flush) { | 
 | 		if (!cap_caching_mode(iommu->cap)) | 
 | 			return 1; | 
 | 		else | 
 | 			did = 0; | 
 | 	} | 
 |  | 
 | 	if (cap_write_drain(iommu->cap)) | 
 | 		dw = 1; | 
 |  | 
 | 	if (cap_read_drain(iommu->cap)) | 
 | 		dr = 1; | 
 |  | 
 | 	desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw) | 
 | 		| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE; | 
 | 	desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih) | 
 | 		| QI_IOTLB_AM(size_order); | 
 |  | 
 | 	qi_submit_sync(&desc, iommu); | 
 |  | 
 | 	return 0; | 
 |  | 
 | } | 
 |  | 
 | /* | 
 |  * Enable Queued Invalidation interface. This is a must to support | 
 |  * interrupt-remapping. Also used by DMA-remapping, which replaces | 
 |  * register based IOTLB invalidation. | 
 |  */ | 
 | int dmar_enable_qi(struct intel_iommu *iommu) | 
 | { | 
 | 	u32 cmd, sts; | 
 | 	unsigned long flags; | 
 | 	struct q_inval *qi; | 
 |  | 
 | 	if (!ecap_qis(iommu->ecap)) | 
 | 		return -ENOENT; | 
 |  | 
 | 	/* | 
 | 	 * queued invalidation is already setup and enabled. | 
 | 	 */ | 
 | 	if (iommu->qi) | 
 | 		return 0; | 
 |  | 
 | 	iommu->qi = kmalloc(sizeof(*qi), GFP_KERNEL); | 
 | 	if (!iommu->qi) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	qi = iommu->qi; | 
 |  | 
 | 	qi->desc = (void *)(get_zeroed_page(GFP_KERNEL)); | 
 | 	if (!qi->desc) { | 
 | 		kfree(qi); | 
 | 		iommu->qi = 0; | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_KERNEL); | 
 | 	if (!qi->desc_status) { | 
 | 		free_page((unsigned long) qi->desc); | 
 | 		kfree(qi); | 
 | 		iommu->qi = 0; | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	qi->free_head = qi->free_tail = 0; | 
 | 	qi->free_cnt = QI_LENGTH; | 
 |  | 
 | 	spin_lock_init(&qi->q_lock); | 
 |  | 
 | 	spin_lock_irqsave(&iommu->register_lock, flags); | 
 | 	/* write zero to the tail reg */ | 
 | 	writel(0, iommu->reg + DMAR_IQT_REG); | 
 |  | 
 | 	dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc)); | 
 |  | 
 | 	cmd = iommu->gcmd | DMA_GCMD_QIE; | 
 | 	iommu->gcmd |= DMA_GCMD_QIE; | 
 | 	writel(cmd, iommu->reg + DMAR_GCMD_REG); | 
 |  | 
 | 	/* Make sure hardware complete it */ | 
 | 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts); | 
 | 	spin_unlock_irqrestore(&iommu->register_lock, flags); | 
 |  | 
 | 	return 0; | 
 | } |