| /* | 
 |  * Copyright (C) 2007 Oracle.  All rights reserved. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public | 
 |  * License v2 as published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |  * General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public | 
 |  * License along with this program; if not, write to the | 
 |  * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
 |  * Boston, MA 021110-1307, USA. | 
 |  */ | 
 |  | 
 | #include <linux/fs.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/scatterlist.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/radix-tree.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/buffer_head.h> | 
 | #include <linux/workqueue.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/freezer.h> | 
 | #include <linux/crc32c.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/migrate.h> | 
 | #include <linux/ratelimit.h> | 
 | #include <asm/unaligned.h> | 
 | #include "compat.h" | 
 | #include "ctree.h" | 
 | #include "disk-io.h" | 
 | #include "transaction.h" | 
 | #include "btrfs_inode.h" | 
 | #include "volumes.h" | 
 | #include "print-tree.h" | 
 | #include "async-thread.h" | 
 | #include "locking.h" | 
 | #include "tree-log.h" | 
 | #include "free-space-cache.h" | 
 | #include "inode-map.h" | 
 |  | 
 | static struct extent_io_ops btree_extent_io_ops; | 
 | static void end_workqueue_fn(struct btrfs_work *work); | 
 | static void free_fs_root(struct btrfs_root *root); | 
 | static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info, | 
 | 				    int read_only); | 
 | static int btrfs_destroy_ordered_operations(struct btrfs_root *root); | 
 | static int btrfs_destroy_ordered_extents(struct btrfs_root *root); | 
 | static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, | 
 | 				      struct btrfs_root *root); | 
 | static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t); | 
 | static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root); | 
 | static int btrfs_destroy_marked_extents(struct btrfs_root *root, | 
 | 					struct extent_io_tree *dirty_pages, | 
 | 					int mark); | 
 | static int btrfs_destroy_pinned_extent(struct btrfs_root *root, | 
 | 				       struct extent_io_tree *pinned_extents); | 
 | static int btrfs_cleanup_transaction(struct btrfs_root *root); | 
 |  | 
 | /* | 
 |  * end_io_wq structs are used to do processing in task context when an IO is | 
 |  * complete.  This is used during reads to verify checksums, and it is used | 
 |  * by writes to insert metadata for new file extents after IO is complete. | 
 |  */ | 
 | struct end_io_wq { | 
 | 	struct bio *bio; | 
 | 	bio_end_io_t *end_io; | 
 | 	void *private; | 
 | 	struct btrfs_fs_info *info; | 
 | 	int error; | 
 | 	int metadata; | 
 | 	struct list_head list; | 
 | 	struct btrfs_work work; | 
 | }; | 
 |  | 
 | /* | 
 |  * async submit bios are used to offload expensive checksumming | 
 |  * onto the worker threads.  They checksum file and metadata bios | 
 |  * just before they are sent down the IO stack. | 
 |  */ | 
 | struct async_submit_bio { | 
 | 	struct inode *inode; | 
 | 	struct bio *bio; | 
 | 	struct list_head list; | 
 | 	extent_submit_bio_hook_t *submit_bio_start; | 
 | 	extent_submit_bio_hook_t *submit_bio_done; | 
 | 	int rw; | 
 | 	int mirror_num; | 
 | 	unsigned long bio_flags; | 
 | 	/* | 
 | 	 * bio_offset is optional, can be used if the pages in the bio | 
 | 	 * can't tell us where in the file the bio should go | 
 | 	 */ | 
 | 	u64 bio_offset; | 
 | 	struct btrfs_work work; | 
 | }; | 
 |  | 
 | /* | 
 |  * Lockdep class keys for extent_buffer->lock's in this root.  For a given | 
 |  * eb, the lockdep key is determined by the btrfs_root it belongs to and | 
 |  * the level the eb occupies in the tree. | 
 |  * | 
 |  * Different roots are used for different purposes and may nest inside each | 
 |  * other and they require separate keysets.  As lockdep keys should be | 
 |  * static, assign keysets according to the purpose of the root as indicated | 
 |  * by btrfs_root->objectid.  This ensures that all special purpose roots | 
 |  * have separate keysets. | 
 |  * | 
 |  * Lock-nesting across peer nodes is always done with the immediate parent | 
 |  * node locked thus preventing deadlock.  As lockdep doesn't know this, use | 
 |  * subclass to avoid triggering lockdep warning in such cases. | 
 |  * | 
 |  * The key is set by the readpage_end_io_hook after the buffer has passed | 
 |  * csum validation but before the pages are unlocked.  It is also set by | 
 |  * btrfs_init_new_buffer on freshly allocated blocks. | 
 |  * | 
 |  * We also add a check to make sure the highest level of the tree is the | 
 |  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code | 
 |  * needs update as well. | 
 |  */ | 
 | #ifdef CONFIG_DEBUG_LOCK_ALLOC | 
 | # if BTRFS_MAX_LEVEL != 8 | 
 | #  error | 
 | # endif | 
 |  | 
 | static struct btrfs_lockdep_keyset { | 
 | 	u64			id;		/* root objectid */ | 
 | 	const char		*name_stem;	/* lock name stem */ | 
 | 	char			names[BTRFS_MAX_LEVEL + 1][20]; | 
 | 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1]; | 
 | } btrfs_lockdep_keysets[] = { | 
 | 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	}, | 
 | 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	}, | 
 | 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	}, | 
 | 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	}, | 
 | 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	}, | 
 | 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	}, | 
 | 	{ .id = BTRFS_ORPHAN_OBJECTID,		.name_stem = "orphan"	}, | 
 | 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	}, | 
 | 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	}, | 
 | 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	}, | 
 | 	{ .id = 0,				.name_stem = "tree"	}, | 
 | }; | 
 |  | 
 | void __init btrfs_init_lockdep(void) | 
 | { | 
 | 	int i, j; | 
 |  | 
 | 	/* initialize lockdep class names */ | 
 | 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { | 
 | 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; | 
 |  | 
 | 		for (j = 0; j < ARRAY_SIZE(ks->names); j++) | 
 | 			snprintf(ks->names[j], sizeof(ks->names[j]), | 
 | 				 "btrfs-%s-%02d", ks->name_stem, j); | 
 | 	} | 
 | } | 
 |  | 
 | void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, | 
 | 				    int level) | 
 | { | 
 | 	struct btrfs_lockdep_keyset *ks; | 
 |  | 
 | 	BUG_ON(level >= ARRAY_SIZE(ks->keys)); | 
 |  | 
 | 	/* find the matching keyset, id 0 is the default entry */ | 
 | 	for (ks = btrfs_lockdep_keysets; ks->id; ks++) | 
 | 		if (ks->id == objectid) | 
 | 			break; | 
 |  | 
 | 	lockdep_set_class_and_name(&eb->lock, | 
 | 				   &ks->keys[level], ks->names[level]); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | /* | 
 |  * extents on the btree inode are pretty simple, there's one extent | 
 |  * that covers the entire device | 
 |  */ | 
 | static struct extent_map *btree_get_extent(struct inode *inode, | 
 | 		struct page *page, size_t pg_offset, u64 start, u64 len, | 
 | 		int create) | 
 | { | 
 | 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; | 
 | 	struct extent_map *em; | 
 | 	int ret; | 
 |  | 
 | 	read_lock(&em_tree->lock); | 
 | 	em = lookup_extent_mapping(em_tree, start, len); | 
 | 	if (em) { | 
 | 		em->bdev = | 
 | 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; | 
 | 		read_unlock(&em_tree->lock); | 
 | 		goto out; | 
 | 	} | 
 | 	read_unlock(&em_tree->lock); | 
 |  | 
 | 	em = alloc_extent_map(); | 
 | 	if (!em) { | 
 | 		em = ERR_PTR(-ENOMEM); | 
 | 		goto out; | 
 | 	} | 
 | 	em->start = 0; | 
 | 	em->len = (u64)-1; | 
 | 	em->block_len = (u64)-1; | 
 | 	em->block_start = 0; | 
 | 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; | 
 |  | 
 | 	write_lock(&em_tree->lock); | 
 | 	ret = add_extent_mapping(em_tree, em); | 
 | 	if (ret == -EEXIST) { | 
 | 		u64 failed_start = em->start; | 
 | 		u64 failed_len = em->len; | 
 |  | 
 | 		free_extent_map(em); | 
 | 		em = lookup_extent_mapping(em_tree, start, len); | 
 | 		if (em) { | 
 | 			ret = 0; | 
 | 		} else { | 
 | 			em = lookup_extent_mapping(em_tree, failed_start, | 
 | 						   failed_len); | 
 | 			ret = -EIO; | 
 | 		} | 
 | 	} else if (ret) { | 
 | 		free_extent_map(em); | 
 | 		em = NULL; | 
 | 	} | 
 | 	write_unlock(&em_tree->lock); | 
 |  | 
 | 	if (ret) | 
 | 		em = ERR_PTR(ret); | 
 | out: | 
 | 	return em; | 
 | } | 
 |  | 
 | u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) | 
 | { | 
 | 	return crc32c(seed, data, len); | 
 | } | 
 |  | 
 | void btrfs_csum_final(u32 crc, char *result) | 
 | { | 
 | 	put_unaligned_le32(~crc, result); | 
 | } | 
 |  | 
 | /* | 
 |  * compute the csum for a btree block, and either verify it or write it | 
 |  * into the csum field of the block. | 
 |  */ | 
 | static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, | 
 | 			   int verify) | 
 | { | 
 | 	u16 csum_size = | 
 | 		btrfs_super_csum_size(&root->fs_info->super_copy); | 
 | 	char *result = NULL; | 
 | 	unsigned long len; | 
 | 	unsigned long cur_len; | 
 | 	unsigned long offset = BTRFS_CSUM_SIZE; | 
 | 	char *kaddr; | 
 | 	unsigned long map_start; | 
 | 	unsigned long map_len; | 
 | 	int err; | 
 | 	u32 crc = ~(u32)0; | 
 | 	unsigned long inline_result; | 
 |  | 
 | 	len = buf->len - offset; | 
 | 	while (len > 0) { | 
 | 		err = map_private_extent_buffer(buf, offset, 32, | 
 | 					&kaddr, &map_start, &map_len); | 
 | 		if (err) | 
 | 			return 1; | 
 | 		cur_len = min(len, map_len - (offset - map_start)); | 
 | 		crc = btrfs_csum_data(root, kaddr + offset - map_start, | 
 | 				      crc, cur_len); | 
 | 		len -= cur_len; | 
 | 		offset += cur_len; | 
 | 	} | 
 | 	if (csum_size > sizeof(inline_result)) { | 
 | 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS); | 
 | 		if (!result) | 
 | 			return 1; | 
 | 	} else { | 
 | 		result = (char *)&inline_result; | 
 | 	} | 
 |  | 
 | 	btrfs_csum_final(crc, result); | 
 |  | 
 | 	if (verify) { | 
 | 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) { | 
 | 			u32 val; | 
 | 			u32 found = 0; | 
 | 			memcpy(&found, result, csum_size); | 
 |  | 
 | 			read_extent_buffer(buf, &val, 0, csum_size); | 
 | 			printk_ratelimited(KERN_INFO "btrfs: %s checksum verify " | 
 | 				       "failed on %llu wanted %X found %X " | 
 | 				       "level %d\n", | 
 | 				       root->fs_info->sb->s_id, | 
 | 				       (unsigned long long)buf->start, val, found, | 
 | 				       btrfs_header_level(buf)); | 
 | 			if (result != (char *)&inline_result) | 
 | 				kfree(result); | 
 | 			return 1; | 
 | 		} | 
 | 	} else { | 
 | 		write_extent_buffer(buf, result, 0, csum_size); | 
 | 	} | 
 | 	if (result != (char *)&inline_result) | 
 | 		kfree(result); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * we can't consider a given block up to date unless the transid of the | 
 |  * block matches the transid in the parent node's pointer.  This is how we | 
 |  * detect blocks that either didn't get written at all or got written | 
 |  * in the wrong place. | 
 |  */ | 
 | static int verify_parent_transid(struct extent_io_tree *io_tree, | 
 | 				 struct extent_buffer *eb, u64 parent_transid) | 
 | { | 
 | 	struct extent_state *cached_state = NULL; | 
 | 	int ret; | 
 |  | 
 | 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid) | 
 | 		return 0; | 
 |  | 
 | 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, | 
 | 			 0, &cached_state, GFP_NOFS); | 
 | 	if (extent_buffer_uptodate(io_tree, eb, cached_state) && | 
 | 	    btrfs_header_generation(eb) == parent_transid) { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 | 	printk_ratelimited("parent transid verify failed on %llu wanted %llu " | 
 | 		       "found %llu\n", | 
 | 		       (unsigned long long)eb->start, | 
 | 		       (unsigned long long)parent_transid, | 
 | 		       (unsigned long long)btrfs_header_generation(eb)); | 
 | 	ret = 1; | 
 | 	clear_extent_buffer_uptodate(io_tree, eb, &cached_state); | 
 | out: | 
 | 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, | 
 | 			     &cached_state, GFP_NOFS); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * helper to read a given tree block, doing retries as required when | 
 |  * the checksums don't match and we have alternate mirrors to try. | 
 |  */ | 
 | static int btree_read_extent_buffer_pages(struct btrfs_root *root, | 
 | 					  struct extent_buffer *eb, | 
 | 					  u64 start, u64 parent_transid) | 
 | { | 
 | 	struct extent_io_tree *io_tree; | 
 | 	int ret; | 
 | 	int num_copies = 0; | 
 | 	int mirror_num = 0; | 
 |  | 
 | 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); | 
 | 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; | 
 | 	while (1) { | 
 | 		ret = read_extent_buffer_pages(io_tree, eb, start, 1, | 
 | 					       btree_get_extent, mirror_num); | 
 | 		if (!ret && | 
 | 		    !verify_parent_transid(io_tree, eb, parent_transid)) | 
 | 			return ret; | 
 |  | 
 | 		/* | 
 | 		 * This buffer's crc is fine, but its contents are corrupted, so | 
 | 		 * there is no reason to read the other copies, they won't be | 
 | 		 * any less wrong. | 
 | 		 */ | 
 | 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) | 
 | 			return ret; | 
 |  | 
 | 		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, | 
 | 					      eb->start, eb->len); | 
 | 		if (num_copies == 1) | 
 | 			return ret; | 
 |  | 
 | 		mirror_num++; | 
 | 		if (mirror_num > num_copies) | 
 | 			return ret; | 
 | 	} | 
 | 	return -EIO; | 
 | } | 
 |  | 
 | /* | 
 |  * checksum a dirty tree block before IO.  This has extra checks to make sure | 
 |  * we only fill in the checksum field in the first page of a multi-page block | 
 |  */ | 
 |  | 
 | static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) | 
 | { | 
 | 	struct extent_io_tree *tree; | 
 | 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT; | 
 | 	u64 found_start; | 
 | 	unsigned long len; | 
 | 	struct extent_buffer *eb; | 
 | 	int ret; | 
 |  | 
 | 	tree = &BTRFS_I(page->mapping->host)->io_tree; | 
 |  | 
 | 	if (page->private == EXTENT_PAGE_PRIVATE) { | 
 | 		WARN_ON(1); | 
 | 		goto out; | 
 | 	} | 
 | 	if (!page->private) { | 
 | 		WARN_ON(1); | 
 | 		goto out; | 
 | 	} | 
 | 	len = page->private >> 2; | 
 | 	WARN_ON(len == 0); | 
 |  | 
 | 	eb = alloc_extent_buffer(tree, start, len, page); | 
 | 	if (eb == NULL) { | 
 | 		WARN_ON(1); | 
 | 		goto out; | 
 | 	} | 
 | 	ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE, | 
 | 					     btrfs_header_generation(eb)); | 
 | 	BUG_ON(ret); | 
 | 	WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN)); | 
 |  | 
 | 	found_start = btrfs_header_bytenr(eb); | 
 | 	if (found_start != start) { | 
 | 		WARN_ON(1); | 
 | 		goto err; | 
 | 	} | 
 | 	if (eb->first_page != page) { | 
 | 		WARN_ON(1); | 
 | 		goto err; | 
 | 	} | 
 | 	if (!PageUptodate(page)) { | 
 | 		WARN_ON(1); | 
 | 		goto err; | 
 | 	} | 
 | 	csum_tree_block(root, eb, 0); | 
 | err: | 
 | 	free_extent_buffer(eb); | 
 | out: | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int check_tree_block_fsid(struct btrfs_root *root, | 
 | 				 struct extent_buffer *eb) | 
 | { | 
 | 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; | 
 | 	u8 fsid[BTRFS_UUID_SIZE]; | 
 | 	int ret = 1; | 
 |  | 
 | 	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), | 
 | 			   BTRFS_FSID_SIZE); | 
 | 	while (fs_devices) { | 
 | 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { | 
 | 			ret = 0; | 
 | 			break; | 
 | 		} | 
 | 		fs_devices = fs_devices->seed; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | #define CORRUPT(reason, eb, root, slot)				\ | 
 | 	printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu,"	\ | 
 | 	       "root=%llu, slot=%d\n", reason,			\ | 
 | 	       (unsigned long long)btrfs_header_bytenr(eb),	\ | 
 | 	       (unsigned long long)root->objectid, slot) | 
 |  | 
 | static noinline int check_leaf(struct btrfs_root *root, | 
 | 			       struct extent_buffer *leaf) | 
 | { | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key leaf_key; | 
 | 	u32 nritems = btrfs_header_nritems(leaf); | 
 | 	int slot; | 
 |  | 
 | 	if (nritems == 0) | 
 | 		return 0; | 
 |  | 
 | 	/* Check the 0 item */ | 
 | 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != | 
 | 	    BTRFS_LEAF_DATA_SIZE(root)) { | 
 | 		CORRUPT("invalid item offset size pair", leaf, root, 0); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check to make sure each items keys are in the correct order and their | 
 | 	 * offsets make sense.  We only have to loop through nritems-1 because | 
 | 	 * we check the current slot against the next slot, which verifies the | 
 | 	 * next slot's offset+size makes sense and that the current's slot | 
 | 	 * offset is correct. | 
 | 	 */ | 
 | 	for (slot = 0; slot < nritems - 1; slot++) { | 
 | 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot); | 
 | 		btrfs_item_key_to_cpu(leaf, &key, slot + 1); | 
 |  | 
 | 		/* Make sure the keys are in the right order */ | 
 | 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { | 
 | 			CORRUPT("bad key order", leaf, root, slot); | 
 | 			return -EIO; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Make sure the offset and ends are right, remember that the | 
 | 		 * item data starts at the end of the leaf and grows towards the | 
 | 		 * front. | 
 | 		 */ | 
 | 		if (btrfs_item_offset_nr(leaf, slot) != | 
 | 			btrfs_item_end_nr(leaf, slot + 1)) { | 
 | 			CORRUPT("slot offset bad", leaf, root, slot); | 
 | 			return -EIO; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Check to make sure that we don't point outside of the leaf, | 
 | 		 * just incase all the items are consistent to eachother, but | 
 | 		 * all point outside of the leaf. | 
 | 		 */ | 
 | 		if (btrfs_item_end_nr(leaf, slot) > | 
 | 		    BTRFS_LEAF_DATA_SIZE(root)) { | 
 | 			CORRUPT("slot end outside of leaf", leaf, root, slot); | 
 | 			return -EIO; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, | 
 | 			       struct extent_state *state) | 
 | { | 
 | 	struct extent_io_tree *tree; | 
 | 	u64 found_start; | 
 | 	int found_level; | 
 | 	unsigned long len; | 
 | 	struct extent_buffer *eb; | 
 | 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; | 
 | 	int ret = 0; | 
 |  | 
 | 	tree = &BTRFS_I(page->mapping->host)->io_tree; | 
 | 	if (page->private == EXTENT_PAGE_PRIVATE) | 
 | 		goto out; | 
 | 	if (!page->private) | 
 | 		goto out; | 
 |  | 
 | 	len = page->private >> 2; | 
 | 	WARN_ON(len == 0); | 
 |  | 
 | 	eb = alloc_extent_buffer(tree, start, len, page); | 
 | 	if (eb == NULL) { | 
 | 		ret = -EIO; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	found_start = btrfs_header_bytenr(eb); | 
 | 	if (found_start != start) { | 
 | 		printk_ratelimited(KERN_INFO "btrfs bad tree block start " | 
 | 			       "%llu %llu\n", | 
 | 			       (unsigned long long)found_start, | 
 | 			       (unsigned long long)eb->start); | 
 | 		ret = -EIO; | 
 | 		goto err; | 
 | 	} | 
 | 	if (eb->first_page != page) { | 
 | 		printk(KERN_INFO "btrfs bad first page %lu %lu\n", | 
 | 		       eb->first_page->index, page->index); | 
 | 		WARN_ON(1); | 
 | 		ret = -EIO; | 
 | 		goto err; | 
 | 	} | 
 | 	if (check_tree_block_fsid(root, eb)) { | 
 | 		printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n", | 
 | 			       (unsigned long long)eb->start); | 
 | 		ret = -EIO; | 
 | 		goto err; | 
 | 	} | 
 | 	found_level = btrfs_header_level(eb); | 
 |  | 
 | 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), | 
 | 				       eb, found_level); | 
 |  | 
 | 	ret = csum_tree_block(root, eb, 1); | 
 | 	if (ret) { | 
 | 		ret = -EIO; | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If this is a leaf block and it is corrupt, set the corrupt bit so | 
 | 	 * that we don't try and read the other copies of this block, just | 
 | 	 * return -EIO. | 
 | 	 */ | 
 | 	if (found_level == 0 && check_leaf(root, eb)) { | 
 | 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); | 
 | 		ret = -EIO; | 
 | 	} | 
 |  | 
 | 	end = min_t(u64, eb->len, PAGE_CACHE_SIZE); | 
 | 	end = eb->start + end - 1; | 
 | err: | 
 | 	free_extent_buffer(eb); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void end_workqueue_bio(struct bio *bio, int err) | 
 | { | 
 | 	struct end_io_wq *end_io_wq = bio->bi_private; | 
 | 	struct btrfs_fs_info *fs_info; | 
 |  | 
 | 	fs_info = end_io_wq->info; | 
 | 	end_io_wq->error = err; | 
 | 	end_io_wq->work.func = end_workqueue_fn; | 
 | 	end_io_wq->work.flags = 0; | 
 |  | 
 | 	if (bio->bi_rw & REQ_WRITE) { | 
 | 		if (end_io_wq->metadata == 1) | 
 | 			btrfs_queue_worker(&fs_info->endio_meta_write_workers, | 
 | 					   &end_io_wq->work); | 
 | 		else if (end_io_wq->metadata == 2) | 
 | 			btrfs_queue_worker(&fs_info->endio_freespace_worker, | 
 | 					   &end_io_wq->work); | 
 | 		else | 
 | 			btrfs_queue_worker(&fs_info->endio_write_workers, | 
 | 					   &end_io_wq->work); | 
 | 	} else { | 
 | 		if (end_io_wq->metadata) | 
 | 			btrfs_queue_worker(&fs_info->endio_meta_workers, | 
 | 					   &end_io_wq->work); | 
 | 		else | 
 | 			btrfs_queue_worker(&fs_info->endio_workers, | 
 | 					   &end_io_wq->work); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * For the metadata arg you want | 
 |  * | 
 |  * 0 - if data | 
 |  * 1 - if normal metadta | 
 |  * 2 - if writing to the free space cache area | 
 |  */ | 
 | int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, | 
 | 			int metadata) | 
 | { | 
 | 	struct end_io_wq *end_io_wq; | 
 | 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); | 
 | 	if (!end_io_wq) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	end_io_wq->private = bio->bi_private; | 
 | 	end_io_wq->end_io = bio->bi_end_io; | 
 | 	end_io_wq->info = info; | 
 | 	end_io_wq->error = 0; | 
 | 	end_io_wq->bio = bio; | 
 | 	end_io_wq->metadata = metadata; | 
 |  | 
 | 	bio->bi_private = end_io_wq; | 
 | 	bio->bi_end_io = end_workqueue_bio; | 
 | 	return 0; | 
 | } | 
 |  | 
 | unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) | 
 | { | 
 | 	unsigned long limit = min_t(unsigned long, | 
 | 				    info->workers.max_workers, | 
 | 				    info->fs_devices->open_devices); | 
 | 	return 256 * limit; | 
 | } | 
 |  | 
 | static void run_one_async_start(struct btrfs_work *work) | 
 | { | 
 | 	struct async_submit_bio *async; | 
 |  | 
 | 	async = container_of(work, struct  async_submit_bio, work); | 
 | 	async->submit_bio_start(async->inode, async->rw, async->bio, | 
 | 			       async->mirror_num, async->bio_flags, | 
 | 			       async->bio_offset); | 
 | } | 
 |  | 
 | static void run_one_async_done(struct btrfs_work *work) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info; | 
 | 	struct async_submit_bio *async; | 
 | 	int limit; | 
 |  | 
 | 	async = container_of(work, struct  async_submit_bio, work); | 
 | 	fs_info = BTRFS_I(async->inode)->root->fs_info; | 
 |  | 
 | 	limit = btrfs_async_submit_limit(fs_info); | 
 | 	limit = limit * 2 / 3; | 
 |  | 
 | 	atomic_dec(&fs_info->nr_async_submits); | 
 |  | 
 | 	if (atomic_read(&fs_info->nr_async_submits) < limit && | 
 | 	    waitqueue_active(&fs_info->async_submit_wait)) | 
 | 		wake_up(&fs_info->async_submit_wait); | 
 |  | 
 | 	async->submit_bio_done(async->inode, async->rw, async->bio, | 
 | 			       async->mirror_num, async->bio_flags, | 
 | 			       async->bio_offset); | 
 | } | 
 |  | 
 | static void run_one_async_free(struct btrfs_work *work) | 
 | { | 
 | 	struct async_submit_bio *async; | 
 |  | 
 | 	async = container_of(work, struct  async_submit_bio, work); | 
 | 	kfree(async); | 
 | } | 
 |  | 
 | int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, | 
 | 			int rw, struct bio *bio, int mirror_num, | 
 | 			unsigned long bio_flags, | 
 | 			u64 bio_offset, | 
 | 			extent_submit_bio_hook_t *submit_bio_start, | 
 | 			extent_submit_bio_hook_t *submit_bio_done) | 
 | { | 
 | 	struct async_submit_bio *async; | 
 |  | 
 | 	async = kmalloc(sizeof(*async), GFP_NOFS); | 
 | 	if (!async) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	async->inode = inode; | 
 | 	async->rw = rw; | 
 | 	async->bio = bio; | 
 | 	async->mirror_num = mirror_num; | 
 | 	async->submit_bio_start = submit_bio_start; | 
 | 	async->submit_bio_done = submit_bio_done; | 
 |  | 
 | 	async->work.func = run_one_async_start; | 
 | 	async->work.ordered_func = run_one_async_done; | 
 | 	async->work.ordered_free = run_one_async_free; | 
 |  | 
 | 	async->work.flags = 0; | 
 | 	async->bio_flags = bio_flags; | 
 | 	async->bio_offset = bio_offset; | 
 |  | 
 | 	atomic_inc(&fs_info->nr_async_submits); | 
 |  | 
 | 	if (rw & REQ_SYNC) | 
 | 		btrfs_set_work_high_prio(&async->work); | 
 |  | 
 | 	btrfs_queue_worker(&fs_info->workers, &async->work); | 
 |  | 
 | 	while (atomic_read(&fs_info->async_submit_draining) && | 
 | 	      atomic_read(&fs_info->nr_async_submits)) { | 
 | 		wait_event(fs_info->async_submit_wait, | 
 | 			   (atomic_read(&fs_info->nr_async_submits) == 0)); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int btree_csum_one_bio(struct bio *bio) | 
 | { | 
 | 	struct bio_vec *bvec = bio->bi_io_vec; | 
 | 	int bio_index = 0; | 
 | 	struct btrfs_root *root; | 
 |  | 
 | 	WARN_ON(bio->bi_vcnt <= 0); | 
 | 	while (bio_index < bio->bi_vcnt) { | 
 | 		root = BTRFS_I(bvec->bv_page->mapping->host)->root; | 
 | 		csum_dirty_buffer(root, bvec->bv_page); | 
 | 		bio_index++; | 
 | 		bvec++; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __btree_submit_bio_start(struct inode *inode, int rw, | 
 | 				    struct bio *bio, int mirror_num, | 
 | 				    unsigned long bio_flags, | 
 | 				    u64 bio_offset) | 
 | { | 
 | 	/* | 
 | 	 * when we're called for a write, we're already in the async | 
 | 	 * submission context.  Just jump into btrfs_map_bio | 
 | 	 */ | 
 | 	btree_csum_one_bio(bio); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, | 
 | 				 int mirror_num, unsigned long bio_flags, | 
 | 				 u64 bio_offset) | 
 | { | 
 | 	/* | 
 | 	 * when we're called for a write, we're already in the async | 
 | 	 * submission context.  Just jump into btrfs_map_bio | 
 | 	 */ | 
 | 	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); | 
 | } | 
 |  | 
 | static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, | 
 | 				 int mirror_num, unsigned long bio_flags, | 
 | 				 u64 bio_offset) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, | 
 | 					  bio, 1); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	if (!(rw & REQ_WRITE)) { | 
 | 		/* | 
 | 		 * called for a read, do the setup so that checksum validation | 
 | 		 * can happen in the async kernel threads | 
 | 		 */ | 
 | 		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, | 
 | 				     mirror_num, 0); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * kthread helpers are used to submit writes so that checksumming | 
 | 	 * can happen in parallel across all CPUs | 
 | 	 */ | 
 | 	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, | 
 | 				   inode, rw, bio, mirror_num, 0, | 
 | 				   bio_offset, | 
 | 				   __btree_submit_bio_start, | 
 | 				   __btree_submit_bio_done); | 
 | } | 
 |  | 
 | #ifdef CONFIG_MIGRATION | 
 | static int btree_migratepage(struct address_space *mapping, | 
 | 			struct page *newpage, struct page *page) | 
 | { | 
 | 	/* | 
 | 	 * we can't safely write a btree page from here, | 
 | 	 * we haven't done the locking hook | 
 | 	 */ | 
 | 	if (PageDirty(page)) | 
 | 		return -EAGAIN; | 
 | 	/* | 
 | 	 * Buffers may be managed in a filesystem specific way. | 
 | 	 * We must have no buffers or drop them. | 
 | 	 */ | 
 | 	if (page_has_private(page) && | 
 | 	    !try_to_release_page(page, GFP_KERNEL)) | 
 | 		return -EAGAIN; | 
 | 	return migrate_page(mapping, newpage, page); | 
 | } | 
 | #endif | 
 |  | 
 | static int btree_writepage(struct page *page, struct writeback_control *wbc) | 
 | { | 
 | 	struct extent_io_tree *tree; | 
 | 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; | 
 | 	struct extent_buffer *eb; | 
 | 	int was_dirty; | 
 |  | 
 | 	tree = &BTRFS_I(page->mapping->host)->io_tree; | 
 | 	if (!(current->flags & PF_MEMALLOC)) { | 
 | 		return extent_write_full_page(tree, page, | 
 | 					      btree_get_extent, wbc); | 
 | 	} | 
 |  | 
 | 	redirty_page_for_writepage(wbc, page); | 
 | 	eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE); | 
 | 	WARN_ON(!eb); | 
 |  | 
 | 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); | 
 | 	if (!was_dirty) { | 
 | 		spin_lock(&root->fs_info->delalloc_lock); | 
 | 		root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE; | 
 | 		spin_unlock(&root->fs_info->delalloc_lock); | 
 | 	} | 
 | 	free_extent_buffer(eb); | 
 |  | 
 | 	unlock_page(page); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int btree_writepages(struct address_space *mapping, | 
 | 			    struct writeback_control *wbc) | 
 | { | 
 | 	struct extent_io_tree *tree; | 
 | 	tree = &BTRFS_I(mapping->host)->io_tree; | 
 | 	if (wbc->sync_mode == WB_SYNC_NONE) { | 
 | 		struct btrfs_root *root = BTRFS_I(mapping->host)->root; | 
 | 		u64 num_dirty; | 
 | 		unsigned long thresh = 32 * 1024 * 1024; | 
 |  | 
 | 		if (wbc->for_kupdate) | 
 | 			return 0; | 
 |  | 
 | 		/* this is a bit racy, but that's ok */ | 
 | 		num_dirty = root->fs_info->dirty_metadata_bytes; | 
 | 		if (num_dirty < thresh) | 
 | 			return 0; | 
 | 	} | 
 | 	return extent_writepages(tree, mapping, btree_get_extent, wbc); | 
 | } | 
 |  | 
 | static int btree_readpage(struct file *file, struct page *page) | 
 | { | 
 | 	struct extent_io_tree *tree; | 
 | 	tree = &BTRFS_I(page->mapping->host)->io_tree; | 
 | 	return extent_read_full_page(tree, page, btree_get_extent); | 
 | } | 
 |  | 
 | static int btree_releasepage(struct page *page, gfp_t gfp_flags) | 
 | { | 
 | 	struct extent_io_tree *tree; | 
 | 	struct extent_map_tree *map; | 
 | 	int ret; | 
 |  | 
 | 	if (PageWriteback(page) || PageDirty(page)) | 
 | 		return 0; | 
 |  | 
 | 	tree = &BTRFS_I(page->mapping->host)->io_tree; | 
 | 	map = &BTRFS_I(page->mapping->host)->extent_tree; | 
 |  | 
 | 	ret = try_release_extent_state(map, tree, page, gfp_flags); | 
 | 	if (!ret) | 
 | 		return 0; | 
 |  | 
 | 	ret = try_release_extent_buffer(tree, page); | 
 | 	if (ret == 1) { | 
 | 		ClearPagePrivate(page); | 
 | 		set_page_private(page, 0); | 
 | 		page_cache_release(page); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void btree_invalidatepage(struct page *page, unsigned long offset) | 
 | { | 
 | 	struct extent_io_tree *tree; | 
 | 	tree = &BTRFS_I(page->mapping->host)->io_tree; | 
 | 	extent_invalidatepage(tree, page, offset); | 
 | 	btree_releasepage(page, GFP_NOFS); | 
 | 	if (PagePrivate(page)) { | 
 | 		printk(KERN_WARNING "btrfs warning page private not zero " | 
 | 		       "on page %llu\n", (unsigned long long)page_offset(page)); | 
 | 		ClearPagePrivate(page); | 
 | 		set_page_private(page, 0); | 
 | 		page_cache_release(page); | 
 | 	} | 
 | } | 
 |  | 
 | static const struct address_space_operations btree_aops = { | 
 | 	.readpage	= btree_readpage, | 
 | 	.writepage	= btree_writepage, | 
 | 	.writepages	= btree_writepages, | 
 | 	.releasepage	= btree_releasepage, | 
 | 	.invalidatepage = btree_invalidatepage, | 
 | #ifdef CONFIG_MIGRATION | 
 | 	.migratepage	= btree_migratepage, | 
 | #endif | 
 | }; | 
 |  | 
 | int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, | 
 | 			 u64 parent_transid) | 
 | { | 
 | 	struct extent_buffer *buf = NULL; | 
 | 	struct inode *btree_inode = root->fs_info->btree_inode; | 
 | 	int ret = 0; | 
 |  | 
 | 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize); | 
 | 	if (!buf) | 
 | 		return 0; | 
 | 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, | 
 | 				 buf, 0, 0, btree_get_extent, 0); | 
 | 	free_extent_buffer(buf); | 
 | 	return ret; | 
 | } | 
 |  | 
 | struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, | 
 | 					    u64 bytenr, u32 blocksize) | 
 | { | 
 | 	struct inode *btree_inode = root->fs_info->btree_inode; | 
 | 	struct extent_buffer *eb; | 
 | 	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, | 
 | 				bytenr, blocksize); | 
 | 	return eb; | 
 | } | 
 |  | 
 | struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, | 
 | 						 u64 bytenr, u32 blocksize) | 
 | { | 
 | 	struct inode *btree_inode = root->fs_info->btree_inode; | 
 | 	struct extent_buffer *eb; | 
 |  | 
 | 	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, | 
 | 				 bytenr, blocksize, NULL); | 
 | 	return eb; | 
 | } | 
 |  | 
 |  | 
 | int btrfs_write_tree_block(struct extent_buffer *buf) | 
 | { | 
 | 	return filemap_fdatawrite_range(buf->first_page->mapping, buf->start, | 
 | 					buf->start + buf->len - 1); | 
 | } | 
 |  | 
 | int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) | 
 | { | 
 | 	return filemap_fdatawait_range(buf->first_page->mapping, | 
 | 				       buf->start, buf->start + buf->len - 1); | 
 | } | 
 |  | 
 | struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, | 
 | 				      u32 blocksize, u64 parent_transid) | 
 | { | 
 | 	struct extent_buffer *buf = NULL; | 
 | 	int ret; | 
 |  | 
 | 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize); | 
 | 	if (!buf) | 
 | 		return NULL; | 
 |  | 
 | 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); | 
 |  | 
 | 	if (ret == 0) | 
 | 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); | 
 | 	return buf; | 
 |  | 
 | } | 
 |  | 
 | int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, | 
 | 		     struct extent_buffer *buf) | 
 | { | 
 | 	struct inode *btree_inode = root->fs_info->btree_inode; | 
 | 	if (btrfs_header_generation(buf) == | 
 | 	    root->fs_info->running_transaction->transid) { | 
 | 		btrfs_assert_tree_locked(buf); | 
 |  | 
 | 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { | 
 | 			spin_lock(&root->fs_info->delalloc_lock); | 
 | 			if (root->fs_info->dirty_metadata_bytes >= buf->len) | 
 | 				root->fs_info->dirty_metadata_bytes -= buf->len; | 
 | 			else | 
 | 				WARN_ON(1); | 
 | 			spin_unlock(&root->fs_info->delalloc_lock); | 
 | 		} | 
 |  | 
 | 		/* ugh, clear_extent_buffer_dirty needs to lock the page */ | 
 | 		btrfs_set_lock_blocking(buf); | 
 | 		clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, | 
 | 					  buf); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, | 
 | 			u32 stripesize, struct btrfs_root *root, | 
 | 			struct btrfs_fs_info *fs_info, | 
 | 			u64 objectid) | 
 | { | 
 | 	root->node = NULL; | 
 | 	root->commit_root = NULL; | 
 | 	root->sectorsize = sectorsize; | 
 | 	root->nodesize = nodesize; | 
 | 	root->leafsize = leafsize; | 
 | 	root->stripesize = stripesize; | 
 | 	root->ref_cows = 0; | 
 | 	root->track_dirty = 0; | 
 | 	root->in_radix = 0; | 
 | 	root->orphan_item_inserted = 0; | 
 | 	root->orphan_cleanup_state = 0; | 
 |  | 
 | 	root->fs_info = fs_info; | 
 | 	root->objectid = objectid; | 
 | 	root->last_trans = 0; | 
 | 	root->highest_objectid = 0; | 
 | 	root->name = NULL; | 
 | 	root->inode_tree = RB_ROOT; | 
 | 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); | 
 | 	root->block_rsv = NULL; | 
 | 	root->orphan_block_rsv = NULL; | 
 |  | 
 | 	INIT_LIST_HEAD(&root->dirty_list); | 
 | 	INIT_LIST_HEAD(&root->orphan_list); | 
 | 	INIT_LIST_HEAD(&root->root_list); | 
 | 	spin_lock_init(&root->orphan_lock); | 
 | 	spin_lock_init(&root->inode_lock); | 
 | 	spin_lock_init(&root->accounting_lock); | 
 | 	mutex_init(&root->objectid_mutex); | 
 | 	mutex_init(&root->log_mutex); | 
 | 	init_waitqueue_head(&root->log_writer_wait); | 
 | 	init_waitqueue_head(&root->log_commit_wait[0]); | 
 | 	init_waitqueue_head(&root->log_commit_wait[1]); | 
 | 	atomic_set(&root->log_commit[0], 0); | 
 | 	atomic_set(&root->log_commit[1], 0); | 
 | 	atomic_set(&root->log_writers, 0); | 
 | 	root->log_batch = 0; | 
 | 	root->log_transid = 0; | 
 | 	root->last_log_commit = 0; | 
 | 	extent_io_tree_init(&root->dirty_log_pages, | 
 | 			     fs_info->btree_inode->i_mapping); | 
 |  | 
 | 	memset(&root->root_key, 0, sizeof(root->root_key)); | 
 | 	memset(&root->root_item, 0, sizeof(root->root_item)); | 
 | 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); | 
 | 	memset(&root->root_kobj, 0, sizeof(root->root_kobj)); | 
 | 	root->defrag_trans_start = fs_info->generation; | 
 | 	init_completion(&root->kobj_unregister); | 
 | 	root->defrag_running = 0; | 
 | 	root->root_key.objectid = objectid; | 
 | 	root->anon_dev = 0; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int find_and_setup_root(struct btrfs_root *tree_root, | 
 | 			       struct btrfs_fs_info *fs_info, | 
 | 			       u64 objectid, | 
 | 			       struct btrfs_root *root) | 
 | { | 
 | 	int ret; | 
 | 	u32 blocksize; | 
 | 	u64 generation; | 
 |  | 
 | 	__setup_root(tree_root->nodesize, tree_root->leafsize, | 
 | 		     tree_root->sectorsize, tree_root->stripesize, | 
 | 		     root, fs_info, objectid); | 
 | 	ret = btrfs_find_last_root(tree_root, objectid, | 
 | 				   &root->root_item, &root->root_key); | 
 | 	if (ret > 0) | 
 | 		return -ENOENT; | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	generation = btrfs_root_generation(&root->root_item); | 
 | 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); | 
 | 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), | 
 | 				     blocksize, generation); | 
 | 	if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) { | 
 | 		free_extent_buffer(root->node); | 
 | 		return -EIO; | 
 | 	} | 
 | 	root->commit_root = btrfs_root_node(root); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, | 
 | 					 struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct btrfs_root *root; | 
 | 	struct btrfs_root *tree_root = fs_info->tree_root; | 
 | 	struct extent_buffer *leaf; | 
 |  | 
 | 	root = kzalloc(sizeof(*root), GFP_NOFS); | 
 | 	if (!root) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	__setup_root(tree_root->nodesize, tree_root->leafsize, | 
 | 		     tree_root->sectorsize, tree_root->stripesize, | 
 | 		     root, fs_info, BTRFS_TREE_LOG_OBJECTID); | 
 |  | 
 | 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; | 
 | 	root->root_key.type = BTRFS_ROOT_ITEM_KEY; | 
 | 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; | 
 | 	/* | 
 | 	 * log trees do not get reference counted because they go away | 
 | 	 * before a real commit is actually done.  They do store pointers | 
 | 	 * to file data extents, and those reference counts still get | 
 | 	 * updated (along with back refs to the log tree). | 
 | 	 */ | 
 | 	root->ref_cows = 0; | 
 |  | 
 | 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, | 
 | 				      BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0); | 
 | 	if (IS_ERR(leaf)) { | 
 | 		kfree(root); | 
 | 		return ERR_CAST(leaf); | 
 | 	} | 
 |  | 
 | 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); | 
 | 	btrfs_set_header_bytenr(leaf, leaf->start); | 
 | 	btrfs_set_header_generation(leaf, trans->transid); | 
 | 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); | 
 | 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); | 
 | 	root->node = leaf; | 
 |  | 
 | 	write_extent_buffer(root->node, root->fs_info->fsid, | 
 | 			    (unsigned long)btrfs_header_fsid(root->node), | 
 | 			    BTRFS_FSID_SIZE); | 
 | 	btrfs_mark_buffer_dirty(root->node); | 
 | 	btrfs_tree_unlock(root->node); | 
 | 	return root; | 
 | } | 
 |  | 
 | int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, | 
 | 			     struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct btrfs_root *log_root; | 
 |  | 
 | 	log_root = alloc_log_tree(trans, fs_info); | 
 | 	if (IS_ERR(log_root)) | 
 | 		return PTR_ERR(log_root); | 
 | 	WARN_ON(fs_info->log_root_tree); | 
 | 	fs_info->log_root_tree = log_root; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int btrfs_add_log_tree(struct btrfs_trans_handle *trans, | 
 | 		       struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_root *log_root; | 
 | 	struct btrfs_inode_item *inode_item; | 
 |  | 
 | 	log_root = alloc_log_tree(trans, root->fs_info); | 
 | 	if (IS_ERR(log_root)) | 
 | 		return PTR_ERR(log_root); | 
 |  | 
 | 	log_root->last_trans = trans->transid; | 
 | 	log_root->root_key.offset = root->root_key.objectid; | 
 |  | 
 | 	inode_item = &log_root->root_item.inode; | 
 | 	inode_item->generation = cpu_to_le64(1); | 
 | 	inode_item->size = cpu_to_le64(3); | 
 | 	inode_item->nlink = cpu_to_le32(1); | 
 | 	inode_item->nbytes = cpu_to_le64(root->leafsize); | 
 | 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755); | 
 |  | 
 | 	btrfs_set_root_node(&log_root->root_item, log_root->node); | 
 |  | 
 | 	WARN_ON(root->log_root); | 
 | 	root->log_root = log_root; | 
 | 	root->log_transid = 0; | 
 | 	root->last_log_commit = 0; | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, | 
 | 					       struct btrfs_key *location) | 
 | { | 
 | 	struct btrfs_root *root; | 
 | 	struct btrfs_fs_info *fs_info = tree_root->fs_info; | 
 | 	struct btrfs_path *path; | 
 | 	struct extent_buffer *l; | 
 | 	u64 generation; | 
 | 	u32 blocksize; | 
 | 	int ret = 0; | 
 |  | 
 | 	root = kzalloc(sizeof(*root), GFP_NOFS); | 
 | 	if (!root) | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	if (location->offset == (u64)-1) { | 
 | 		ret = find_and_setup_root(tree_root, fs_info, | 
 | 					  location->objectid, root); | 
 | 		if (ret) { | 
 | 			kfree(root); | 
 | 			return ERR_PTR(ret); | 
 | 		} | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	__setup_root(tree_root->nodesize, tree_root->leafsize, | 
 | 		     tree_root->sectorsize, tree_root->stripesize, | 
 | 		     root, fs_info, location->objectid); | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) { | 
 | 		kfree(root); | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	} | 
 | 	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); | 
 | 	if (ret == 0) { | 
 | 		l = path->nodes[0]; | 
 | 		read_extent_buffer(l, &root->root_item, | 
 | 				btrfs_item_ptr_offset(l, path->slots[0]), | 
 | 				sizeof(root->root_item)); | 
 | 		memcpy(&root->root_key, location, sizeof(*location)); | 
 | 	} | 
 | 	btrfs_free_path(path); | 
 | 	if (ret) { | 
 | 		kfree(root); | 
 | 		if (ret > 0) | 
 | 			ret = -ENOENT; | 
 | 		return ERR_PTR(ret); | 
 | 	} | 
 |  | 
 | 	generation = btrfs_root_generation(&root->root_item); | 
 | 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); | 
 | 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), | 
 | 				     blocksize, generation); | 
 | 	root->commit_root = btrfs_root_node(root); | 
 | 	BUG_ON(!root->node); | 
 | out: | 
 | 	if (location->objectid != BTRFS_TREE_LOG_OBJECTID) { | 
 | 		root->ref_cows = 1; | 
 | 		btrfs_check_and_init_root_item(&root->root_item); | 
 | 	} | 
 |  | 
 | 	return root; | 
 | } | 
 |  | 
 | struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, | 
 | 					      struct btrfs_key *location) | 
 | { | 
 | 	struct btrfs_root *root; | 
 | 	int ret; | 
 |  | 
 | 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) | 
 | 		return fs_info->tree_root; | 
 | 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) | 
 | 		return fs_info->extent_root; | 
 | 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) | 
 | 		return fs_info->chunk_root; | 
 | 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID) | 
 | 		return fs_info->dev_root; | 
 | 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) | 
 | 		return fs_info->csum_root; | 
 | again: | 
 | 	spin_lock(&fs_info->fs_roots_radix_lock); | 
 | 	root = radix_tree_lookup(&fs_info->fs_roots_radix, | 
 | 				 (unsigned long)location->objectid); | 
 | 	spin_unlock(&fs_info->fs_roots_radix_lock); | 
 | 	if (root) | 
 | 		return root; | 
 |  | 
 | 	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location); | 
 | 	if (IS_ERR(root)) | 
 | 		return root; | 
 |  | 
 | 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); | 
 | 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), | 
 | 					GFP_NOFS); | 
 | 	if (!root->free_ino_pinned || !root->free_ino_ctl) { | 
 | 		ret = -ENOMEM; | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	btrfs_init_free_ino_ctl(root); | 
 | 	mutex_init(&root->fs_commit_mutex); | 
 | 	spin_lock_init(&root->cache_lock); | 
 | 	init_waitqueue_head(&root->cache_wait); | 
 |  | 
 | 	ret = get_anon_bdev(&root->anon_dev); | 
 | 	if (ret) | 
 | 		goto fail; | 
 |  | 
 | 	if (btrfs_root_refs(&root->root_item) == 0) { | 
 | 		ret = -ENOENT; | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid); | 
 | 	if (ret < 0) | 
 | 		goto fail; | 
 | 	if (ret == 0) | 
 | 		root->orphan_item_inserted = 1; | 
 |  | 
 | 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); | 
 | 	if (ret) | 
 | 		goto fail; | 
 |  | 
 | 	spin_lock(&fs_info->fs_roots_radix_lock); | 
 | 	ret = radix_tree_insert(&fs_info->fs_roots_radix, | 
 | 				(unsigned long)root->root_key.objectid, | 
 | 				root); | 
 | 	if (ret == 0) | 
 | 		root->in_radix = 1; | 
 |  | 
 | 	spin_unlock(&fs_info->fs_roots_radix_lock); | 
 | 	radix_tree_preload_end(); | 
 | 	if (ret) { | 
 | 		if (ret == -EEXIST) { | 
 | 			free_fs_root(root); | 
 | 			goto again; | 
 | 		} | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_find_dead_roots(fs_info->tree_root, | 
 | 				    root->root_key.objectid); | 
 | 	WARN_ON(ret); | 
 | 	return root; | 
 | fail: | 
 | 	free_fs_root(root); | 
 | 	return ERR_PTR(ret); | 
 | } | 
 |  | 
 | static int btrfs_congested_fn(void *congested_data, int bdi_bits) | 
 | { | 
 | 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; | 
 | 	int ret = 0; | 
 | 	struct btrfs_device *device; | 
 | 	struct backing_dev_info *bdi; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { | 
 | 		if (!device->bdev) | 
 | 			continue; | 
 | 		bdi = blk_get_backing_dev_info(device->bdev); | 
 | 		if (bdi && bdi_congested(bdi, bdi_bits)) { | 
 | 			ret = 1; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * If this fails, caller must call bdi_destroy() to get rid of the | 
 |  * bdi again. | 
 |  */ | 
 | static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	bdi->capabilities = BDI_CAP_MAP_COPY; | 
 | 	err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	bdi->ra_pages	= default_backing_dev_info.ra_pages; | 
 | 	bdi->congested_fn	= btrfs_congested_fn; | 
 | 	bdi->congested_data	= info; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int bio_ready_for_csum(struct bio *bio) | 
 | { | 
 | 	u64 length = 0; | 
 | 	u64 buf_len = 0; | 
 | 	u64 start = 0; | 
 | 	struct page *page; | 
 | 	struct extent_io_tree *io_tree = NULL; | 
 | 	struct bio_vec *bvec; | 
 | 	int i; | 
 | 	int ret; | 
 |  | 
 | 	bio_for_each_segment(bvec, bio, i) { | 
 | 		page = bvec->bv_page; | 
 | 		if (page->private == EXTENT_PAGE_PRIVATE) { | 
 | 			length += bvec->bv_len; | 
 | 			continue; | 
 | 		} | 
 | 		if (!page->private) { | 
 | 			length += bvec->bv_len; | 
 | 			continue; | 
 | 		} | 
 | 		length = bvec->bv_len; | 
 | 		buf_len = page->private >> 2; | 
 | 		start = page_offset(page) + bvec->bv_offset; | 
 | 		io_tree = &BTRFS_I(page->mapping->host)->io_tree; | 
 | 	} | 
 | 	/* are we fully contained in this bio? */ | 
 | 	if (buf_len <= length) | 
 | 		return 1; | 
 |  | 
 | 	ret = extent_range_uptodate(io_tree, start + length, | 
 | 				    start + buf_len - 1); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * called by the kthread helper functions to finally call the bio end_io | 
 |  * functions.  This is where read checksum verification actually happens | 
 |  */ | 
 | static void end_workqueue_fn(struct btrfs_work *work) | 
 | { | 
 | 	struct bio *bio; | 
 | 	struct end_io_wq *end_io_wq; | 
 | 	struct btrfs_fs_info *fs_info; | 
 | 	int error; | 
 |  | 
 | 	end_io_wq = container_of(work, struct end_io_wq, work); | 
 | 	bio = end_io_wq->bio; | 
 | 	fs_info = end_io_wq->info; | 
 |  | 
 | 	/* metadata bio reads are special because the whole tree block must | 
 | 	 * be checksummed at once.  This makes sure the entire block is in | 
 | 	 * ram and up to date before trying to verify things.  For | 
 | 	 * blocksize <= pagesize, it is basically a noop | 
 | 	 */ | 
 | 	if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata && | 
 | 	    !bio_ready_for_csum(bio)) { | 
 | 		btrfs_queue_worker(&fs_info->endio_meta_workers, | 
 | 				   &end_io_wq->work); | 
 | 		return; | 
 | 	} | 
 | 	error = end_io_wq->error; | 
 | 	bio->bi_private = end_io_wq->private; | 
 | 	bio->bi_end_io = end_io_wq->end_io; | 
 | 	kfree(end_io_wq); | 
 | 	bio_endio(bio, error); | 
 | } | 
 |  | 
 | static int cleaner_kthread(void *arg) | 
 | { | 
 | 	struct btrfs_root *root = arg; | 
 |  | 
 | 	do { | 
 | 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); | 
 |  | 
 | 		if (!(root->fs_info->sb->s_flags & MS_RDONLY) && | 
 | 		    mutex_trylock(&root->fs_info->cleaner_mutex)) { | 
 | 			btrfs_run_delayed_iputs(root); | 
 | 			btrfs_clean_old_snapshots(root); | 
 | 			mutex_unlock(&root->fs_info->cleaner_mutex); | 
 | 			btrfs_run_defrag_inodes(root->fs_info); | 
 | 		} | 
 |  | 
 | 		if (freezing(current)) { | 
 | 			refrigerator(); | 
 | 		} else { | 
 | 			set_current_state(TASK_INTERRUPTIBLE); | 
 | 			if (!kthread_should_stop()) | 
 | 				schedule(); | 
 | 			__set_current_state(TASK_RUNNING); | 
 | 		} | 
 | 	} while (!kthread_should_stop()); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int transaction_kthread(void *arg) | 
 | { | 
 | 	struct btrfs_root *root = arg; | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	struct btrfs_transaction *cur; | 
 | 	u64 transid; | 
 | 	unsigned long now; | 
 | 	unsigned long delay; | 
 | 	int ret; | 
 |  | 
 | 	do { | 
 | 		delay = HZ * 30; | 
 | 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); | 
 | 		mutex_lock(&root->fs_info->transaction_kthread_mutex); | 
 |  | 
 | 		spin_lock(&root->fs_info->trans_lock); | 
 | 		cur = root->fs_info->running_transaction; | 
 | 		if (!cur) { | 
 | 			spin_unlock(&root->fs_info->trans_lock); | 
 | 			goto sleep; | 
 | 		} | 
 |  | 
 | 		now = get_seconds(); | 
 | 		if (!cur->blocked && | 
 | 		    (now < cur->start_time || now - cur->start_time < 30)) { | 
 | 			spin_unlock(&root->fs_info->trans_lock); | 
 | 			delay = HZ * 5; | 
 | 			goto sleep; | 
 | 		} | 
 | 		transid = cur->transid; | 
 | 		spin_unlock(&root->fs_info->trans_lock); | 
 |  | 
 | 		trans = btrfs_join_transaction(root); | 
 | 		BUG_ON(IS_ERR(trans)); | 
 | 		if (transid == trans->transid) { | 
 | 			ret = btrfs_commit_transaction(trans, root); | 
 | 			BUG_ON(ret); | 
 | 		} else { | 
 | 			btrfs_end_transaction(trans, root); | 
 | 		} | 
 | sleep: | 
 | 		wake_up_process(root->fs_info->cleaner_kthread); | 
 | 		mutex_unlock(&root->fs_info->transaction_kthread_mutex); | 
 |  | 
 | 		if (freezing(current)) { | 
 | 			refrigerator(); | 
 | 		} else { | 
 | 			set_current_state(TASK_INTERRUPTIBLE); | 
 | 			if (!kthread_should_stop() && | 
 | 			    !btrfs_transaction_blocked(root->fs_info)) | 
 | 				schedule_timeout(delay); | 
 | 			__set_current_state(TASK_RUNNING); | 
 | 		} | 
 | 	} while (!kthread_should_stop()); | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct btrfs_root *open_ctree(struct super_block *sb, | 
 | 			      struct btrfs_fs_devices *fs_devices, | 
 | 			      char *options) | 
 | { | 
 | 	u32 sectorsize; | 
 | 	u32 nodesize; | 
 | 	u32 leafsize; | 
 | 	u32 blocksize; | 
 | 	u32 stripesize; | 
 | 	u64 generation; | 
 | 	u64 features; | 
 | 	struct btrfs_key location; | 
 | 	struct buffer_head *bh; | 
 | 	struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root), | 
 | 						 GFP_NOFS); | 
 | 	struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root), | 
 | 						 GFP_NOFS); | 
 | 	struct btrfs_root *tree_root = btrfs_sb(sb); | 
 | 	struct btrfs_fs_info *fs_info = NULL; | 
 | 	struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root), | 
 | 						GFP_NOFS); | 
 | 	struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root), | 
 | 					      GFP_NOFS); | 
 | 	struct btrfs_root *log_tree_root; | 
 |  | 
 | 	int ret; | 
 | 	int err = -EINVAL; | 
 |  | 
 | 	struct btrfs_super_block *disk_super; | 
 |  | 
 | 	if (!extent_root || !tree_root || !tree_root->fs_info || | 
 | 	    !chunk_root || !dev_root || !csum_root) { | 
 | 		err = -ENOMEM; | 
 | 		goto fail; | 
 | 	} | 
 | 	fs_info = tree_root->fs_info; | 
 |  | 
 | 	ret = init_srcu_struct(&fs_info->subvol_srcu); | 
 | 	if (ret) { | 
 | 		err = ret; | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	ret = setup_bdi(fs_info, &fs_info->bdi); | 
 | 	if (ret) { | 
 | 		err = ret; | 
 | 		goto fail_srcu; | 
 | 	} | 
 |  | 
 | 	fs_info->btree_inode = new_inode(sb); | 
 | 	if (!fs_info->btree_inode) { | 
 | 		err = -ENOMEM; | 
 | 		goto fail_bdi; | 
 | 	} | 
 |  | 
 | 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); | 
 |  | 
 | 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); | 
 | 	INIT_LIST_HEAD(&fs_info->trans_list); | 
 | 	INIT_LIST_HEAD(&fs_info->dead_roots); | 
 | 	INIT_LIST_HEAD(&fs_info->delayed_iputs); | 
 | 	INIT_LIST_HEAD(&fs_info->hashers); | 
 | 	INIT_LIST_HEAD(&fs_info->delalloc_inodes); | 
 | 	INIT_LIST_HEAD(&fs_info->ordered_operations); | 
 | 	INIT_LIST_HEAD(&fs_info->caching_block_groups); | 
 | 	spin_lock_init(&fs_info->delalloc_lock); | 
 | 	spin_lock_init(&fs_info->trans_lock); | 
 | 	spin_lock_init(&fs_info->ref_cache_lock); | 
 | 	spin_lock_init(&fs_info->fs_roots_radix_lock); | 
 | 	spin_lock_init(&fs_info->delayed_iput_lock); | 
 | 	spin_lock_init(&fs_info->defrag_inodes_lock); | 
 | 	mutex_init(&fs_info->reloc_mutex); | 
 |  | 
 | 	init_completion(&fs_info->kobj_unregister); | 
 | 	fs_info->tree_root = tree_root; | 
 | 	fs_info->extent_root = extent_root; | 
 | 	fs_info->csum_root = csum_root; | 
 | 	fs_info->chunk_root = chunk_root; | 
 | 	fs_info->dev_root = dev_root; | 
 | 	fs_info->fs_devices = fs_devices; | 
 | 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); | 
 | 	INIT_LIST_HEAD(&fs_info->space_info); | 
 | 	btrfs_mapping_init(&fs_info->mapping_tree); | 
 | 	btrfs_init_block_rsv(&fs_info->global_block_rsv); | 
 | 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv); | 
 | 	btrfs_init_block_rsv(&fs_info->trans_block_rsv); | 
 | 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv); | 
 | 	btrfs_init_block_rsv(&fs_info->empty_block_rsv); | 
 | 	INIT_LIST_HEAD(&fs_info->durable_block_rsv_list); | 
 | 	mutex_init(&fs_info->durable_block_rsv_mutex); | 
 | 	atomic_set(&fs_info->nr_async_submits, 0); | 
 | 	atomic_set(&fs_info->async_delalloc_pages, 0); | 
 | 	atomic_set(&fs_info->async_submit_draining, 0); | 
 | 	atomic_set(&fs_info->nr_async_bios, 0); | 
 | 	atomic_set(&fs_info->defrag_running, 0); | 
 | 	fs_info->sb = sb; | 
 | 	fs_info->max_inline = 8192 * 1024; | 
 | 	fs_info->metadata_ratio = 0; | 
 | 	fs_info->defrag_inodes = RB_ROOT; | 
 | 	fs_info->trans_no_join = 0; | 
 |  | 
 | 	fs_info->thread_pool_size = min_t(unsigned long, | 
 | 					  num_online_cpus() + 2, 8); | 
 |  | 
 | 	INIT_LIST_HEAD(&fs_info->ordered_extents); | 
 | 	spin_lock_init(&fs_info->ordered_extent_lock); | 
 | 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), | 
 | 					GFP_NOFS); | 
 | 	if (!fs_info->delayed_root) { | 
 | 		err = -ENOMEM; | 
 | 		goto fail_iput; | 
 | 	} | 
 | 	btrfs_init_delayed_root(fs_info->delayed_root); | 
 |  | 
 | 	mutex_init(&fs_info->scrub_lock); | 
 | 	atomic_set(&fs_info->scrubs_running, 0); | 
 | 	atomic_set(&fs_info->scrub_pause_req, 0); | 
 | 	atomic_set(&fs_info->scrubs_paused, 0); | 
 | 	atomic_set(&fs_info->scrub_cancel_req, 0); | 
 | 	init_waitqueue_head(&fs_info->scrub_pause_wait); | 
 | 	init_rwsem(&fs_info->scrub_super_lock); | 
 | 	fs_info->scrub_workers_refcnt = 0; | 
 |  | 
 | 	sb->s_blocksize = 4096; | 
 | 	sb->s_blocksize_bits = blksize_bits(4096); | 
 | 	sb->s_bdi = &fs_info->bdi; | 
 |  | 
 | 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; | 
 | 	fs_info->btree_inode->i_nlink = 1; | 
 | 	/* | 
 | 	 * we set the i_size on the btree inode to the max possible int. | 
 | 	 * the real end of the address space is determined by all of | 
 | 	 * the devices in the system | 
 | 	 */ | 
 | 	fs_info->btree_inode->i_size = OFFSET_MAX; | 
 | 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops; | 
 | 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; | 
 |  | 
 | 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); | 
 | 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, | 
 | 			     fs_info->btree_inode->i_mapping); | 
 | 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); | 
 |  | 
 | 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; | 
 |  | 
 | 	BTRFS_I(fs_info->btree_inode)->root = tree_root; | 
 | 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0, | 
 | 	       sizeof(struct btrfs_key)); | 
 | 	BTRFS_I(fs_info->btree_inode)->dummy_inode = 1; | 
 | 	insert_inode_hash(fs_info->btree_inode); | 
 |  | 
 | 	spin_lock_init(&fs_info->block_group_cache_lock); | 
 | 	fs_info->block_group_cache_tree = RB_ROOT; | 
 |  | 
 | 	extent_io_tree_init(&fs_info->freed_extents[0], | 
 | 			     fs_info->btree_inode->i_mapping); | 
 | 	extent_io_tree_init(&fs_info->freed_extents[1], | 
 | 			     fs_info->btree_inode->i_mapping); | 
 | 	fs_info->pinned_extents = &fs_info->freed_extents[0]; | 
 | 	fs_info->do_barriers = 1; | 
 |  | 
 |  | 
 | 	mutex_init(&fs_info->ordered_operations_mutex); | 
 | 	mutex_init(&fs_info->tree_log_mutex); | 
 | 	mutex_init(&fs_info->chunk_mutex); | 
 | 	mutex_init(&fs_info->transaction_kthread_mutex); | 
 | 	mutex_init(&fs_info->cleaner_mutex); | 
 | 	mutex_init(&fs_info->volume_mutex); | 
 | 	init_rwsem(&fs_info->extent_commit_sem); | 
 | 	init_rwsem(&fs_info->cleanup_work_sem); | 
 | 	init_rwsem(&fs_info->subvol_sem); | 
 |  | 
 | 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); | 
 | 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster); | 
 |  | 
 | 	init_waitqueue_head(&fs_info->transaction_throttle); | 
 | 	init_waitqueue_head(&fs_info->transaction_wait); | 
 | 	init_waitqueue_head(&fs_info->transaction_blocked_wait); | 
 | 	init_waitqueue_head(&fs_info->async_submit_wait); | 
 |  | 
 | 	__setup_root(4096, 4096, 4096, 4096, tree_root, | 
 | 		     fs_info, BTRFS_ROOT_TREE_OBJECTID); | 
 |  | 
 | 	bh = btrfs_read_dev_super(fs_devices->latest_bdev); | 
 | 	if (!bh) { | 
 | 		err = -EINVAL; | 
 | 		goto fail_alloc; | 
 | 	} | 
 |  | 
 | 	memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy)); | 
 | 	memcpy(&fs_info->super_for_commit, &fs_info->super_copy, | 
 | 	       sizeof(fs_info->super_for_commit)); | 
 | 	brelse(bh); | 
 |  | 
 | 	memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE); | 
 |  | 
 | 	disk_super = &fs_info->super_copy; | 
 | 	if (!btrfs_super_root(disk_super)) | 
 | 		goto fail_alloc; | 
 |  | 
 | 	/* check FS state, whether FS is broken. */ | 
 | 	fs_info->fs_state |= btrfs_super_flags(disk_super); | 
 |  | 
 | 	btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); | 
 |  | 
 | 	/* | 
 | 	 * In the long term, we'll store the compression type in the super | 
 | 	 * block, and it'll be used for per file compression control. | 
 | 	 */ | 
 | 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB; | 
 |  | 
 | 	ret = btrfs_parse_options(tree_root, options); | 
 | 	if (ret) { | 
 | 		err = ret; | 
 | 		goto fail_alloc; | 
 | 	} | 
 |  | 
 | 	features = btrfs_super_incompat_flags(disk_super) & | 
 | 		~BTRFS_FEATURE_INCOMPAT_SUPP; | 
 | 	if (features) { | 
 | 		printk(KERN_ERR "BTRFS: couldn't mount because of " | 
 | 		       "unsupported optional features (%Lx).\n", | 
 | 		       (unsigned long long)features); | 
 | 		err = -EINVAL; | 
 | 		goto fail_alloc; | 
 | 	} | 
 |  | 
 | 	features = btrfs_super_incompat_flags(disk_super); | 
 | 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; | 
 | 	if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO) | 
 | 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; | 
 | 	btrfs_set_super_incompat_flags(disk_super, features); | 
 |  | 
 | 	features = btrfs_super_compat_ro_flags(disk_super) & | 
 | 		~BTRFS_FEATURE_COMPAT_RO_SUPP; | 
 | 	if (!(sb->s_flags & MS_RDONLY) && features) { | 
 | 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " | 
 | 		       "unsupported option features (%Lx).\n", | 
 | 		       (unsigned long long)features); | 
 | 		err = -EINVAL; | 
 | 		goto fail_alloc; | 
 | 	} | 
 |  | 
 | 	btrfs_init_workers(&fs_info->generic_worker, | 
 | 			   "genwork", 1, NULL); | 
 |  | 
 | 	btrfs_init_workers(&fs_info->workers, "worker", | 
 | 			   fs_info->thread_pool_size, | 
 | 			   &fs_info->generic_worker); | 
 |  | 
 | 	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", | 
 | 			   fs_info->thread_pool_size, | 
 | 			   &fs_info->generic_worker); | 
 |  | 
 | 	btrfs_init_workers(&fs_info->submit_workers, "submit", | 
 | 			   min_t(u64, fs_devices->num_devices, | 
 | 			   fs_info->thread_pool_size), | 
 | 			   &fs_info->generic_worker); | 
 |  | 
 | 	btrfs_init_workers(&fs_info->caching_workers, "cache", | 
 | 			   2, &fs_info->generic_worker); | 
 |  | 
 | 	/* a higher idle thresh on the submit workers makes it much more | 
 | 	 * likely that bios will be send down in a sane order to the | 
 | 	 * devices | 
 | 	 */ | 
 | 	fs_info->submit_workers.idle_thresh = 64; | 
 |  | 
 | 	fs_info->workers.idle_thresh = 16; | 
 | 	fs_info->workers.ordered = 1; | 
 |  | 
 | 	fs_info->delalloc_workers.idle_thresh = 2; | 
 | 	fs_info->delalloc_workers.ordered = 1; | 
 |  | 
 | 	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1, | 
 | 			   &fs_info->generic_worker); | 
 | 	btrfs_init_workers(&fs_info->endio_workers, "endio", | 
 | 			   fs_info->thread_pool_size, | 
 | 			   &fs_info->generic_worker); | 
 | 	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", | 
 | 			   fs_info->thread_pool_size, | 
 | 			   &fs_info->generic_worker); | 
 | 	btrfs_init_workers(&fs_info->endio_meta_write_workers, | 
 | 			   "endio-meta-write", fs_info->thread_pool_size, | 
 | 			   &fs_info->generic_worker); | 
 | 	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", | 
 | 			   fs_info->thread_pool_size, | 
 | 			   &fs_info->generic_worker); | 
 | 	btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write", | 
 | 			   1, &fs_info->generic_worker); | 
 | 	btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta", | 
 | 			   fs_info->thread_pool_size, | 
 | 			   &fs_info->generic_worker); | 
 |  | 
 | 	/* | 
 | 	 * endios are largely parallel and should have a very | 
 | 	 * low idle thresh | 
 | 	 */ | 
 | 	fs_info->endio_workers.idle_thresh = 4; | 
 | 	fs_info->endio_meta_workers.idle_thresh = 4; | 
 |  | 
 | 	fs_info->endio_write_workers.idle_thresh = 2; | 
 | 	fs_info->endio_meta_write_workers.idle_thresh = 2; | 
 |  | 
 | 	btrfs_start_workers(&fs_info->workers, 1); | 
 | 	btrfs_start_workers(&fs_info->generic_worker, 1); | 
 | 	btrfs_start_workers(&fs_info->submit_workers, 1); | 
 | 	btrfs_start_workers(&fs_info->delalloc_workers, 1); | 
 | 	btrfs_start_workers(&fs_info->fixup_workers, 1); | 
 | 	btrfs_start_workers(&fs_info->endio_workers, 1); | 
 | 	btrfs_start_workers(&fs_info->endio_meta_workers, 1); | 
 | 	btrfs_start_workers(&fs_info->endio_meta_write_workers, 1); | 
 | 	btrfs_start_workers(&fs_info->endio_write_workers, 1); | 
 | 	btrfs_start_workers(&fs_info->endio_freespace_worker, 1); | 
 | 	btrfs_start_workers(&fs_info->delayed_workers, 1); | 
 | 	btrfs_start_workers(&fs_info->caching_workers, 1); | 
 |  | 
 | 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); | 
 | 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, | 
 | 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE); | 
 |  | 
 | 	nodesize = btrfs_super_nodesize(disk_super); | 
 | 	leafsize = btrfs_super_leafsize(disk_super); | 
 | 	sectorsize = btrfs_super_sectorsize(disk_super); | 
 | 	stripesize = btrfs_super_stripesize(disk_super); | 
 | 	tree_root->nodesize = nodesize; | 
 | 	tree_root->leafsize = leafsize; | 
 | 	tree_root->sectorsize = sectorsize; | 
 | 	tree_root->stripesize = stripesize; | 
 |  | 
 | 	sb->s_blocksize = sectorsize; | 
 | 	sb->s_blocksize_bits = blksize_bits(sectorsize); | 
 |  | 
 | 	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, | 
 | 		    sizeof(disk_super->magic))) { | 
 | 		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); | 
 | 		goto fail_sb_buffer; | 
 | 	} | 
 |  | 
 | 	mutex_lock(&fs_info->chunk_mutex); | 
 | 	ret = btrfs_read_sys_array(tree_root); | 
 | 	mutex_unlock(&fs_info->chunk_mutex); | 
 | 	if (ret) { | 
 | 		printk(KERN_WARNING "btrfs: failed to read the system " | 
 | 		       "array on %s\n", sb->s_id); | 
 | 		goto fail_sb_buffer; | 
 | 	} | 
 |  | 
 | 	blocksize = btrfs_level_size(tree_root, | 
 | 				     btrfs_super_chunk_root_level(disk_super)); | 
 | 	generation = btrfs_super_chunk_root_generation(disk_super); | 
 |  | 
 | 	__setup_root(nodesize, leafsize, sectorsize, stripesize, | 
 | 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); | 
 |  | 
 | 	chunk_root->node = read_tree_block(chunk_root, | 
 | 					   btrfs_super_chunk_root(disk_super), | 
 | 					   blocksize, generation); | 
 | 	BUG_ON(!chunk_root->node); | 
 | 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { | 
 | 		printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n", | 
 | 		       sb->s_id); | 
 | 		goto fail_chunk_root; | 
 | 	} | 
 | 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); | 
 | 	chunk_root->commit_root = btrfs_root_node(chunk_root); | 
 |  | 
 | 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, | 
 | 	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), | 
 | 	   BTRFS_UUID_SIZE); | 
 |  | 
 | 	mutex_lock(&fs_info->chunk_mutex); | 
 | 	ret = btrfs_read_chunk_tree(chunk_root); | 
 | 	mutex_unlock(&fs_info->chunk_mutex); | 
 | 	if (ret) { | 
 | 		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", | 
 | 		       sb->s_id); | 
 | 		goto fail_chunk_root; | 
 | 	} | 
 |  | 
 | 	btrfs_close_extra_devices(fs_devices); | 
 |  | 
 | 	blocksize = btrfs_level_size(tree_root, | 
 | 				     btrfs_super_root_level(disk_super)); | 
 | 	generation = btrfs_super_generation(disk_super); | 
 |  | 
 | 	tree_root->node = read_tree_block(tree_root, | 
 | 					  btrfs_super_root(disk_super), | 
 | 					  blocksize, generation); | 
 | 	if (!tree_root->node) | 
 | 		goto fail_chunk_root; | 
 | 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { | 
 | 		printk(KERN_WARNING "btrfs: failed to read tree root on %s\n", | 
 | 		       sb->s_id); | 
 | 		goto fail_tree_root; | 
 | 	} | 
 | 	btrfs_set_root_node(&tree_root->root_item, tree_root->node); | 
 | 	tree_root->commit_root = btrfs_root_node(tree_root); | 
 |  | 
 | 	ret = find_and_setup_root(tree_root, fs_info, | 
 | 				  BTRFS_EXTENT_TREE_OBJECTID, extent_root); | 
 | 	if (ret) | 
 | 		goto fail_tree_root; | 
 | 	extent_root->track_dirty = 1; | 
 |  | 
 | 	ret = find_and_setup_root(tree_root, fs_info, | 
 | 				  BTRFS_DEV_TREE_OBJECTID, dev_root); | 
 | 	if (ret) | 
 | 		goto fail_extent_root; | 
 | 	dev_root->track_dirty = 1; | 
 |  | 
 | 	ret = find_and_setup_root(tree_root, fs_info, | 
 | 				  BTRFS_CSUM_TREE_OBJECTID, csum_root); | 
 | 	if (ret) | 
 | 		goto fail_dev_root; | 
 |  | 
 | 	csum_root->track_dirty = 1; | 
 |  | 
 | 	fs_info->generation = generation; | 
 | 	fs_info->last_trans_committed = generation; | 
 | 	fs_info->data_alloc_profile = (u64)-1; | 
 | 	fs_info->metadata_alloc_profile = (u64)-1; | 
 | 	fs_info->system_alloc_profile = fs_info->metadata_alloc_profile; | 
 |  | 
 | 	ret = btrfs_init_space_info(fs_info); | 
 | 	if (ret) { | 
 | 		printk(KERN_ERR "Failed to initial space info: %d\n", ret); | 
 | 		goto fail_block_groups; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_read_block_groups(extent_root); | 
 | 	if (ret) { | 
 | 		printk(KERN_ERR "Failed to read block groups: %d\n", ret); | 
 | 		goto fail_block_groups; | 
 | 	} | 
 |  | 
 | 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, | 
 | 					       "btrfs-cleaner"); | 
 | 	if (IS_ERR(fs_info->cleaner_kthread)) | 
 | 		goto fail_block_groups; | 
 |  | 
 | 	fs_info->transaction_kthread = kthread_run(transaction_kthread, | 
 | 						   tree_root, | 
 | 						   "btrfs-transaction"); | 
 | 	if (IS_ERR(fs_info->transaction_kthread)) | 
 | 		goto fail_cleaner; | 
 |  | 
 | 	if (!btrfs_test_opt(tree_root, SSD) && | 
 | 	    !btrfs_test_opt(tree_root, NOSSD) && | 
 | 	    !fs_info->fs_devices->rotating) { | 
 | 		printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD " | 
 | 		       "mode\n"); | 
 | 		btrfs_set_opt(fs_info->mount_opt, SSD); | 
 | 	} | 
 |  | 
 | 	/* do not make disk changes in broken FS */ | 
 | 	if (btrfs_super_log_root(disk_super) != 0 && | 
 | 	    !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) { | 
 | 		u64 bytenr = btrfs_super_log_root(disk_super); | 
 |  | 
 | 		if (fs_devices->rw_devices == 0) { | 
 | 			printk(KERN_WARNING "Btrfs log replay required " | 
 | 			       "on RO media\n"); | 
 | 			err = -EIO; | 
 | 			goto fail_trans_kthread; | 
 | 		} | 
 | 		blocksize = | 
 | 		     btrfs_level_size(tree_root, | 
 | 				      btrfs_super_log_root_level(disk_super)); | 
 |  | 
 | 		log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS); | 
 | 		if (!log_tree_root) { | 
 | 			err = -ENOMEM; | 
 | 			goto fail_trans_kthread; | 
 | 		} | 
 |  | 
 | 		__setup_root(nodesize, leafsize, sectorsize, stripesize, | 
 | 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); | 
 |  | 
 | 		log_tree_root->node = read_tree_block(tree_root, bytenr, | 
 | 						      blocksize, | 
 | 						      generation + 1); | 
 | 		ret = btrfs_recover_log_trees(log_tree_root); | 
 | 		BUG_ON(ret); | 
 |  | 
 | 		if (sb->s_flags & MS_RDONLY) { | 
 | 			ret =  btrfs_commit_super(tree_root); | 
 | 			BUG_ON(ret); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret = btrfs_find_orphan_roots(tree_root); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	if (!(sb->s_flags & MS_RDONLY)) { | 
 | 		ret = btrfs_cleanup_fs_roots(fs_info); | 
 | 		BUG_ON(ret); | 
 |  | 
 | 		ret = btrfs_recover_relocation(tree_root); | 
 | 		if (ret < 0) { | 
 | 			printk(KERN_WARNING | 
 | 			       "btrfs: failed to recover relocation\n"); | 
 | 			err = -EINVAL; | 
 | 			goto fail_trans_kthread; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	location.objectid = BTRFS_FS_TREE_OBJECTID; | 
 | 	location.type = BTRFS_ROOT_ITEM_KEY; | 
 | 	location.offset = (u64)-1; | 
 |  | 
 | 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); | 
 | 	if (!fs_info->fs_root) | 
 | 		goto fail_trans_kthread; | 
 | 	if (IS_ERR(fs_info->fs_root)) { | 
 | 		err = PTR_ERR(fs_info->fs_root); | 
 | 		goto fail_trans_kthread; | 
 | 	} | 
 |  | 
 | 	if (!(sb->s_flags & MS_RDONLY)) { | 
 | 		down_read(&fs_info->cleanup_work_sem); | 
 | 		err = btrfs_orphan_cleanup(fs_info->fs_root); | 
 | 		if (!err) | 
 | 			err = btrfs_orphan_cleanup(fs_info->tree_root); | 
 | 		up_read(&fs_info->cleanup_work_sem); | 
 | 		if (err) { | 
 | 			close_ctree(tree_root); | 
 | 			return ERR_PTR(err); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return tree_root; | 
 |  | 
 | fail_trans_kthread: | 
 | 	kthread_stop(fs_info->transaction_kthread); | 
 | fail_cleaner: | 
 | 	kthread_stop(fs_info->cleaner_kthread); | 
 |  | 
 | 	/* | 
 | 	 * make sure we're done with the btree inode before we stop our | 
 | 	 * kthreads | 
 | 	 */ | 
 | 	filemap_write_and_wait(fs_info->btree_inode->i_mapping); | 
 | 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping); | 
 |  | 
 | fail_block_groups: | 
 | 	btrfs_free_block_groups(fs_info); | 
 | 	free_extent_buffer(csum_root->node); | 
 | 	free_extent_buffer(csum_root->commit_root); | 
 | fail_dev_root: | 
 | 	free_extent_buffer(dev_root->node); | 
 | 	free_extent_buffer(dev_root->commit_root); | 
 | fail_extent_root: | 
 | 	free_extent_buffer(extent_root->node); | 
 | 	free_extent_buffer(extent_root->commit_root); | 
 | fail_tree_root: | 
 | 	free_extent_buffer(tree_root->node); | 
 | 	free_extent_buffer(tree_root->commit_root); | 
 | fail_chunk_root: | 
 | 	free_extent_buffer(chunk_root->node); | 
 | 	free_extent_buffer(chunk_root->commit_root); | 
 | fail_sb_buffer: | 
 | 	btrfs_stop_workers(&fs_info->generic_worker); | 
 | 	btrfs_stop_workers(&fs_info->fixup_workers); | 
 | 	btrfs_stop_workers(&fs_info->delalloc_workers); | 
 | 	btrfs_stop_workers(&fs_info->workers); | 
 | 	btrfs_stop_workers(&fs_info->endio_workers); | 
 | 	btrfs_stop_workers(&fs_info->endio_meta_workers); | 
 | 	btrfs_stop_workers(&fs_info->endio_meta_write_workers); | 
 | 	btrfs_stop_workers(&fs_info->endio_write_workers); | 
 | 	btrfs_stop_workers(&fs_info->endio_freespace_worker); | 
 | 	btrfs_stop_workers(&fs_info->submit_workers); | 
 | 	btrfs_stop_workers(&fs_info->delayed_workers); | 
 | 	btrfs_stop_workers(&fs_info->caching_workers); | 
 | fail_alloc: | 
 | 	kfree(fs_info->delayed_root); | 
 | fail_iput: | 
 | 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping); | 
 | 	iput(fs_info->btree_inode); | 
 |  | 
 | 	btrfs_close_devices(fs_info->fs_devices); | 
 | 	btrfs_mapping_tree_free(&fs_info->mapping_tree); | 
 | fail_bdi: | 
 | 	bdi_destroy(&fs_info->bdi); | 
 | fail_srcu: | 
 | 	cleanup_srcu_struct(&fs_info->subvol_srcu); | 
 | fail: | 
 | 	kfree(extent_root); | 
 | 	kfree(tree_root); | 
 | 	kfree(fs_info); | 
 | 	kfree(chunk_root); | 
 | 	kfree(dev_root); | 
 | 	kfree(csum_root); | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) | 
 | { | 
 | 	char b[BDEVNAME_SIZE]; | 
 |  | 
 | 	if (uptodate) { | 
 | 		set_buffer_uptodate(bh); | 
 | 	} else { | 
 | 		printk_ratelimited(KERN_WARNING "lost page write due to " | 
 | 					"I/O error on %s\n", | 
 | 				       bdevname(bh->b_bdev, b)); | 
 | 		/* note, we dont' set_buffer_write_io_error because we have | 
 | 		 * our own ways of dealing with the IO errors | 
 | 		 */ | 
 | 		clear_buffer_uptodate(bh); | 
 | 	} | 
 | 	unlock_buffer(bh); | 
 | 	put_bh(bh); | 
 | } | 
 |  | 
 | struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) | 
 | { | 
 | 	struct buffer_head *bh; | 
 | 	struct buffer_head *latest = NULL; | 
 | 	struct btrfs_super_block *super; | 
 | 	int i; | 
 | 	u64 transid = 0; | 
 | 	u64 bytenr; | 
 |  | 
 | 	/* we would like to check all the supers, but that would make | 
 | 	 * a btrfs mount succeed after a mkfs from a different FS. | 
 | 	 * So, we need to add a special mount option to scan for | 
 | 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead | 
 | 	 */ | 
 | 	for (i = 0; i < 1; i++) { | 
 | 		bytenr = btrfs_sb_offset(i); | 
 | 		if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) | 
 | 			break; | 
 | 		bh = __bread(bdev, bytenr / 4096, 4096); | 
 | 		if (!bh) | 
 | 			continue; | 
 |  | 
 | 		super = (struct btrfs_super_block *)bh->b_data; | 
 | 		if (btrfs_super_bytenr(super) != bytenr || | 
 | 		    strncmp((char *)(&super->magic), BTRFS_MAGIC, | 
 | 			    sizeof(super->magic))) { | 
 | 			brelse(bh); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (!latest || btrfs_super_generation(super) > transid) { | 
 | 			brelse(latest); | 
 | 			latest = bh; | 
 | 			transid = btrfs_super_generation(super); | 
 | 		} else { | 
 | 			brelse(bh); | 
 | 		} | 
 | 	} | 
 | 	return latest; | 
 | } | 
 |  | 
 | /* | 
 |  * this should be called twice, once with wait == 0 and | 
 |  * once with wait == 1.  When wait == 0 is done, all the buffer heads | 
 |  * we write are pinned. | 
 |  * | 
 |  * They are released when wait == 1 is done. | 
 |  * max_mirrors must be the same for both runs, and it indicates how | 
 |  * many supers on this one device should be written. | 
 |  * | 
 |  * max_mirrors == 0 means to write them all. | 
 |  */ | 
 | static int write_dev_supers(struct btrfs_device *device, | 
 | 			    struct btrfs_super_block *sb, | 
 | 			    int do_barriers, int wait, int max_mirrors) | 
 | { | 
 | 	struct buffer_head *bh; | 
 | 	int i; | 
 | 	int ret; | 
 | 	int errors = 0; | 
 | 	u32 crc; | 
 | 	u64 bytenr; | 
 | 	int last_barrier = 0; | 
 |  | 
 | 	if (max_mirrors == 0) | 
 | 		max_mirrors = BTRFS_SUPER_MIRROR_MAX; | 
 |  | 
 | 	/* make sure only the last submit_bh does a barrier */ | 
 | 	if (do_barriers) { | 
 | 		for (i = 0; i < max_mirrors; i++) { | 
 | 			bytenr = btrfs_sb_offset(i); | 
 | 			if (bytenr + BTRFS_SUPER_INFO_SIZE >= | 
 | 			    device->total_bytes) | 
 | 				break; | 
 | 			last_barrier = i; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < max_mirrors; i++) { | 
 | 		bytenr = btrfs_sb_offset(i); | 
 | 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) | 
 | 			break; | 
 |  | 
 | 		if (wait) { | 
 | 			bh = __find_get_block(device->bdev, bytenr / 4096, | 
 | 					      BTRFS_SUPER_INFO_SIZE); | 
 | 			BUG_ON(!bh); | 
 | 			wait_on_buffer(bh); | 
 | 			if (!buffer_uptodate(bh)) | 
 | 				errors++; | 
 |  | 
 | 			/* drop our reference */ | 
 | 			brelse(bh); | 
 |  | 
 | 			/* drop the reference from the wait == 0 run */ | 
 | 			brelse(bh); | 
 | 			continue; | 
 | 		} else { | 
 | 			btrfs_set_super_bytenr(sb, bytenr); | 
 |  | 
 | 			crc = ~(u32)0; | 
 | 			crc = btrfs_csum_data(NULL, (char *)sb + | 
 | 					      BTRFS_CSUM_SIZE, crc, | 
 | 					      BTRFS_SUPER_INFO_SIZE - | 
 | 					      BTRFS_CSUM_SIZE); | 
 | 			btrfs_csum_final(crc, sb->csum); | 
 |  | 
 | 			/* | 
 | 			 * one reference for us, and we leave it for the | 
 | 			 * caller | 
 | 			 */ | 
 | 			bh = __getblk(device->bdev, bytenr / 4096, | 
 | 				      BTRFS_SUPER_INFO_SIZE); | 
 | 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); | 
 |  | 
 | 			/* one reference for submit_bh */ | 
 | 			get_bh(bh); | 
 |  | 
 | 			set_buffer_uptodate(bh); | 
 | 			lock_buffer(bh); | 
 | 			bh->b_end_io = btrfs_end_buffer_write_sync; | 
 | 		} | 
 |  | 
 | 		if (i == last_barrier && do_barriers) | 
 | 			ret = submit_bh(WRITE_FLUSH_FUA, bh); | 
 | 		else | 
 | 			ret = submit_bh(WRITE_SYNC, bh); | 
 |  | 
 | 		if (ret) | 
 | 			errors++; | 
 | 	} | 
 | 	return errors < i ? 0 : -1; | 
 | } | 
 |  | 
 | int write_all_supers(struct btrfs_root *root, int max_mirrors) | 
 | { | 
 | 	struct list_head *head; | 
 | 	struct btrfs_device *dev; | 
 | 	struct btrfs_super_block *sb; | 
 | 	struct btrfs_dev_item *dev_item; | 
 | 	int ret; | 
 | 	int do_barriers; | 
 | 	int max_errors; | 
 | 	int total_errors = 0; | 
 | 	u64 flags; | 
 |  | 
 | 	max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1; | 
 | 	do_barriers = !btrfs_test_opt(root, NOBARRIER); | 
 |  | 
 | 	sb = &root->fs_info->super_for_commit; | 
 | 	dev_item = &sb->dev_item; | 
 |  | 
 | 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex); | 
 | 	head = &root->fs_info->fs_devices->devices; | 
 | 	list_for_each_entry_rcu(dev, head, dev_list) { | 
 | 		if (!dev->bdev) { | 
 | 			total_errors++; | 
 | 			continue; | 
 | 		} | 
 | 		if (!dev->in_fs_metadata || !dev->writeable) | 
 | 			continue; | 
 |  | 
 | 		btrfs_set_stack_device_generation(dev_item, 0); | 
 | 		btrfs_set_stack_device_type(dev_item, dev->type); | 
 | 		btrfs_set_stack_device_id(dev_item, dev->devid); | 
 | 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); | 
 | 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); | 
 | 		btrfs_set_stack_device_io_align(dev_item, dev->io_align); | 
 | 		btrfs_set_stack_device_io_width(dev_item, dev->io_width); | 
 | 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); | 
 | 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); | 
 | 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); | 
 |  | 
 | 		flags = btrfs_super_flags(sb); | 
 | 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); | 
 |  | 
 | 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); | 
 | 		if (ret) | 
 | 			total_errors++; | 
 | 	} | 
 | 	if (total_errors > max_errors) { | 
 | 		printk(KERN_ERR "btrfs: %d errors while writing supers\n", | 
 | 		       total_errors); | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	total_errors = 0; | 
 | 	list_for_each_entry_rcu(dev, head, dev_list) { | 
 | 		if (!dev->bdev) | 
 | 			continue; | 
 | 		if (!dev->in_fs_metadata || !dev->writeable) | 
 | 			continue; | 
 |  | 
 | 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); | 
 | 		if (ret) | 
 | 			total_errors++; | 
 | 	} | 
 | 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); | 
 | 	if (total_errors > max_errors) { | 
 | 		printk(KERN_ERR "btrfs: %d errors while writing supers\n", | 
 | 		       total_errors); | 
 | 		BUG(); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int write_ctree_super(struct btrfs_trans_handle *trans, | 
 | 		      struct btrfs_root *root, int max_mirrors) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = write_all_supers(root, max_mirrors); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) | 
 | { | 
 | 	spin_lock(&fs_info->fs_roots_radix_lock); | 
 | 	radix_tree_delete(&fs_info->fs_roots_radix, | 
 | 			  (unsigned long)root->root_key.objectid); | 
 | 	spin_unlock(&fs_info->fs_roots_radix_lock); | 
 |  | 
 | 	if (btrfs_root_refs(&root->root_item) == 0) | 
 | 		synchronize_srcu(&fs_info->subvol_srcu); | 
 |  | 
 | 	__btrfs_remove_free_space_cache(root->free_ino_pinned); | 
 | 	__btrfs_remove_free_space_cache(root->free_ino_ctl); | 
 | 	free_fs_root(root); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void free_fs_root(struct btrfs_root *root) | 
 | { | 
 | 	iput(root->cache_inode); | 
 | 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); | 
 | 	if (root->anon_dev) | 
 | 		free_anon_bdev(root->anon_dev); | 
 | 	free_extent_buffer(root->node); | 
 | 	free_extent_buffer(root->commit_root); | 
 | 	kfree(root->free_ino_ctl); | 
 | 	kfree(root->free_ino_pinned); | 
 | 	kfree(root->name); | 
 | 	kfree(root); | 
 | } | 
 |  | 
 | static int del_fs_roots(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_root *gang[8]; | 
 | 	int i; | 
 |  | 
 | 	while (!list_empty(&fs_info->dead_roots)) { | 
 | 		gang[0] = list_entry(fs_info->dead_roots.next, | 
 | 				     struct btrfs_root, root_list); | 
 | 		list_del(&gang[0]->root_list); | 
 |  | 
 | 		if (gang[0]->in_radix) { | 
 | 			btrfs_free_fs_root(fs_info, gang[0]); | 
 | 		} else { | 
 | 			free_extent_buffer(gang[0]->node); | 
 | 			free_extent_buffer(gang[0]->commit_root); | 
 | 			kfree(gang[0]); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	while (1) { | 
 | 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, | 
 | 					     (void **)gang, 0, | 
 | 					     ARRAY_SIZE(gang)); | 
 | 		if (!ret) | 
 | 			break; | 
 | 		for (i = 0; i < ret; i++) | 
 | 			btrfs_free_fs_root(fs_info, gang[i]); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	u64 root_objectid = 0; | 
 | 	struct btrfs_root *gang[8]; | 
 | 	int i; | 
 | 	int ret; | 
 |  | 
 | 	while (1) { | 
 | 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, | 
 | 					     (void **)gang, root_objectid, | 
 | 					     ARRAY_SIZE(gang)); | 
 | 		if (!ret) | 
 | 			break; | 
 |  | 
 | 		root_objectid = gang[ret - 1]->root_key.objectid + 1; | 
 | 		for (i = 0; i < ret; i++) { | 
 | 			int err; | 
 |  | 
 | 			root_objectid = gang[i]->root_key.objectid; | 
 | 			err = btrfs_orphan_cleanup(gang[i]); | 
 | 			if (err) | 
 | 				return err; | 
 | 		} | 
 | 		root_objectid++; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int btrfs_commit_super(struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	int ret; | 
 |  | 
 | 	mutex_lock(&root->fs_info->cleaner_mutex); | 
 | 	btrfs_run_delayed_iputs(root); | 
 | 	btrfs_clean_old_snapshots(root); | 
 | 	mutex_unlock(&root->fs_info->cleaner_mutex); | 
 |  | 
 | 	/* wait until ongoing cleanup work done */ | 
 | 	down_write(&root->fs_info->cleanup_work_sem); | 
 | 	up_write(&root->fs_info->cleanup_work_sem); | 
 |  | 
 | 	trans = btrfs_join_transaction(root); | 
 | 	if (IS_ERR(trans)) | 
 | 		return PTR_ERR(trans); | 
 | 	ret = btrfs_commit_transaction(trans, root); | 
 | 	BUG_ON(ret); | 
 | 	/* run commit again to drop the original snapshot */ | 
 | 	trans = btrfs_join_transaction(root); | 
 | 	if (IS_ERR(trans)) | 
 | 		return PTR_ERR(trans); | 
 | 	btrfs_commit_transaction(trans, root); | 
 | 	ret = btrfs_write_and_wait_transaction(NULL, root); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	ret = write_ctree_super(NULL, root, 0); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int close_ctree(struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	int ret; | 
 |  | 
 | 	fs_info->closing = 1; | 
 | 	smp_mb(); | 
 |  | 
 | 	btrfs_scrub_cancel(root); | 
 |  | 
 | 	/* wait for any defraggers to finish */ | 
 | 	wait_event(fs_info->transaction_wait, | 
 | 		   (atomic_read(&fs_info->defrag_running) == 0)); | 
 |  | 
 | 	/* clear out the rbtree of defraggable inodes */ | 
 | 	btrfs_run_defrag_inodes(root->fs_info); | 
 |  | 
 | 	btrfs_put_block_group_cache(fs_info); | 
 |  | 
 | 	/* | 
 | 	 * Here come 2 situations when btrfs is broken to flip readonly: | 
 | 	 * | 
 | 	 * 1. when btrfs flips readonly somewhere else before | 
 | 	 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag, | 
 | 	 * and btrfs will skip to write sb directly to keep | 
 | 	 * ERROR state on disk. | 
 | 	 * | 
 | 	 * 2. when btrfs flips readonly just in btrfs_commit_super, | 
 | 	 * and in such case, btrfs cannot write sb via btrfs_commit_super, | 
 | 	 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag, | 
 | 	 * btrfs will cleanup all FS resources first and write sb then. | 
 | 	 */ | 
 | 	if (!(fs_info->sb->s_flags & MS_RDONLY)) { | 
 | 		ret = btrfs_commit_super(root); | 
 | 		if (ret) | 
 | 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret); | 
 | 	} | 
 |  | 
 | 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { | 
 | 		ret = btrfs_error_commit_super(root); | 
 | 		if (ret) | 
 | 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret); | 
 | 	} | 
 |  | 
 | 	kthread_stop(root->fs_info->transaction_kthread); | 
 | 	kthread_stop(root->fs_info->cleaner_kthread); | 
 |  | 
 | 	fs_info->closing = 2; | 
 | 	smp_mb(); | 
 |  | 
 | 	if (fs_info->delalloc_bytes) { | 
 | 		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n", | 
 | 		       (unsigned long long)fs_info->delalloc_bytes); | 
 | 	} | 
 | 	if (fs_info->total_ref_cache_size) { | 
 | 		printk(KERN_INFO "btrfs: at umount reference cache size %llu\n", | 
 | 		       (unsigned long long)fs_info->total_ref_cache_size); | 
 | 	} | 
 |  | 
 | 	free_extent_buffer(fs_info->extent_root->node); | 
 | 	free_extent_buffer(fs_info->extent_root->commit_root); | 
 | 	free_extent_buffer(fs_info->tree_root->node); | 
 | 	free_extent_buffer(fs_info->tree_root->commit_root); | 
 | 	free_extent_buffer(root->fs_info->chunk_root->node); | 
 | 	free_extent_buffer(root->fs_info->chunk_root->commit_root); | 
 | 	free_extent_buffer(root->fs_info->dev_root->node); | 
 | 	free_extent_buffer(root->fs_info->dev_root->commit_root); | 
 | 	free_extent_buffer(root->fs_info->csum_root->node); | 
 | 	free_extent_buffer(root->fs_info->csum_root->commit_root); | 
 |  | 
 | 	btrfs_free_block_groups(root->fs_info); | 
 |  | 
 | 	del_fs_roots(fs_info); | 
 |  | 
 | 	iput(fs_info->btree_inode); | 
 | 	kfree(fs_info->delayed_root); | 
 |  | 
 | 	btrfs_stop_workers(&fs_info->generic_worker); | 
 | 	btrfs_stop_workers(&fs_info->fixup_workers); | 
 | 	btrfs_stop_workers(&fs_info->delalloc_workers); | 
 | 	btrfs_stop_workers(&fs_info->workers); | 
 | 	btrfs_stop_workers(&fs_info->endio_workers); | 
 | 	btrfs_stop_workers(&fs_info->endio_meta_workers); | 
 | 	btrfs_stop_workers(&fs_info->endio_meta_write_workers); | 
 | 	btrfs_stop_workers(&fs_info->endio_write_workers); | 
 | 	btrfs_stop_workers(&fs_info->endio_freespace_worker); | 
 | 	btrfs_stop_workers(&fs_info->submit_workers); | 
 | 	btrfs_stop_workers(&fs_info->delayed_workers); | 
 | 	btrfs_stop_workers(&fs_info->caching_workers); | 
 |  | 
 | 	btrfs_close_devices(fs_info->fs_devices); | 
 | 	btrfs_mapping_tree_free(&fs_info->mapping_tree); | 
 |  | 
 | 	bdi_destroy(&fs_info->bdi); | 
 | 	cleanup_srcu_struct(&fs_info->subvol_srcu); | 
 |  | 
 | 	kfree(fs_info->extent_root); | 
 | 	kfree(fs_info->tree_root); | 
 | 	kfree(fs_info->chunk_root); | 
 | 	kfree(fs_info->dev_root); | 
 | 	kfree(fs_info->csum_root); | 
 | 	kfree(fs_info); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid) | 
 | { | 
 | 	int ret; | 
 | 	struct inode *btree_inode = buf->first_page->mapping->host; | 
 |  | 
 | 	ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf, | 
 | 				     NULL); | 
 | 	if (!ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, | 
 | 				    parent_transid); | 
 | 	return !ret; | 
 | } | 
 |  | 
 | int btrfs_set_buffer_uptodate(struct extent_buffer *buf) | 
 | { | 
 | 	struct inode *btree_inode = buf->first_page->mapping->host; | 
 | 	return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, | 
 | 					  buf); | 
 | } | 
 |  | 
 | void btrfs_mark_buffer_dirty(struct extent_buffer *buf) | 
 | { | 
 | 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; | 
 | 	u64 transid = btrfs_header_generation(buf); | 
 | 	struct inode *btree_inode = root->fs_info->btree_inode; | 
 | 	int was_dirty; | 
 |  | 
 | 	btrfs_assert_tree_locked(buf); | 
 | 	if (transid != root->fs_info->generation) { | 
 | 		printk(KERN_CRIT "btrfs transid mismatch buffer %llu, " | 
 | 		       "found %llu running %llu\n", | 
 | 			(unsigned long long)buf->start, | 
 | 			(unsigned long long)transid, | 
 | 			(unsigned long long)root->fs_info->generation); | 
 | 		WARN_ON(1); | 
 | 	} | 
 | 	was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, | 
 | 					    buf); | 
 | 	if (!was_dirty) { | 
 | 		spin_lock(&root->fs_info->delalloc_lock); | 
 | 		root->fs_info->dirty_metadata_bytes += buf->len; | 
 | 		spin_unlock(&root->fs_info->delalloc_lock); | 
 | 	} | 
 | } | 
 |  | 
 | void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) | 
 | { | 
 | 	/* | 
 | 	 * looks as though older kernels can get into trouble with | 
 | 	 * this code, they end up stuck in balance_dirty_pages forever | 
 | 	 */ | 
 | 	u64 num_dirty; | 
 | 	unsigned long thresh = 32 * 1024 * 1024; | 
 |  | 
 | 	if (current->flags & PF_MEMALLOC) | 
 | 		return; | 
 |  | 
 | 	btrfs_balance_delayed_items(root); | 
 |  | 
 | 	num_dirty = root->fs_info->dirty_metadata_bytes; | 
 |  | 
 | 	if (num_dirty > thresh) { | 
 | 		balance_dirty_pages_ratelimited_nr( | 
 | 				   root->fs_info->btree_inode->i_mapping, 1); | 
 | 	} | 
 | 	return; | 
 | } | 
 |  | 
 | void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) | 
 | { | 
 | 	/* | 
 | 	 * looks as though older kernels can get into trouble with | 
 | 	 * this code, they end up stuck in balance_dirty_pages forever | 
 | 	 */ | 
 | 	u64 num_dirty; | 
 | 	unsigned long thresh = 32 * 1024 * 1024; | 
 |  | 
 | 	if (current->flags & PF_MEMALLOC) | 
 | 		return; | 
 |  | 
 | 	num_dirty = root->fs_info->dirty_metadata_bytes; | 
 |  | 
 | 	if (num_dirty > thresh) { | 
 | 		balance_dirty_pages_ratelimited_nr( | 
 | 				   root->fs_info->btree_inode->i_mapping, 1); | 
 | 	} | 
 | 	return; | 
 | } | 
 |  | 
 | int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) | 
 | { | 
 | 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; | 
 | 	int ret; | 
 | 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); | 
 | 	if (ret == 0) | 
 | 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btree_lock_page_hook(struct page *page) | 
 | { | 
 | 	struct inode *inode = page->mapping->host; | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | 
 | 	struct extent_buffer *eb; | 
 | 	unsigned long len; | 
 | 	u64 bytenr = page_offset(page); | 
 |  | 
 | 	if (page->private == EXTENT_PAGE_PRIVATE) | 
 | 		goto out; | 
 |  | 
 | 	len = page->private >> 2; | 
 | 	eb = find_extent_buffer(io_tree, bytenr, len); | 
 | 	if (!eb) | 
 | 		goto out; | 
 |  | 
 | 	btrfs_tree_lock(eb); | 
 | 	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); | 
 |  | 
 | 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { | 
 | 		spin_lock(&root->fs_info->delalloc_lock); | 
 | 		if (root->fs_info->dirty_metadata_bytes >= eb->len) | 
 | 			root->fs_info->dirty_metadata_bytes -= eb->len; | 
 | 		else | 
 | 			WARN_ON(1); | 
 | 		spin_unlock(&root->fs_info->delalloc_lock); | 
 | 	} | 
 |  | 
 | 	btrfs_tree_unlock(eb); | 
 | 	free_extent_buffer(eb); | 
 | out: | 
 | 	lock_page(page); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info, | 
 | 			      int read_only) | 
 | { | 
 | 	if (read_only) | 
 | 		return; | 
 |  | 
 | 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) | 
 | 		printk(KERN_WARNING "warning: mount fs with errors, " | 
 | 		       "running btrfsck is recommended\n"); | 
 | } | 
 |  | 
 | int btrfs_error_commit_super(struct btrfs_root *root) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	mutex_lock(&root->fs_info->cleaner_mutex); | 
 | 	btrfs_run_delayed_iputs(root); | 
 | 	mutex_unlock(&root->fs_info->cleaner_mutex); | 
 |  | 
 | 	down_write(&root->fs_info->cleanup_work_sem); | 
 | 	up_write(&root->fs_info->cleanup_work_sem); | 
 |  | 
 | 	/* cleanup FS via transaction */ | 
 | 	btrfs_cleanup_transaction(root); | 
 |  | 
 | 	ret = write_ctree_super(NULL, root, 0); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_destroy_ordered_operations(struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_inode *btrfs_inode; | 
 | 	struct list_head splice; | 
 |  | 
 | 	INIT_LIST_HEAD(&splice); | 
 |  | 
 | 	mutex_lock(&root->fs_info->ordered_operations_mutex); | 
 | 	spin_lock(&root->fs_info->ordered_extent_lock); | 
 |  | 
 | 	list_splice_init(&root->fs_info->ordered_operations, &splice); | 
 | 	while (!list_empty(&splice)) { | 
 | 		btrfs_inode = list_entry(splice.next, struct btrfs_inode, | 
 | 					 ordered_operations); | 
 |  | 
 | 		list_del_init(&btrfs_inode->ordered_operations); | 
 |  | 
 | 		btrfs_invalidate_inodes(btrfs_inode->root); | 
 | 	} | 
 |  | 
 | 	spin_unlock(&root->fs_info->ordered_extent_lock); | 
 | 	mutex_unlock(&root->fs_info->ordered_operations_mutex); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int btrfs_destroy_ordered_extents(struct btrfs_root *root) | 
 | { | 
 | 	struct list_head splice; | 
 | 	struct btrfs_ordered_extent *ordered; | 
 | 	struct inode *inode; | 
 |  | 
 | 	INIT_LIST_HEAD(&splice); | 
 |  | 
 | 	spin_lock(&root->fs_info->ordered_extent_lock); | 
 |  | 
 | 	list_splice_init(&root->fs_info->ordered_extents, &splice); | 
 | 	while (!list_empty(&splice)) { | 
 | 		ordered = list_entry(splice.next, struct btrfs_ordered_extent, | 
 | 				     root_extent_list); | 
 |  | 
 | 		list_del_init(&ordered->root_extent_list); | 
 | 		atomic_inc(&ordered->refs); | 
 |  | 
 | 		/* the inode may be getting freed (in sys_unlink path). */ | 
 | 		inode = igrab(ordered->inode); | 
 |  | 
 | 		spin_unlock(&root->fs_info->ordered_extent_lock); | 
 | 		if (inode) | 
 | 			iput(inode); | 
 |  | 
 | 		atomic_set(&ordered->refs, 1); | 
 | 		btrfs_put_ordered_extent(ordered); | 
 |  | 
 | 		spin_lock(&root->fs_info->ordered_extent_lock); | 
 | 	} | 
 |  | 
 | 	spin_unlock(&root->fs_info->ordered_extent_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, | 
 | 				      struct btrfs_root *root) | 
 | { | 
 | 	struct rb_node *node; | 
 | 	struct btrfs_delayed_ref_root *delayed_refs; | 
 | 	struct btrfs_delayed_ref_node *ref; | 
 | 	int ret = 0; | 
 |  | 
 | 	delayed_refs = &trans->delayed_refs; | 
 |  | 
 | 	spin_lock(&delayed_refs->lock); | 
 | 	if (delayed_refs->num_entries == 0) { | 
 | 		spin_unlock(&delayed_refs->lock); | 
 | 		printk(KERN_INFO "delayed_refs has NO entry\n"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	node = rb_first(&delayed_refs->root); | 
 | 	while (node) { | 
 | 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); | 
 | 		node = rb_next(node); | 
 |  | 
 | 		ref->in_tree = 0; | 
 | 		rb_erase(&ref->rb_node, &delayed_refs->root); | 
 | 		delayed_refs->num_entries--; | 
 |  | 
 | 		atomic_set(&ref->refs, 1); | 
 | 		if (btrfs_delayed_ref_is_head(ref)) { | 
 | 			struct btrfs_delayed_ref_head *head; | 
 |  | 
 | 			head = btrfs_delayed_node_to_head(ref); | 
 | 			mutex_lock(&head->mutex); | 
 | 			kfree(head->extent_op); | 
 | 			delayed_refs->num_heads--; | 
 | 			if (list_empty(&head->cluster)) | 
 | 				delayed_refs->num_heads_ready--; | 
 | 			list_del_init(&head->cluster); | 
 | 			mutex_unlock(&head->mutex); | 
 | 		} | 
 |  | 
 | 		spin_unlock(&delayed_refs->lock); | 
 | 		btrfs_put_delayed_ref(ref); | 
 |  | 
 | 		cond_resched(); | 
 | 		spin_lock(&delayed_refs->lock); | 
 | 	} | 
 |  | 
 | 	spin_unlock(&delayed_refs->lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t) | 
 | { | 
 | 	struct btrfs_pending_snapshot *snapshot; | 
 | 	struct list_head splice; | 
 |  | 
 | 	INIT_LIST_HEAD(&splice); | 
 |  | 
 | 	list_splice_init(&t->pending_snapshots, &splice); | 
 |  | 
 | 	while (!list_empty(&splice)) { | 
 | 		snapshot = list_entry(splice.next, | 
 | 				      struct btrfs_pending_snapshot, | 
 | 				      list); | 
 |  | 
 | 		list_del_init(&snapshot->list); | 
 |  | 
 | 		kfree(snapshot); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_inode *btrfs_inode; | 
 | 	struct list_head splice; | 
 |  | 
 | 	INIT_LIST_HEAD(&splice); | 
 |  | 
 | 	spin_lock(&root->fs_info->delalloc_lock); | 
 | 	list_splice_init(&root->fs_info->delalloc_inodes, &splice); | 
 |  | 
 | 	while (!list_empty(&splice)) { | 
 | 		btrfs_inode = list_entry(splice.next, struct btrfs_inode, | 
 | 				    delalloc_inodes); | 
 |  | 
 | 		list_del_init(&btrfs_inode->delalloc_inodes); | 
 |  | 
 | 		btrfs_invalidate_inodes(btrfs_inode->root); | 
 | 	} | 
 |  | 
 | 	spin_unlock(&root->fs_info->delalloc_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int btrfs_destroy_marked_extents(struct btrfs_root *root, | 
 | 					struct extent_io_tree *dirty_pages, | 
 | 					int mark) | 
 | { | 
 | 	int ret; | 
 | 	struct page *page; | 
 | 	struct inode *btree_inode = root->fs_info->btree_inode; | 
 | 	struct extent_buffer *eb; | 
 | 	u64 start = 0; | 
 | 	u64 end; | 
 | 	u64 offset; | 
 | 	unsigned long index; | 
 |  | 
 | 	while (1) { | 
 | 		ret = find_first_extent_bit(dirty_pages, start, &start, &end, | 
 | 					    mark); | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); | 
 | 		while (start <= end) { | 
 | 			index = start >> PAGE_CACHE_SHIFT; | 
 | 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT; | 
 | 			page = find_get_page(btree_inode->i_mapping, index); | 
 | 			if (!page) | 
 | 				continue; | 
 | 			offset = page_offset(page); | 
 |  | 
 | 			spin_lock(&dirty_pages->buffer_lock); | 
 | 			eb = radix_tree_lookup( | 
 | 			     &(&BTRFS_I(page->mapping->host)->io_tree)->buffer, | 
 | 					       offset >> PAGE_CACHE_SHIFT); | 
 | 			spin_unlock(&dirty_pages->buffer_lock); | 
 | 			if (eb) { | 
 | 				ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY, | 
 | 							 &eb->bflags); | 
 | 				atomic_set(&eb->refs, 1); | 
 | 			} | 
 | 			if (PageWriteback(page)) | 
 | 				end_page_writeback(page); | 
 |  | 
 | 			lock_page(page); | 
 | 			if (PageDirty(page)) { | 
 | 				clear_page_dirty_for_io(page); | 
 | 				spin_lock_irq(&page->mapping->tree_lock); | 
 | 				radix_tree_tag_clear(&page->mapping->page_tree, | 
 | 							page_index(page), | 
 | 							PAGECACHE_TAG_DIRTY); | 
 | 				spin_unlock_irq(&page->mapping->tree_lock); | 
 | 			} | 
 |  | 
 | 			page->mapping->a_ops->invalidatepage(page, 0); | 
 | 			unlock_page(page); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_destroy_pinned_extent(struct btrfs_root *root, | 
 | 				       struct extent_io_tree *pinned_extents) | 
 | { | 
 | 	struct extent_io_tree *unpin; | 
 | 	u64 start; | 
 | 	u64 end; | 
 | 	int ret; | 
 |  | 
 | 	unpin = pinned_extents; | 
 | 	while (1) { | 
 | 		ret = find_first_extent_bit(unpin, 0, &start, &end, | 
 | 					    EXTENT_DIRTY); | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		/* opt_discard */ | 
 | 		if (btrfs_test_opt(root, DISCARD)) | 
 | 			ret = btrfs_error_discard_extent(root, start, | 
 | 							 end + 1 - start, | 
 | 							 NULL); | 
 |  | 
 | 		clear_extent_dirty(unpin, start, end, GFP_NOFS); | 
 | 		btrfs_error_unpin_extent_range(root, start, end); | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int btrfs_cleanup_transaction(struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_transaction *t; | 
 | 	LIST_HEAD(list); | 
 |  | 
 | 	WARN_ON(1); | 
 |  | 
 | 	mutex_lock(&root->fs_info->transaction_kthread_mutex); | 
 |  | 
 | 	spin_lock(&root->fs_info->trans_lock); | 
 | 	list_splice_init(&root->fs_info->trans_list, &list); | 
 | 	root->fs_info->trans_no_join = 1; | 
 | 	spin_unlock(&root->fs_info->trans_lock); | 
 |  | 
 | 	while (!list_empty(&list)) { | 
 | 		t = list_entry(list.next, struct btrfs_transaction, list); | 
 | 		if (!t) | 
 | 			break; | 
 |  | 
 | 		btrfs_destroy_ordered_operations(root); | 
 |  | 
 | 		btrfs_destroy_ordered_extents(root); | 
 |  | 
 | 		btrfs_destroy_delayed_refs(t, root); | 
 |  | 
 | 		btrfs_block_rsv_release(root, | 
 | 					&root->fs_info->trans_block_rsv, | 
 | 					t->dirty_pages.dirty_bytes); | 
 |  | 
 | 		/* FIXME: cleanup wait for commit */ | 
 | 		t->in_commit = 1; | 
 | 		t->blocked = 1; | 
 | 		if (waitqueue_active(&root->fs_info->transaction_blocked_wait)) | 
 | 			wake_up(&root->fs_info->transaction_blocked_wait); | 
 |  | 
 | 		t->blocked = 0; | 
 | 		if (waitqueue_active(&root->fs_info->transaction_wait)) | 
 | 			wake_up(&root->fs_info->transaction_wait); | 
 |  | 
 | 		t->commit_done = 1; | 
 | 		if (waitqueue_active(&t->commit_wait)) | 
 | 			wake_up(&t->commit_wait); | 
 |  | 
 | 		btrfs_destroy_pending_snapshots(t); | 
 |  | 
 | 		btrfs_destroy_delalloc_inodes(root); | 
 |  | 
 | 		spin_lock(&root->fs_info->trans_lock); | 
 | 		root->fs_info->running_transaction = NULL; | 
 | 		spin_unlock(&root->fs_info->trans_lock); | 
 |  | 
 | 		btrfs_destroy_marked_extents(root, &t->dirty_pages, | 
 | 					     EXTENT_DIRTY); | 
 |  | 
 | 		btrfs_destroy_pinned_extent(root, | 
 | 					    root->fs_info->pinned_extents); | 
 |  | 
 | 		atomic_set(&t->use_count, 0); | 
 | 		list_del_init(&t->list); | 
 | 		memset(t, 0, sizeof(*t)); | 
 | 		kmem_cache_free(btrfs_transaction_cachep, t); | 
 | 	} | 
 |  | 
 | 	spin_lock(&root->fs_info->trans_lock); | 
 | 	root->fs_info->trans_no_join = 0; | 
 | 	spin_unlock(&root->fs_info->trans_lock); | 
 | 	mutex_unlock(&root->fs_info->transaction_kthread_mutex); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct extent_io_ops btree_extent_io_ops = { | 
 | 	.write_cache_pages_lock_hook = btree_lock_page_hook, | 
 | 	.readpage_end_io_hook = btree_readpage_end_io_hook, | 
 | 	.submit_bio_hook = btree_submit_bio_hook, | 
 | 	/* note we're sharing with inode.c for the merge bio hook */ | 
 | 	.merge_bio_hook = btrfs_merge_bio_hook, | 
 | }; |