|  | /* | 
|  | * Copyright (c) 2000-2005 Silicon Graphics, Inc. | 
|  | * All Rights Reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it would be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write the Free Software Foundation, | 
|  | * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA | 
|  | */ | 
|  | #include "xfs.h" | 
|  | #include "xfs_bit.h" | 
|  | #include "xfs_log.h" | 
|  | #include "xfs_inum.h" | 
|  | #include "xfs_sb.h" | 
|  | #include "xfs_ag.h" | 
|  | #include "xfs_dir.h" | 
|  | #include "xfs_dir2.h" | 
|  | #include "xfs_trans.h" | 
|  | #include "xfs_dmapi.h" | 
|  | #include "xfs_mount.h" | 
|  | #include "xfs_bmap_btree.h" | 
|  | #include "xfs_alloc_btree.h" | 
|  | #include "xfs_ialloc_btree.h" | 
|  | #include "xfs_dir_sf.h" | 
|  | #include "xfs_dir2_sf.h" | 
|  | #include "xfs_attr_sf.h" | 
|  | #include "xfs_dinode.h" | 
|  | #include "xfs_inode.h" | 
|  | #include "xfs_alloc.h" | 
|  | #include "xfs_btree.h" | 
|  | #include "xfs_error.h" | 
|  | #include "xfs_rw.h" | 
|  | #include "xfs_iomap.h" | 
|  | #include <linux/mpage.h> | 
|  | #include <linux/writeback.h> | 
|  |  | 
|  | STATIC void xfs_count_page_state(struct page *, int *, int *, int *); | 
|  | STATIC void xfs_convert_page(struct inode *, struct page *, xfs_iomap_t *, | 
|  | struct writeback_control *wbc, void *, int, int); | 
|  |  | 
|  | #if defined(XFS_RW_TRACE) | 
|  | void | 
|  | xfs_page_trace( | 
|  | int		tag, | 
|  | struct inode	*inode, | 
|  | struct page	*page, | 
|  | int		mask) | 
|  | { | 
|  | xfs_inode_t	*ip; | 
|  | bhv_desc_t	*bdp; | 
|  | vnode_t		*vp = LINVFS_GET_VP(inode); | 
|  | loff_t		isize = i_size_read(inode); | 
|  | loff_t		offset = (loff_t)page->index << PAGE_CACHE_SHIFT; | 
|  | int		delalloc = -1, unmapped = -1, unwritten = -1; | 
|  |  | 
|  | if (page_has_buffers(page)) | 
|  | xfs_count_page_state(page, &delalloc, &unmapped, &unwritten); | 
|  |  | 
|  | bdp = vn_bhv_lookup(VN_BHV_HEAD(vp), &xfs_vnodeops); | 
|  | ip = XFS_BHVTOI(bdp); | 
|  | if (!ip->i_rwtrace) | 
|  | return; | 
|  |  | 
|  | ktrace_enter(ip->i_rwtrace, | 
|  | (void *)((unsigned long)tag), | 
|  | (void *)ip, | 
|  | (void *)inode, | 
|  | (void *)page, | 
|  | (void *)((unsigned long)mask), | 
|  | (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)), | 
|  | (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)), | 
|  | (void *)((unsigned long)((isize >> 32) & 0xffffffff)), | 
|  | (void *)((unsigned long)(isize & 0xffffffff)), | 
|  | (void *)((unsigned long)((offset >> 32) & 0xffffffff)), | 
|  | (void *)((unsigned long)(offset & 0xffffffff)), | 
|  | (void *)((unsigned long)delalloc), | 
|  | (void *)((unsigned long)unmapped), | 
|  | (void *)((unsigned long)unwritten), | 
|  | (void *)NULL, | 
|  | (void *)NULL); | 
|  | } | 
|  | #else | 
|  | #define xfs_page_trace(tag, inode, page, mask) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Schedule IO completion handling on a xfsdatad if this was | 
|  | * the final hold on this ioend. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_finish_ioend( | 
|  | xfs_ioend_t		*ioend) | 
|  | { | 
|  | if (atomic_dec_and_test(&ioend->io_remaining)) | 
|  | queue_work(xfsdatad_workqueue, &ioend->io_work); | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_destroy_ioend( | 
|  | xfs_ioend_t		*ioend) | 
|  | { | 
|  | vn_iowake(ioend->io_vnode); | 
|  | mempool_free(ioend, xfs_ioend_pool); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Issue transactions to convert a buffer range from unwritten | 
|  | * to written extents. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_end_bio_unwritten( | 
|  | void			*data) | 
|  | { | 
|  | xfs_ioend_t		*ioend = data; | 
|  | vnode_t			*vp = ioend->io_vnode; | 
|  | xfs_off_t		offset = ioend->io_offset; | 
|  | size_t			size = ioend->io_size; | 
|  | struct buffer_head	*bh, *next; | 
|  | int			error; | 
|  |  | 
|  | if (ioend->io_uptodate) | 
|  | VOP_BMAP(vp, offset, size, BMAPI_UNWRITTEN, NULL, NULL, error); | 
|  |  | 
|  | /* ioend->io_buffer_head is only non-NULL for buffered I/O */ | 
|  | for (bh = ioend->io_buffer_head; bh; bh = next) { | 
|  | next = bh->b_private; | 
|  |  | 
|  | bh->b_end_io = NULL; | 
|  | clear_buffer_unwritten(bh); | 
|  | end_buffer_async_write(bh, ioend->io_uptodate); | 
|  | } | 
|  |  | 
|  | xfs_destroy_ioend(ioend); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate and initialise an IO completion structure. | 
|  | * We need to track unwritten extent write completion here initially. | 
|  | * We'll need to extend this for updating the ondisk inode size later | 
|  | * (vs. incore size). | 
|  | */ | 
|  | STATIC xfs_ioend_t * | 
|  | xfs_alloc_ioend( | 
|  | struct inode		*inode) | 
|  | { | 
|  | xfs_ioend_t		*ioend; | 
|  |  | 
|  | ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS); | 
|  |  | 
|  | /* | 
|  | * Set the count to 1 initially, which will prevent an I/O | 
|  | * completion callback from happening before we have started | 
|  | * all the I/O from calling the completion routine too early. | 
|  | */ | 
|  | atomic_set(&ioend->io_remaining, 1); | 
|  | ioend->io_uptodate = 1; /* cleared if any I/O fails */ | 
|  | ioend->io_vnode = LINVFS_GET_VP(inode); | 
|  | ioend->io_buffer_head = NULL; | 
|  | atomic_inc(&ioend->io_vnode->v_iocount); | 
|  | ioend->io_offset = 0; | 
|  | ioend->io_size = 0; | 
|  |  | 
|  | INIT_WORK(&ioend->io_work, xfs_end_bio_unwritten, ioend); | 
|  |  | 
|  | return ioend; | 
|  | } | 
|  |  | 
|  | void | 
|  | linvfs_unwritten_done( | 
|  | struct buffer_head	*bh, | 
|  | int			uptodate) | 
|  | { | 
|  | xfs_ioend_t		*ioend = bh->b_private; | 
|  | static spinlock_t	unwritten_done_lock = SPIN_LOCK_UNLOCKED; | 
|  | unsigned long		flags; | 
|  |  | 
|  | ASSERT(buffer_unwritten(bh)); | 
|  | bh->b_end_io = NULL; | 
|  |  | 
|  | if (!uptodate) | 
|  | ioend->io_uptodate = 0; | 
|  |  | 
|  | /* | 
|  | * Deep magic here.  We reuse b_private in the buffer_heads to build | 
|  | * a chain for completing the I/O from user context after we've issued | 
|  | * a transaction to convert the unwritten extent. | 
|  | */ | 
|  | spin_lock_irqsave(&unwritten_done_lock, flags); | 
|  | bh->b_private = ioend->io_buffer_head; | 
|  | ioend->io_buffer_head = bh; | 
|  | spin_unlock_irqrestore(&unwritten_done_lock, flags); | 
|  |  | 
|  | xfs_finish_ioend(ioend); | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_map_blocks( | 
|  | struct inode		*inode, | 
|  | loff_t			offset, | 
|  | ssize_t			count, | 
|  | xfs_iomap_t		*mapp, | 
|  | int			flags) | 
|  | { | 
|  | vnode_t			*vp = LINVFS_GET_VP(inode); | 
|  | int			error, nmaps = 1; | 
|  |  | 
|  | VOP_BMAP(vp, offset, count, flags, mapp, &nmaps, error); | 
|  | if (!error && (flags & (BMAPI_WRITE|BMAPI_ALLOCATE))) | 
|  | VMODIFY(vp); | 
|  | return -error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Finds the corresponding mapping in block @map array of the | 
|  | * given @offset within a @page. | 
|  | */ | 
|  | STATIC xfs_iomap_t * | 
|  | xfs_offset_to_map( | 
|  | struct page		*page, | 
|  | xfs_iomap_t		*iomapp, | 
|  | unsigned long		offset) | 
|  | { | 
|  | loff_t			full_offset;	/* offset from start of file */ | 
|  |  | 
|  | ASSERT(offset < PAGE_CACHE_SIZE); | 
|  |  | 
|  | full_offset = page->index;		/* NB: using 64bit number */ | 
|  | full_offset <<= PAGE_CACHE_SHIFT;	/* offset from file start */ | 
|  | full_offset += offset;			/* offset from page start */ | 
|  |  | 
|  | if (full_offset < iomapp->iomap_offset) | 
|  | return NULL; | 
|  | if (iomapp->iomap_offset + (iomapp->iomap_bsize -1) >= full_offset) | 
|  | return iomapp; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_map_at_offset( | 
|  | struct page		*page, | 
|  | struct buffer_head	*bh, | 
|  | unsigned long		offset, | 
|  | int			block_bits, | 
|  | xfs_iomap_t		*iomapp) | 
|  | { | 
|  | xfs_daddr_t		bn; | 
|  | loff_t			delta; | 
|  | int			sector_shift; | 
|  |  | 
|  | ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE)); | 
|  | ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY)); | 
|  | ASSERT(iomapp->iomap_bn != IOMAP_DADDR_NULL); | 
|  |  | 
|  | delta = page->index; | 
|  | delta <<= PAGE_CACHE_SHIFT; | 
|  | delta += offset; | 
|  | delta -= iomapp->iomap_offset; | 
|  | delta >>= block_bits; | 
|  |  | 
|  | sector_shift = block_bits - BBSHIFT; | 
|  | bn = iomapp->iomap_bn >> sector_shift; | 
|  | bn += delta; | 
|  | BUG_ON(!bn && !(iomapp->iomap_flags & IOMAP_REALTIME)); | 
|  | ASSERT((bn << sector_shift) >= iomapp->iomap_bn); | 
|  |  | 
|  | lock_buffer(bh); | 
|  | bh->b_blocknr = bn; | 
|  | bh->b_bdev = iomapp->iomap_target->pbr_bdev; | 
|  | set_buffer_mapped(bh); | 
|  | clear_buffer_delay(bh); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Look for a page at index which is unlocked and contains our | 
|  | * unwritten extent flagged buffers at its head.  Returns page | 
|  | * locked and with an extra reference count, and length of the | 
|  | * unwritten extent component on this page that we can write, | 
|  | * in units of filesystem blocks. | 
|  | */ | 
|  | STATIC struct page * | 
|  | xfs_probe_unwritten_page( | 
|  | struct address_space	*mapping, | 
|  | pgoff_t			index, | 
|  | xfs_iomap_t		*iomapp, | 
|  | xfs_ioend_t		*ioend, | 
|  | unsigned long		max_offset, | 
|  | unsigned long		*fsbs, | 
|  | unsigned int            bbits) | 
|  | { | 
|  | struct page		*page; | 
|  |  | 
|  | page = find_trylock_page(mapping, index); | 
|  | if (!page) | 
|  | return NULL; | 
|  | if (PageWriteback(page)) | 
|  | goto out; | 
|  |  | 
|  | if (page->mapping && page_has_buffers(page)) { | 
|  | struct buffer_head	*bh, *head; | 
|  | unsigned long		p_offset = 0; | 
|  |  | 
|  | *fsbs = 0; | 
|  | bh = head = page_buffers(page); | 
|  | do { | 
|  | if (!buffer_unwritten(bh) || !buffer_uptodate(bh)) | 
|  | break; | 
|  | if (!xfs_offset_to_map(page, iomapp, p_offset)) | 
|  | break; | 
|  | if (p_offset >= max_offset) | 
|  | break; | 
|  | xfs_map_at_offset(page, bh, p_offset, bbits, iomapp); | 
|  | set_buffer_unwritten_io(bh); | 
|  | bh->b_private = ioend; | 
|  | p_offset += bh->b_size; | 
|  | (*fsbs)++; | 
|  | } while ((bh = bh->b_this_page) != head); | 
|  |  | 
|  | if (p_offset) | 
|  | return page; | 
|  | } | 
|  |  | 
|  | out: | 
|  | unlock_page(page); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Look for a page at index which is unlocked and not mapped | 
|  | * yet - clustering for mmap write case. | 
|  | */ | 
|  | STATIC unsigned int | 
|  | xfs_probe_unmapped_page( | 
|  | struct address_space	*mapping, | 
|  | pgoff_t			index, | 
|  | unsigned int		pg_offset) | 
|  | { | 
|  | struct page		*page; | 
|  | int			ret = 0; | 
|  |  | 
|  | page = find_trylock_page(mapping, index); | 
|  | if (!page) | 
|  | return 0; | 
|  | if (PageWriteback(page)) | 
|  | goto out; | 
|  |  | 
|  | if (page->mapping && PageDirty(page)) { | 
|  | if (page_has_buffers(page)) { | 
|  | struct buffer_head	*bh, *head; | 
|  |  | 
|  | bh = head = page_buffers(page); | 
|  | do { | 
|  | if (buffer_mapped(bh) || !buffer_uptodate(bh)) | 
|  | break; | 
|  | ret += bh->b_size; | 
|  | if (ret >= pg_offset) | 
|  | break; | 
|  | } while ((bh = bh->b_this_page) != head); | 
|  | } else | 
|  | ret = PAGE_CACHE_SIZE; | 
|  | } | 
|  |  | 
|  | out: | 
|  | unlock_page(page); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | STATIC unsigned int | 
|  | xfs_probe_unmapped_cluster( | 
|  | struct inode		*inode, | 
|  | struct page		*startpage, | 
|  | struct buffer_head	*bh, | 
|  | struct buffer_head	*head) | 
|  | { | 
|  | pgoff_t			tindex, tlast, tloff; | 
|  | unsigned int		pg_offset, len, total = 0; | 
|  | struct address_space	*mapping = inode->i_mapping; | 
|  |  | 
|  | /* First sum forwards in this page */ | 
|  | do { | 
|  | if (buffer_mapped(bh)) | 
|  | break; | 
|  | total += bh->b_size; | 
|  | } while ((bh = bh->b_this_page) != head); | 
|  |  | 
|  | /* If we reached the end of the page, sum forwards in | 
|  | * following pages. | 
|  | */ | 
|  | if (bh == head) { | 
|  | tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT; | 
|  | /* Prune this back to avoid pathological behavior */ | 
|  | tloff = min(tlast, startpage->index + 64); | 
|  | for (tindex = startpage->index + 1; tindex < tloff; tindex++) { | 
|  | len = xfs_probe_unmapped_page(mapping, tindex, | 
|  | PAGE_CACHE_SIZE); | 
|  | if (!len) | 
|  | return total; | 
|  | total += len; | 
|  | } | 
|  | if (tindex == tlast && | 
|  | (pg_offset = i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) { | 
|  | total += xfs_probe_unmapped_page(mapping, | 
|  | tindex, pg_offset); | 
|  | } | 
|  | } | 
|  | return total; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Probe for a given page (index) in the inode and test if it is delayed | 
|  | * and without unwritten buffers.  Returns page locked and with an extra | 
|  | * reference count. | 
|  | */ | 
|  | STATIC struct page * | 
|  | xfs_probe_delalloc_page( | 
|  | struct inode		*inode, | 
|  | pgoff_t			index) | 
|  | { | 
|  | struct page		*page; | 
|  |  | 
|  | page = find_trylock_page(inode->i_mapping, index); | 
|  | if (!page) | 
|  | return NULL; | 
|  | if (PageWriteback(page)) | 
|  | goto out; | 
|  |  | 
|  | if (page->mapping && page_has_buffers(page)) { | 
|  | struct buffer_head	*bh, *head; | 
|  | int			acceptable = 0; | 
|  |  | 
|  | bh = head = page_buffers(page); | 
|  | do { | 
|  | if (buffer_unwritten(bh)) { | 
|  | acceptable = 0; | 
|  | break; | 
|  | } else if (buffer_delay(bh)) { | 
|  | acceptable = 1; | 
|  | } | 
|  | } while ((bh = bh->b_this_page) != head); | 
|  |  | 
|  | if (acceptable) | 
|  | return page; | 
|  | } | 
|  |  | 
|  | out: | 
|  | unlock_page(page); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_map_unwritten( | 
|  | struct inode		*inode, | 
|  | struct page		*start_page, | 
|  | struct buffer_head	*head, | 
|  | struct buffer_head	*curr, | 
|  | unsigned long		p_offset, | 
|  | int			block_bits, | 
|  | xfs_iomap_t		*iomapp, | 
|  | struct writeback_control *wbc, | 
|  | int			startio, | 
|  | int			all_bh) | 
|  | { | 
|  | struct buffer_head	*bh = curr; | 
|  | xfs_iomap_t		*tmp; | 
|  | xfs_ioend_t		*ioend; | 
|  | loff_t			offset; | 
|  | unsigned long		nblocks = 0; | 
|  |  | 
|  | offset = start_page->index; | 
|  | offset <<= PAGE_CACHE_SHIFT; | 
|  | offset += p_offset; | 
|  |  | 
|  | ioend = xfs_alloc_ioend(inode); | 
|  |  | 
|  | /* First map forwards in the page consecutive buffers | 
|  | * covering this unwritten extent | 
|  | */ | 
|  | do { | 
|  | if (!buffer_unwritten(bh)) | 
|  | break; | 
|  | tmp = xfs_offset_to_map(start_page, iomapp, p_offset); | 
|  | if (!tmp) | 
|  | break; | 
|  | xfs_map_at_offset(start_page, bh, p_offset, block_bits, iomapp); | 
|  | set_buffer_unwritten_io(bh); | 
|  | bh->b_private = ioend; | 
|  | p_offset += bh->b_size; | 
|  | nblocks++; | 
|  | } while ((bh = bh->b_this_page) != head); | 
|  |  | 
|  | atomic_add(nblocks, &ioend->io_remaining); | 
|  |  | 
|  | /* If we reached the end of the page, map forwards in any | 
|  | * following pages which are also covered by this extent. | 
|  | */ | 
|  | if (bh == head) { | 
|  | struct address_space	*mapping = inode->i_mapping; | 
|  | pgoff_t			tindex, tloff, tlast; | 
|  | unsigned long		bs; | 
|  | unsigned int		pg_offset, bbits = inode->i_blkbits; | 
|  | struct page		*page; | 
|  |  | 
|  | tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT; | 
|  | tloff = (iomapp->iomap_offset + iomapp->iomap_bsize) >> PAGE_CACHE_SHIFT; | 
|  | tloff = min(tlast, tloff); | 
|  | for (tindex = start_page->index + 1; tindex < tloff; tindex++) { | 
|  | page = xfs_probe_unwritten_page(mapping, | 
|  | tindex, iomapp, ioend, | 
|  | PAGE_CACHE_SIZE, &bs, bbits); | 
|  | if (!page) | 
|  | break; | 
|  | nblocks += bs; | 
|  | atomic_add(bs, &ioend->io_remaining); | 
|  | xfs_convert_page(inode, page, iomapp, wbc, ioend, | 
|  | startio, all_bh); | 
|  | /* stop if converting the next page might add | 
|  | * enough blocks that the corresponding byte | 
|  | * count won't fit in our ulong page buf length */ | 
|  | if (nblocks >= ((ULONG_MAX - PAGE_SIZE) >> block_bits)) | 
|  | goto enough; | 
|  | } | 
|  |  | 
|  | if (tindex == tlast && | 
|  | (pg_offset = (i_size_read(inode) & (PAGE_CACHE_SIZE - 1)))) { | 
|  | page = xfs_probe_unwritten_page(mapping, | 
|  | tindex, iomapp, ioend, | 
|  | pg_offset, &bs, bbits); | 
|  | if (page) { | 
|  | nblocks += bs; | 
|  | atomic_add(bs, &ioend->io_remaining); | 
|  | xfs_convert_page(inode, page, iomapp, wbc, ioend, | 
|  | startio, all_bh); | 
|  | if (nblocks >= ((ULONG_MAX - PAGE_SIZE) >> block_bits)) | 
|  | goto enough; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | enough: | 
|  | ioend->io_size = (xfs_off_t)nblocks << block_bits; | 
|  | ioend->io_offset = offset; | 
|  | xfs_finish_ioend(ioend); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_submit_page( | 
|  | struct page		*page, | 
|  | struct writeback_control *wbc, | 
|  | struct buffer_head	*bh_arr[], | 
|  | int			bh_count, | 
|  | int			probed_page, | 
|  | int			clear_dirty) | 
|  | { | 
|  | struct buffer_head	*bh; | 
|  | int			i; | 
|  |  | 
|  | BUG_ON(PageWriteback(page)); | 
|  | if (bh_count) | 
|  | set_page_writeback(page); | 
|  | if (clear_dirty) | 
|  | clear_page_dirty(page); | 
|  | unlock_page(page); | 
|  |  | 
|  | if (bh_count) { | 
|  | for (i = 0; i < bh_count; i++) { | 
|  | bh = bh_arr[i]; | 
|  | mark_buffer_async_write(bh); | 
|  | if (buffer_unwritten(bh)) | 
|  | set_buffer_unwritten_io(bh); | 
|  | set_buffer_uptodate(bh); | 
|  | clear_buffer_dirty(bh); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < bh_count; i++) | 
|  | submit_bh(WRITE, bh_arr[i]); | 
|  |  | 
|  | if (probed_page && clear_dirty) | 
|  | wbc->nr_to_write--;	/* Wrote an "extra" page */ | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate & map buffers for page given the extent map. Write it out. | 
|  | * except for the original page of a writepage, this is called on | 
|  | * delalloc/unwritten pages only, for the original page it is possible | 
|  | * that the page has no mapping at all. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_convert_page( | 
|  | struct inode		*inode, | 
|  | struct page		*page, | 
|  | xfs_iomap_t		*iomapp, | 
|  | struct writeback_control *wbc, | 
|  | void			*private, | 
|  | int			startio, | 
|  | int			all_bh) | 
|  | { | 
|  | struct buffer_head	*bh_arr[MAX_BUF_PER_PAGE], *bh, *head; | 
|  | xfs_iomap_t		*mp = iomapp, *tmp; | 
|  | unsigned long		offset, end_offset; | 
|  | int			index = 0; | 
|  | int			bbits = inode->i_blkbits; | 
|  | int			len, page_dirty; | 
|  |  | 
|  | end_offset = (i_size_read(inode) & (PAGE_CACHE_SIZE - 1)); | 
|  |  | 
|  | /* | 
|  | * page_dirty is initially a count of buffers on the page before | 
|  | * EOF and is decrememted as we move each into a cleanable state. | 
|  | */ | 
|  | len = 1 << inode->i_blkbits; | 
|  | end_offset = max(end_offset, PAGE_CACHE_SIZE); | 
|  | end_offset = roundup(end_offset, len); | 
|  | page_dirty = end_offset / len; | 
|  |  | 
|  | offset = 0; | 
|  | bh = head = page_buffers(page); | 
|  | do { | 
|  | if (offset >= end_offset) | 
|  | break; | 
|  | if (!(PageUptodate(page) || buffer_uptodate(bh))) | 
|  | continue; | 
|  | if (buffer_mapped(bh) && all_bh && | 
|  | !(buffer_unwritten(bh) || buffer_delay(bh))) { | 
|  | if (startio) { | 
|  | lock_buffer(bh); | 
|  | bh_arr[index++] = bh; | 
|  | page_dirty--; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | tmp = xfs_offset_to_map(page, mp, offset); | 
|  | if (!tmp) | 
|  | continue; | 
|  | ASSERT(!(tmp->iomap_flags & IOMAP_HOLE)); | 
|  | ASSERT(!(tmp->iomap_flags & IOMAP_DELAY)); | 
|  |  | 
|  | /* If this is a new unwritten extent buffer (i.e. one | 
|  | * that we haven't passed in private data for, we must | 
|  | * now map this buffer too. | 
|  | */ | 
|  | if (buffer_unwritten(bh) && !bh->b_end_io) { | 
|  | ASSERT(tmp->iomap_flags & IOMAP_UNWRITTEN); | 
|  | xfs_map_unwritten(inode, page, head, bh, offset, | 
|  | bbits, tmp, wbc, startio, all_bh); | 
|  | } else if (! (buffer_unwritten(bh) && buffer_locked(bh))) { | 
|  | xfs_map_at_offset(page, bh, offset, bbits, tmp); | 
|  | if (buffer_unwritten(bh)) { | 
|  | set_buffer_unwritten_io(bh); | 
|  | bh->b_private = private; | 
|  | ASSERT(private); | 
|  | } | 
|  | } | 
|  | if (startio) { | 
|  | bh_arr[index++] = bh; | 
|  | } else { | 
|  | set_buffer_dirty(bh); | 
|  | unlock_buffer(bh); | 
|  | mark_buffer_dirty(bh); | 
|  | } | 
|  | page_dirty--; | 
|  | } while (offset += len, (bh = bh->b_this_page) != head); | 
|  |  | 
|  | if (startio && index) { | 
|  | xfs_submit_page(page, wbc, bh_arr, index, 1, !page_dirty); | 
|  | } else { | 
|  | unlock_page(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert & write out a cluster of pages in the same extent as defined | 
|  | * by mp and following the start page. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_cluster_write( | 
|  | struct inode		*inode, | 
|  | pgoff_t			tindex, | 
|  | xfs_iomap_t		*iomapp, | 
|  | struct writeback_control *wbc, | 
|  | int			startio, | 
|  | int			all_bh, | 
|  | pgoff_t			tlast) | 
|  | { | 
|  | struct page		*page; | 
|  |  | 
|  | for (; tindex <= tlast; tindex++) { | 
|  | page = xfs_probe_delalloc_page(inode, tindex); | 
|  | if (!page) | 
|  | break; | 
|  | xfs_convert_page(inode, page, iomapp, wbc, NULL, | 
|  | startio, all_bh); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calling this without startio set means we are being asked to make a dirty | 
|  | * page ready for freeing it's buffers.  When called with startio set then | 
|  | * we are coming from writepage. | 
|  | * | 
|  | * When called with startio set it is important that we write the WHOLE | 
|  | * page if possible. | 
|  | * The bh->b_state's cannot know if any of the blocks or which block for | 
|  | * that matter are dirty due to mmap writes, and therefore bh uptodate is | 
|  | * only vaild if the page itself isn't completely uptodate.  Some layers | 
|  | * may clear the page dirty flag prior to calling write page, under the | 
|  | * assumption the entire page will be written out; by not writing out the | 
|  | * whole page the page can be reused before all valid dirty data is | 
|  | * written out.  Note: in the case of a page that has been dirty'd by | 
|  | * mapwrite and but partially setup by block_prepare_write the | 
|  | * bh->b_states's will not agree and only ones setup by BPW/BCW will have | 
|  | * valid state, thus the whole page must be written out thing. | 
|  | */ | 
|  |  | 
|  | STATIC int | 
|  | xfs_page_state_convert( | 
|  | struct inode	*inode, | 
|  | struct page	*page, | 
|  | struct writeback_control *wbc, | 
|  | int		startio, | 
|  | int		unmapped) /* also implies page uptodate */ | 
|  | { | 
|  | struct buffer_head	*bh_arr[MAX_BUF_PER_PAGE], *bh, *head; | 
|  | xfs_iomap_t		*iomp, iomap; | 
|  | loff_t			offset; | 
|  | unsigned long           p_offset = 0; | 
|  | __uint64_t              end_offset; | 
|  | pgoff_t                 end_index, last_index, tlast; | 
|  | int			len, err, i, cnt = 0, uptodate = 1; | 
|  | int			flags; | 
|  | int			page_dirty; | 
|  |  | 
|  | /* wait for other IO threads? */ | 
|  | flags = (startio && wbc->sync_mode != WB_SYNC_NONE) ? 0 : BMAPI_TRYLOCK; | 
|  |  | 
|  | /* Is this page beyond the end of the file? */ | 
|  | offset = i_size_read(inode); | 
|  | end_index = offset >> PAGE_CACHE_SHIFT; | 
|  | last_index = (offset - 1) >> PAGE_CACHE_SHIFT; | 
|  | if (page->index >= end_index) { | 
|  | if ((page->index >= end_index + 1) || | 
|  | !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) { | 
|  | if (startio) | 
|  | unlock_page(page); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | end_offset = min_t(unsigned long long, | 
|  | (loff_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset); | 
|  | offset = (loff_t)page->index << PAGE_CACHE_SHIFT; | 
|  |  | 
|  | /* | 
|  | * page_dirty is initially a count of buffers on the page before | 
|  | * EOF and is decrememted as we move each into a cleanable state. | 
|  | */ | 
|  | len = 1 << inode->i_blkbits; | 
|  | p_offset = max(p_offset, PAGE_CACHE_SIZE); | 
|  | p_offset = roundup(p_offset, len); | 
|  | page_dirty = p_offset / len; | 
|  |  | 
|  | iomp = NULL; | 
|  | p_offset = 0; | 
|  | bh = head = page_buffers(page); | 
|  |  | 
|  | do { | 
|  | if (offset >= end_offset) | 
|  | break; | 
|  | if (!buffer_uptodate(bh)) | 
|  | uptodate = 0; | 
|  | if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) | 
|  | continue; | 
|  |  | 
|  | if (iomp) { | 
|  | iomp = xfs_offset_to_map(page, &iomap, p_offset); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * First case, map an unwritten extent and prepare for | 
|  | * extent state conversion transaction on completion. | 
|  | */ | 
|  | if (buffer_unwritten(bh)) { | 
|  | if (!startio) | 
|  | continue; | 
|  | if (!iomp) { | 
|  | err = xfs_map_blocks(inode, offset, len, &iomap, | 
|  | BMAPI_WRITE|BMAPI_IGNSTATE); | 
|  | if (err) { | 
|  | goto error; | 
|  | } | 
|  | iomp = xfs_offset_to_map(page, &iomap, | 
|  | p_offset); | 
|  | } | 
|  | if (iomp) { | 
|  | if (!bh->b_end_io) { | 
|  | err = xfs_map_unwritten(inode, page, | 
|  | head, bh, p_offset, | 
|  | inode->i_blkbits, iomp, | 
|  | wbc, startio, unmapped); | 
|  | if (err) { | 
|  | goto error; | 
|  | } | 
|  | } else { | 
|  | set_bit(BH_Lock, &bh->b_state); | 
|  | } | 
|  | BUG_ON(!buffer_locked(bh)); | 
|  | bh_arr[cnt++] = bh; | 
|  | page_dirty--; | 
|  | } | 
|  | /* | 
|  | * Second case, allocate space for a delalloc buffer. | 
|  | * We can return EAGAIN here in the release page case. | 
|  | */ | 
|  | } else if (buffer_delay(bh)) { | 
|  | if (!iomp) { | 
|  | err = xfs_map_blocks(inode, offset, len, &iomap, | 
|  | BMAPI_ALLOCATE | flags); | 
|  | if (err) { | 
|  | goto error; | 
|  | } | 
|  | iomp = xfs_offset_to_map(page, &iomap, | 
|  | p_offset); | 
|  | } | 
|  | if (iomp) { | 
|  | xfs_map_at_offset(page, bh, p_offset, | 
|  | inode->i_blkbits, iomp); | 
|  | if (startio) { | 
|  | bh_arr[cnt++] = bh; | 
|  | } else { | 
|  | set_buffer_dirty(bh); | 
|  | unlock_buffer(bh); | 
|  | mark_buffer_dirty(bh); | 
|  | } | 
|  | page_dirty--; | 
|  | } | 
|  | } else if ((buffer_uptodate(bh) || PageUptodate(page)) && | 
|  | (unmapped || startio)) { | 
|  |  | 
|  | if (!buffer_mapped(bh)) { | 
|  | int	size; | 
|  |  | 
|  | /* | 
|  | * Getting here implies an unmapped buffer | 
|  | * was found, and we are in a path where we | 
|  | * need to write the whole page out. | 
|  | */ | 
|  | if (!iomp) { | 
|  | size = xfs_probe_unmapped_cluster( | 
|  | inode, page, bh, head); | 
|  | err = xfs_map_blocks(inode, offset, | 
|  | size, &iomap, | 
|  | BMAPI_WRITE|BMAPI_MMAP); | 
|  | if (err) { | 
|  | goto error; | 
|  | } | 
|  | iomp = xfs_offset_to_map(page, &iomap, | 
|  | p_offset); | 
|  | } | 
|  | if (iomp) { | 
|  | xfs_map_at_offset(page, | 
|  | bh, p_offset, | 
|  | inode->i_blkbits, iomp); | 
|  | if (startio) { | 
|  | bh_arr[cnt++] = bh; | 
|  | } else { | 
|  | set_buffer_dirty(bh); | 
|  | unlock_buffer(bh); | 
|  | mark_buffer_dirty(bh); | 
|  | } | 
|  | page_dirty--; | 
|  | } | 
|  | } else if (startio) { | 
|  | if (buffer_uptodate(bh) && | 
|  | !test_and_set_bit(BH_Lock, &bh->b_state)) { | 
|  | bh_arr[cnt++] = bh; | 
|  | page_dirty--; | 
|  | } | 
|  | } | 
|  | } | 
|  | } while (offset += len, p_offset += len, | 
|  | ((bh = bh->b_this_page) != head)); | 
|  |  | 
|  | if (uptodate && bh == head) | 
|  | SetPageUptodate(page); | 
|  |  | 
|  | if (startio) { | 
|  | xfs_submit_page(page, wbc, bh_arr, cnt, 0, !page_dirty); | 
|  | } | 
|  |  | 
|  | if (iomp) { | 
|  | offset = (iomp->iomap_offset + iomp->iomap_bsize - 1) >> | 
|  | PAGE_CACHE_SHIFT; | 
|  | tlast = min_t(pgoff_t, offset, last_index); | 
|  | xfs_cluster_write(inode, page->index + 1, iomp, wbc, | 
|  | startio, unmapped, tlast); | 
|  | } | 
|  |  | 
|  | return page_dirty; | 
|  |  | 
|  | error: | 
|  | for (i = 0; i < cnt; i++) { | 
|  | unlock_buffer(bh_arr[i]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If it's delalloc and we have nowhere to put it, | 
|  | * throw it away, unless the lower layers told | 
|  | * us to try again. | 
|  | */ | 
|  | if (err != -EAGAIN) { | 
|  | if (!unmapped) { | 
|  | block_invalidatepage(page, 0); | 
|  | } | 
|  | ClearPageUptodate(page); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | __linvfs_get_block( | 
|  | struct inode		*inode, | 
|  | sector_t		iblock, | 
|  | unsigned long		blocks, | 
|  | struct buffer_head	*bh_result, | 
|  | int			create, | 
|  | int			direct, | 
|  | bmapi_flags_t		flags) | 
|  | { | 
|  | vnode_t			*vp = LINVFS_GET_VP(inode); | 
|  | xfs_iomap_t		iomap; | 
|  | xfs_off_t		offset; | 
|  | ssize_t			size; | 
|  | int			retpbbm = 1; | 
|  | int			error; | 
|  |  | 
|  | if (blocks) { | 
|  | offset = blocks << inode->i_blkbits;	/* 64 bit goodness */ | 
|  | size = (ssize_t) min_t(xfs_off_t, offset, LONG_MAX); | 
|  | } else { | 
|  | size = 1 << inode->i_blkbits; | 
|  | } | 
|  | offset = (xfs_off_t)iblock << inode->i_blkbits; | 
|  |  | 
|  | VOP_BMAP(vp, offset, size, | 
|  | create ? flags : BMAPI_READ, &iomap, &retpbbm, error); | 
|  | if (error) | 
|  | return -error; | 
|  |  | 
|  | if (retpbbm == 0) | 
|  | return 0; | 
|  |  | 
|  | if (iomap.iomap_bn != IOMAP_DADDR_NULL) { | 
|  | xfs_daddr_t	bn; | 
|  | xfs_off_t	delta; | 
|  |  | 
|  | /* For unwritten extents do not report a disk address on | 
|  | * the read case (treat as if we're reading into a hole). | 
|  | */ | 
|  | if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) { | 
|  | delta = offset - iomap.iomap_offset; | 
|  | delta >>= inode->i_blkbits; | 
|  |  | 
|  | bn = iomap.iomap_bn >> (inode->i_blkbits - BBSHIFT); | 
|  | bn += delta; | 
|  | BUG_ON(!bn && !(iomap.iomap_flags & IOMAP_REALTIME)); | 
|  | bh_result->b_blocknr = bn; | 
|  | set_buffer_mapped(bh_result); | 
|  | } | 
|  | if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) { | 
|  | if (direct) | 
|  | bh_result->b_private = inode; | 
|  | set_buffer_unwritten(bh_result); | 
|  | set_buffer_delay(bh_result); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If this is a realtime file, data might be on a new device */ | 
|  | bh_result->b_bdev = iomap.iomap_target->pbr_bdev; | 
|  |  | 
|  | /* If we previously allocated a block out beyond eof and | 
|  | * we are now coming back to use it then we will need to | 
|  | * flag it as new even if it has a disk address. | 
|  | */ | 
|  | if (create && | 
|  | ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) || | 
|  | (offset >= i_size_read(inode)) || (iomap.iomap_flags & IOMAP_NEW))) | 
|  | set_buffer_new(bh_result); | 
|  |  | 
|  | if (iomap.iomap_flags & IOMAP_DELAY) { | 
|  | BUG_ON(direct); | 
|  | if (create) { | 
|  | set_buffer_uptodate(bh_result); | 
|  | set_buffer_mapped(bh_result); | 
|  | set_buffer_delay(bh_result); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (blocks) { | 
|  | ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0); | 
|  | offset = min_t(xfs_off_t, | 
|  | iomap.iomap_bsize - iomap.iomap_delta, | 
|  | blocks << inode->i_blkbits); | 
|  | bh_result->b_size = (u32) min_t(xfs_off_t, UINT_MAX, offset); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int | 
|  | linvfs_get_block( | 
|  | struct inode		*inode, | 
|  | sector_t		iblock, | 
|  | struct buffer_head	*bh_result, | 
|  | int			create) | 
|  | { | 
|  | return __linvfs_get_block(inode, iblock, 0, bh_result, | 
|  | create, 0, BMAPI_WRITE); | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | linvfs_get_blocks_direct( | 
|  | struct inode		*inode, | 
|  | sector_t		iblock, | 
|  | unsigned long		max_blocks, | 
|  | struct buffer_head	*bh_result, | 
|  | int			create) | 
|  | { | 
|  | return __linvfs_get_block(inode, iblock, max_blocks, bh_result, | 
|  | create, 1, BMAPI_WRITE|BMAPI_DIRECT); | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | linvfs_end_io_direct( | 
|  | struct kiocb	*iocb, | 
|  | loff_t		offset, | 
|  | ssize_t		size, | 
|  | void		*private) | 
|  | { | 
|  | xfs_ioend_t	*ioend = iocb->private; | 
|  |  | 
|  | /* | 
|  | * Non-NULL private data means we need to issue a transaction to | 
|  | * convert a range from unwritten to written extents.  This needs | 
|  | * to happen from process contect but aio+dio I/O completion | 
|  | * happens from irq context so we need to defer it to a workqueue. | 
|  | * This is not nessecary for synchronous direct I/O, but we do | 
|  | * it anyway to keep the code uniform and simpler. | 
|  | * | 
|  | * The core direct I/O code might be changed to always call the | 
|  | * completion handler in the future, in which case all this can | 
|  | * go away. | 
|  | */ | 
|  | if (private && size > 0) { | 
|  | ioend->io_offset = offset; | 
|  | ioend->io_size = size; | 
|  | xfs_finish_ioend(ioend); | 
|  | } else { | 
|  | ASSERT(size >= 0); | 
|  | xfs_destroy_ioend(ioend); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * blockdev_direct_IO can return an error even afer the I/O | 
|  | * completion handler was called.  Thus we need to protect | 
|  | * against double-freeing. | 
|  | */ | 
|  | iocb->private = NULL; | 
|  | } | 
|  |  | 
|  | STATIC ssize_t | 
|  | linvfs_direct_IO( | 
|  | int			rw, | 
|  | struct kiocb		*iocb, | 
|  | const struct iovec	*iov, | 
|  | loff_t			offset, | 
|  | unsigned long		nr_segs) | 
|  | { | 
|  | struct file	*file = iocb->ki_filp; | 
|  | struct inode	*inode = file->f_mapping->host; | 
|  | vnode_t		*vp = LINVFS_GET_VP(inode); | 
|  | xfs_iomap_t	iomap; | 
|  | int		maps = 1; | 
|  | int		error; | 
|  | ssize_t		ret; | 
|  |  | 
|  | VOP_BMAP(vp, offset, 0, BMAPI_DEVICE, &iomap, &maps, error); | 
|  | if (error) | 
|  | return -error; | 
|  |  | 
|  | iocb->private = xfs_alloc_ioend(inode); | 
|  |  | 
|  | ret = blockdev_direct_IO_own_locking(rw, iocb, inode, | 
|  | iomap.iomap_target->pbr_bdev, | 
|  | iov, offset, nr_segs, | 
|  | linvfs_get_blocks_direct, | 
|  | linvfs_end_io_direct); | 
|  |  | 
|  | if (unlikely(ret <= 0 && iocb->private)) | 
|  | xfs_destroy_ioend(iocb->private); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | STATIC sector_t | 
|  | linvfs_bmap( | 
|  | struct address_space	*mapping, | 
|  | sector_t		block) | 
|  | { | 
|  | struct inode		*inode = (struct inode *)mapping->host; | 
|  | vnode_t			*vp = LINVFS_GET_VP(inode); | 
|  | int			error; | 
|  |  | 
|  | vn_trace_entry(vp, "linvfs_bmap", (inst_t *)__return_address); | 
|  |  | 
|  | VOP_RWLOCK(vp, VRWLOCK_READ); | 
|  | VOP_FLUSH_PAGES(vp, (xfs_off_t)0, -1, 0, FI_REMAPF, error); | 
|  | VOP_RWUNLOCK(vp, VRWLOCK_READ); | 
|  | return generic_block_bmap(mapping, block, linvfs_get_block); | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | linvfs_readpage( | 
|  | struct file		*unused, | 
|  | struct page		*page) | 
|  | { | 
|  | return mpage_readpage(page, linvfs_get_block); | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | linvfs_readpages( | 
|  | struct file		*unused, | 
|  | struct address_space	*mapping, | 
|  | struct list_head	*pages, | 
|  | unsigned		nr_pages) | 
|  | { | 
|  | return mpage_readpages(mapping, pages, nr_pages, linvfs_get_block); | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_count_page_state( | 
|  | struct page		*page, | 
|  | int			*delalloc, | 
|  | int			*unmapped, | 
|  | int			*unwritten) | 
|  | { | 
|  | struct buffer_head	*bh, *head; | 
|  |  | 
|  | *delalloc = *unmapped = *unwritten = 0; | 
|  |  | 
|  | bh = head = page_buffers(page); | 
|  | do { | 
|  | if (buffer_uptodate(bh) && !buffer_mapped(bh)) | 
|  | (*unmapped) = 1; | 
|  | else if (buffer_unwritten(bh) && !buffer_delay(bh)) | 
|  | clear_buffer_unwritten(bh); | 
|  | else if (buffer_unwritten(bh)) | 
|  | (*unwritten) = 1; | 
|  | else if (buffer_delay(bh)) | 
|  | (*delalloc) = 1; | 
|  | } while ((bh = bh->b_this_page) != head); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * writepage: Called from one of two places: | 
|  | * | 
|  | * 1. we are flushing a delalloc buffer head. | 
|  | * | 
|  | * 2. we are writing out a dirty page. Typically the page dirty | 
|  | *    state is cleared before we get here. In this case is it | 
|  | *    conceivable we have no buffer heads. | 
|  | * | 
|  | * For delalloc space on the page we need to allocate space and | 
|  | * flush it. For unmapped buffer heads on the page we should | 
|  | * allocate space if the page is uptodate. For any other dirty | 
|  | * buffer heads on the page we should flush them. | 
|  | * | 
|  | * If we detect that a transaction would be required to flush | 
|  | * the page, we have to check the process flags first, if we | 
|  | * are already in a transaction or disk I/O during allocations | 
|  | * is off, we need to fail the writepage and redirty the page. | 
|  | */ | 
|  |  | 
|  | STATIC int | 
|  | linvfs_writepage( | 
|  | struct page		*page, | 
|  | struct writeback_control *wbc) | 
|  | { | 
|  | int			error; | 
|  | int			need_trans; | 
|  | int			delalloc, unmapped, unwritten; | 
|  | struct inode		*inode = page->mapping->host; | 
|  |  | 
|  | xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0); | 
|  |  | 
|  | /* | 
|  | * We need a transaction if: | 
|  | *  1. There are delalloc buffers on the page | 
|  | *  2. The page is uptodate and we have unmapped buffers | 
|  | *  3. The page is uptodate and we have no buffers | 
|  | *  4. There are unwritten buffers on the page | 
|  | */ | 
|  |  | 
|  | if (!page_has_buffers(page)) { | 
|  | unmapped = 1; | 
|  | need_trans = 1; | 
|  | } else { | 
|  | xfs_count_page_state(page, &delalloc, &unmapped, &unwritten); | 
|  | if (!PageUptodate(page)) | 
|  | unmapped = 0; | 
|  | need_trans = delalloc + unmapped + unwritten; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we need a transaction and the process flags say | 
|  | * we are already in a transaction, or no IO is allowed | 
|  | * then mark the page dirty again and leave the page | 
|  | * as is. | 
|  | */ | 
|  | if (PFLAGS_TEST_FSTRANS() && need_trans) | 
|  | goto out_fail; | 
|  |  | 
|  | /* | 
|  | * Delay hooking up buffer heads until we have | 
|  | * made our go/no-go decision. | 
|  | */ | 
|  | if (!page_has_buffers(page)) | 
|  | create_empty_buffers(page, 1 << inode->i_blkbits, 0); | 
|  |  | 
|  | /* | 
|  | * Convert delayed allocate, unwritten or unmapped space | 
|  | * to real space and flush out to disk. | 
|  | */ | 
|  | error = xfs_page_state_convert(inode, page, wbc, 1, unmapped); | 
|  | if (error == -EAGAIN) | 
|  | goto out_fail; | 
|  | if (unlikely(error < 0)) | 
|  | goto out_unlock; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_fail: | 
|  | redirty_page_for_writepage(wbc, page); | 
|  | unlock_page(page); | 
|  | return 0; | 
|  | out_unlock: | 
|  | unlock_page(page); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | linvfs_invalidate_page( | 
|  | struct page		*page, | 
|  | unsigned long		offset) | 
|  | { | 
|  | xfs_page_trace(XFS_INVALIDPAGE_ENTER, | 
|  | page->mapping->host, page, offset); | 
|  | return block_invalidatepage(page, offset); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called to move a page into cleanable state - and from there | 
|  | * to be released. Possibly the page is already clean. We always | 
|  | * have buffer heads in this call. | 
|  | * | 
|  | * Returns 0 if the page is ok to release, 1 otherwise. | 
|  | * | 
|  | * Possible scenarios are: | 
|  | * | 
|  | * 1. We are being called to release a page which has been written | 
|  | *    to via regular I/O. buffer heads will be dirty and possibly | 
|  | *    delalloc. If no delalloc buffer heads in this case then we | 
|  | *    can just return zero. | 
|  | * | 
|  | * 2. We are called to release a page which has been written via | 
|  | *    mmap, all we need to do is ensure there is no delalloc | 
|  | *    state in the buffer heads, if not we can let the caller | 
|  | *    free them and we should come back later via writepage. | 
|  | */ | 
|  | STATIC int | 
|  | linvfs_release_page( | 
|  | struct page		*page, | 
|  | gfp_t			gfp_mask) | 
|  | { | 
|  | struct inode		*inode = page->mapping->host; | 
|  | int			dirty, delalloc, unmapped, unwritten; | 
|  | struct writeback_control wbc = { | 
|  | .sync_mode = WB_SYNC_ALL, | 
|  | .nr_to_write = 1, | 
|  | }; | 
|  |  | 
|  | xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, gfp_mask); | 
|  |  | 
|  | xfs_count_page_state(page, &delalloc, &unmapped, &unwritten); | 
|  | if (!delalloc && !unwritten) | 
|  | goto free_buffers; | 
|  |  | 
|  | if (!(gfp_mask & __GFP_FS)) | 
|  | return 0; | 
|  |  | 
|  | /* If we are already inside a transaction or the thread cannot | 
|  | * do I/O, we cannot release this page. | 
|  | */ | 
|  | if (PFLAGS_TEST_FSTRANS()) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Convert delalloc space to real space, do not flush the | 
|  | * data out to disk, that will be done by the caller. | 
|  | * Never need to allocate space here - we will always | 
|  | * come back to writepage in that case. | 
|  | */ | 
|  | dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0); | 
|  | if (dirty == 0 && !unwritten) | 
|  | goto free_buffers; | 
|  | return 0; | 
|  |  | 
|  | free_buffers: | 
|  | return try_to_free_buffers(page); | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | linvfs_prepare_write( | 
|  | struct file		*file, | 
|  | struct page		*page, | 
|  | unsigned int		from, | 
|  | unsigned int		to) | 
|  | { | 
|  | return block_prepare_write(page, from, to, linvfs_get_block); | 
|  | } | 
|  |  | 
|  | struct address_space_operations linvfs_aops = { | 
|  | .readpage		= linvfs_readpage, | 
|  | .readpages		= linvfs_readpages, | 
|  | .writepage		= linvfs_writepage, | 
|  | .sync_page		= block_sync_page, | 
|  | .releasepage		= linvfs_release_page, | 
|  | .invalidatepage		= linvfs_invalidate_page, | 
|  | .prepare_write		= linvfs_prepare_write, | 
|  | .commit_write		= generic_commit_write, | 
|  | .bmap			= linvfs_bmap, | 
|  | .direct_IO		= linvfs_direct_IO, | 
|  | }; |