|  | /* | 
|  | * Kernel support for the ptrace() and syscall tracing interfaces. | 
|  | * | 
|  | * Copyright (C) 1999-2005 Hewlett-Packard Co | 
|  | *	David Mosberger-Tang <davidm@hpl.hp.com> | 
|  | * | 
|  | * Derived from the x86 and Alpha versions. | 
|  | */ | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/smp_lock.h> | 
|  | #include <linux/user.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/audit.h> | 
|  | #include <linux/signal.h> | 
|  |  | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/ptrace_offsets.h> | 
|  | #include <asm/rse.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/unwind.h> | 
|  | #ifdef CONFIG_PERFMON | 
|  | #include <asm/perfmon.h> | 
|  | #endif | 
|  |  | 
|  | #include "entry.h" | 
|  |  | 
|  | /* | 
|  | * Bits in the PSR that we allow ptrace() to change: | 
|  | *	be, up, ac, mfl, mfh (the user mask; five bits total) | 
|  | *	db (debug breakpoint fault; one bit) | 
|  | *	id (instruction debug fault disable; one bit) | 
|  | *	dd (data debug fault disable; one bit) | 
|  | *	ri (restart instruction; two bits) | 
|  | *	is (instruction set; one bit) | 
|  | */ | 
|  | #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS	\ | 
|  | | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI) | 
|  |  | 
|  | #define MASK(nbits)	((1UL << (nbits)) - 1)	/* mask with NBITS bits set */ | 
|  | #define PFM_MASK	MASK(38) | 
|  |  | 
|  | #define PTRACE_DEBUG	0 | 
|  |  | 
|  | #if PTRACE_DEBUG | 
|  | # define dprintk(format...)	printk(format) | 
|  | # define inline | 
|  | #else | 
|  | # define dprintk(format...) | 
|  | #endif | 
|  |  | 
|  | /* Return TRUE if PT was created due to kernel-entry via a system-call.  */ | 
|  |  | 
|  | static inline int | 
|  | in_syscall (struct pt_regs *pt) | 
|  | { | 
|  | return (long) pt->cr_ifs >= 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT | 
|  | * bitset where bit i is set iff the NaT bit of register i is set. | 
|  | */ | 
|  | unsigned long | 
|  | ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat) | 
|  | { | 
|  | #	define GET_BITS(first, last, unat)				\ | 
|  | ({								\ | 
|  | unsigned long bit = ia64_unat_pos(&pt->r##first);	\ | 
|  | unsigned long nbits = (last - first + 1);		\ | 
|  | unsigned long mask = MASK(nbits) << first;		\ | 
|  | unsigned long dist;					\ | 
|  | if (bit < first)					\ | 
|  | dist = 64 + bit - first;			\ | 
|  | else							\ | 
|  | dist = bit - first;				\ | 
|  | ia64_rotr(unat, dist) & mask;				\ | 
|  | }) | 
|  | unsigned long val; | 
|  |  | 
|  | /* | 
|  | * Registers that are stored consecutively in struct pt_regs | 
|  | * can be handled in parallel.  If the register order in | 
|  | * struct_pt_regs changes, this code MUST be updated. | 
|  | */ | 
|  | val  = GET_BITS( 1,  1, scratch_unat); | 
|  | val |= GET_BITS( 2,  3, scratch_unat); | 
|  | val |= GET_BITS(12, 13, scratch_unat); | 
|  | val |= GET_BITS(14, 14, scratch_unat); | 
|  | val |= GET_BITS(15, 15, scratch_unat); | 
|  | val |= GET_BITS( 8, 11, scratch_unat); | 
|  | val |= GET_BITS(16, 31, scratch_unat); | 
|  | return val; | 
|  |  | 
|  | #	undef GET_BITS | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the NaT bits for the scratch registers according to NAT and | 
|  | * return the resulting unat (assuming the scratch registers are | 
|  | * stored in PT). | 
|  | */ | 
|  | unsigned long | 
|  | ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat) | 
|  | { | 
|  | #	define PUT_BITS(first, last, nat)				\ | 
|  | ({								\ | 
|  | unsigned long bit = ia64_unat_pos(&pt->r##first);	\ | 
|  | unsigned long nbits = (last - first + 1);		\ | 
|  | unsigned long mask = MASK(nbits) << first;		\ | 
|  | long dist;						\ | 
|  | if (bit < first)					\ | 
|  | dist = 64 + bit - first;			\ | 
|  | else							\ | 
|  | dist = bit - first;				\ | 
|  | ia64_rotl(nat & mask, dist);				\ | 
|  | }) | 
|  | unsigned long scratch_unat; | 
|  |  | 
|  | /* | 
|  | * Registers that are stored consecutively in struct pt_regs | 
|  | * can be handled in parallel.  If the register order in | 
|  | * struct_pt_regs changes, this code MUST be updated. | 
|  | */ | 
|  | scratch_unat  = PUT_BITS( 1,  1, nat); | 
|  | scratch_unat |= PUT_BITS( 2,  3, nat); | 
|  | scratch_unat |= PUT_BITS(12, 13, nat); | 
|  | scratch_unat |= PUT_BITS(14, 14, nat); | 
|  | scratch_unat |= PUT_BITS(15, 15, nat); | 
|  | scratch_unat |= PUT_BITS( 8, 11, nat); | 
|  | scratch_unat |= PUT_BITS(16, 31, nat); | 
|  |  | 
|  | return scratch_unat; | 
|  |  | 
|  | #	undef PUT_BITS | 
|  | } | 
|  |  | 
|  | #define IA64_MLX_TEMPLATE	0x2 | 
|  | #define IA64_MOVL_OPCODE	6 | 
|  |  | 
|  | void | 
|  | ia64_increment_ip (struct pt_regs *regs) | 
|  | { | 
|  | unsigned long w0, ri = ia64_psr(regs)->ri + 1; | 
|  |  | 
|  | if (ri > 2) { | 
|  | ri = 0; | 
|  | regs->cr_iip += 16; | 
|  | } else if (ri == 2) { | 
|  | get_user(w0, (char __user *) regs->cr_iip + 0); | 
|  | if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) { | 
|  | /* | 
|  | * rfi'ing to slot 2 of an MLX bundle causes | 
|  | * an illegal operation fault.  We don't want | 
|  | * that to happen... | 
|  | */ | 
|  | ri = 0; | 
|  | regs->cr_iip += 16; | 
|  | } | 
|  | } | 
|  | ia64_psr(regs)->ri = ri; | 
|  | } | 
|  |  | 
|  | void | 
|  | ia64_decrement_ip (struct pt_regs *regs) | 
|  | { | 
|  | unsigned long w0, ri = ia64_psr(regs)->ri - 1; | 
|  |  | 
|  | if (ia64_psr(regs)->ri == 0) { | 
|  | regs->cr_iip -= 16; | 
|  | ri = 2; | 
|  | get_user(w0, (char __user *) regs->cr_iip + 0); | 
|  | if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) { | 
|  | /* | 
|  | * rfi'ing to slot 2 of an MLX bundle causes | 
|  | * an illegal operation fault.  We don't want | 
|  | * that to happen... | 
|  | */ | 
|  | ri = 1; | 
|  | } | 
|  | } | 
|  | ia64_psr(regs)->ri = ri; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine is used to read an rnat bits that are stored on the | 
|  | * kernel backing store.  Since, in general, the alignment of the user | 
|  | * and kernel are different, this is not completely trivial.  In | 
|  | * essence, we need to construct the user RNAT based on up to two | 
|  | * kernel RNAT values and/or the RNAT value saved in the child's | 
|  | * pt_regs. | 
|  | * | 
|  | * user rbs | 
|  | * | 
|  | * +--------+ <-- lowest address | 
|  | * | slot62 | | 
|  | * +--------+ | 
|  | * |  rnat  | 0x....1f8 | 
|  | * +--------+ | 
|  | * | slot00 | \ | 
|  | * +--------+ | | 
|  | * | slot01 | > child_regs->ar_rnat | 
|  | * +--------+ | | 
|  | * | slot02 | /				kernel rbs | 
|  | * +--------+				+--------+ | 
|  | *	    <- child_regs->ar_bspstore	| slot61 | <-- krbs | 
|  | * +- - - - +				+--------+ | 
|  | *					| slot62 | | 
|  | * +- - - - +				+--------+ | 
|  | *					|  rnat	 | | 
|  | * +- - - - +				+--------+ | 
|  | *   vrnat				| slot00 | | 
|  | * +- - - - +				+--------+ | 
|  | *					=	 = | 
|  | *					+--------+ | 
|  | *					| slot00 | \ | 
|  | *					+--------+ | | 
|  | *					| slot01 | > child_stack->ar_rnat | 
|  | *					+--------+ | | 
|  | *					| slot02 | / | 
|  | *					+--------+ | 
|  | *						  <--- child_stack->ar_bspstore | 
|  | * | 
|  | * The way to think of this code is as follows: bit 0 in the user rnat | 
|  | * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat | 
|  | * value.  The kernel rnat value holding this bit is stored in | 
|  | * variable rnat0.  rnat1 is loaded with the kernel rnat value that | 
|  | * form the upper bits of the user rnat value. | 
|  | * | 
|  | * Boundary cases: | 
|  | * | 
|  | * o when reading the rnat "below" the first rnat slot on the kernel | 
|  | *   backing store, rnat0/rnat1 are set to 0 and the low order bits are | 
|  | *   merged in from pt->ar_rnat. | 
|  | * | 
|  | * o when reading the rnat "above" the last rnat slot on the kernel | 
|  | *   backing store, rnat0/rnat1 gets its value from sw->ar_rnat. | 
|  | */ | 
|  | static unsigned long | 
|  | get_rnat (struct task_struct *task, struct switch_stack *sw, | 
|  | unsigned long *krbs, unsigned long *urnat_addr, | 
|  | unsigned long *urbs_end) | 
|  | { | 
|  | unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr; | 
|  | unsigned long umask = 0, mask, m; | 
|  | unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift; | 
|  | long num_regs, nbits; | 
|  | struct pt_regs *pt; | 
|  |  | 
|  | pt = task_pt_regs(task); | 
|  | kbsp = (unsigned long *) sw->ar_bspstore; | 
|  | ubspstore = (unsigned long *) pt->ar_bspstore; | 
|  |  | 
|  | if (urbs_end < urnat_addr) | 
|  | nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end); | 
|  | else | 
|  | nbits = 63; | 
|  | mask = MASK(nbits); | 
|  | /* | 
|  | * First, figure out which bit number slot 0 in user-land maps | 
|  | * to in the kernel rnat.  Do this by figuring out how many | 
|  | * register slots we're beyond the user's backingstore and | 
|  | * then computing the equivalent address in kernel space. | 
|  | */ | 
|  | num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1); | 
|  | slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs); | 
|  | shift = ia64_rse_slot_num(slot0_kaddr); | 
|  | rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr); | 
|  | rnat0_kaddr = rnat1_kaddr - 64; | 
|  |  | 
|  | if (ubspstore + 63 > urnat_addr) { | 
|  | /* some bits need to be merged in from pt->ar_rnat */ | 
|  | umask = MASK(ia64_rse_slot_num(ubspstore)) & mask; | 
|  | urnat = (pt->ar_rnat & umask); | 
|  | mask &= ~umask; | 
|  | if (!mask) | 
|  | return urnat; | 
|  | } | 
|  |  | 
|  | m = mask << shift; | 
|  | if (rnat0_kaddr >= kbsp) | 
|  | rnat0 = sw->ar_rnat; | 
|  | else if (rnat0_kaddr > krbs) | 
|  | rnat0 = *rnat0_kaddr; | 
|  | urnat |= (rnat0 & m) >> shift; | 
|  |  | 
|  | m = mask >> (63 - shift); | 
|  | if (rnat1_kaddr >= kbsp) | 
|  | rnat1 = sw->ar_rnat; | 
|  | else if (rnat1_kaddr > krbs) | 
|  | rnat1 = *rnat1_kaddr; | 
|  | urnat |= (rnat1 & m) << (63 - shift); | 
|  | return urnat; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The reverse of get_rnat. | 
|  | */ | 
|  | static void | 
|  | put_rnat (struct task_struct *task, struct switch_stack *sw, | 
|  | unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat, | 
|  | unsigned long *urbs_end) | 
|  | { | 
|  | unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m; | 
|  | unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift; | 
|  | long num_regs, nbits; | 
|  | struct pt_regs *pt; | 
|  | unsigned long cfm, *urbs_kargs; | 
|  |  | 
|  | pt = task_pt_regs(task); | 
|  | kbsp = (unsigned long *) sw->ar_bspstore; | 
|  | ubspstore = (unsigned long *) pt->ar_bspstore; | 
|  |  | 
|  | urbs_kargs = urbs_end; | 
|  | if (in_syscall(pt)) { | 
|  | /* | 
|  | * If entered via syscall, don't allow user to set rnat bits | 
|  | * for syscall args. | 
|  | */ | 
|  | cfm = pt->cr_ifs; | 
|  | urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f)); | 
|  | } | 
|  |  | 
|  | if (urbs_kargs >= urnat_addr) | 
|  | nbits = 63; | 
|  | else { | 
|  | if ((urnat_addr - 63) >= urbs_kargs) | 
|  | return; | 
|  | nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs); | 
|  | } | 
|  | mask = MASK(nbits); | 
|  |  | 
|  | /* | 
|  | * First, figure out which bit number slot 0 in user-land maps | 
|  | * to in the kernel rnat.  Do this by figuring out how many | 
|  | * register slots we're beyond the user's backingstore and | 
|  | * then computing the equivalent address in kernel space. | 
|  | */ | 
|  | num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1); | 
|  | slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs); | 
|  | shift = ia64_rse_slot_num(slot0_kaddr); | 
|  | rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr); | 
|  | rnat0_kaddr = rnat1_kaddr - 64; | 
|  |  | 
|  | if (ubspstore + 63 > urnat_addr) { | 
|  | /* some bits need to be place in pt->ar_rnat: */ | 
|  | umask = MASK(ia64_rse_slot_num(ubspstore)) & mask; | 
|  | pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask); | 
|  | mask &= ~umask; | 
|  | if (!mask) | 
|  | return; | 
|  | } | 
|  | /* | 
|  | * Note: Section 11.1 of the EAS guarantees that bit 63 of an | 
|  | * rnat slot is ignored. so we don't have to clear it here. | 
|  | */ | 
|  | rnat0 = (urnat << shift); | 
|  | m = mask << shift; | 
|  | if (rnat0_kaddr >= kbsp) | 
|  | sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m); | 
|  | else if (rnat0_kaddr > krbs) | 
|  | *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m)); | 
|  |  | 
|  | rnat1 = (urnat >> (63 - shift)); | 
|  | m = mask >> (63 - shift); | 
|  | if (rnat1_kaddr >= kbsp) | 
|  | sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m); | 
|  | else if (rnat1_kaddr > krbs) | 
|  | *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m)); | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | on_kernel_rbs (unsigned long addr, unsigned long bspstore, | 
|  | unsigned long urbs_end) | 
|  | { | 
|  | unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *) | 
|  | urbs_end); | 
|  | return (addr >= bspstore && addr <= (unsigned long) rnat_addr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read a word from the user-level backing store of task CHILD.  ADDR | 
|  | * is the user-level address to read the word from, VAL a pointer to | 
|  | * the return value, and USER_BSP gives the end of the user-level | 
|  | * backing store (i.e., it's the address that would be in ar.bsp after | 
|  | * the user executed a "cover" instruction). | 
|  | * | 
|  | * This routine takes care of accessing the kernel register backing | 
|  | * store for those registers that got spilled there.  It also takes | 
|  | * care of calculating the appropriate RNaT collection words. | 
|  | */ | 
|  | long | 
|  | ia64_peek (struct task_struct *child, struct switch_stack *child_stack, | 
|  | unsigned long user_rbs_end, unsigned long addr, long *val) | 
|  | { | 
|  | unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr; | 
|  | struct pt_regs *child_regs; | 
|  | size_t copied; | 
|  | long ret; | 
|  |  | 
|  | urbs_end = (long *) user_rbs_end; | 
|  | laddr = (unsigned long *) addr; | 
|  | child_regs = task_pt_regs(child); | 
|  | bspstore = (unsigned long *) child_regs->ar_bspstore; | 
|  | krbs = (unsigned long *) child + IA64_RBS_OFFSET/8; | 
|  | if (on_kernel_rbs(addr, (unsigned long) bspstore, | 
|  | (unsigned long) urbs_end)) | 
|  | { | 
|  | /* | 
|  | * Attempt to read the RBS in an area that's actually | 
|  | * on the kernel RBS => read the corresponding bits in | 
|  | * the kernel RBS. | 
|  | */ | 
|  | rnat_addr = ia64_rse_rnat_addr(laddr); | 
|  | ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end); | 
|  |  | 
|  | if (laddr == rnat_addr) { | 
|  | /* return NaT collection word itself */ | 
|  | *val = ret; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) { | 
|  | /* | 
|  | * It is implementation dependent whether the | 
|  | * data portion of a NaT value gets saved on a | 
|  | * st8.spill or RSE spill (e.g., see EAS 2.6, | 
|  | * 4.4.4.6 Register Spill and Fill).  To get | 
|  | * consistent behavior across all possible | 
|  | * IA-64 implementations, we return zero in | 
|  | * this case. | 
|  | */ | 
|  | *val = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (laddr < urbs_end) { | 
|  | /* | 
|  | * The desired word is on the kernel RBS and | 
|  | * is not a NaT. | 
|  | */ | 
|  | regnum = ia64_rse_num_regs(bspstore, laddr); | 
|  | *val = *ia64_rse_skip_regs(krbs, regnum); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | copied = access_process_vm(child, addr, &ret, sizeof(ret), 0); | 
|  | if (copied != sizeof(ret)) | 
|  | return -EIO; | 
|  | *val = ret; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | long | 
|  | ia64_poke (struct task_struct *child, struct switch_stack *child_stack, | 
|  | unsigned long user_rbs_end, unsigned long addr, long val) | 
|  | { | 
|  | unsigned long *bspstore, *krbs, regnum, *laddr; | 
|  | unsigned long *urbs_end = (long *) user_rbs_end; | 
|  | struct pt_regs *child_regs; | 
|  |  | 
|  | laddr = (unsigned long *) addr; | 
|  | child_regs = task_pt_regs(child); | 
|  | bspstore = (unsigned long *) child_regs->ar_bspstore; | 
|  | krbs = (unsigned long *) child + IA64_RBS_OFFSET/8; | 
|  | if (on_kernel_rbs(addr, (unsigned long) bspstore, | 
|  | (unsigned long) urbs_end)) | 
|  | { | 
|  | /* | 
|  | * Attempt to write the RBS in an area that's actually | 
|  | * on the kernel RBS => write the corresponding bits | 
|  | * in the kernel RBS. | 
|  | */ | 
|  | if (ia64_rse_is_rnat_slot(laddr)) | 
|  | put_rnat(child, child_stack, krbs, laddr, val, | 
|  | urbs_end); | 
|  | else { | 
|  | if (laddr < urbs_end) { | 
|  | regnum = ia64_rse_num_regs(bspstore, laddr); | 
|  | *ia64_rse_skip_regs(krbs, regnum) = val; | 
|  | } | 
|  | } | 
|  | } else if (access_process_vm(child, addr, &val, sizeof(val), 1) | 
|  | != sizeof(val)) | 
|  | return -EIO; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the address of the end of the user-level register backing | 
|  | * store.  This is the address that would have been stored in ar.bsp | 
|  | * if the user had executed a "cover" instruction right before | 
|  | * entering the kernel.  If CFMP is not NULL, it is used to return the | 
|  | * "current frame mask" that was active at the time the kernel was | 
|  | * entered. | 
|  | */ | 
|  | unsigned long | 
|  | ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt, | 
|  | unsigned long *cfmp) | 
|  | { | 
|  | unsigned long *krbs, *bspstore, cfm = pt->cr_ifs; | 
|  | long ndirty; | 
|  |  | 
|  | krbs = (unsigned long *) child + IA64_RBS_OFFSET/8; | 
|  | bspstore = (unsigned long *) pt->ar_bspstore; | 
|  | ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19)); | 
|  |  | 
|  | if (in_syscall(pt)) | 
|  | ndirty += (cfm & 0x7f); | 
|  | else | 
|  | cfm &= ~(1UL << 63);	/* clear valid bit */ | 
|  |  | 
|  | if (cfmp) | 
|  | *cfmp = cfm; | 
|  | return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Synchronize (i.e, write) the RSE backing store living in kernel | 
|  | * space to the VM of the CHILD task.  SW and PT are the pointers to | 
|  | * the switch_stack and pt_regs structures, respectively. | 
|  | * USER_RBS_END is the user-level address at which the backing store | 
|  | * ends. | 
|  | */ | 
|  | long | 
|  | ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw, | 
|  | unsigned long user_rbs_start, unsigned long user_rbs_end) | 
|  | { | 
|  | unsigned long addr, val; | 
|  | long ret; | 
|  |  | 
|  | /* now copy word for word from kernel rbs to user rbs: */ | 
|  | for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) { | 
|  | ret = ia64_peek(child, sw, user_rbs_end, addr, &val); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (access_process_vm(child, addr, &val, sizeof(val), 1) | 
|  | != sizeof(val)) | 
|  | return -EIO; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | thread_matches (struct task_struct *thread, unsigned long addr) | 
|  | { | 
|  | unsigned long thread_rbs_end; | 
|  | struct pt_regs *thread_regs; | 
|  |  | 
|  | if (ptrace_check_attach(thread, 0) < 0) | 
|  | /* | 
|  | * If the thread is not in an attachable state, we'll | 
|  | * ignore it.  The net effect is that if ADDR happens | 
|  | * to overlap with the portion of the thread's | 
|  | * register backing store that is currently residing | 
|  | * on the thread's kernel stack, then ptrace() may end | 
|  | * up accessing a stale value.  But if the thread | 
|  | * isn't stopped, that's a problem anyhow, so we're | 
|  | * doing as well as we can... | 
|  | */ | 
|  | return 0; | 
|  |  | 
|  | thread_regs = task_pt_regs(thread); | 
|  | thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL); | 
|  | if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end)) | 
|  | return 0; | 
|  |  | 
|  | return 1;	/* looks like we've got a winner */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * GDB apparently wants to be able to read the register-backing store | 
|  | * of any thread when attached to a given process.  If we are peeking | 
|  | * or poking an address that happens to reside in the kernel-backing | 
|  | * store of another thread, we need to attach to that thread, because | 
|  | * otherwise we end up accessing stale data. | 
|  | * | 
|  | * task_list_lock must be read-locked before calling this routine! | 
|  | */ | 
|  | static struct task_struct * | 
|  | find_thread_for_addr (struct task_struct *child, unsigned long addr) | 
|  | { | 
|  | struct task_struct *p; | 
|  | struct mm_struct *mm; | 
|  | struct list_head *this, *next; | 
|  | int mm_users; | 
|  |  | 
|  | if (!(mm = get_task_mm(child))) | 
|  | return child; | 
|  |  | 
|  | /* -1 because of our get_task_mm(): */ | 
|  | mm_users = atomic_read(&mm->mm_users) - 1; | 
|  | if (mm_users <= 1) | 
|  | goto out;		/* not multi-threaded */ | 
|  |  | 
|  | /* | 
|  | * Traverse the current process' children list.  Every task that | 
|  | * one attaches to becomes a child.  And it is only attached children | 
|  | * of the debugger that are of interest (ptrace_check_attach checks | 
|  | * for this). | 
|  | */ | 
|  | list_for_each_safe(this, next, ¤t->children) { | 
|  | p = list_entry(this, struct task_struct, sibling); | 
|  | if (p->tgid != child->tgid) | 
|  | continue; | 
|  | if (thread_matches(p, addr)) { | 
|  | child = p; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | mmput(mm); | 
|  | return child; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write f32-f127 back to task->thread.fph if it has been modified. | 
|  | */ | 
|  | inline void | 
|  | ia64_flush_fph (struct task_struct *task) | 
|  | { | 
|  | struct ia64_psr *psr = ia64_psr(task_pt_regs(task)); | 
|  |  | 
|  | /* | 
|  | * Prevent migrating this task while | 
|  | * we're fiddling with the FPU state | 
|  | */ | 
|  | preempt_disable(); | 
|  | if (ia64_is_local_fpu_owner(task) && psr->mfh) { | 
|  | psr->mfh = 0; | 
|  | task->thread.flags |= IA64_THREAD_FPH_VALID; | 
|  | ia64_save_fpu(&task->thread.fph[0]); | 
|  | } | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sync the fph state of the task so that it can be manipulated | 
|  | * through thread.fph.  If necessary, f32-f127 are written back to | 
|  | * thread.fph or, if the fph state hasn't been used before, thread.fph | 
|  | * is cleared to zeroes.  Also, access to f32-f127 is disabled to | 
|  | * ensure that the task picks up the state from thread.fph when it | 
|  | * executes again. | 
|  | */ | 
|  | void | 
|  | ia64_sync_fph (struct task_struct *task) | 
|  | { | 
|  | struct ia64_psr *psr = ia64_psr(task_pt_regs(task)); | 
|  |  | 
|  | ia64_flush_fph(task); | 
|  | if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) { | 
|  | task->thread.flags |= IA64_THREAD_FPH_VALID; | 
|  | memset(&task->thread.fph, 0, sizeof(task->thread.fph)); | 
|  | } | 
|  | ia64_drop_fpu(task); | 
|  | psr->dfh = 1; | 
|  | } | 
|  |  | 
|  | static int | 
|  | access_fr (struct unw_frame_info *info, int regnum, int hi, | 
|  | unsigned long *data, int write_access) | 
|  | { | 
|  | struct ia64_fpreg fpval; | 
|  | int ret; | 
|  |  | 
|  | ret = unw_get_fr(info, regnum, &fpval); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (write_access) { | 
|  | fpval.u.bits[hi] = *data; | 
|  | ret = unw_set_fr(info, regnum, fpval); | 
|  | } else | 
|  | *data = fpval.u.bits[hi]; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Change the machine-state of CHILD such that it will return via the normal | 
|  | * kernel exit-path, rather than the syscall-exit path. | 
|  | */ | 
|  | static void | 
|  | convert_to_non_syscall (struct task_struct *child, struct pt_regs  *pt, | 
|  | unsigned long cfm) | 
|  | { | 
|  | struct unw_frame_info info, prev_info; | 
|  | unsigned long ip, sp, pr; | 
|  |  | 
|  | unw_init_from_blocked_task(&info, child); | 
|  | while (1) { | 
|  | prev_info = info; | 
|  | if (unw_unwind(&info) < 0) | 
|  | return; | 
|  |  | 
|  | unw_get_sp(&info, &sp); | 
|  | if ((long)((unsigned long)child + IA64_STK_OFFSET - sp) | 
|  | < IA64_PT_REGS_SIZE) { | 
|  | dprintk("ptrace.%s: ran off the top of the kernel " | 
|  | "stack\n", __FUNCTION__); | 
|  | return; | 
|  | } | 
|  | if (unw_get_pr (&prev_info, &pr) < 0) { | 
|  | unw_get_rp(&prev_info, &ip); | 
|  | dprintk("ptrace.%s: failed to read " | 
|  | "predicate register (ip=0x%lx)\n", | 
|  | __FUNCTION__, ip); | 
|  | return; | 
|  | } | 
|  | if (unw_is_intr_frame(&info) | 
|  | && (pr & (1UL << PRED_USER_STACK))) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note: at the time of this call, the target task is blocked | 
|  | * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL | 
|  | * (aka, "pLvSys") we redirect execution from | 
|  | * .work_pending_syscall_end to .work_processed_kernel. | 
|  | */ | 
|  | unw_get_pr(&prev_info, &pr); | 
|  | pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL)); | 
|  | pr |=  (1UL << PRED_NON_SYSCALL); | 
|  | unw_set_pr(&prev_info, pr); | 
|  |  | 
|  | pt->cr_ifs = (1UL << 63) | cfm; | 
|  | /* | 
|  | * Clear the memory that is NOT written on syscall-entry to | 
|  | * ensure we do not leak kernel-state to user when execution | 
|  | * resumes. | 
|  | */ | 
|  | pt->r2 = 0; | 
|  | pt->r3 = 0; | 
|  | pt->r14 = 0; | 
|  | memset(&pt->r16, 0, 16*8);	/* clear r16-r31 */ | 
|  | memset(&pt->f6, 0, 6*16);	/* clear f6-f11 */ | 
|  | pt->b7 = 0; | 
|  | pt->ar_ccv = 0; | 
|  | pt->ar_csd = 0; | 
|  | pt->ar_ssd = 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | access_nat_bits (struct task_struct *child, struct pt_regs *pt, | 
|  | struct unw_frame_info *info, | 
|  | unsigned long *data, int write_access) | 
|  | { | 
|  | unsigned long regnum, nat_bits, scratch_unat, dummy = 0; | 
|  | char nat = 0; | 
|  |  | 
|  | if (write_access) { | 
|  | nat_bits = *data; | 
|  | scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits); | 
|  | if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) { | 
|  | dprintk("ptrace: failed to set ar.unat\n"); | 
|  | return -1; | 
|  | } | 
|  | for (regnum = 4; regnum <= 7; ++regnum) { | 
|  | unw_get_gr(info, regnum, &dummy, &nat); | 
|  | unw_set_gr(info, regnum, dummy, | 
|  | (nat_bits >> regnum) & 1); | 
|  | } | 
|  | } else { | 
|  | if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) { | 
|  | dprintk("ptrace: failed to read ar.unat\n"); | 
|  | return -1; | 
|  | } | 
|  | nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat); | 
|  | for (regnum = 4; regnum <= 7; ++regnum) { | 
|  | unw_get_gr(info, regnum, &dummy, &nat); | 
|  | nat_bits |= (nat != 0) << regnum; | 
|  | } | 
|  | *data = nat_bits; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | access_uarea (struct task_struct *child, unsigned long addr, | 
|  | unsigned long *data, int write_access) | 
|  | { | 
|  | unsigned long *ptr, regnum, urbs_end, rnat_addr, cfm; | 
|  | struct switch_stack *sw; | 
|  | struct pt_regs *pt; | 
|  | #	define pt_reg_addr(pt, reg)	((void *)			    \ | 
|  | ((unsigned long) (pt)		    \ | 
|  | + offsetof(struct pt_regs, reg))) | 
|  |  | 
|  |  | 
|  | pt = task_pt_regs(child); | 
|  | sw = (struct switch_stack *) (child->thread.ksp + 16); | 
|  |  | 
|  | if ((addr & 0x7) != 0) { | 
|  | dprintk("ptrace: unaligned register address 0x%lx\n", addr); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (addr < PT_F127 + 16) { | 
|  | /* accessing fph */ | 
|  | if (write_access) | 
|  | ia64_sync_fph(child); | 
|  | else | 
|  | ia64_flush_fph(child); | 
|  | ptr = (unsigned long *) | 
|  | ((unsigned long) &child->thread.fph + addr); | 
|  | } else if ((addr >= PT_F10) && (addr < PT_F11 + 16)) { | 
|  | /* scratch registers untouched by kernel (saved in pt_regs) */ | 
|  | ptr = pt_reg_addr(pt, f10) + (addr - PT_F10); | 
|  | } else if (addr >= PT_F12 && addr < PT_F15 + 16) { | 
|  | /* | 
|  | * Scratch registers untouched by kernel (saved in | 
|  | * switch_stack). | 
|  | */ | 
|  | ptr = (unsigned long *) ((long) sw | 
|  | + (addr - PT_NAT_BITS - 32)); | 
|  | } else if (addr < PT_AR_LC + 8) { | 
|  | /* preserved state: */ | 
|  | struct unw_frame_info info; | 
|  | char nat = 0; | 
|  | int ret; | 
|  |  | 
|  | unw_init_from_blocked_task(&info, child); | 
|  | if (unw_unwind_to_user(&info) < 0) | 
|  | return -1; | 
|  |  | 
|  | switch (addr) { | 
|  | case PT_NAT_BITS: | 
|  | return access_nat_bits(child, pt, &info, | 
|  | data, write_access); | 
|  |  | 
|  | case PT_R4: case PT_R5: case PT_R6: case PT_R7: | 
|  | if (write_access) { | 
|  | /* read NaT bit first: */ | 
|  | unsigned long dummy; | 
|  |  | 
|  | ret = unw_get_gr(&info, (addr - PT_R4)/8 + 4, | 
|  | &dummy, &nat); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  | return unw_access_gr(&info, (addr - PT_R4)/8 + 4, data, | 
|  | &nat, write_access); | 
|  |  | 
|  | case PT_B1: case PT_B2: case PT_B3: | 
|  | case PT_B4: case PT_B5: | 
|  | return unw_access_br(&info, (addr - PT_B1)/8 + 1, data, | 
|  | write_access); | 
|  |  | 
|  | case PT_AR_EC: | 
|  | return unw_access_ar(&info, UNW_AR_EC, data, | 
|  | write_access); | 
|  |  | 
|  | case PT_AR_LC: | 
|  | return unw_access_ar(&info, UNW_AR_LC, data, | 
|  | write_access); | 
|  |  | 
|  | default: | 
|  | if (addr >= PT_F2 && addr < PT_F5 + 16) | 
|  | return access_fr(&info, (addr - PT_F2)/16 + 2, | 
|  | (addr & 8) != 0, data, | 
|  | write_access); | 
|  | else if (addr >= PT_F16 && addr < PT_F31 + 16) | 
|  | return access_fr(&info, | 
|  | (addr - PT_F16)/16 + 16, | 
|  | (addr & 8) != 0, | 
|  | data, write_access); | 
|  | else { | 
|  | dprintk("ptrace: rejecting access to register " | 
|  | "address 0x%lx\n", addr); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | } else if (addr < PT_F9+16) { | 
|  | /* scratch state */ | 
|  | switch (addr) { | 
|  | case PT_AR_BSP: | 
|  | /* | 
|  | * By convention, we use PT_AR_BSP to refer to | 
|  | * the end of the user-level backing store. | 
|  | * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof) | 
|  | * to get the real value of ar.bsp at the time | 
|  | * the kernel was entered. | 
|  | * | 
|  | * Furthermore, when changing the contents of | 
|  | * PT_AR_BSP (or PT_CFM) we MUST copy any | 
|  | * users-level stacked registers that are | 
|  | * stored on the kernel stack back to | 
|  | * user-space because otherwise, we might end | 
|  | * up clobbering kernel stacked registers. | 
|  | * Also, if this happens while the task is | 
|  | * blocked in a system call, which convert the | 
|  | * state such that the non-system-call exit | 
|  | * path is used.  This ensures that the proper | 
|  | * state will be picked up when resuming | 
|  | * execution.  However, it *also* means that | 
|  | * once we write PT_AR_BSP/PT_CFM, it won't be | 
|  | * possible to modify the syscall arguments of | 
|  | * the pending system call any longer.  This | 
|  | * shouldn't be an issue because modifying | 
|  | * PT_AR_BSP/PT_CFM generally implies that | 
|  | * we're either abandoning the pending system | 
|  | * call or that we defer it's re-execution | 
|  | * (e.g., due to GDB doing an inferior | 
|  | * function call). | 
|  | */ | 
|  | urbs_end = ia64_get_user_rbs_end(child, pt, &cfm); | 
|  | if (write_access) { | 
|  | if (*data != urbs_end) { | 
|  | if (ia64_sync_user_rbs(child, sw, | 
|  | pt->ar_bspstore, | 
|  | urbs_end) < 0) | 
|  | return -1; | 
|  | if (in_syscall(pt)) | 
|  | convert_to_non_syscall(child, | 
|  | pt, | 
|  | cfm); | 
|  | /* | 
|  | * Simulate user-level write | 
|  | * of ar.bsp: | 
|  | */ | 
|  | pt->loadrs = 0; | 
|  | pt->ar_bspstore = *data; | 
|  | } | 
|  | } else | 
|  | *data = urbs_end; | 
|  | return 0; | 
|  |  | 
|  | case PT_CFM: | 
|  | urbs_end = ia64_get_user_rbs_end(child, pt, &cfm); | 
|  | if (write_access) { | 
|  | if (((cfm ^ *data) & PFM_MASK) != 0) { | 
|  | if (ia64_sync_user_rbs(child, sw, | 
|  | pt->ar_bspstore, | 
|  | urbs_end) < 0) | 
|  | return -1; | 
|  | if (in_syscall(pt)) | 
|  | convert_to_non_syscall(child, | 
|  | pt, | 
|  | cfm); | 
|  | pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK) | 
|  | | (*data & PFM_MASK)); | 
|  | } | 
|  | } else | 
|  | *data = cfm; | 
|  | return 0; | 
|  |  | 
|  | case PT_CR_IPSR: | 
|  | if (write_access) { | 
|  | unsigned long tmp = *data; | 
|  | /* psr.ri==3 is a reserved value: SDM 2:25 */ | 
|  | if ((tmp & IA64_PSR_RI) == IA64_PSR_RI) | 
|  | tmp &= ~IA64_PSR_RI; | 
|  | pt->cr_ipsr = ((tmp & IPSR_MASK) | 
|  | | (pt->cr_ipsr & ~IPSR_MASK)); | 
|  | } else | 
|  | *data = (pt->cr_ipsr & IPSR_MASK); | 
|  | return 0; | 
|  |  | 
|  | case PT_AR_RSC: | 
|  | if (write_access) | 
|  | pt->ar_rsc = *data | (3 << 2); /* force PL3 */ | 
|  | else | 
|  | *data = pt->ar_rsc; | 
|  | return 0; | 
|  |  | 
|  | case PT_AR_RNAT: | 
|  | urbs_end = ia64_get_user_rbs_end(child, pt, NULL); | 
|  | rnat_addr = (long) ia64_rse_rnat_addr((long *) | 
|  | urbs_end); | 
|  | if (write_access) | 
|  | return ia64_poke(child, sw, urbs_end, | 
|  | rnat_addr, *data); | 
|  | else | 
|  | return ia64_peek(child, sw, urbs_end, | 
|  | rnat_addr, data); | 
|  |  | 
|  | case PT_R1: | 
|  | ptr = pt_reg_addr(pt, r1); | 
|  | break; | 
|  | case PT_R2:  case PT_R3: | 
|  | ptr = pt_reg_addr(pt, r2) + (addr - PT_R2); | 
|  | break; | 
|  | case PT_R8:  case PT_R9:  case PT_R10: case PT_R11: | 
|  | ptr = pt_reg_addr(pt, r8) + (addr - PT_R8); | 
|  | break; | 
|  | case PT_R12: case PT_R13: | 
|  | ptr = pt_reg_addr(pt, r12) + (addr - PT_R12); | 
|  | break; | 
|  | case PT_R14: | 
|  | ptr = pt_reg_addr(pt, r14); | 
|  | break; | 
|  | case PT_R15: | 
|  | ptr = pt_reg_addr(pt, r15); | 
|  | break; | 
|  | case PT_R16: case PT_R17: case PT_R18: case PT_R19: | 
|  | case PT_R20: case PT_R21: case PT_R22: case PT_R23: | 
|  | case PT_R24: case PT_R25: case PT_R26: case PT_R27: | 
|  | case PT_R28: case PT_R29: case PT_R30: case PT_R31: | 
|  | ptr = pt_reg_addr(pt, r16) + (addr - PT_R16); | 
|  | break; | 
|  | case PT_B0: | 
|  | ptr = pt_reg_addr(pt, b0); | 
|  | break; | 
|  | case PT_B6: | 
|  | ptr = pt_reg_addr(pt, b6); | 
|  | break; | 
|  | case PT_B7: | 
|  | ptr = pt_reg_addr(pt, b7); | 
|  | break; | 
|  | case PT_F6:  case PT_F6+8: case PT_F7: case PT_F7+8: | 
|  | case PT_F8:  case PT_F8+8: case PT_F9: case PT_F9+8: | 
|  | ptr = pt_reg_addr(pt, f6) + (addr - PT_F6); | 
|  | break; | 
|  | case PT_AR_BSPSTORE: | 
|  | ptr = pt_reg_addr(pt, ar_bspstore); | 
|  | break; | 
|  | case PT_AR_UNAT: | 
|  | ptr = pt_reg_addr(pt, ar_unat); | 
|  | break; | 
|  | case PT_AR_PFS: | 
|  | ptr = pt_reg_addr(pt, ar_pfs); | 
|  | break; | 
|  | case PT_AR_CCV: | 
|  | ptr = pt_reg_addr(pt, ar_ccv); | 
|  | break; | 
|  | case PT_AR_FPSR: | 
|  | ptr = pt_reg_addr(pt, ar_fpsr); | 
|  | break; | 
|  | case PT_CR_IIP: | 
|  | ptr = pt_reg_addr(pt, cr_iip); | 
|  | break; | 
|  | case PT_PR: | 
|  | ptr = pt_reg_addr(pt, pr); | 
|  | break; | 
|  | /* scratch register */ | 
|  |  | 
|  | default: | 
|  | /* disallow accessing anything else... */ | 
|  | dprintk("ptrace: rejecting access to register " | 
|  | "address 0x%lx\n", addr); | 
|  | return -1; | 
|  | } | 
|  | } else if (addr <= PT_AR_SSD) { | 
|  | ptr = pt_reg_addr(pt, ar_csd) + (addr - PT_AR_CSD); | 
|  | } else { | 
|  | /* access debug registers */ | 
|  |  | 
|  | if (addr >= PT_IBR) { | 
|  | regnum = (addr - PT_IBR) >> 3; | 
|  | ptr = &child->thread.ibr[0]; | 
|  | } else { | 
|  | regnum = (addr - PT_DBR) >> 3; | 
|  | ptr = &child->thread.dbr[0]; | 
|  | } | 
|  |  | 
|  | if (regnum >= 8) { | 
|  | dprintk("ptrace: rejecting access to register " | 
|  | "address 0x%lx\n", addr); | 
|  | return -1; | 
|  | } | 
|  | #ifdef CONFIG_PERFMON | 
|  | /* | 
|  | * Check if debug registers are used by perfmon. This | 
|  | * test must be done once we know that we can do the | 
|  | * operation, i.e. the arguments are all valid, but | 
|  | * before we start modifying the state. | 
|  | * | 
|  | * Perfmon needs to keep a count of how many processes | 
|  | * are trying to modify the debug registers for system | 
|  | * wide monitoring sessions. | 
|  | * | 
|  | * We also include read access here, because they may | 
|  | * cause the PMU-installed debug register state | 
|  | * (dbr[], ibr[]) to be reset. The two arrays are also | 
|  | * used by perfmon, but we do not use | 
|  | * IA64_THREAD_DBG_VALID. The registers are restored | 
|  | * by the PMU context switch code. | 
|  | */ | 
|  | if (pfm_use_debug_registers(child)) return -1; | 
|  | #endif | 
|  |  | 
|  | if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) { | 
|  | child->thread.flags |= IA64_THREAD_DBG_VALID; | 
|  | memset(child->thread.dbr, 0, | 
|  | sizeof(child->thread.dbr)); | 
|  | memset(child->thread.ibr, 0, | 
|  | sizeof(child->thread.ibr)); | 
|  | } | 
|  |  | 
|  | ptr += regnum; | 
|  |  | 
|  | if ((regnum & 1) && write_access) { | 
|  | /* don't let the user set kernel-level breakpoints: */ | 
|  | *ptr = *data & ~(7UL << 56); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | if (write_access) | 
|  | *ptr = *data; | 
|  | else | 
|  | *data = *ptr; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static long | 
|  | ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr) | 
|  | { | 
|  | unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val; | 
|  | struct unw_frame_info info; | 
|  | struct ia64_fpreg fpval; | 
|  | struct switch_stack *sw; | 
|  | struct pt_regs *pt; | 
|  | long ret, retval = 0; | 
|  | char nat = 0; | 
|  | int i; | 
|  |  | 
|  | if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs))) | 
|  | return -EIO; | 
|  |  | 
|  | pt = task_pt_regs(child); | 
|  | sw = (struct switch_stack *) (child->thread.ksp + 16); | 
|  | unw_init_from_blocked_task(&info, child); | 
|  | if (unw_unwind_to_user(&info) < 0) { | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | if (((unsigned long) ppr & 0x7) != 0) { | 
|  | dprintk("ptrace:unaligned register address %p\n", ppr); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0 | 
|  | || access_uarea(child, PT_AR_EC, &ec, 0) < 0 | 
|  | || access_uarea(child, PT_AR_LC, &lc, 0) < 0 | 
|  | || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0 | 
|  | || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0 | 
|  | || access_uarea(child, PT_CFM, &cfm, 0) | 
|  | || access_uarea(child, PT_NAT_BITS, &nat_bits, 0)) | 
|  | return -EIO; | 
|  |  | 
|  | /* control regs */ | 
|  |  | 
|  | retval |= __put_user(pt->cr_iip, &ppr->cr_iip); | 
|  | retval |= __put_user(psr, &ppr->cr_ipsr); | 
|  |  | 
|  | /* app regs */ | 
|  |  | 
|  | retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]); | 
|  | retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]); | 
|  | retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]); | 
|  | retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]); | 
|  | retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]); | 
|  | retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]); | 
|  |  | 
|  | retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]); | 
|  | retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]); | 
|  | retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]); | 
|  | retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]); | 
|  | retval |= __put_user(cfm, &ppr->cfm); | 
|  |  | 
|  | /* gr1-gr3 */ | 
|  |  | 
|  | retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long)); | 
|  | retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2); | 
|  |  | 
|  | /* gr4-gr7 */ | 
|  |  | 
|  | for (i = 4; i < 8; i++) { | 
|  | if (unw_access_gr(&info, i, &val, &nat, 0) < 0) | 
|  | return -EIO; | 
|  | retval |= __put_user(val, &ppr->gr[i]); | 
|  | } | 
|  |  | 
|  | /* gr8-gr11 */ | 
|  |  | 
|  | retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4); | 
|  |  | 
|  | /* gr12-gr15 */ | 
|  |  | 
|  | retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2); | 
|  | retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long)); | 
|  | retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long)); | 
|  |  | 
|  | /* gr16-gr31 */ | 
|  |  | 
|  | retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16); | 
|  |  | 
|  | /* b0 */ | 
|  |  | 
|  | retval |= __put_user(pt->b0, &ppr->br[0]); | 
|  |  | 
|  | /* b1-b5 */ | 
|  |  | 
|  | for (i = 1; i < 6; i++) { | 
|  | if (unw_access_br(&info, i, &val, 0) < 0) | 
|  | return -EIO; | 
|  | __put_user(val, &ppr->br[i]); | 
|  | } | 
|  |  | 
|  | /* b6-b7 */ | 
|  |  | 
|  | retval |= __put_user(pt->b6, &ppr->br[6]); | 
|  | retval |= __put_user(pt->b7, &ppr->br[7]); | 
|  |  | 
|  | /* fr2-fr5 */ | 
|  |  | 
|  | for (i = 2; i < 6; i++) { | 
|  | if (unw_get_fr(&info, i, &fpval) < 0) | 
|  | return -EIO; | 
|  | retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval)); | 
|  | } | 
|  |  | 
|  | /* fr6-fr11 */ | 
|  |  | 
|  | retval |= __copy_to_user(&ppr->fr[6], &pt->f6, | 
|  | sizeof(struct ia64_fpreg) * 6); | 
|  |  | 
|  | /* fp scratch regs(12-15) */ | 
|  |  | 
|  | retval |= __copy_to_user(&ppr->fr[12], &sw->f12, | 
|  | sizeof(struct ia64_fpreg) * 4); | 
|  |  | 
|  | /* fr16-fr31 */ | 
|  |  | 
|  | for (i = 16; i < 32; i++) { | 
|  | if (unw_get_fr(&info, i, &fpval) < 0) | 
|  | return -EIO; | 
|  | retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval)); | 
|  | } | 
|  |  | 
|  | /* fph */ | 
|  |  | 
|  | ia64_flush_fph(child); | 
|  | retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph, | 
|  | sizeof(ppr->fr[32]) * 96); | 
|  |  | 
|  | /*  preds */ | 
|  |  | 
|  | retval |= __put_user(pt->pr, &ppr->pr); | 
|  |  | 
|  | /* nat bits */ | 
|  |  | 
|  | retval |= __put_user(nat_bits, &ppr->nat); | 
|  |  | 
|  | ret = retval ? -EIO : 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static long | 
|  | ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr) | 
|  | { | 
|  | unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0; | 
|  | struct unw_frame_info info; | 
|  | struct switch_stack *sw; | 
|  | struct ia64_fpreg fpval; | 
|  | struct pt_regs *pt; | 
|  | long ret, retval = 0; | 
|  | int i; | 
|  |  | 
|  | memset(&fpval, 0, sizeof(fpval)); | 
|  |  | 
|  | if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs))) | 
|  | return -EIO; | 
|  |  | 
|  | pt = task_pt_regs(child); | 
|  | sw = (struct switch_stack *) (child->thread.ksp + 16); | 
|  | unw_init_from_blocked_task(&info, child); | 
|  | if (unw_unwind_to_user(&info) < 0) { | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | if (((unsigned long) ppr & 0x7) != 0) { | 
|  | dprintk("ptrace:unaligned register address %p\n", ppr); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* control regs */ | 
|  |  | 
|  | retval |= __get_user(pt->cr_iip, &ppr->cr_iip); | 
|  | retval |= __get_user(psr, &ppr->cr_ipsr); | 
|  |  | 
|  | /* app regs */ | 
|  |  | 
|  | retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]); | 
|  | retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]); | 
|  | retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]); | 
|  | retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]); | 
|  | retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]); | 
|  | retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]); | 
|  |  | 
|  | retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]); | 
|  | retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]); | 
|  | retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]); | 
|  | retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]); | 
|  | retval |= __get_user(cfm, &ppr->cfm); | 
|  |  | 
|  | /* gr1-gr3 */ | 
|  |  | 
|  | retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long)); | 
|  | retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2); | 
|  |  | 
|  | /* gr4-gr7 */ | 
|  |  | 
|  | for (i = 4; i < 8; i++) { | 
|  | retval |= __get_user(val, &ppr->gr[i]); | 
|  | /* NaT bit will be set via PT_NAT_BITS: */ | 
|  | if (unw_set_gr(&info, i, val, 0) < 0) | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* gr8-gr11 */ | 
|  |  | 
|  | retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4); | 
|  |  | 
|  | /* gr12-gr15 */ | 
|  |  | 
|  | retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2); | 
|  | retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long)); | 
|  | retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long)); | 
|  |  | 
|  | /* gr16-gr31 */ | 
|  |  | 
|  | retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16); | 
|  |  | 
|  | /* b0 */ | 
|  |  | 
|  | retval |= __get_user(pt->b0, &ppr->br[0]); | 
|  |  | 
|  | /* b1-b5 */ | 
|  |  | 
|  | for (i = 1; i < 6; i++) { | 
|  | retval |= __get_user(val, &ppr->br[i]); | 
|  | unw_set_br(&info, i, val); | 
|  | } | 
|  |  | 
|  | /* b6-b7 */ | 
|  |  | 
|  | retval |= __get_user(pt->b6, &ppr->br[6]); | 
|  | retval |= __get_user(pt->b7, &ppr->br[7]); | 
|  |  | 
|  | /* fr2-fr5 */ | 
|  |  | 
|  | for (i = 2; i < 6; i++) { | 
|  | retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval)); | 
|  | if (unw_set_fr(&info, i, fpval) < 0) | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* fr6-fr11 */ | 
|  |  | 
|  | retval |= __copy_from_user(&pt->f6, &ppr->fr[6], | 
|  | sizeof(ppr->fr[6]) * 6); | 
|  |  | 
|  | /* fp scratch regs(12-15) */ | 
|  |  | 
|  | retval |= __copy_from_user(&sw->f12, &ppr->fr[12], | 
|  | sizeof(ppr->fr[12]) * 4); | 
|  |  | 
|  | /* fr16-fr31 */ | 
|  |  | 
|  | for (i = 16; i < 32; i++) { | 
|  | retval |= __copy_from_user(&fpval, &ppr->fr[i], | 
|  | sizeof(fpval)); | 
|  | if (unw_set_fr(&info, i, fpval) < 0) | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* fph */ | 
|  |  | 
|  | ia64_sync_fph(child); | 
|  | retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32], | 
|  | sizeof(ppr->fr[32]) * 96); | 
|  |  | 
|  | /* preds */ | 
|  |  | 
|  | retval |= __get_user(pt->pr, &ppr->pr); | 
|  |  | 
|  | /* nat bits */ | 
|  |  | 
|  | retval |= __get_user(nat_bits, &ppr->nat); | 
|  |  | 
|  | retval |= access_uarea(child, PT_CR_IPSR, &psr, 1); | 
|  | retval |= access_uarea(child, PT_AR_RSC, &rsc, 1); | 
|  | retval |= access_uarea(child, PT_AR_EC, &ec, 1); | 
|  | retval |= access_uarea(child, PT_AR_LC, &lc, 1); | 
|  | retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1); | 
|  | retval |= access_uarea(child, PT_AR_BSP, &bsp, 1); | 
|  | retval |= access_uarea(child, PT_CFM, &cfm, 1); | 
|  | retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1); | 
|  |  | 
|  | ret = retval ? -EIO : 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called by kernel/ptrace.c when detaching.. | 
|  | * | 
|  | * Make sure the single step bit is not set. | 
|  | */ | 
|  | void | 
|  | ptrace_disable (struct task_struct *child) | 
|  | { | 
|  | struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child)); | 
|  |  | 
|  | /* make sure the single step/taken-branch trap bits are not set: */ | 
|  | clear_tsk_thread_flag(child, TIF_SINGLESTEP); | 
|  | child_psr->ss = 0; | 
|  | child_psr->tb = 0; | 
|  | } | 
|  |  | 
|  | asmlinkage long | 
|  | sys_ptrace (long request, pid_t pid, unsigned long addr, unsigned long data) | 
|  | { | 
|  | struct pt_regs *pt; | 
|  | unsigned long urbs_end, peek_or_poke; | 
|  | struct task_struct *child; | 
|  | struct switch_stack *sw; | 
|  | long ret; | 
|  |  | 
|  | lock_kernel(); | 
|  | ret = -EPERM; | 
|  | if (request == PTRACE_TRACEME) { | 
|  | ret = ptrace_traceme(); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | peek_or_poke = (request == PTRACE_PEEKTEXT | 
|  | || request == PTRACE_PEEKDATA | 
|  | || request == PTRACE_POKETEXT | 
|  | || request == PTRACE_POKEDATA); | 
|  | ret = -ESRCH; | 
|  | read_lock(&tasklist_lock); | 
|  | { | 
|  | child = find_task_by_pid(pid); | 
|  | if (child) { | 
|  | if (peek_or_poke) | 
|  | child = find_thread_for_addr(child, addr); | 
|  | get_task_struct(child); | 
|  | } | 
|  | } | 
|  | read_unlock(&tasklist_lock); | 
|  | if (!child) | 
|  | goto out; | 
|  | ret = -EPERM; | 
|  | if (pid == 1)		/* no messing around with init! */ | 
|  | goto out_tsk; | 
|  |  | 
|  | if (request == PTRACE_ATTACH) { | 
|  | ret = ptrace_attach(child); | 
|  | goto out_tsk; | 
|  | } | 
|  |  | 
|  | ret = ptrace_check_attach(child, request == PTRACE_KILL); | 
|  | if (ret < 0) | 
|  | goto out_tsk; | 
|  |  | 
|  | pt = task_pt_regs(child); | 
|  | sw = (struct switch_stack *) (child->thread.ksp + 16); | 
|  |  | 
|  | switch (request) { | 
|  | case PTRACE_PEEKTEXT: | 
|  | case PTRACE_PEEKDATA: | 
|  | /* read word at location addr */ | 
|  | urbs_end = ia64_get_user_rbs_end(child, pt, NULL); | 
|  | ret = ia64_peek(child, sw, urbs_end, addr, &data); | 
|  | if (ret == 0) { | 
|  | ret = data; | 
|  | /* ensure "ret" is not mistaken as an error code: */ | 
|  | force_successful_syscall_return(); | 
|  | } | 
|  | goto out_tsk; | 
|  |  | 
|  | case PTRACE_POKETEXT: | 
|  | case PTRACE_POKEDATA: | 
|  | /* write the word at location addr */ | 
|  | urbs_end = ia64_get_user_rbs_end(child, pt, NULL); | 
|  | ret = ia64_poke(child, sw, urbs_end, addr, data); | 
|  | goto out_tsk; | 
|  |  | 
|  | case PTRACE_PEEKUSR: | 
|  | /* read the word at addr in the USER area */ | 
|  | if (access_uarea(child, addr, &data, 0) < 0) { | 
|  | ret = -EIO; | 
|  | goto out_tsk; | 
|  | } | 
|  | ret = data; | 
|  | /* ensure "ret" is not mistaken as an error code */ | 
|  | force_successful_syscall_return(); | 
|  | goto out_tsk; | 
|  |  | 
|  | case PTRACE_POKEUSR: | 
|  | /* write the word at addr in the USER area */ | 
|  | if (access_uarea(child, addr, &data, 1) < 0) { | 
|  | ret = -EIO; | 
|  | goto out_tsk; | 
|  | } | 
|  | ret = 0; | 
|  | goto out_tsk; | 
|  |  | 
|  | case PTRACE_OLD_GETSIGINFO: | 
|  | /* for backwards-compatibility */ | 
|  | ret = ptrace_request(child, PTRACE_GETSIGINFO, addr, data); | 
|  | goto out_tsk; | 
|  |  | 
|  | case PTRACE_OLD_SETSIGINFO: | 
|  | /* for backwards-compatibility */ | 
|  | ret = ptrace_request(child, PTRACE_SETSIGINFO, addr, data); | 
|  | goto out_tsk; | 
|  |  | 
|  | case PTRACE_SYSCALL: | 
|  | /* continue and stop at next (return from) syscall */ | 
|  | case PTRACE_CONT: | 
|  | /* restart after signal. */ | 
|  | ret = -EIO; | 
|  | if (!valid_signal(data)) | 
|  | goto out_tsk; | 
|  | if (request == PTRACE_SYSCALL) | 
|  | set_tsk_thread_flag(child, TIF_SYSCALL_TRACE); | 
|  | else | 
|  | clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE); | 
|  | child->exit_code = data; | 
|  |  | 
|  | /* | 
|  | * Make sure the single step/taken-branch trap bits | 
|  | * are not set: | 
|  | */ | 
|  | clear_tsk_thread_flag(child, TIF_SINGLESTEP); | 
|  | ia64_psr(pt)->ss = 0; | 
|  | ia64_psr(pt)->tb = 0; | 
|  |  | 
|  | wake_up_process(child); | 
|  | ret = 0; | 
|  | goto out_tsk; | 
|  |  | 
|  | case PTRACE_KILL: | 
|  | /* | 
|  | * Make the child exit.  Best I can do is send it a | 
|  | * sigkill.  Perhaps it should be put in the status | 
|  | * that it wants to exit. | 
|  | */ | 
|  | if (child->exit_state == EXIT_ZOMBIE) | 
|  | /* already dead */ | 
|  | goto out_tsk; | 
|  | child->exit_code = SIGKILL; | 
|  |  | 
|  | ptrace_disable(child); | 
|  | wake_up_process(child); | 
|  | ret = 0; | 
|  | goto out_tsk; | 
|  |  | 
|  | case PTRACE_SINGLESTEP: | 
|  | /* let child execute for one instruction */ | 
|  | case PTRACE_SINGLEBLOCK: | 
|  | ret = -EIO; | 
|  | if (!valid_signal(data)) | 
|  | goto out_tsk; | 
|  |  | 
|  | clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE); | 
|  | set_tsk_thread_flag(child, TIF_SINGLESTEP); | 
|  | if (request == PTRACE_SINGLESTEP) { | 
|  | ia64_psr(pt)->ss = 1; | 
|  | } else { | 
|  | ia64_psr(pt)->tb = 1; | 
|  | } | 
|  | child->exit_code = data; | 
|  |  | 
|  | /* give it a chance to run. */ | 
|  | wake_up_process(child); | 
|  | ret = 0; | 
|  | goto out_tsk; | 
|  |  | 
|  | case PTRACE_DETACH: | 
|  | /* detach a process that was attached. */ | 
|  | ret = ptrace_detach(child, data); | 
|  | goto out_tsk; | 
|  |  | 
|  | case PTRACE_GETREGS: | 
|  | ret = ptrace_getregs(child, | 
|  | (struct pt_all_user_regs __user *) data); | 
|  | goto out_tsk; | 
|  |  | 
|  | case PTRACE_SETREGS: | 
|  | ret = ptrace_setregs(child, | 
|  | (struct pt_all_user_regs __user *) data); | 
|  | goto out_tsk; | 
|  |  | 
|  | default: | 
|  | ret = ptrace_request(child, request, addr, data); | 
|  | goto out_tsk; | 
|  | } | 
|  | out_tsk: | 
|  | put_task_struct(child); | 
|  | out: | 
|  | unlock_kernel(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void | 
|  | syscall_trace (void) | 
|  | { | 
|  | /* | 
|  | * The 0x80 provides a way for the tracing parent to | 
|  | * distinguish between a syscall stop and SIGTRAP delivery. | 
|  | */ | 
|  | ptrace_notify(SIGTRAP | 
|  | | ((current->ptrace & PT_TRACESYSGOOD) ? 0x80 : 0)); | 
|  |  | 
|  | /* | 
|  | * This isn't the same as continuing with a signal, but it | 
|  | * will do for normal use.  strace only continues with a | 
|  | * signal if the stopping signal is not SIGTRAP.  -brl | 
|  | */ | 
|  | if (current->exit_code) { | 
|  | send_sig(current->exit_code, current, 1); | 
|  | current->exit_code = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* "asmlinkage" so the input arguments are preserved... */ | 
|  |  | 
|  | asmlinkage void | 
|  | syscall_trace_enter (long arg0, long arg1, long arg2, long arg3, | 
|  | long arg4, long arg5, long arg6, long arg7, | 
|  | struct pt_regs regs) | 
|  | { | 
|  | if (test_thread_flag(TIF_SYSCALL_TRACE) | 
|  | && (current->ptrace & PT_PTRACED)) | 
|  | syscall_trace(); | 
|  |  | 
|  | if (unlikely(current->audit_context)) { | 
|  | long syscall; | 
|  | int arch; | 
|  |  | 
|  | if (IS_IA32_PROCESS(®s)) { | 
|  | syscall = regs.r1; | 
|  | arch = AUDIT_ARCH_I386; | 
|  | } else { | 
|  | syscall = regs.r15; | 
|  | arch = AUDIT_ARCH_IA64; | 
|  | } | 
|  |  | 
|  | audit_syscall_entry(arch, syscall, arg0, arg1, arg2, arg3); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /* "asmlinkage" so the input arguments are preserved... */ | 
|  |  | 
|  | asmlinkage void | 
|  | syscall_trace_leave (long arg0, long arg1, long arg2, long arg3, | 
|  | long arg4, long arg5, long arg6, long arg7, | 
|  | struct pt_regs regs) | 
|  | { | 
|  | if (unlikely(current->audit_context)) { | 
|  | int success = AUDITSC_RESULT(regs.r10); | 
|  | long result = regs.r8; | 
|  |  | 
|  | if (success != AUDITSC_SUCCESS) | 
|  | result = -result; | 
|  | audit_syscall_exit(success, result); | 
|  | } | 
|  |  | 
|  | if ((test_thread_flag(TIF_SYSCALL_TRACE) | 
|  | || test_thread_flag(TIF_SINGLESTEP)) | 
|  | && (current->ptrace & PT_PTRACED)) | 
|  | syscall_trace(); | 
|  | } |