|  | /* | 
|  | * Linux/PA-RISC Project (http://www.parisc-linux.org/) | 
|  | * | 
|  | * Floating-point emulation code | 
|  | *  Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org> | 
|  | * | 
|  | *    This program is free software; you can redistribute it and/or modify | 
|  | *    it under the terms of the GNU General Public License as published by | 
|  | *    the Free Software Foundation; either version 2, or (at your option) | 
|  | *    any later version. | 
|  | * | 
|  | *    This program is distributed in the hope that it will be useful, | 
|  | *    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | *    GNU General Public License for more details. | 
|  | * | 
|  | *    You should have received a copy of the GNU General Public License | 
|  | *    along with this program; if not, write to the Free Software | 
|  | *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
|  | */ | 
|  | /* | 
|  | * BEGIN_DESC | 
|  | * | 
|  | *  File: | 
|  | *	@(#)	pa/spmath/fmpyfadd.c		$Revision: 1.1 $ | 
|  | * | 
|  | *  Purpose: | 
|  | *	Double Floating-point Multiply Fused Add | 
|  | *	Double Floating-point Multiply Negate Fused Add | 
|  | *	Single Floating-point Multiply Fused Add | 
|  | *	Single Floating-point Multiply Negate Fused Add | 
|  | * | 
|  | *  External Interfaces: | 
|  | *	dbl_fmpyfadd(src1ptr,src2ptr,src3ptr,status,dstptr) | 
|  | *	dbl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr) | 
|  | *	sgl_fmpyfadd(src1ptr,src2ptr,src3ptr,status,dstptr) | 
|  | *	sgl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr) | 
|  | * | 
|  | *  Internal Interfaces: | 
|  | * | 
|  | *  Theory: | 
|  | *	<<please update with a overview of the operation of this file>> | 
|  | * | 
|  | * END_DESC | 
|  | */ | 
|  |  | 
|  |  | 
|  | #include "float.h" | 
|  | #include "sgl_float.h" | 
|  | #include "dbl_float.h" | 
|  |  | 
|  |  | 
|  | /* | 
|  | *  Double Floating-point Multiply Fused Add | 
|  | */ | 
|  |  | 
|  | int | 
|  | dbl_fmpyfadd( | 
|  | dbl_floating_point *src1ptr, | 
|  | dbl_floating_point *src2ptr, | 
|  | dbl_floating_point *src3ptr, | 
|  | unsigned int *status, | 
|  | dbl_floating_point *dstptr) | 
|  | { | 
|  | unsigned int opnd1p1, opnd1p2, opnd2p1, opnd2p2, opnd3p1, opnd3p2; | 
|  | register unsigned int tmpresp1, tmpresp2, tmpresp3, tmpresp4; | 
|  | unsigned int rightp1, rightp2, rightp3, rightp4; | 
|  | unsigned int resultp1, resultp2 = 0, resultp3 = 0, resultp4 = 0; | 
|  | register int mpy_exponent, add_exponent, count; | 
|  | boolean inexact = FALSE, is_tiny = FALSE; | 
|  |  | 
|  | unsigned int signlessleft1, signlessright1, save; | 
|  | register int result_exponent, diff_exponent; | 
|  | int sign_save, jumpsize; | 
|  |  | 
|  | Dbl_copyfromptr(src1ptr,opnd1p1,opnd1p2); | 
|  | Dbl_copyfromptr(src2ptr,opnd2p1,opnd2p2); | 
|  | Dbl_copyfromptr(src3ptr,opnd3p1,opnd3p2); | 
|  |  | 
|  | /* | 
|  | * set sign bit of result of multiply | 
|  | */ | 
|  | if (Dbl_sign(opnd1p1) ^ Dbl_sign(opnd2p1)) | 
|  | Dbl_setnegativezerop1(resultp1); | 
|  | else Dbl_setzerop1(resultp1); | 
|  |  | 
|  | /* | 
|  | * Generate multiply exponent | 
|  | */ | 
|  | mpy_exponent = Dbl_exponent(opnd1p1) + Dbl_exponent(opnd2p1) - DBL_BIAS; | 
|  |  | 
|  | /* | 
|  | * check first operand for NaN's or infinity | 
|  | */ | 
|  | if (Dbl_isinfinity_exponent(opnd1p1)) { | 
|  | if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) { | 
|  | if (Dbl_isnotnan(opnd2p1,opnd2p2) && | 
|  | Dbl_isnotnan(opnd3p1,opnd3p2)) { | 
|  | if (Dbl_iszero_exponentmantissa(opnd2p1,opnd2p2)) { | 
|  | /* | 
|  | * invalid since operands are infinity | 
|  | * and zero | 
|  | */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | Set_invalidflag(); | 
|  | Dbl_makequietnan(resultp1,resultp2); | 
|  | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | /* | 
|  | * Check third operand for infinity with a | 
|  | *  sign opposite of the multiply result | 
|  | */ | 
|  | if (Dbl_isinfinity(opnd3p1,opnd3p2) && | 
|  | (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) { | 
|  | /* | 
|  | * invalid since attempting a magnitude | 
|  | * subtraction of infinities | 
|  | */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | Set_invalidflag(); | 
|  | Dbl_makequietnan(resultp1,resultp2); | 
|  | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * return infinity | 
|  | */ | 
|  | Dbl_setinfinity_exponentmantissa(resultp1,resultp2); | 
|  | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | } | 
|  | else { | 
|  | /* | 
|  | * is NaN; signaling or quiet? | 
|  | */ | 
|  | if (Dbl_isone_signaling(opnd1p1)) { | 
|  | /* trap if INVALIDTRAP enabled */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | /* make NaN quiet */ | 
|  | Set_invalidflag(); | 
|  | Dbl_set_quiet(opnd1p1); | 
|  | } | 
|  | /* | 
|  | * is second operand a signaling NaN? | 
|  | */ | 
|  | else if (Dbl_is_signalingnan(opnd2p1)) { | 
|  | /* trap if INVALIDTRAP enabled */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | /* make NaN quiet */ | 
|  | Set_invalidflag(); | 
|  | Dbl_set_quiet(opnd2p1); | 
|  | Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | /* | 
|  | * is third operand a signaling NaN? | 
|  | */ | 
|  | else if (Dbl_is_signalingnan(opnd3p1)) { | 
|  | /* trap if INVALIDTRAP enabled */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | /* make NaN quiet */ | 
|  | Set_invalidflag(); | 
|  | Dbl_set_quiet(opnd3p1); | 
|  | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | /* | 
|  | * return quiet NaN | 
|  | */ | 
|  | Dbl_copytoptr(opnd1p1,opnd1p2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * check second operand for NaN's or infinity | 
|  | */ | 
|  | if (Dbl_isinfinity_exponent(opnd2p1)) { | 
|  | if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) { | 
|  | if (Dbl_isnotnan(opnd3p1,opnd3p2)) { | 
|  | if (Dbl_iszero_exponentmantissa(opnd1p1,opnd1p2)) { | 
|  | /* | 
|  | * invalid since multiply operands are | 
|  | * zero & infinity | 
|  | */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | Set_invalidflag(); | 
|  | Dbl_makequietnan(opnd2p1,opnd2p2); | 
|  | Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check third operand for infinity with a | 
|  | *  sign opposite of the multiply result | 
|  | */ | 
|  | if (Dbl_isinfinity(opnd3p1,opnd3p2) && | 
|  | (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) { | 
|  | /* | 
|  | * invalid since attempting a magnitude | 
|  | * subtraction of infinities | 
|  | */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | Set_invalidflag(); | 
|  | Dbl_makequietnan(resultp1,resultp2); | 
|  | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * return infinity | 
|  | */ | 
|  | Dbl_setinfinity_exponentmantissa(resultp1,resultp2); | 
|  | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | } | 
|  | else { | 
|  | /* | 
|  | * is NaN; signaling or quiet? | 
|  | */ | 
|  | if (Dbl_isone_signaling(opnd2p1)) { | 
|  | /* trap if INVALIDTRAP enabled */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | /* make NaN quiet */ | 
|  | Set_invalidflag(); | 
|  | Dbl_set_quiet(opnd2p1); | 
|  | } | 
|  | /* | 
|  | * is third operand a signaling NaN? | 
|  | */ | 
|  | else if (Dbl_is_signalingnan(opnd3p1)) { | 
|  | /* trap if INVALIDTRAP enabled */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | /* make NaN quiet */ | 
|  | Set_invalidflag(); | 
|  | Dbl_set_quiet(opnd3p1); | 
|  | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | /* | 
|  | * return quiet NaN | 
|  | */ | 
|  | Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * check third operand for NaN's or infinity | 
|  | */ | 
|  | if (Dbl_isinfinity_exponent(opnd3p1)) { | 
|  | if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) { | 
|  | /* return infinity */ | 
|  | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } else { | 
|  | /* | 
|  | * is NaN; signaling or quiet? | 
|  | */ | 
|  | if (Dbl_isone_signaling(opnd3p1)) { | 
|  | /* trap if INVALIDTRAP enabled */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | /* make NaN quiet */ | 
|  | Set_invalidflag(); | 
|  | Dbl_set_quiet(opnd3p1); | 
|  | } | 
|  | /* | 
|  | * return quiet NaN | 
|  | */ | 
|  | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generate multiply mantissa | 
|  | */ | 
|  | if (Dbl_isnotzero_exponent(opnd1p1)) { | 
|  | /* set hidden bit */ | 
|  | Dbl_clear_signexponent_set_hidden(opnd1p1); | 
|  | } | 
|  | else { | 
|  | /* check for zero */ | 
|  | if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) { | 
|  | /* | 
|  | * Perform the add opnd3 with zero here. | 
|  | */ | 
|  | if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) { | 
|  | if (Is_rounding_mode(ROUNDMINUS)) { | 
|  | Dbl_or_signs(opnd3p1,resultp1); | 
|  | } else { | 
|  | Dbl_and_signs(opnd3p1,resultp1); | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Now let's check for trapped underflow case. | 
|  | */ | 
|  | else if (Dbl_iszero_exponent(opnd3p1) && | 
|  | Is_underflowtrap_enabled()) { | 
|  | /* need to normalize results mantissa */ | 
|  | sign_save = Dbl_signextendedsign(opnd3p1); | 
|  | result_exponent = 0; | 
|  | Dbl_leftshiftby1(opnd3p1,opnd3p2); | 
|  | Dbl_normalize(opnd3p1,opnd3p2,result_exponent); | 
|  | Dbl_set_sign(opnd3p1,/*using*/sign_save); | 
|  | Dbl_setwrapped_exponent(opnd3p1,result_exponent, | 
|  | unfl); | 
|  | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | 
|  | /* inexact = FALSE */ | 
|  | return(OPC_2E_UNDERFLOWEXCEPTION); | 
|  | } | 
|  | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | /* is denormalized, adjust exponent */ | 
|  | Dbl_clear_signexponent(opnd1p1); | 
|  | Dbl_leftshiftby1(opnd1p1,opnd1p2); | 
|  | Dbl_normalize(opnd1p1,opnd1p2,mpy_exponent); | 
|  | } | 
|  | /* opnd2 needs to have hidden bit set with msb in hidden bit */ | 
|  | if (Dbl_isnotzero_exponent(opnd2p1)) { | 
|  | Dbl_clear_signexponent_set_hidden(opnd2p1); | 
|  | } | 
|  | else { | 
|  | /* check for zero */ | 
|  | if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) { | 
|  | /* | 
|  | * Perform the add opnd3 with zero here. | 
|  | */ | 
|  | if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) { | 
|  | if (Is_rounding_mode(ROUNDMINUS)) { | 
|  | Dbl_or_signs(opnd3p1,resultp1); | 
|  | } else { | 
|  | Dbl_and_signs(opnd3p1,resultp1); | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Now let's check for trapped underflow case. | 
|  | */ | 
|  | else if (Dbl_iszero_exponent(opnd3p1) && | 
|  | Is_underflowtrap_enabled()) { | 
|  | /* need to normalize results mantissa */ | 
|  | sign_save = Dbl_signextendedsign(opnd3p1); | 
|  | result_exponent = 0; | 
|  | Dbl_leftshiftby1(opnd3p1,opnd3p2); | 
|  | Dbl_normalize(opnd3p1,opnd3p2,result_exponent); | 
|  | Dbl_set_sign(opnd3p1,/*using*/sign_save); | 
|  | Dbl_setwrapped_exponent(opnd3p1,result_exponent, | 
|  | unfl); | 
|  | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | 
|  | /* inexact = FALSE */ | 
|  | return(OPC_2E_UNDERFLOWEXCEPTION); | 
|  | } | 
|  | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | /* is denormalized; want to normalize */ | 
|  | Dbl_clear_signexponent(opnd2p1); | 
|  | Dbl_leftshiftby1(opnd2p1,opnd2p2); | 
|  | Dbl_normalize(opnd2p1,opnd2p2,mpy_exponent); | 
|  | } | 
|  |  | 
|  | /* Multiply the first two source mantissas together */ | 
|  |  | 
|  | /* | 
|  | * The intermediate result will be kept in tmpres, | 
|  | * which needs enough room for 106 bits of mantissa, | 
|  | * so lets call it a Double extended. | 
|  | */ | 
|  | Dblext_setzero(tmpresp1,tmpresp2,tmpresp3,tmpresp4); | 
|  |  | 
|  | /* | 
|  | * Four bits at a time are inspected in each loop, and a | 
|  | * simple shift and add multiply algorithm is used. | 
|  | */ | 
|  | for (count = DBL_P-1; count >= 0; count -= 4) { | 
|  | Dblext_rightshiftby4(tmpresp1,tmpresp2,tmpresp3,tmpresp4); | 
|  | if (Dbit28p2(opnd1p2)) { | 
|  | /* Fourword_add should be an ADD followed by 3 ADDC's */ | 
|  | Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, | 
|  | opnd2p1<<3 | opnd2p2>>29, opnd2p2<<3, 0, 0); | 
|  | } | 
|  | if (Dbit29p2(opnd1p2)) { | 
|  | Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, | 
|  | opnd2p1<<2 | opnd2p2>>30, opnd2p2<<2, 0, 0); | 
|  | } | 
|  | if (Dbit30p2(opnd1p2)) { | 
|  | Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, | 
|  | opnd2p1<<1 | opnd2p2>>31, opnd2p2<<1, 0, 0); | 
|  | } | 
|  | if (Dbit31p2(opnd1p2)) { | 
|  | Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, | 
|  | opnd2p1, opnd2p2, 0, 0); | 
|  | } | 
|  | Dbl_rightshiftby4(opnd1p1,opnd1p2); | 
|  | } | 
|  | if (Is_dexthiddenoverflow(tmpresp1)) { | 
|  | /* result mantissa >= 2 (mantissa overflow) */ | 
|  | mpy_exponent++; | 
|  | Dblext_rightshiftby1(tmpresp1,tmpresp2,tmpresp3,tmpresp4); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Restore the sign of the mpy result which was saved in resultp1. | 
|  | * The exponent will continue to be kept in mpy_exponent. | 
|  | */ | 
|  | Dblext_set_sign(tmpresp1,Dbl_sign(resultp1)); | 
|  |  | 
|  | /* | 
|  | * No rounding is required, since the result of the multiply | 
|  | * is exact in the extended format. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Now we are ready to perform the add portion of the operation. | 
|  | * | 
|  | * The exponents need to be kept as integers for now, since the | 
|  | * multiply result might not fit into the exponent field.  We | 
|  | * can't overflow or underflow because of this yet, since the | 
|  | * add could bring the final result back into range. | 
|  | */ | 
|  | add_exponent = Dbl_exponent(opnd3p1); | 
|  |  | 
|  | /* | 
|  | * Check for denormalized or zero add operand. | 
|  | */ | 
|  | if (add_exponent == 0) { | 
|  | /* check for zero */ | 
|  | if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) { | 
|  | /* right is zero */ | 
|  | /* Left can't be zero and must be result. | 
|  | * | 
|  | * The final result is now in tmpres and mpy_exponent, | 
|  | * and needs to be rounded and squeezed back into | 
|  | * double precision format from double extended. | 
|  | */ | 
|  | result_exponent = mpy_exponent; | 
|  | Dblext_copy(tmpresp1,tmpresp2,tmpresp3,tmpresp4, | 
|  | resultp1,resultp2,resultp3,resultp4); | 
|  | sign_save = Dbl_signextendedsign(resultp1);/*save sign*/ | 
|  | goto round; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Neither are zeroes. | 
|  | * Adjust exponent and normalize add operand. | 
|  | */ | 
|  | sign_save = Dbl_signextendedsign(opnd3p1);	/* save sign */ | 
|  | Dbl_clear_signexponent(opnd3p1); | 
|  | Dbl_leftshiftby1(opnd3p1,opnd3p2); | 
|  | Dbl_normalize(opnd3p1,opnd3p2,add_exponent); | 
|  | Dbl_set_sign(opnd3p1,sign_save);	/* restore sign */ | 
|  | } else { | 
|  | Dbl_clear_exponent_set_hidden(opnd3p1); | 
|  | } | 
|  | /* | 
|  | * Copy opnd3 to the double extended variable called right. | 
|  | */ | 
|  | Dbl_copyto_dblext(opnd3p1,opnd3p2,rightp1,rightp2,rightp3,rightp4); | 
|  |  | 
|  | /* | 
|  | * A zero "save" helps discover equal operands (for later), | 
|  | * and is used in swapping operands (if needed). | 
|  | */ | 
|  | Dblext_xortointp1(tmpresp1,rightp1,/*to*/save); | 
|  |  | 
|  | /* | 
|  | * Compare magnitude of operands. | 
|  | */ | 
|  | Dblext_copytoint_exponentmantissap1(tmpresp1,signlessleft1); | 
|  | Dblext_copytoint_exponentmantissap1(rightp1,signlessright1); | 
|  | if (mpy_exponent < add_exponent || mpy_exponent == add_exponent && | 
|  | Dblext_ismagnitudeless(tmpresp2,rightp2,signlessleft1,signlessright1)){ | 
|  | /* | 
|  | * Set the left operand to the larger one by XOR swap. | 
|  | * First finish the first word "save". | 
|  | */ | 
|  | Dblext_xorfromintp1(save,rightp1,/*to*/rightp1); | 
|  | Dblext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1); | 
|  | Dblext_swap_lower(tmpresp2,tmpresp3,tmpresp4, | 
|  | rightp2,rightp3,rightp4); | 
|  | /* also setup exponents used in rest of routine */ | 
|  | diff_exponent = add_exponent - mpy_exponent; | 
|  | result_exponent = add_exponent; | 
|  | } else { | 
|  | /* also setup exponents used in rest of routine */ | 
|  | diff_exponent = mpy_exponent - add_exponent; | 
|  | result_exponent = mpy_exponent; | 
|  | } | 
|  | /* Invariant: left is not smaller than right. */ | 
|  |  | 
|  | /* | 
|  | * Special case alignment of operands that would force alignment | 
|  | * beyond the extent of the extension.  A further optimization | 
|  | * could special case this but only reduces the path length for | 
|  | * this infrequent case. | 
|  | */ | 
|  | if (diff_exponent > DBLEXT_THRESHOLD) { | 
|  | diff_exponent = DBLEXT_THRESHOLD; | 
|  | } | 
|  |  | 
|  | /* Align right operand by shifting it to the right */ | 
|  | Dblext_clear_sign(rightp1); | 
|  | Dblext_right_align(rightp1,rightp2,rightp3,rightp4, | 
|  | /*shifted by*/diff_exponent); | 
|  |  | 
|  | /* Treat sum and difference of the operands separately. */ | 
|  | if ((int)save < 0) { | 
|  | /* | 
|  | * Difference of the two operands.  Overflow can occur if the | 
|  | * multiply overflowed.  A borrow can occur out of the hidden | 
|  | * bit and force a post normalization phase. | 
|  | */ | 
|  | Dblext_subtract(tmpresp1,tmpresp2,tmpresp3,tmpresp4, | 
|  | rightp1,rightp2,rightp3,rightp4, | 
|  | resultp1,resultp2,resultp3,resultp4); | 
|  | sign_save = Dbl_signextendedsign(resultp1); | 
|  | if (Dbl_iszero_hidden(resultp1)) { | 
|  | /* Handle normalization */ | 
|  | /* A straight foward algorithm would now shift the | 
|  | * result and extension left until the hidden bit | 
|  | * becomes one.  Not all of the extension bits need | 
|  | * participate in the shift.  Only the two most | 
|  | * significant bits (round and guard) are needed. | 
|  | * If only a single shift is needed then the guard | 
|  | * bit becomes a significant low order bit and the | 
|  | * extension must participate in the rounding. | 
|  | * If more than a single shift is needed, then all | 
|  | * bits to the right of the guard bit are zeros, | 
|  | * and the guard bit may or may not be zero. */ | 
|  | Dblext_leftshiftby1(resultp1,resultp2,resultp3, | 
|  | resultp4); | 
|  |  | 
|  | /* Need to check for a zero result.  The sign and | 
|  | * exponent fields have already been zeroed.  The more | 
|  | * efficient test of the full object can be used. | 
|  | */ | 
|  | if(Dblext_iszero(resultp1,resultp2,resultp3,resultp4)){ | 
|  | /* Must have been "x-x" or "x+(-x)". */ | 
|  | if (Is_rounding_mode(ROUNDMINUS)) | 
|  | Dbl_setone_sign(resultp1); | 
|  | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | result_exponent--; | 
|  |  | 
|  | /* Look to see if normalization is finished. */ | 
|  | if (Dbl_isone_hidden(resultp1)) { | 
|  | /* No further normalization is needed */ | 
|  | goto round; | 
|  | } | 
|  |  | 
|  | /* Discover first one bit to determine shift amount. | 
|  | * Use a modified binary search.  We have already | 
|  | * shifted the result one position right and still | 
|  | * not found a one so the remainder of the extension | 
|  | * must be zero and simplifies rounding. */ | 
|  | /* Scan bytes */ | 
|  | while (Dbl_iszero_hiddenhigh7mantissa(resultp1)) { | 
|  | Dblext_leftshiftby8(resultp1,resultp2,resultp3,resultp4); | 
|  | result_exponent -= 8; | 
|  | } | 
|  | /* Now narrow it down to the nibble */ | 
|  | if (Dbl_iszero_hiddenhigh3mantissa(resultp1)) { | 
|  | /* The lower nibble contains the | 
|  | * normalizing one */ | 
|  | Dblext_leftshiftby4(resultp1,resultp2,resultp3,resultp4); | 
|  | result_exponent -= 4; | 
|  | } | 
|  | /* Select case where first bit is set (already | 
|  | * normalized) otherwise select the proper shift. */ | 
|  | jumpsize = Dbl_hiddenhigh3mantissa(resultp1); | 
|  | if (jumpsize <= 7) switch(jumpsize) { | 
|  | case 1: | 
|  | Dblext_leftshiftby3(resultp1,resultp2,resultp3, | 
|  | resultp4); | 
|  | result_exponent -= 3; | 
|  | break; | 
|  | case 2: | 
|  | case 3: | 
|  | Dblext_leftshiftby2(resultp1,resultp2,resultp3, | 
|  | resultp4); | 
|  | result_exponent -= 2; | 
|  | break; | 
|  | case 4: | 
|  | case 5: | 
|  | case 6: | 
|  | case 7: | 
|  | Dblext_leftshiftby1(resultp1,resultp2,resultp3, | 
|  | resultp4); | 
|  | result_exponent -= 1; | 
|  | break; | 
|  | } | 
|  | } /* end if (hidden...)... */ | 
|  | /* Fall through and round */ | 
|  | } /* end if (save < 0)... */ | 
|  | else { | 
|  | /* Add magnitudes */ | 
|  | Dblext_addition(tmpresp1,tmpresp2,tmpresp3,tmpresp4, | 
|  | rightp1,rightp2,rightp3,rightp4, | 
|  | /*to*/resultp1,resultp2,resultp3,resultp4); | 
|  | sign_save = Dbl_signextendedsign(resultp1); | 
|  | if (Dbl_isone_hiddenoverflow(resultp1)) { | 
|  | /* Prenormalization required. */ | 
|  | Dblext_arithrightshiftby1(resultp1,resultp2,resultp3, | 
|  | resultp4); | 
|  | result_exponent++; | 
|  | } /* end if hiddenoverflow... */ | 
|  | } /* end else ...add magnitudes... */ | 
|  |  | 
|  | /* Round the result.  If the extension and lower two words are | 
|  | * all zeros, then the result is exact.  Otherwise round in the | 
|  | * correct direction.  Underflow is possible. If a postnormalization | 
|  | * is necessary, then the mantissa is all zeros so no shift is needed. | 
|  | */ | 
|  | round: | 
|  | if (result_exponent <= 0 && !Is_underflowtrap_enabled()) { | 
|  | Dblext_denormalize(resultp1,resultp2,resultp3,resultp4, | 
|  | result_exponent,is_tiny); | 
|  | } | 
|  | Dbl_set_sign(resultp1,/*using*/sign_save); | 
|  | if (Dblext_isnotzero_mantissap3(resultp3) || | 
|  | Dblext_isnotzero_mantissap4(resultp4)) { | 
|  | inexact = TRUE; | 
|  | switch(Rounding_mode()) { | 
|  | case ROUNDNEAREST: /* The default. */ | 
|  | if (Dblext_isone_highp3(resultp3)) { | 
|  | /* at least 1/2 ulp */ | 
|  | if (Dblext_isnotzero_low31p3(resultp3) || | 
|  | Dblext_isnotzero_mantissap4(resultp4) || | 
|  | Dblext_isone_lowp2(resultp2)) { | 
|  | /* either exactly half way and odd or | 
|  | * more than 1/2ulp */ | 
|  | Dbl_increment(resultp1,resultp2); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ROUNDPLUS: | 
|  | if (Dbl_iszero_sign(resultp1)) { | 
|  | /* Round up positive results */ | 
|  | Dbl_increment(resultp1,resultp2); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ROUNDMINUS: | 
|  | if (Dbl_isone_sign(resultp1)) { | 
|  | /* Round down negative results */ | 
|  | Dbl_increment(resultp1,resultp2); | 
|  | } | 
|  |  | 
|  | case ROUNDZERO:; | 
|  | /* truncate is simple */ | 
|  | } /* end switch... */ | 
|  | if (Dbl_isone_hiddenoverflow(resultp1)) result_exponent++; | 
|  | } | 
|  | if (result_exponent >= DBL_INFINITY_EXPONENT) { | 
|  | /* trap if OVERFLOWTRAP enabled */ | 
|  | if (Is_overflowtrap_enabled()) { | 
|  | /* | 
|  | * Adjust bias of result | 
|  | */ | 
|  | Dbl_setwrapped_exponent(resultp1,result_exponent,ovfl); | 
|  | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | if (inexact) | 
|  | if (Is_inexacttrap_enabled()) | 
|  | return (OPC_2E_OVERFLOWEXCEPTION | | 
|  | OPC_2E_INEXACTEXCEPTION); | 
|  | else Set_inexactflag(); | 
|  | return (OPC_2E_OVERFLOWEXCEPTION); | 
|  | } | 
|  | inexact = TRUE; | 
|  | Set_overflowflag(); | 
|  | /* set result to infinity or largest number */ | 
|  | Dbl_setoverflow(resultp1,resultp2); | 
|  |  | 
|  | } else if (result_exponent <= 0) {	/* underflow case */ | 
|  | if (Is_underflowtrap_enabled()) { | 
|  | /* | 
|  | * Adjust bias of result | 
|  | */ | 
|  | Dbl_setwrapped_exponent(resultp1,result_exponent,unfl); | 
|  | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | if (inexact) | 
|  | if (Is_inexacttrap_enabled()) | 
|  | return (OPC_2E_UNDERFLOWEXCEPTION | | 
|  | OPC_2E_INEXACTEXCEPTION); | 
|  | else Set_inexactflag(); | 
|  | return(OPC_2E_UNDERFLOWEXCEPTION); | 
|  | } | 
|  | else if (inexact && is_tiny) Set_underflowflag(); | 
|  | } | 
|  | else Dbl_set_exponent(resultp1,result_exponent); | 
|  | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | if (inexact) | 
|  | if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION); | 
|  | else Set_inexactflag(); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  Double Floating-point Multiply Negate Fused Add | 
|  | */ | 
|  |  | 
|  | dbl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr) | 
|  |  | 
|  | dbl_floating_point *src1ptr, *src2ptr, *src3ptr, *dstptr; | 
|  | unsigned int *status; | 
|  | { | 
|  | unsigned int opnd1p1, opnd1p2, opnd2p1, opnd2p2, opnd3p1, opnd3p2; | 
|  | register unsigned int tmpresp1, tmpresp2, tmpresp3, tmpresp4; | 
|  | unsigned int rightp1, rightp2, rightp3, rightp4; | 
|  | unsigned int resultp1, resultp2 = 0, resultp3 = 0, resultp4 = 0; | 
|  | register int mpy_exponent, add_exponent, count; | 
|  | boolean inexact = FALSE, is_tiny = FALSE; | 
|  |  | 
|  | unsigned int signlessleft1, signlessright1, save; | 
|  | register int result_exponent, diff_exponent; | 
|  | int sign_save, jumpsize; | 
|  |  | 
|  | Dbl_copyfromptr(src1ptr,opnd1p1,opnd1p2); | 
|  | Dbl_copyfromptr(src2ptr,opnd2p1,opnd2p2); | 
|  | Dbl_copyfromptr(src3ptr,opnd3p1,opnd3p2); | 
|  |  | 
|  | /* | 
|  | * set sign bit of result of multiply | 
|  | */ | 
|  | if (Dbl_sign(opnd1p1) ^ Dbl_sign(opnd2p1)) | 
|  | Dbl_setzerop1(resultp1); | 
|  | else | 
|  | Dbl_setnegativezerop1(resultp1); | 
|  |  | 
|  | /* | 
|  | * Generate multiply exponent | 
|  | */ | 
|  | mpy_exponent = Dbl_exponent(opnd1p1) + Dbl_exponent(opnd2p1) - DBL_BIAS; | 
|  |  | 
|  | /* | 
|  | * check first operand for NaN's or infinity | 
|  | */ | 
|  | if (Dbl_isinfinity_exponent(opnd1p1)) { | 
|  | if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) { | 
|  | if (Dbl_isnotnan(opnd2p1,opnd2p2) && | 
|  | Dbl_isnotnan(opnd3p1,opnd3p2)) { | 
|  | if (Dbl_iszero_exponentmantissa(opnd2p1,opnd2p2)) { | 
|  | /* | 
|  | * invalid since operands are infinity | 
|  | * and zero | 
|  | */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | Set_invalidflag(); | 
|  | Dbl_makequietnan(resultp1,resultp2); | 
|  | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | /* | 
|  | * Check third operand for infinity with a | 
|  | *  sign opposite of the multiply result | 
|  | */ | 
|  | if (Dbl_isinfinity(opnd3p1,opnd3p2) && | 
|  | (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) { | 
|  | /* | 
|  | * invalid since attempting a magnitude | 
|  | * subtraction of infinities | 
|  | */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | Set_invalidflag(); | 
|  | Dbl_makequietnan(resultp1,resultp2); | 
|  | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * return infinity | 
|  | */ | 
|  | Dbl_setinfinity_exponentmantissa(resultp1,resultp2); | 
|  | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | } | 
|  | else { | 
|  | /* | 
|  | * is NaN; signaling or quiet? | 
|  | */ | 
|  | if (Dbl_isone_signaling(opnd1p1)) { | 
|  | /* trap if INVALIDTRAP enabled */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | /* make NaN quiet */ | 
|  | Set_invalidflag(); | 
|  | Dbl_set_quiet(opnd1p1); | 
|  | } | 
|  | /* | 
|  | * is second operand a signaling NaN? | 
|  | */ | 
|  | else if (Dbl_is_signalingnan(opnd2p1)) { | 
|  | /* trap if INVALIDTRAP enabled */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | /* make NaN quiet */ | 
|  | Set_invalidflag(); | 
|  | Dbl_set_quiet(opnd2p1); | 
|  | Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | /* | 
|  | * is third operand a signaling NaN? | 
|  | */ | 
|  | else if (Dbl_is_signalingnan(opnd3p1)) { | 
|  | /* trap if INVALIDTRAP enabled */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | /* make NaN quiet */ | 
|  | Set_invalidflag(); | 
|  | Dbl_set_quiet(opnd3p1); | 
|  | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | /* | 
|  | * return quiet NaN | 
|  | */ | 
|  | Dbl_copytoptr(opnd1p1,opnd1p2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * check second operand for NaN's or infinity | 
|  | */ | 
|  | if (Dbl_isinfinity_exponent(opnd2p1)) { | 
|  | if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) { | 
|  | if (Dbl_isnotnan(opnd3p1,opnd3p2)) { | 
|  | if (Dbl_iszero_exponentmantissa(opnd1p1,opnd1p2)) { | 
|  | /* | 
|  | * invalid since multiply operands are | 
|  | * zero & infinity | 
|  | */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | Set_invalidflag(); | 
|  | Dbl_makequietnan(opnd2p1,opnd2p2); | 
|  | Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check third operand for infinity with a | 
|  | *  sign opposite of the multiply result | 
|  | */ | 
|  | if (Dbl_isinfinity(opnd3p1,opnd3p2) && | 
|  | (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) { | 
|  | /* | 
|  | * invalid since attempting a magnitude | 
|  | * subtraction of infinities | 
|  | */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | Set_invalidflag(); | 
|  | Dbl_makequietnan(resultp1,resultp2); | 
|  | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * return infinity | 
|  | */ | 
|  | Dbl_setinfinity_exponentmantissa(resultp1,resultp2); | 
|  | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | } | 
|  | else { | 
|  | /* | 
|  | * is NaN; signaling or quiet? | 
|  | */ | 
|  | if (Dbl_isone_signaling(opnd2p1)) { | 
|  | /* trap if INVALIDTRAP enabled */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | /* make NaN quiet */ | 
|  | Set_invalidflag(); | 
|  | Dbl_set_quiet(opnd2p1); | 
|  | } | 
|  | /* | 
|  | * is third operand a signaling NaN? | 
|  | */ | 
|  | else if (Dbl_is_signalingnan(opnd3p1)) { | 
|  | /* trap if INVALIDTRAP enabled */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | /* make NaN quiet */ | 
|  | Set_invalidflag(); | 
|  | Dbl_set_quiet(opnd3p1); | 
|  | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | /* | 
|  | * return quiet NaN | 
|  | */ | 
|  | Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * check third operand for NaN's or infinity | 
|  | */ | 
|  | if (Dbl_isinfinity_exponent(opnd3p1)) { | 
|  | if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) { | 
|  | /* return infinity */ | 
|  | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } else { | 
|  | /* | 
|  | * is NaN; signaling or quiet? | 
|  | */ | 
|  | if (Dbl_isone_signaling(opnd3p1)) { | 
|  | /* trap if INVALIDTRAP enabled */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | /* make NaN quiet */ | 
|  | Set_invalidflag(); | 
|  | Dbl_set_quiet(opnd3p1); | 
|  | } | 
|  | /* | 
|  | * return quiet NaN | 
|  | */ | 
|  | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generate multiply mantissa | 
|  | */ | 
|  | if (Dbl_isnotzero_exponent(opnd1p1)) { | 
|  | /* set hidden bit */ | 
|  | Dbl_clear_signexponent_set_hidden(opnd1p1); | 
|  | } | 
|  | else { | 
|  | /* check for zero */ | 
|  | if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) { | 
|  | /* | 
|  | * Perform the add opnd3 with zero here. | 
|  | */ | 
|  | if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) { | 
|  | if (Is_rounding_mode(ROUNDMINUS)) { | 
|  | Dbl_or_signs(opnd3p1,resultp1); | 
|  | } else { | 
|  | Dbl_and_signs(opnd3p1,resultp1); | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Now let's check for trapped underflow case. | 
|  | */ | 
|  | else if (Dbl_iszero_exponent(opnd3p1) && | 
|  | Is_underflowtrap_enabled()) { | 
|  | /* need to normalize results mantissa */ | 
|  | sign_save = Dbl_signextendedsign(opnd3p1); | 
|  | result_exponent = 0; | 
|  | Dbl_leftshiftby1(opnd3p1,opnd3p2); | 
|  | Dbl_normalize(opnd3p1,opnd3p2,result_exponent); | 
|  | Dbl_set_sign(opnd3p1,/*using*/sign_save); | 
|  | Dbl_setwrapped_exponent(opnd3p1,result_exponent, | 
|  | unfl); | 
|  | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | 
|  | /* inexact = FALSE */ | 
|  | return(OPC_2E_UNDERFLOWEXCEPTION); | 
|  | } | 
|  | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | /* is denormalized, adjust exponent */ | 
|  | Dbl_clear_signexponent(opnd1p1); | 
|  | Dbl_leftshiftby1(opnd1p1,opnd1p2); | 
|  | Dbl_normalize(opnd1p1,opnd1p2,mpy_exponent); | 
|  | } | 
|  | /* opnd2 needs to have hidden bit set with msb in hidden bit */ | 
|  | if (Dbl_isnotzero_exponent(opnd2p1)) { | 
|  | Dbl_clear_signexponent_set_hidden(opnd2p1); | 
|  | } | 
|  | else { | 
|  | /* check for zero */ | 
|  | if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) { | 
|  | /* | 
|  | * Perform the add opnd3 with zero here. | 
|  | */ | 
|  | if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) { | 
|  | if (Is_rounding_mode(ROUNDMINUS)) { | 
|  | Dbl_or_signs(opnd3p1,resultp1); | 
|  | } else { | 
|  | Dbl_and_signs(opnd3p1,resultp1); | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Now let's check for trapped underflow case. | 
|  | */ | 
|  | else if (Dbl_iszero_exponent(opnd3p1) && | 
|  | Is_underflowtrap_enabled()) { | 
|  | /* need to normalize results mantissa */ | 
|  | sign_save = Dbl_signextendedsign(opnd3p1); | 
|  | result_exponent = 0; | 
|  | Dbl_leftshiftby1(opnd3p1,opnd3p2); | 
|  | Dbl_normalize(opnd3p1,opnd3p2,result_exponent); | 
|  | Dbl_set_sign(opnd3p1,/*using*/sign_save); | 
|  | Dbl_setwrapped_exponent(opnd3p1,result_exponent, | 
|  | unfl); | 
|  | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | 
|  | /* inexact = FALSE */ | 
|  | return(OPC_2E_UNDERFLOWEXCEPTION); | 
|  | } | 
|  | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | /* is denormalized; want to normalize */ | 
|  | Dbl_clear_signexponent(opnd2p1); | 
|  | Dbl_leftshiftby1(opnd2p1,opnd2p2); | 
|  | Dbl_normalize(opnd2p1,opnd2p2,mpy_exponent); | 
|  | } | 
|  |  | 
|  | /* Multiply the first two source mantissas together */ | 
|  |  | 
|  | /* | 
|  | * The intermediate result will be kept in tmpres, | 
|  | * which needs enough room for 106 bits of mantissa, | 
|  | * so lets call it a Double extended. | 
|  | */ | 
|  | Dblext_setzero(tmpresp1,tmpresp2,tmpresp3,tmpresp4); | 
|  |  | 
|  | /* | 
|  | * Four bits at a time are inspected in each loop, and a | 
|  | * simple shift and add multiply algorithm is used. | 
|  | */ | 
|  | for (count = DBL_P-1; count >= 0; count -= 4) { | 
|  | Dblext_rightshiftby4(tmpresp1,tmpresp2,tmpresp3,tmpresp4); | 
|  | if (Dbit28p2(opnd1p2)) { | 
|  | /* Fourword_add should be an ADD followed by 3 ADDC's */ | 
|  | Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, | 
|  | opnd2p1<<3 | opnd2p2>>29, opnd2p2<<3, 0, 0); | 
|  | } | 
|  | if (Dbit29p2(opnd1p2)) { | 
|  | Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, | 
|  | opnd2p1<<2 | opnd2p2>>30, opnd2p2<<2, 0, 0); | 
|  | } | 
|  | if (Dbit30p2(opnd1p2)) { | 
|  | Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, | 
|  | opnd2p1<<1 | opnd2p2>>31, opnd2p2<<1, 0, 0); | 
|  | } | 
|  | if (Dbit31p2(opnd1p2)) { | 
|  | Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, | 
|  | opnd2p1, opnd2p2, 0, 0); | 
|  | } | 
|  | Dbl_rightshiftby4(opnd1p1,opnd1p2); | 
|  | } | 
|  | if (Is_dexthiddenoverflow(tmpresp1)) { | 
|  | /* result mantissa >= 2 (mantissa overflow) */ | 
|  | mpy_exponent++; | 
|  | Dblext_rightshiftby1(tmpresp1,tmpresp2,tmpresp3,tmpresp4); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Restore the sign of the mpy result which was saved in resultp1. | 
|  | * The exponent will continue to be kept in mpy_exponent. | 
|  | */ | 
|  | Dblext_set_sign(tmpresp1,Dbl_sign(resultp1)); | 
|  |  | 
|  | /* | 
|  | * No rounding is required, since the result of the multiply | 
|  | * is exact in the extended format. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Now we are ready to perform the add portion of the operation. | 
|  | * | 
|  | * The exponents need to be kept as integers for now, since the | 
|  | * multiply result might not fit into the exponent field.  We | 
|  | * can't overflow or underflow because of this yet, since the | 
|  | * add could bring the final result back into range. | 
|  | */ | 
|  | add_exponent = Dbl_exponent(opnd3p1); | 
|  |  | 
|  | /* | 
|  | * Check for denormalized or zero add operand. | 
|  | */ | 
|  | if (add_exponent == 0) { | 
|  | /* check for zero */ | 
|  | if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) { | 
|  | /* right is zero */ | 
|  | /* Left can't be zero and must be result. | 
|  | * | 
|  | * The final result is now in tmpres and mpy_exponent, | 
|  | * and needs to be rounded and squeezed back into | 
|  | * double precision format from double extended. | 
|  | */ | 
|  | result_exponent = mpy_exponent; | 
|  | Dblext_copy(tmpresp1,tmpresp2,tmpresp3,tmpresp4, | 
|  | resultp1,resultp2,resultp3,resultp4); | 
|  | sign_save = Dbl_signextendedsign(resultp1);/*save sign*/ | 
|  | goto round; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Neither are zeroes. | 
|  | * Adjust exponent and normalize add operand. | 
|  | */ | 
|  | sign_save = Dbl_signextendedsign(opnd3p1);	/* save sign */ | 
|  | Dbl_clear_signexponent(opnd3p1); | 
|  | Dbl_leftshiftby1(opnd3p1,opnd3p2); | 
|  | Dbl_normalize(opnd3p1,opnd3p2,add_exponent); | 
|  | Dbl_set_sign(opnd3p1,sign_save);	/* restore sign */ | 
|  | } else { | 
|  | Dbl_clear_exponent_set_hidden(opnd3p1); | 
|  | } | 
|  | /* | 
|  | * Copy opnd3 to the double extended variable called right. | 
|  | */ | 
|  | Dbl_copyto_dblext(opnd3p1,opnd3p2,rightp1,rightp2,rightp3,rightp4); | 
|  |  | 
|  | /* | 
|  | * A zero "save" helps discover equal operands (for later), | 
|  | * and is used in swapping operands (if needed). | 
|  | */ | 
|  | Dblext_xortointp1(tmpresp1,rightp1,/*to*/save); | 
|  |  | 
|  | /* | 
|  | * Compare magnitude of operands. | 
|  | */ | 
|  | Dblext_copytoint_exponentmantissap1(tmpresp1,signlessleft1); | 
|  | Dblext_copytoint_exponentmantissap1(rightp1,signlessright1); | 
|  | if (mpy_exponent < add_exponent || mpy_exponent == add_exponent && | 
|  | Dblext_ismagnitudeless(tmpresp2,rightp2,signlessleft1,signlessright1)){ | 
|  | /* | 
|  | * Set the left operand to the larger one by XOR swap. | 
|  | * First finish the first word "save". | 
|  | */ | 
|  | Dblext_xorfromintp1(save,rightp1,/*to*/rightp1); | 
|  | Dblext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1); | 
|  | Dblext_swap_lower(tmpresp2,tmpresp3,tmpresp4, | 
|  | rightp2,rightp3,rightp4); | 
|  | /* also setup exponents used in rest of routine */ | 
|  | diff_exponent = add_exponent - mpy_exponent; | 
|  | result_exponent = add_exponent; | 
|  | } else { | 
|  | /* also setup exponents used in rest of routine */ | 
|  | diff_exponent = mpy_exponent - add_exponent; | 
|  | result_exponent = mpy_exponent; | 
|  | } | 
|  | /* Invariant: left is not smaller than right. */ | 
|  |  | 
|  | /* | 
|  | * Special case alignment of operands that would force alignment | 
|  | * beyond the extent of the extension.  A further optimization | 
|  | * could special case this but only reduces the path length for | 
|  | * this infrequent case. | 
|  | */ | 
|  | if (diff_exponent > DBLEXT_THRESHOLD) { | 
|  | diff_exponent = DBLEXT_THRESHOLD; | 
|  | } | 
|  |  | 
|  | /* Align right operand by shifting it to the right */ | 
|  | Dblext_clear_sign(rightp1); | 
|  | Dblext_right_align(rightp1,rightp2,rightp3,rightp4, | 
|  | /*shifted by*/diff_exponent); | 
|  |  | 
|  | /* Treat sum and difference of the operands separately. */ | 
|  | if ((int)save < 0) { | 
|  | /* | 
|  | * Difference of the two operands.  Overflow can occur if the | 
|  | * multiply overflowed.  A borrow can occur out of the hidden | 
|  | * bit and force a post normalization phase. | 
|  | */ | 
|  | Dblext_subtract(tmpresp1,tmpresp2,tmpresp3,tmpresp4, | 
|  | rightp1,rightp2,rightp3,rightp4, | 
|  | resultp1,resultp2,resultp3,resultp4); | 
|  | sign_save = Dbl_signextendedsign(resultp1); | 
|  | if (Dbl_iszero_hidden(resultp1)) { | 
|  | /* Handle normalization */ | 
|  | /* A straight foward algorithm would now shift the | 
|  | * result and extension left until the hidden bit | 
|  | * becomes one.  Not all of the extension bits need | 
|  | * participate in the shift.  Only the two most | 
|  | * significant bits (round and guard) are needed. | 
|  | * If only a single shift is needed then the guard | 
|  | * bit becomes a significant low order bit and the | 
|  | * extension must participate in the rounding. | 
|  | * If more than a single shift is needed, then all | 
|  | * bits to the right of the guard bit are zeros, | 
|  | * and the guard bit may or may not be zero. */ | 
|  | Dblext_leftshiftby1(resultp1,resultp2,resultp3, | 
|  | resultp4); | 
|  |  | 
|  | /* Need to check for a zero result.  The sign and | 
|  | * exponent fields have already been zeroed.  The more | 
|  | * efficient test of the full object can be used. | 
|  | */ | 
|  | if (Dblext_iszero(resultp1,resultp2,resultp3,resultp4)) { | 
|  | /* Must have been "x-x" or "x+(-x)". */ | 
|  | if (Is_rounding_mode(ROUNDMINUS)) | 
|  | Dbl_setone_sign(resultp1); | 
|  | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | result_exponent--; | 
|  |  | 
|  | /* Look to see if normalization is finished. */ | 
|  | if (Dbl_isone_hidden(resultp1)) { | 
|  | /* No further normalization is needed */ | 
|  | goto round; | 
|  | } | 
|  |  | 
|  | /* Discover first one bit to determine shift amount. | 
|  | * Use a modified binary search.  We have already | 
|  | * shifted the result one position right and still | 
|  | * not found a one so the remainder of the extension | 
|  | * must be zero and simplifies rounding. */ | 
|  | /* Scan bytes */ | 
|  | while (Dbl_iszero_hiddenhigh7mantissa(resultp1)) { | 
|  | Dblext_leftshiftby8(resultp1,resultp2,resultp3,resultp4); | 
|  | result_exponent -= 8; | 
|  | } | 
|  | /* Now narrow it down to the nibble */ | 
|  | if (Dbl_iszero_hiddenhigh3mantissa(resultp1)) { | 
|  | /* The lower nibble contains the | 
|  | * normalizing one */ | 
|  | Dblext_leftshiftby4(resultp1,resultp2,resultp3,resultp4); | 
|  | result_exponent -= 4; | 
|  | } | 
|  | /* Select case where first bit is set (already | 
|  | * normalized) otherwise select the proper shift. */ | 
|  | jumpsize = Dbl_hiddenhigh3mantissa(resultp1); | 
|  | if (jumpsize <= 7) switch(jumpsize) { | 
|  | case 1: | 
|  | Dblext_leftshiftby3(resultp1,resultp2,resultp3, | 
|  | resultp4); | 
|  | result_exponent -= 3; | 
|  | break; | 
|  | case 2: | 
|  | case 3: | 
|  | Dblext_leftshiftby2(resultp1,resultp2,resultp3, | 
|  | resultp4); | 
|  | result_exponent -= 2; | 
|  | break; | 
|  | case 4: | 
|  | case 5: | 
|  | case 6: | 
|  | case 7: | 
|  | Dblext_leftshiftby1(resultp1,resultp2,resultp3, | 
|  | resultp4); | 
|  | result_exponent -= 1; | 
|  | break; | 
|  | } | 
|  | } /* end if (hidden...)... */ | 
|  | /* Fall through and round */ | 
|  | } /* end if (save < 0)... */ | 
|  | else { | 
|  | /* Add magnitudes */ | 
|  | Dblext_addition(tmpresp1,tmpresp2,tmpresp3,tmpresp4, | 
|  | rightp1,rightp2,rightp3,rightp4, | 
|  | /*to*/resultp1,resultp2,resultp3,resultp4); | 
|  | sign_save = Dbl_signextendedsign(resultp1); | 
|  | if (Dbl_isone_hiddenoverflow(resultp1)) { | 
|  | /* Prenormalization required. */ | 
|  | Dblext_arithrightshiftby1(resultp1,resultp2,resultp3, | 
|  | resultp4); | 
|  | result_exponent++; | 
|  | } /* end if hiddenoverflow... */ | 
|  | } /* end else ...add magnitudes... */ | 
|  |  | 
|  | /* Round the result.  If the extension and lower two words are | 
|  | * all zeros, then the result is exact.  Otherwise round in the | 
|  | * correct direction.  Underflow is possible. If a postnormalization | 
|  | * is necessary, then the mantissa is all zeros so no shift is needed. | 
|  | */ | 
|  | round: | 
|  | if (result_exponent <= 0 && !Is_underflowtrap_enabled()) { | 
|  | Dblext_denormalize(resultp1,resultp2,resultp3,resultp4, | 
|  | result_exponent,is_tiny); | 
|  | } | 
|  | Dbl_set_sign(resultp1,/*using*/sign_save); | 
|  | if (Dblext_isnotzero_mantissap3(resultp3) || | 
|  | Dblext_isnotzero_mantissap4(resultp4)) { | 
|  | inexact = TRUE; | 
|  | switch(Rounding_mode()) { | 
|  | case ROUNDNEAREST: /* The default. */ | 
|  | if (Dblext_isone_highp3(resultp3)) { | 
|  | /* at least 1/2 ulp */ | 
|  | if (Dblext_isnotzero_low31p3(resultp3) || | 
|  | Dblext_isnotzero_mantissap4(resultp4) || | 
|  | Dblext_isone_lowp2(resultp2)) { | 
|  | /* either exactly half way and odd or | 
|  | * more than 1/2ulp */ | 
|  | Dbl_increment(resultp1,resultp2); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ROUNDPLUS: | 
|  | if (Dbl_iszero_sign(resultp1)) { | 
|  | /* Round up positive results */ | 
|  | Dbl_increment(resultp1,resultp2); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ROUNDMINUS: | 
|  | if (Dbl_isone_sign(resultp1)) { | 
|  | /* Round down negative results */ | 
|  | Dbl_increment(resultp1,resultp2); | 
|  | } | 
|  |  | 
|  | case ROUNDZERO:; | 
|  | /* truncate is simple */ | 
|  | } /* end switch... */ | 
|  | if (Dbl_isone_hiddenoverflow(resultp1)) result_exponent++; | 
|  | } | 
|  | if (result_exponent >= DBL_INFINITY_EXPONENT) { | 
|  | /* Overflow */ | 
|  | if (Is_overflowtrap_enabled()) { | 
|  | /* | 
|  | * Adjust bias of result | 
|  | */ | 
|  | Dbl_setwrapped_exponent(resultp1,result_exponent,ovfl); | 
|  | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | if (inexact) | 
|  | if (Is_inexacttrap_enabled()) | 
|  | return (OPC_2E_OVERFLOWEXCEPTION | | 
|  | OPC_2E_INEXACTEXCEPTION); | 
|  | else Set_inexactflag(); | 
|  | return (OPC_2E_OVERFLOWEXCEPTION); | 
|  | } | 
|  | inexact = TRUE; | 
|  | Set_overflowflag(); | 
|  | Dbl_setoverflow(resultp1,resultp2); | 
|  | } else if (result_exponent <= 0) {	/* underflow case */ | 
|  | if (Is_underflowtrap_enabled()) { | 
|  | /* | 
|  | * Adjust bias of result | 
|  | */ | 
|  | Dbl_setwrapped_exponent(resultp1,result_exponent,unfl); | 
|  | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | if (inexact) | 
|  | if (Is_inexacttrap_enabled()) | 
|  | return (OPC_2E_UNDERFLOWEXCEPTION | | 
|  | OPC_2E_INEXACTEXCEPTION); | 
|  | else Set_inexactflag(); | 
|  | return(OPC_2E_UNDERFLOWEXCEPTION); | 
|  | } | 
|  | else if (inexact && is_tiny) Set_underflowflag(); | 
|  | } | 
|  | else Dbl_set_exponent(resultp1,result_exponent); | 
|  | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | if (inexact) | 
|  | if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION); | 
|  | else Set_inexactflag(); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  Single Floating-point Multiply Fused Add | 
|  | */ | 
|  |  | 
|  | sgl_fmpyfadd(src1ptr,src2ptr,src3ptr,status,dstptr) | 
|  |  | 
|  | sgl_floating_point *src1ptr, *src2ptr, *src3ptr, *dstptr; | 
|  | unsigned int *status; | 
|  | { | 
|  | unsigned int opnd1, opnd2, opnd3; | 
|  | register unsigned int tmpresp1, tmpresp2; | 
|  | unsigned int rightp1, rightp2; | 
|  | unsigned int resultp1, resultp2 = 0; | 
|  | register int mpy_exponent, add_exponent, count; | 
|  | boolean inexact = FALSE, is_tiny = FALSE; | 
|  |  | 
|  | unsigned int signlessleft1, signlessright1, save; | 
|  | register int result_exponent, diff_exponent; | 
|  | int sign_save, jumpsize; | 
|  |  | 
|  | Sgl_copyfromptr(src1ptr,opnd1); | 
|  | Sgl_copyfromptr(src2ptr,opnd2); | 
|  | Sgl_copyfromptr(src3ptr,opnd3); | 
|  |  | 
|  | /* | 
|  | * set sign bit of result of multiply | 
|  | */ | 
|  | if (Sgl_sign(opnd1) ^ Sgl_sign(opnd2)) | 
|  | Sgl_setnegativezero(resultp1); | 
|  | else Sgl_setzero(resultp1); | 
|  |  | 
|  | /* | 
|  | * Generate multiply exponent | 
|  | */ | 
|  | mpy_exponent = Sgl_exponent(opnd1) + Sgl_exponent(opnd2) - SGL_BIAS; | 
|  |  | 
|  | /* | 
|  | * check first operand for NaN's or infinity | 
|  | */ | 
|  | if (Sgl_isinfinity_exponent(opnd1)) { | 
|  | if (Sgl_iszero_mantissa(opnd1)) { | 
|  | if (Sgl_isnotnan(opnd2) && Sgl_isnotnan(opnd3)) { | 
|  | if (Sgl_iszero_exponentmantissa(opnd2)) { | 
|  | /* | 
|  | * invalid since operands are infinity | 
|  | * and zero | 
|  | */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | Set_invalidflag(); | 
|  | Sgl_makequietnan(resultp1); | 
|  | Sgl_copytoptr(resultp1,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | /* | 
|  | * Check third operand for infinity with a | 
|  | *  sign opposite of the multiply result | 
|  | */ | 
|  | if (Sgl_isinfinity(opnd3) && | 
|  | (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) { | 
|  | /* | 
|  | * invalid since attempting a magnitude | 
|  | * subtraction of infinities | 
|  | */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | Set_invalidflag(); | 
|  | Sgl_makequietnan(resultp1); | 
|  | Sgl_copytoptr(resultp1,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * return infinity | 
|  | */ | 
|  | Sgl_setinfinity_exponentmantissa(resultp1); | 
|  | Sgl_copytoptr(resultp1,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | } | 
|  | else { | 
|  | /* | 
|  | * is NaN; signaling or quiet? | 
|  | */ | 
|  | if (Sgl_isone_signaling(opnd1)) { | 
|  | /* trap if INVALIDTRAP enabled */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | /* make NaN quiet */ | 
|  | Set_invalidflag(); | 
|  | Sgl_set_quiet(opnd1); | 
|  | } | 
|  | /* | 
|  | * is second operand a signaling NaN? | 
|  | */ | 
|  | else if (Sgl_is_signalingnan(opnd2)) { | 
|  | /* trap if INVALIDTRAP enabled */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | /* make NaN quiet */ | 
|  | Set_invalidflag(); | 
|  | Sgl_set_quiet(opnd2); | 
|  | Sgl_copytoptr(opnd2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | /* | 
|  | * is third operand a signaling NaN? | 
|  | */ | 
|  | else if (Sgl_is_signalingnan(opnd3)) { | 
|  | /* trap if INVALIDTRAP enabled */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | /* make NaN quiet */ | 
|  | Set_invalidflag(); | 
|  | Sgl_set_quiet(opnd3); | 
|  | Sgl_copytoptr(opnd3,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | /* | 
|  | * return quiet NaN | 
|  | */ | 
|  | Sgl_copytoptr(opnd1,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * check second operand for NaN's or infinity | 
|  | */ | 
|  | if (Sgl_isinfinity_exponent(opnd2)) { | 
|  | if (Sgl_iszero_mantissa(opnd2)) { | 
|  | if (Sgl_isnotnan(opnd3)) { | 
|  | if (Sgl_iszero_exponentmantissa(opnd1)) { | 
|  | /* | 
|  | * invalid since multiply operands are | 
|  | * zero & infinity | 
|  | */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | Set_invalidflag(); | 
|  | Sgl_makequietnan(opnd2); | 
|  | Sgl_copytoptr(opnd2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check third operand for infinity with a | 
|  | *  sign opposite of the multiply result | 
|  | */ | 
|  | if (Sgl_isinfinity(opnd3) && | 
|  | (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) { | 
|  | /* | 
|  | * invalid since attempting a magnitude | 
|  | * subtraction of infinities | 
|  | */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | Set_invalidflag(); | 
|  | Sgl_makequietnan(resultp1); | 
|  | Sgl_copytoptr(resultp1,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * return infinity | 
|  | */ | 
|  | Sgl_setinfinity_exponentmantissa(resultp1); | 
|  | Sgl_copytoptr(resultp1,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | } | 
|  | else { | 
|  | /* | 
|  | * is NaN; signaling or quiet? | 
|  | */ | 
|  | if (Sgl_isone_signaling(opnd2)) { | 
|  | /* trap if INVALIDTRAP enabled */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | /* make NaN quiet */ | 
|  | Set_invalidflag(); | 
|  | Sgl_set_quiet(opnd2); | 
|  | } | 
|  | /* | 
|  | * is third operand a signaling NaN? | 
|  | */ | 
|  | else if (Sgl_is_signalingnan(opnd3)) { | 
|  | /* trap if INVALIDTRAP enabled */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | /* make NaN quiet */ | 
|  | Set_invalidflag(); | 
|  | Sgl_set_quiet(opnd3); | 
|  | Sgl_copytoptr(opnd3,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | /* | 
|  | * return quiet NaN | 
|  | */ | 
|  | Sgl_copytoptr(opnd2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * check third operand for NaN's or infinity | 
|  | */ | 
|  | if (Sgl_isinfinity_exponent(opnd3)) { | 
|  | if (Sgl_iszero_mantissa(opnd3)) { | 
|  | /* return infinity */ | 
|  | Sgl_copytoptr(opnd3,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } else { | 
|  | /* | 
|  | * is NaN; signaling or quiet? | 
|  | */ | 
|  | if (Sgl_isone_signaling(opnd3)) { | 
|  | /* trap if INVALIDTRAP enabled */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | /* make NaN quiet */ | 
|  | Set_invalidflag(); | 
|  | Sgl_set_quiet(opnd3); | 
|  | } | 
|  | /* | 
|  | * return quiet NaN | 
|  | */ | 
|  | Sgl_copytoptr(opnd3,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generate multiply mantissa | 
|  | */ | 
|  | if (Sgl_isnotzero_exponent(opnd1)) { | 
|  | /* set hidden bit */ | 
|  | Sgl_clear_signexponent_set_hidden(opnd1); | 
|  | } | 
|  | else { | 
|  | /* check for zero */ | 
|  | if (Sgl_iszero_mantissa(opnd1)) { | 
|  | /* | 
|  | * Perform the add opnd3 with zero here. | 
|  | */ | 
|  | if (Sgl_iszero_exponentmantissa(opnd3)) { | 
|  | if (Is_rounding_mode(ROUNDMINUS)) { | 
|  | Sgl_or_signs(opnd3,resultp1); | 
|  | } else { | 
|  | Sgl_and_signs(opnd3,resultp1); | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Now let's check for trapped underflow case. | 
|  | */ | 
|  | else if (Sgl_iszero_exponent(opnd3) && | 
|  | Is_underflowtrap_enabled()) { | 
|  | /* need to normalize results mantissa */ | 
|  | sign_save = Sgl_signextendedsign(opnd3); | 
|  | result_exponent = 0; | 
|  | Sgl_leftshiftby1(opnd3); | 
|  | Sgl_normalize(opnd3,result_exponent); | 
|  | Sgl_set_sign(opnd3,/*using*/sign_save); | 
|  | Sgl_setwrapped_exponent(opnd3,result_exponent, | 
|  | unfl); | 
|  | Sgl_copytoptr(opnd3,dstptr); | 
|  | /* inexact = FALSE */ | 
|  | return(OPC_2E_UNDERFLOWEXCEPTION); | 
|  | } | 
|  | Sgl_copytoptr(opnd3,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | /* is denormalized, adjust exponent */ | 
|  | Sgl_clear_signexponent(opnd1); | 
|  | Sgl_leftshiftby1(opnd1); | 
|  | Sgl_normalize(opnd1,mpy_exponent); | 
|  | } | 
|  | /* opnd2 needs to have hidden bit set with msb in hidden bit */ | 
|  | if (Sgl_isnotzero_exponent(opnd2)) { | 
|  | Sgl_clear_signexponent_set_hidden(opnd2); | 
|  | } | 
|  | else { | 
|  | /* check for zero */ | 
|  | if (Sgl_iszero_mantissa(opnd2)) { | 
|  | /* | 
|  | * Perform the add opnd3 with zero here. | 
|  | */ | 
|  | if (Sgl_iszero_exponentmantissa(opnd3)) { | 
|  | if (Is_rounding_mode(ROUNDMINUS)) { | 
|  | Sgl_or_signs(opnd3,resultp1); | 
|  | } else { | 
|  | Sgl_and_signs(opnd3,resultp1); | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Now let's check for trapped underflow case. | 
|  | */ | 
|  | else if (Sgl_iszero_exponent(opnd3) && | 
|  | Is_underflowtrap_enabled()) { | 
|  | /* need to normalize results mantissa */ | 
|  | sign_save = Sgl_signextendedsign(opnd3); | 
|  | result_exponent = 0; | 
|  | Sgl_leftshiftby1(opnd3); | 
|  | Sgl_normalize(opnd3,result_exponent); | 
|  | Sgl_set_sign(opnd3,/*using*/sign_save); | 
|  | Sgl_setwrapped_exponent(opnd3,result_exponent, | 
|  | unfl); | 
|  | Sgl_copytoptr(opnd3,dstptr); | 
|  | /* inexact = FALSE */ | 
|  | return(OPC_2E_UNDERFLOWEXCEPTION); | 
|  | } | 
|  | Sgl_copytoptr(opnd3,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | /* is denormalized; want to normalize */ | 
|  | Sgl_clear_signexponent(opnd2); | 
|  | Sgl_leftshiftby1(opnd2); | 
|  | Sgl_normalize(opnd2,mpy_exponent); | 
|  | } | 
|  |  | 
|  | /* Multiply the first two source mantissas together */ | 
|  |  | 
|  | /* | 
|  | * The intermediate result will be kept in tmpres, | 
|  | * which needs enough room for 106 bits of mantissa, | 
|  | * so lets call it a Double extended. | 
|  | */ | 
|  | Sglext_setzero(tmpresp1,tmpresp2); | 
|  |  | 
|  | /* | 
|  | * Four bits at a time are inspected in each loop, and a | 
|  | * simple shift and add multiply algorithm is used. | 
|  | */ | 
|  | for (count = SGL_P-1; count >= 0; count -= 4) { | 
|  | Sglext_rightshiftby4(tmpresp1,tmpresp2); | 
|  | if (Sbit28(opnd1)) { | 
|  | /* Twoword_add should be an ADD followed by 2 ADDC's */ | 
|  | Twoword_add(tmpresp1, tmpresp2, opnd2<<3, 0); | 
|  | } | 
|  | if (Sbit29(opnd1)) { | 
|  | Twoword_add(tmpresp1, tmpresp2, opnd2<<2, 0); | 
|  | } | 
|  | if (Sbit30(opnd1)) { | 
|  | Twoword_add(tmpresp1, tmpresp2, opnd2<<1, 0); | 
|  | } | 
|  | if (Sbit31(opnd1)) { | 
|  | Twoword_add(tmpresp1, tmpresp2, opnd2, 0); | 
|  | } | 
|  | Sgl_rightshiftby4(opnd1); | 
|  | } | 
|  | if (Is_sexthiddenoverflow(tmpresp1)) { | 
|  | /* result mantissa >= 2 (mantissa overflow) */ | 
|  | mpy_exponent++; | 
|  | Sglext_rightshiftby4(tmpresp1,tmpresp2); | 
|  | } else { | 
|  | Sglext_rightshiftby3(tmpresp1,tmpresp2); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Restore the sign of the mpy result which was saved in resultp1. | 
|  | * The exponent will continue to be kept in mpy_exponent. | 
|  | */ | 
|  | Sglext_set_sign(tmpresp1,Sgl_sign(resultp1)); | 
|  |  | 
|  | /* | 
|  | * No rounding is required, since the result of the multiply | 
|  | * is exact in the extended format. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Now we are ready to perform the add portion of the operation. | 
|  | * | 
|  | * The exponents need to be kept as integers for now, since the | 
|  | * multiply result might not fit into the exponent field.  We | 
|  | * can't overflow or underflow because of this yet, since the | 
|  | * add could bring the final result back into range. | 
|  | */ | 
|  | add_exponent = Sgl_exponent(opnd3); | 
|  |  | 
|  | /* | 
|  | * Check for denormalized or zero add operand. | 
|  | */ | 
|  | if (add_exponent == 0) { | 
|  | /* check for zero */ | 
|  | if (Sgl_iszero_mantissa(opnd3)) { | 
|  | /* right is zero */ | 
|  | /* Left can't be zero and must be result. | 
|  | * | 
|  | * The final result is now in tmpres and mpy_exponent, | 
|  | * and needs to be rounded and squeezed back into | 
|  | * double precision format from double extended. | 
|  | */ | 
|  | result_exponent = mpy_exponent; | 
|  | Sglext_copy(tmpresp1,tmpresp2,resultp1,resultp2); | 
|  | sign_save = Sgl_signextendedsign(resultp1);/*save sign*/ | 
|  | goto round; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Neither are zeroes. | 
|  | * Adjust exponent and normalize add operand. | 
|  | */ | 
|  | sign_save = Sgl_signextendedsign(opnd3);	/* save sign */ | 
|  | Sgl_clear_signexponent(opnd3); | 
|  | Sgl_leftshiftby1(opnd3); | 
|  | Sgl_normalize(opnd3,add_exponent); | 
|  | Sgl_set_sign(opnd3,sign_save);		/* restore sign */ | 
|  | } else { | 
|  | Sgl_clear_exponent_set_hidden(opnd3); | 
|  | } | 
|  | /* | 
|  | * Copy opnd3 to the double extended variable called right. | 
|  | */ | 
|  | Sgl_copyto_sglext(opnd3,rightp1,rightp2); | 
|  |  | 
|  | /* | 
|  | * A zero "save" helps discover equal operands (for later), | 
|  | * and is used in swapping operands (if needed). | 
|  | */ | 
|  | Sglext_xortointp1(tmpresp1,rightp1,/*to*/save); | 
|  |  | 
|  | /* | 
|  | * Compare magnitude of operands. | 
|  | */ | 
|  | Sglext_copytoint_exponentmantissa(tmpresp1,signlessleft1); | 
|  | Sglext_copytoint_exponentmantissa(rightp1,signlessright1); | 
|  | if (mpy_exponent < add_exponent || mpy_exponent == add_exponent && | 
|  | Sglext_ismagnitudeless(signlessleft1,signlessright1)) { | 
|  | /* | 
|  | * Set the left operand to the larger one by XOR swap. | 
|  | * First finish the first word "save". | 
|  | */ | 
|  | Sglext_xorfromintp1(save,rightp1,/*to*/rightp1); | 
|  | Sglext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1); | 
|  | Sglext_swap_lower(tmpresp2,rightp2); | 
|  | /* also setup exponents used in rest of routine */ | 
|  | diff_exponent = add_exponent - mpy_exponent; | 
|  | result_exponent = add_exponent; | 
|  | } else { | 
|  | /* also setup exponents used in rest of routine */ | 
|  | diff_exponent = mpy_exponent - add_exponent; | 
|  | result_exponent = mpy_exponent; | 
|  | } | 
|  | /* Invariant: left is not smaller than right. */ | 
|  |  | 
|  | /* | 
|  | * Special case alignment of operands that would force alignment | 
|  | * beyond the extent of the extension.  A further optimization | 
|  | * could special case this but only reduces the path length for | 
|  | * this infrequent case. | 
|  | */ | 
|  | if (diff_exponent > SGLEXT_THRESHOLD) { | 
|  | diff_exponent = SGLEXT_THRESHOLD; | 
|  | } | 
|  |  | 
|  | /* Align right operand by shifting it to the right */ | 
|  | Sglext_clear_sign(rightp1); | 
|  | Sglext_right_align(rightp1,rightp2,/*shifted by*/diff_exponent); | 
|  |  | 
|  | /* Treat sum and difference of the operands separately. */ | 
|  | if ((int)save < 0) { | 
|  | /* | 
|  | * Difference of the two operands.  Overflow can occur if the | 
|  | * multiply overflowed.  A borrow can occur out of the hidden | 
|  | * bit and force a post normalization phase. | 
|  | */ | 
|  | Sglext_subtract(tmpresp1,tmpresp2, rightp1,rightp2, | 
|  | resultp1,resultp2); | 
|  | sign_save = Sgl_signextendedsign(resultp1); | 
|  | if (Sgl_iszero_hidden(resultp1)) { | 
|  | /* Handle normalization */ | 
|  | /* A straight foward algorithm would now shift the | 
|  | * result and extension left until the hidden bit | 
|  | * becomes one.  Not all of the extension bits need | 
|  | * participate in the shift.  Only the two most | 
|  | * significant bits (round and guard) are needed. | 
|  | * If only a single shift is needed then the guard | 
|  | * bit becomes a significant low order bit and the | 
|  | * extension must participate in the rounding. | 
|  | * If more than a single shift is needed, then all | 
|  | * bits to the right of the guard bit are zeros, | 
|  | * and the guard bit may or may not be zero. */ | 
|  | Sglext_leftshiftby1(resultp1,resultp2); | 
|  |  | 
|  | /* Need to check for a zero result.  The sign and | 
|  | * exponent fields have already been zeroed.  The more | 
|  | * efficient test of the full object can be used. | 
|  | */ | 
|  | if (Sglext_iszero(resultp1,resultp2)) { | 
|  | /* Must have been "x-x" or "x+(-x)". */ | 
|  | if (Is_rounding_mode(ROUNDMINUS)) | 
|  | Sgl_setone_sign(resultp1); | 
|  | Sgl_copytoptr(resultp1,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | result_exponent--; | 
|  |  | 
|  | /* Look to see if normalization is finished. */ | 
|  | if (Sgl_isone_hidden(resultp1)) { | 
|  | /* No further normalization is needed */ | 
|  | goto round; | 
|  | } | 
|  |  | 
|  | /* Discover first one bit to determine shift amount. | 
|  | * Use a modified binary search.  We have already | 
|  | * shifted the result one position right and still | 
|  | * not found a one so the remainder of the extension | 
|  | * must be zero and simplifies rounding. */ | 
|  | /* Scan bytes */ | 
|  | while (Sgl_iszero_hiddenhigh7mantissa(resultp1)) { | 
|  | Sglext_leftshiftby8(resultp1,resultp2); | 
|  | result_exponent -= 8; | 
|  | } | 
|  | /* Now narrow it down to the nibble */ | 
|  | if (Sgl_iszero_hiddenhigh3mantissa(resultp1)) { | 
|  | /* The lower nibble contains the | 
|  | * normalizing one */ | 
|  | Sglext_leftshiftby4(resultp1,resultp2); | 
|  | result_exponent -= 4; | 
|  | } | 
|  | /* Select case where first bit is set (already | 
|  | * normalized) otherwise select the proper shift. */ | 
|  | jumpsize = Sgl_hiddenhigh3mantissa(resultp1); | 
|  | if (jumpsize <= 7) switch(jumpsize) { | 
|  | case 1: | 
|  | Sglext_leftshiftby3(resultp1,resultp2); | 
|  | result_exponent -= 3; | 
|  | break; | 
|  | case 2: | 
|  | case 3: | 
|  | Sglext_leftshiftby2(resultp1,resultp2); | 
|  | result_exponent -= 2; | 
|  | break; | 
|  | case 4: | 
|  | case 5: | 
|  | case 6: | 
|  | case 7: | 
|  | Sglext_leftshiftby1(resultp1,resultp2); | 
|  | result_exponent -= 1; | 
|  | break; | 
|  | } | 
|  | } /* end if (hidden...)... */ | 
|  | /* Fall through and round */ | 
|  | } /* end if (save < 0)... */ | 
|  | else { | 
|  | /* Add magnitudes */ | 
|  | Sglext_addition(tmpresp1,tmpresp2, | 
|  | rightp1,rightp2, /*to*/resultp1,resultp2); | 
|  | sign_save = Sgl_signextendedsign(resultp1); | 
|  | if (Sgl_isone_hiddenoverflow(resultp1)) { | 
|  | /* Prenormalization required. */ | 
|  | Sglext_arithrightshiftby1(resultp1,resultp2); | 
|  | result_exponent++; | 
|  | } /* end if hiddenoverflow... */ | 
|  | } /* end else ...add magnitudes... */ | 
|  |  | 
|  | /* Round the result.  If the extension and lower two words are | 
|  | * all zeros, then the result is exact.  Otherwise round in the | 
|  | * correct direction.  Underflow is possible. If a postnormalization | 
|  | * is necessary, then the mantissa is all zeros so no shift is needed. | 
|  | */ | 
|  | round: | 
|  | if (result_exponent <= 0 && !Is_underflowtrap_enabled()) { | 
|  | Sglext_denormalize(resultp1,resultp2,result_exponent,is_tiny); | 
|  | } | 
|  | Sgl_set_sign(resultp1,/*using*/sign_save); | 
|  | if (Sglext_isnotzero_mantissap2(resultp2)) { | 
|  | inexact = TRUE; | 
|  | switch(Rounding_mode()) { | 
|  | case ROUNDNEAREST: /* The default. */ | 
|  | if (Sglext_isone_highp2(resultp2)) { | 
|  | /* at least 1/2 ulp */ | 
|  | if (Sglext_isnotzero_low31p2(resultp2) || | 
|  | Sglext_isone_lowp1(resultp1)) { | 
|  | /* either exactly half way and odd or | 
|  | * more than 1/2ulp */ | 
|  | Sgl_increment(resultp1); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ROUNDPLUS: | 
|  | if (Sgl_iszero_sign(resultp1)) { | 
|  | /* Round up positive results */ | 
|  | Sgl_increment(resultp1); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ROUNDMINUS: | 
|  | if (Sgl_isone_sign(resultp1)) { | 
|  | /* Round down negative results */ | 
|  | Sgl_increment(resultp1); | 
|  | } | 
|  |  | 
|  | case ROUNDZERO:; | 
|  | /* truncate is simple */ | 
|  | } /* end switch... */ | 
|  | if (Sgl_isone_hiddenoverflow(resultp1)) result_exponent++; | 
|  | } | 
|  | if (result_exponent >= SGL_INFINITY_EXPONENT) { | 
|  | /* Overflow */ | 
|  | if (Is_overflowtrap_enabled()) { | 
|  | /* | 
|  | * Adjust bias of result | 
|  | */ | 
|  | Sgl_setwrapped_exponent(resultp1,result_exponent,ovfl); | 
|  | Sgl_copytoptr(resultp1,dstptr); | 
|  | if (inexact) | 
|  | if (Is_inexacttrap_enabled()) | 
|  | return (OPC_2E_OVERFLOWEXCEPTION | | 
|  | OPC_2E_INEXACTEXCEPTION); | 
|  | else Set_inexactflag(); | 
|  | return (OPC_2E_OVERFLOWEXCEPTION); | 
|  | } | 
|  | inexact = TRUE; | 
|  | Set_overflowflag(); | 
|  | Sgl_setoverflow(resultp1); | 
|  | } else if (result_exponent <= 0) {	/* underflow case */ | 
|  | if (Is_underflowtrap_enabled()) { | 
|  | /* | 
|  | * Adjust bias of result | 
|  | */ | 
|  | Sgl_setwrapped_exponent(resultp1,result_exponent,unfl); | 
|  | Sgl_copytoptr(resultp1,dstptr); | 
|  | if (inexact) | 
|  | if (Is_inexacttrap_enabled()) | 
|  | return (OPC_2E_UNDERFLOWEXCEPTION | | 
|  | OPC_2E_INEXACTEXCEPTION); | 
|  | else Set_inexactflag(); | 
|  | return(OPC_2E_UNDERFLOWEXCEPTION); | 
|  | } | 
|  | else if (inexact && is_tiny) Set_underflowflag(); | 
|  | } | 
|  | else Sgl_set_exponent(resultp1,result_exponent); | 
|  | Sgl_copytoptr(resultp1,dstptr); | 
|  | if (inexact) | 
|  | if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION); | 
|  | else Set_inexactflag(); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  Single Floating-point Multiply Negate Fused Add | 
|  | */ | 
|  |  | 
|  | sgl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr) | 
|  |  | 
|  | sgl_floating_point *src1ptr, *src2ptr, *src3ptr, *dstptr; | 
|  | unsigned int *status; | 
|  | { | 
|  | unsigned int opnd1, opnd2, opnd3; | 
|  | register unsigned int tmpresp1, tmpresp2; | 
|  | unsigned int rightp1, rightp2; | 
|  | unsigned int resultp1, resultp2 = 0; | 
|  | register int mpy_exponent, add_exponent, count; | 
|  | boolean inexact = FALSE, is_tiny = FALSE; | 
|  |  | 
|  | unsigned int signlessleft1, signlessright1, save; | 
|  | register int result_exponent, diff_exponent; | 
|  | int sign_save, jumpsize; | 
|  |  | 
|  | Sgl_copyfromptr(src1ptr,opnd1); | 
|  | Sgl_copyfromptr(src2ptr,opnd2); | 
|  | Sgl_copyfromptr(src3ptr,opnd3); | 
|  |  | 
|  | /* | 
|  | * set sign bit of result of multiply | 
|  | */ | 
|  | if (Sgl_sign(opnd1) ^ Sgl_sign(opnd2)) | 
|  | Sgl_setzero(resultp1); | 
|  | else | 
|  | Sgl_setnegativezero(resultp1); | 
|  |  | 
|  | /* | 
|  | * Generate multiply exponent | 
|  | */ | 
|  | mpy_exponent = Sgl_exponent(opnd1) + Sgl_exponent(opnd2) - SGL_BIAS; | 
|  |  | 
|  | /* | 
|  | * check first operand for NaN's or infinity | 
|  | */ | 
|  | if (Sgl_isinfinity_exponent(opnd1)) { | 
|  | if (Sgl_iszero_mantissa(opnd1)) { | 
|  | if (Sgl_isnotnan(opnd2) && Sgl_isnotnan(opnd3)) { | 
|  | if (Sgl_iszero_exponentmantissa(opnd2)) { | 
|  | /* | 
|  | * invalid since operands are infinity | 
|  | * and zero | 
|  | */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | Set_invalidflag(); | 
|  | Sgl_makequietnan(resultp1); | 
|  | Sgl_copytoptr(resultp1,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | /* | 
|  | * Check third operand for infinity with a | 
|  | *  sign opposite of the multiply result | 
|  | */ | 
|  | if (Sgl_isinfinity(opnd3) && | 
|  | (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) { | 
|  | /* | 
|  | * invalid since attempting a magnitude | 
|  | * subtraction of infinities | 
|  | */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | Set_invalidflag(); | 
|  | Sgl_makequietnan(resultp1); | 
|  | Sgl_copytoptr(resultp1,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * return infinity | 
|  | */ | 
|  | Sgl_setinfinity_exponentmantissa(resultp1); | 
|  | Sgl_copytoptr(resultp1,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | } | 
|  | else { | 
|  | /* | 
|  | * is NaN; signaling or quiet? | 
|  | */ | 
|  | if (Sgl_isone_signaling(opnd1)) { | 
|  | /* trap if INVALIDTRAP enabled */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | /* make NaN quiet */ | 
|  | Set_invalidflag(); | 
|  | Sgl_set_quiet(opnd1); | 
|  | } | 
|  | /* | 
|  | * is second operand a signaling NaN? | 
|  | */ | 
|  | else if (Sgl_is_signalingnan(opnd2)) { | 
|  | /* trap if INVALIDTRAP enabled */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | /* make NaN quiet */ | 
|  | Set_invalidflag(); | 
|  | Sgl_set_quiet(opnd2); | 
|  | Sgl_copytoptr(opnd2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | /* | 
|  | * is third operand a signaling NaN? | 
|  | */ | 
|  | else if (Sgl_is_signalingnan(opnd3)) { | 
|  | /* trap if INVALIDTRAP enabled */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | /* make NaN quiet */ | 
|  | Set_invalidflag(); | 
|  | Sgl_set_quiet(opnd3); | 
|  | Sgl_copytoptr(opnd3,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | /* | 
|  | * return quiet NaN | 
|  | */ | 
|  | Sgl_copytoptr(opnd1,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * check second operand for NaN's or infinity | 
|  | */ | 
|  | if (Sgl_isinfinity_exponent(opnd2)) { | 
|  | if (Sgl_iszero_mantissa(opnd2)) { | 
|  | if (Sgl_isnotnan(opnd3)) { | 
|  | if (Sgl_iszero_exponentmantissa(opnd1)) { | 
|  | /* | 
|  | * invalid since multiply operands are | 
|  | * zero & infinity | 
|  | */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | Set_invalidflag(); | 
|  | Sgl_makequietnan(opnd2); | 
|  | Sgl_copytoptr(opnd2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check third operand for infinity with a | 
|  | *  sign opposite of the multiply result | 
|  | */ | 
|  | if (Sgl_isinfinity(opnd3) && | 
|  | (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) { | 
|  | /* | 
|  | * invalid since attempting a magnitude | 
|  | * subtraction of infinities | 
|  | */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | Set_invalidflag(); | 
|  | Sgl_makequietnan(resultp1); | 
|  | Sgl_copytoptr(resultp1,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * return infinity | 
|  | */ | 
|  | Sgl_setinfinity_exponentmantissa(resultp1); | 
|  | Sgl_copytoptr(resultp1,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | } | 
|  | else { | 
|  | /* | 
|  | * is NaN; signaling or quiet? | 
|  | */ | 
|  | if (Sgl_isone_signaling(opnd2)) { | 
|  | /* trap if INVALIDTRAP enabled */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | /* make NaN quiet */ | 
|  | Set_invalidflag(); | 
|  | Sgl_set_quiet(opnd2); | 
|  | } | 
|  | /* | 
|  | * is third operand a signaling NaN? | 
|  | */ | 
|  | else if (Sgl_is_signalingnan(opnd3)) { | 
|  | /* trap if INVALIDTRAP enabled */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | /* make NaN quiet */ | 
|  | Set_invalidflag(); | 
|  | Sgl_set_quiet(opnd3); | 
|  | Sgl_copytoptr(opnd3,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | /* | 
|  | * return quiet NaN | 
|  | */ | 
|  | Sgl_copytoptr(opnd2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * check third operand for NaN's or infinity | 
|  | */ | 
|  | if (Sgl_isinfinity_exponent(opnd3)) { | 
|  | if (Sgl_iszero_mantissa(opnd3)) { | 
|  | /* return infinity */ | 
|  | Sgl_copytoptr(opnd3,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } else { | 
|  | /* | 
|  | * is NaN; signaling or quiet? | 
|  | */ | 
|  | if (Sgl_isone_signaling(opnd3)) { | 
|  | /* trap if INVALIDTRAP enabled */ | 
|  | if (Is_invalidtrap_enabled()) | 
|  | return(OPC_2E_INVALIDEXCEPTION); | 
|  | /* make NaN quiet */ | 
|  | Set_invalidflag(); | 
|  | Sgl_set_quiet(opnd3); | 
|  | } | 
|  | /* | 
|  | * return quiet NaN | 
|  | */ | 
|  | Sgl_copytoptr(opnd3,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generate multiply mantissa | 
|  | */ | 
|  | if (Sgl_isnotzero_exponent(opnd1)) { | 
|  | /* set hidden bit */ | 
|  | Sgl_clear_signexponent_set_hidden(opnd1); | 
|  | } | 
|  | else { | 
|  | /* check for zero */ | 
|  | if (Sgl_iszero_mantissa(opnd1)) { | 
|  | /* | 
|  | * Perform the add opnd3 with zero here. | 
|  | */ | 
|  | if (Sgl_iszero_exponentmantissa(opnd3)) { | 
|  | if (Is_rounding_mode(ROUNDMINUS)) { | 
|  | Sgl_or_signs(opnd3,resultp1); | 
|  | } else { | 
|  | Sgl_and_signs(opnd3,resultp1); | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Now let's check for trapped underflow case. | 
|  | */ | 
|  | else if (Sgl_iszero_exponent(opnd3) && | 
|  | Is_underflowtrap_enabled()) { | 
|  | /* need to normalize results mantissa */ | 
|  | sign_save = Sgl_signextendedsign(opnd3); | 
|  | result_exponent = 0; | 
|  | Sgl_leftshiftby1(opnd3); | 
|  | Sgl_normalize(opnd3,result_exponent); | 
|  | Sgl_set_sign(opnd3,/*using*/sign_save); | 
|  | Sgl_setwrapped_exponent(opnd3,result_exponent, | 
|  | unfl); | 
|  | Sgl_copytoptr(opnd3,dstptr); | 
|  | /* inexact = FALSE */ | 
|  | return(OPC_2E_UNDERFLOWEXCEPTION); | 
|  | } | 
|  | Sgl_copytoptr(opnd3,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | /* is denormalized, adjust exponent */ | 
|  | Sgl_clear_signexponent(opnd1); | 
|  | Sgl_leftshiftby1(opnd1); | 
|  | Sgl_normalize(opnd1,mpy_exponent); | 
|  | } | 
|  | /* opnd2 needs to have hidden bit set with msb in hidden bit */ | 
|  | if (Sgl_isnotzero_exponent(opnd2)) { | 
|  | Sgl_clear_signexponent_set_hidden(opnd2); | 
|  | } | 
|  | else { | 
|  | /* check for zero */ | 
|  | if (Sgl_iszero_mantissa(opnd2)) { | 
|  | /* | 
|  | * Perform the add opnd3 with zero here. | 
|  | */ | 
|  | if (Sgl_iszero_exponentmantissa(opnd3)) { | 
|  | if (Is_rounding_mode(ROUNDMINUS)) { | 
|  | Sgl_or_signs(opnd3,resultp1); | 
|  | } else { | 
|  | Sgl_and_signs(opnd3,resultp1); | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Now let's check for trapped underflow case. | 
|  | */ | 
|  | else if (Sgl_iszero_exponent(opnd3) && | 
|  | Is_underflowtrap_enabled()) { | 
|  | /* need to normalize results mantissa */ | 
|  | sign_save = Sgl_signextendedsign(opnd3); | 
|  | result_exponent = 0; | 
|  | Sgl_leftshiftby1(opnd3); | 
|  | Sgl_normalize(opnd3,result_exponent); | 
|  | Sgl_set_sign(opnd3,/*using*/sign_save); | 
|  | Sgl_setwrapped_exponent(opnd3,result_exponent, | 
|  | unfl); | 
|  | Sgl_copytoptr(opnd3,dstptr); | 
|  | /* inexact = FALSE */ | 
|  | return(OPC_2E_UNDERFLOWEXCEPTION); | 
|  | } | 
|  | Sgl_copytoptr(opnd3,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | /* is denormalized; want to normalize */ | 
|  | Sgl_clear_signexponent(opnd2); | 
|  | Sgl_leftshiftby1(opnd2); | 
|  | Sgl_normalize(opnd2,mpy_exponent); | 
|  | } | 
|  |  | 
|  | /* Multiply the first two source mantissas together */ | 
|  |  | 
|  | /* | 
|  | * The intermediate result will be kept in tmpres, | 
|  | * which needs enough room for 106 bits of mantissa, | 
|  | * so lets call it a Double extended. | 
|  | */ | 
|  | Sglext_setzero(tmpresp1,tmpresp2); | 
|  |  | 
|  | /* | 
|  | * Four bits at a time are inspected in each loop, and a | 
|  | * simple shift and add multiply algorithm is used. | 
|  | */ | 
|  | for (count = SGL_P-1; count >= 0; count -= 4) { | 
|  | Sglext_rightshiftby4(tmpresp1,tmpresp2); | 
|  | if (Sbit28(opnd1)) { | 
|  | /* Twoword_add should be an ADD followed by 2 ADDC's */ | 
|  | Twoword_add(tmpresp1, tmpresp2, opnd2<<3, 0); | 
|  | } | 
|  | if (Sbit29(opnd1)) { | 
|  | Twoword_add(tmpresp1, tmpresp2, opnd2<<2, 0); | 
|  | } | 
|  | if (Sbit30(opnd1)) { | 
|  | Twoword_add(tmpresp1, tmpresp2, opnd2<<1, 0); | 
|  | } | 
|  | if (Sbit31(opnd1)) { | 
|  | Twoword_add(tmpresp1, tmpresp2, opnd2, 0); | 
|  | } | 
|  | Sgl_rightshiftby4(opnd1); | 
|  | } | 
|  | if (Is_sexthiddenoverflow(tmpresp1)) { | 
|  | /* result mantissa >= 2 (mantissa overflow) */ | 
|  | mpy_exponent++; | 
|  | Sglext_rightshiftby4(tmpresp1,tmpresp2); | 
|  | } else { | 
|  | Sglext_rightshiftby3(tmpresp1,tmpresp2); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Restore the sign of the mpy result which was saved in resultp1. | 
|  | * The exponent will continue to be kept in mpy_exponent. | 
|  | */ | 
|  | Sglext_set_sign(tmpresp1,Sgl_sign(resultp1)); | 
|  |  | 
|  | /* | 
|  | * No rounding is required, since the result of the multiply | 
|  | * is exact in the extended format. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Now we are ready to perform the add portion of the operation. | 
|  | * | 
|  | * The exponents need to be kept as integers for now, since the | 
|  | * multiply result might not fit into the exponent field.  We | 
|  | * can't overflow or underflow because of this yet, since the | 
|  | * add could bring the final result back into range. | 
|  | */ | 
|  | add_exponent = Sgl_exponent(opnd3); | 
|  |  | 
|  | /* | 
|  | * Check for denormalized or zero add operand. | 
|  | */ | 
|  | if (add_exponent == 0) { | 
|  | /* check for zero */ | 
|  | if (Sgl_iszero_mantissa(opnd3)) { | 
|  | /* right is zero */ | 
|  | /* Left can't be zero and must be result. | 
|  | * | 
|  | * The final result is now in tmpres and mpy_exponent, | 
|  | * and needs to be rounded and squeezed back into | 
|  | * double precision format from double extended. | 
|  | */ | 
|  | result_exponent = mpy_exponent; | 
|  | Sglext_copy(tmpresp1,tmpresp2,resultp1,resultp2); | 
|  | sign_save = Sgl_signextendedsign(resultp1);/*save sign*/ | 
|  | goto round; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Neither are zeroes. | 
|  | * Adjust exponent and normalize add operand. | 
|  | */ | 
|  | sign_save = Sgl_signextendedsign(opnd3);	/* save sign */ | 
|  | Sgl_clear_signexponent(opnd3); | 
|  | Sgl_leftshiftby1(opnd3); | 
|  | Sgl_normalize(opnd3,add_exponent); | 
|  | Sgl_set_sign(opnd3,sign_save);		/* restore sign */ | 
|  | } else { | 
|  | Sgl_clear_exponent_set_hidden(opnd3); | 
|  | } | 
|  | /* | 
|  | * Copy opnd3 to the double extended variable called right. | 
|  | */ | 
|  | Sgl_copyto_sglext(opnd3,rightp1,rightp2); | 
|  |  | 
|  | /* | 
|  | * A zero "save" helps discover equal operands (for later), | 
|  | * and is used in swapping operands (if needed). | 
|  | */ | 
|  | Sglext_xortointp1(tmpresp1,rightp1,/*to*/save); | 
|  |  | 
|  | /* | 
|  | * Compare magnitude of operands. | 
|  | */ | 
|  | Sglext_copytoint_exponentmantissa(tmpresp1,signlessleft1); | 
|  | Sglext_copytoint_exponentmantissa(rightp1,signlessright1); | 
|  | if (mpy_exponent < add_exponent || mpy_exponent == add_exponent && | 
|  | Sglext_ismagnitudeless(signlessleft1,signlessright1)) { | 
|  | /* | 
|  | * Set the left operand to the larger one by XOR swap. | 
|  | * First finish the first word "save". | 
|  | */ | 
|  | Sglext_xorfromintp1(save,rightp1,/*to*/rightp1); | 
|  | Sglext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1); | 
|  | Sglext_swap_lower(tmpresp2,rightp2); | 
|  | /* also setup exponents used in rest of routine */ | 
|  | diff_exponent = add_exponent - mpy_exponent; | 
|  | result_exponent = add_exponent; | 
|  | } else { | 
|  | /* also setup exponents used in rest of routine */ | 
|  | diff_exponent = mpy_exponent - add_exponent; | 
|  | result_exponent = mpy_exponent; | 
|  | } | 
|  | /* Invariant: left is not smaller than right. */ | 
|  |  | 
|  | /* | 
|  | * Special case alignment of operands that would force alignment | 
|  | * beyond the extent of the extension.  A further optimization | 
|  | * could special case this but only reduces the path length for | 
|  | * this infrequent case. | 
|  | */ | 
|  | if (diff_exponent > SGLEXT_THRESHOLD) { | 
|  | diff_exponent = SGLEXT_THRESHOLD; | 
|  | } | 
|  |  | 
|  | /* Align right operand by shifting it to the right */ | 
|  | Sglext_clear_sign(rightp1); | 
|  | Sglext_right_align(rightp1,rightp2,/*shifted by*/diff_exponent); | 
|  |  | 
|  | /* Treat sum and difference of the operands separately. */ | 
|  | if ((int)save < 0) { | 
|  | /* | 
|  | * Difference of the two operands.  Overflow can occur if the | 
|  | * multiply overflowed.  A borrow can occur out of the hidden | 
|  | * bit and force a post normalization phase. | 
|  | */ | 
|  | Sglext_subtract(tmpresp1,tmpresp2, rightp1,rightp2, | 
|  | resultp1,resultp2); | 
|  | sign_save = Sgl_signextendedsign(resultp1); | 
|  | if (Sgl_iszero_hidden(resultp1)) { | 
|  | /* Handle normalization */ | 
|  | /* A straight foward algorithm would now shift the | 
|  | * result and extension left until the hidden bit | 
|  | * becomes one.  Not all of the extension bits need | 
|  | * participate in the shift.  Only the two most | 
|  | * significant bits (round and guard) are needed. | 
|  | * If only a single shift is needed then the guard | 
|  | * bit becomes a significant low order bit and the | 
|  | * extension must participate in the rounding. | 
|  | * If more than a single shift is needed, then all | 
|  | * bits to the right of the guard bit are zeros, | 
|  | * and the guard bit may or may not be zero. */ | 
|  | Sglext_leftshiftby1(resultp1,resultp2); | 
|  |  | 
|  | /* Need to check for a zero result.  The sign and | 
|  | * exponent fields have already been zeroed.  The more | 
|  | * efficient test of the full object can be used. | 
|  | */ | 
|  | if (Sglext_iszero(resultp1,resultp2)) { | 
|  | /* Must have been "x-x" or "x+(-x)". */ | 
|  | if (Is_rounding_mode(ROUNDMINUS)) | 
|  | Sgl_setone_sign(resultp1); | 
|  | Sgl_copytoptr(resultp1,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | result_exponent--; | 
|  |  | 
|  | /* Look to see if normalization is finished. */ | 
|  | if (Sgl_isone_hidden(resultp1)) { | 
|  | /* No further normalization is needed */ | 
|  | goto round; | 
|  | } | 
|  |  | 
|  | /* Discover first one bit to determine shift amount. | 
|  | * Use a modified binary search.  We have already | 
|  | * shifted the result one position right and still | 
|  | * not found a one so the remainder of the extension | 
|  | * must be zero and simplifies rounding. */ | 
|  | /* Scan bytes */ | 
|  | while (Sgl_iszero_hiddenhigh7mantissa(resultp1)) { | 
|  | Sglext_leftshiftby8(resultp1,resultp2); | 
|  | result_exponent -= 8; | 
|  | } | 
|  | /* Now narrow it down to the nibble */ | 
|  | if (Sgl_iszero_hiddenhigh3mantissa(resultp1)) { | 
|  | /* The lower nibble contains the | 
|  | * normalizing one */ | 
|  | Sglext_leftshiftby4(resultp1,resultp2); | 
|  | result_exponent -= 4; | 
|  | } | 
|  | /* Select case where first bit is set (already | 
|  | * normalized) otherwise select the proper shift. */ | 
|  | jumpsize = Sgl_hiddenhigh3mantissa(resultp1); | 
|  | if (jumpsize <= 7) switch(jumpsize) { | 
|  | case 1: | 
|  | Sglext_leftshiftby3(resultp1,resultp2); | 
|  | result_exponent -= 3; | 
|  | break; | 
|  | case 2: | 
|  | case 3: | 
|  | Sglext_leftshiftby2(resultp1,resultp2); | 
|  | result_exponent -= 2; | 
|  | break; | 
|  | case 4: | 
|  | case 5: | 
|  | case 6: | 
|  | case 7: | 
|  | Sglext_leftshiftby1(resultp1,resultp2); | 
|  | result_exponent -= 1; | 
|  | break; | 
|  | } | 
|  | } /* end if (hidden...)... */ | 
|  | /* Fall through and round */ | 
|  | } /* end if (save < 0)... */ | 
|  | else { | 
|  | /* Add magnitudes */ | 
|  | Sglext_addition(tmpresp1,tmpresp2, | 
|  | rightp1,rightp2, /*to*/resultp1,resultp2); | 
|  | sign_save = Sgl_signextendedsign(resultp1); | 
|  | if (Sgl_isone_hiddenoverflow(resultp1)) { | 
|  | /* Prenormalization required. */ | 
|  | Sglext_arithrightshiftby1(resultp1,resultp2); | 
|  | result_exponent++; | 
|  | } /* end if hiddenoverflow... */ | 
|  | } /* end else ...add magnitudes... */ | 
|  |  | 
|  | /* Round the result.  If the extension and lower two words are | 
|  | * all zeros, then the result is exact.  Otherwise round in the | 
|  | * correct direction.  Underflow is possible. If a postnormalization | 
|  | * is necessary, then the mantissa is all zeros so no shift is needed. | 
|  | */ | 
|  | round: | 
|  | if (result_exponent <= 0 && !Is_underflowtrap_enabled()) { | 
|  | Sglext_denormalize(resultp1,resultp2,result_exponent,is_tiny); | 
|  | } | 
|  | Sgl_set_sign(resultp1,/*using*/sign_save); | 
|  | if (Sglext_isnotzero_mantissap2(resultp2)) { | 
|  | inexact = TRUE; | 
|  | switch(Rounding_mode()) { | 
|  | case ROUNDNEAREST: /* The default. */ | 
|  | if (Sglext_isone_highp2(resultp2)) { | 
|  | /* at least 1/2 ulp */ | 
|  | if (Sglext_isnotzero_low31p2(resultp2) || | 
|  | Sglext_isone_lowp1(resultp1)) { | 
|  | /* either exactly half way and odd or | 
|  | * more than 1/2ulp */ | 
|  | Sgl_increment(resultp1); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ROUNDPLUS: | 
|  | if (Sgl_iszero_sign(resultp1)) { | 
|  | /* Round up positive results */ | 
|  | Sgl_increment(resultp1); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ROUNDMINUS: | 
|  | if (Sgl_isone_sign(resultp1)) { | 
|  | /* Round down negative results */ | 
|  | Sgl_increment(resultp1); | 
|  | } | 
|  |  | 
|  | case ROUNDZERO:; | 
|  | /* truncate is simple */ | 
|  | } /* end switch... */ | 
|  | if (Sgl_isone_hiddenoverflow(resultp1)) result_exponent++; | 
|  | } | 
|  | if (result_exponent >= SGL_INFINITY_EXPONENT) { | 
|  | /* Overflow */ | 
|  | if (Is_overflowtrap_enabled()) { | 
|  | /* | 
|  | * Adjust bias of result | 
|  | */ | 
|  | Sgl_setwrapped_exponent(resultp1,result_exponent,ovfl); | 
|  | Sgl_copytoptr(resultp1,dstptr); | 
|  | if (inexact) | 
|  | if (Is_inexacttrap_enabled()) | 
|  | return (OPC_2E_OVERFLOWEXCEPTION | | 
|  | OPC_2E_INEXACTEXCEPTION); | 
|  | else Set_inexactflag(); | 
|  | return (OPC_2E_OVERFLOWEXCEPTION); | 
|  | } | 
|  | inexact = TRUE; | 
|  | Set_overflowflag(); | 
|  | Sgl_setoverflow(resultp1); | 
|  | } else if (result_exponent <= 0) {	/* underflow case */ | 
|  | if (Is_underflowtrap_enabled()) { | 
|  | /* | 
|  | * Adjust bias of result | 
|  | */ | 
|  | Sgl_setwrapped_exponent(resultp1,result_exponent,unfl); | 
|  | Sgl_copytoptr(resultp1,dstptr); | 
|  | if (inexact) | 
|  | if (Is_inexacttrap_enabled()) | 
|  | return (OPC_2E_UNDERFLOWEXCEPTION | | 
|  | OPC_2E_INEXACTEXCEPTION); | 
|  | else Set_inexactflag(); | 
|  | return(OPC_2E_UNDERFLOWEXCEPTION); | 
|  | } | 
|  | else if (inexact && is_tiny) Set_underflowflag(); | 
|  | } | 
|  | else Sgl_set_exponent(resultp1,result_exponent); | 
|  | Sgl_copytoptr(resultp1,dstptr); | 
|  | if (inexact) | 
|  | if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION); | 
|  | else Set_inexactflag(); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  |  |