|  | /* | 
|  | * linux/fs/binfmt_elf.c | 
|  | * | 
|  | * These are the functions used to load ELF format executables as used | 
|  | * on SVr4 machines.  Information on the format may be found in the book | 
|  | * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support | 
|  | * Tools". | 
|  | * | 
|  | * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com). | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/signal.h> | 
|  | #include <linux/binfmts.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/personality.h> | 
|  | #include <linux/elfcore.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/highuid.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/elf.h> | 
|  | #include <linux/utsname.h> | 
|  | #include <linux/coredump.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/param.h> | 
|  | #include <asm/page.h> | 
|  |  | 
|  | static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs); | 
|  | static int load_elf_library(struct file *); | 
|  | static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *, | 
|  | int, int, unsigned long); | 
|  |  | 
|  | /* | 
|  | * If we don't support core dumping, then supply a NULL so we | 
|  | * don't even try. | 
|  | */ | 
|  | #ifdef CONFIG_ELF_CORE | 
|  | static int elf_core_dump(struct coredump_params *cprm); | 
|  | #else | 
|  | #define elf_core_dump	NULL | 
|  | #endif | 
|  |  | 
|  | #if ELF_EXEC_PAGESIZE > PAGE_SIZE | 
|  | #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE | 
|  | #else | 
|  | #define ELF_MIN_ALIGN	PAGE_SIZE | 
|  | #endif | 
|  |  | 
|  | #ifndef ELF_CORE_EFLAGS | 
|  | #define ELF_CORE_EFLAGS	0 | 
|  | #endif | 
|  |  | 
|  | #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1)) | 
|  | #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1)) | 
|  | #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1)) | 
|  |  | 
|  | static struct linux_binfmt elf_format = { | 
|  | .module		= THIS_MODULE, | 
|  | .load_binary	= load_elf_binary, | 
|  | .load_shlib	= load_elf_library, | 
|  | .core_dump	= elf_core_dump, | 
|  | .min_coredump	= ELF_EXEC_PAGESIZE, | 
|  | }; | 
|  |  | 
|  | #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE) | 
|  |  | 
|  | static int set_brk(unsigned long start, unsigned long end) | 
|  | { | 
|  | start = ELF_PAGEALIGN(start); | 
|  | end = ELF_PAGEALIGN(end); | 
|  | if (end > start) { | 
|  | unsigned long addr; | 
|  | down_write(¤t->mm->mmap_sem); | 
|  | addr = do_brk(start, end - start); | 
|  | up_write(¤t->mm->mmap_sem); | 
|  | if (BAD_ADDR(addr)) | 
|  | return addr; | 
|  | } | 
|  | current->mm->start_brk = current->mm->brk = end; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* We need to explicitly zero any fractional pages | 
|  | after the data section (i.e. bss).  This would | 
|  | contain the junk from the file that should not | 
|  | be in memory | 
|  | */ | 
|  | static int padzero(unsigned long elf_bss) | 
|  | { | 
|  | unsigned long nbyte; | 
|  |  | 
|  | nbyte = ELF_PAGEOFFSET(elf_bss); | 
|  | if (nbyte) { | 
|  | nbyte = ELF_MIN_ALIGN - nbyte; | 
|  | if (clear_user((void __user *) elf_bss, nbyte)) | 
|  | return -EFAULT; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Let's use some macros to make this stack manipulation a little clearer */ | 
|  | #ifdef CONFIG_STACK_GROWSUP | 
|  | #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items)) | 
|  | #define STACK_ROUND(sp, items) \ | 
|  | ((15 + (unsigned long) ((sp) + (items))) &~ 15UL) | 
|  | #define STACK_ALLOC(sp, len) ({ \ | 
|  | elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \ | 
|  | old_sp; }) | 
|  | #else | 
|  | #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items)) | 
|  | #define STACK_ROUND(sp, items) \ | 
|  | (((unsigned long) (sp - items)) &~ 15UL) | 
|  | #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; }) | 
|  | #endif | 
|  |  | 
|  | #ifndef ELF_BASE_PLATFORM | 
|  | /* | 
|  | * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture. | 
|  | * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value | 
|  | * will be copied to the user stack in the same manner as AT_PLATFORM. | 
|  | */ | 
|  | #define ELF_BASE_PLATFORM NULL | 
|  | #endif | 
|  |  | 
|  | static int | 
|  | create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec, | 
|  | unsigned long load_addr, unsigned long interp_load_addr) | 
|  | { | 
|  | unsigned long p = bprm->p; | 
|  | int argc = bprm->argc; | 
|  | int envc = bprm->envc; | 
|  | elf_addr_t __user *argv; | 
|  | elf_addr_t __user *envp; | 
|  | elf_addr_t __user *sp; | 
|  | elf_addr_t __user *u_platform; | 
|  | elf_addr_t __user *u_base_platform; | 
|  | elf_addr_t __user *u_rand_bytes; | 
|  | const char *k_platform = ELF_PLATFORM; | 
|  | const char *k_base_platform = ELF_BASE_PLATFORM; | 
|  | unsigned char k_rand_bytes[16]; | 
|  | int items; | 
|  | elf_addr_t *elf_info; | 
|  | int ei_index = 0; | 
|  | const struct cred *cred = current_cred(); | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | /* | 
|  | * In some cases (e.g. Hyper-Threading), we want to avoid L1 | 
|  | * evictions by the processes running on the same package. One | 
|  | * thing we can do is to shuffle the initial stack for them. | 
|  | */ | 
|  |  | 
|  | p = arch_align_stack(p); | 
|  |  | 
|  | /* | 
|  | * If this architecture has a platform capability string, copy it | 
|  | * to userspace.  In some cases (Sparc), this info is impossible | 
|  | * for userspace to get any other way, in others (i386) it is | 
|  | * merely difficult. | 
|  | */ | 
|  | u_platform = NULL; | 
|  | if (k_platform) { | 
|  | size_t len = strlen(k_platform) + 1; | 
|  |  | 
|  | u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); | 
|  | if (__copy_to_user(u_platform, k_platform, len)) | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this architecture has a "base" platform capability | 
|  | * string, copy it to userspace. | 
|  | */ | 
|  | u_base_platform = NULL; | 
|  | if (k_base_platform) { | 
|  | size_t len = strlen(k_base_platform) + 1; | 
|  |  | 
|  | u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); | 
|  | if (__copy_to_user(u_base_platform, k_base_platform, len)) | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generate 16 random bytes for userspace PRNG seeding. | 
|  | */ | 
|  | get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes)); | 
|  | u_rand_bytes = (elf_addr_t __user *) | 
|  | STACK_ALLOC(p, sizeof(k_rand_bytes)); | 
|  | if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes))) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* Create the ELF interpreter info */ | 
|  | elf_info = (elf_addr_t *)current->mm->saved_auxv; | 
|  | /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */ | 
|  | #define NEW_AUX_ENT(id, val) \ | 
|  | do { \ | 
|  | elf_info[ei_index++] = id; \ | 
|  | elf_info[ei_index++] = val; \ | 
|  | } while (0) | 
|  |  | 
|  | #ifdef ARCH_DLINFO | 
|  | /* | 
|  | * ARCH_DLINFO must come first so PPC can do its special alignment of | 
|  | * AUXV. | 
|  | * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in | 
|  | * ARCH_DLINFO changes | 
|  | */ | 
|  | ARCH_DLINFO; | 
|  | #endif | 
|  | NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP); | 
|  | NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE); | 
|  | NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC); | 
|  | NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff); | 
|  | NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr)); | 
|  | NEW_AUX_ENT(AT_PHNUM, exec->e_phnum); | 
|  | NEW_AUX_ENT(AT_BASE, interp_load_addr); | 
|  | NEW_AUX_ENT(AT_FLAGS, 0); | 
|  | NEW_AUX_ENT(AT_ENTRY, exec->e_entry); | 
|  | NEW_AUX_ENT(AT_UID, cred->uid); | 
|  | NEW_AUX_ENT(AT_EUID, cred->euid); | 
|  | NEW_AUX_ENT(AT_GID, cred->gid); | 
|  | NEW_AUX_ENT(AT_EGID, cred->egid); | 
|  | NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm)); | 
|  | NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes); | 
|  | NEW_AUX_ENT(AT_EXECFN, bprm->exec); | 
|  | if (k_platform) { | 
|  | NEW_AUX_ENT(AT_PLATFORM, | 
|  | (elf_addr_t)(unsigned long)u_platform); | 
|  | } | 
|  | if (k_base_platform) { | 
|  | NEW_AUX_ENT(AT_BASE_PLATFORM, | 
|  | (elf_addr_t)(unsigned long)u_base_platform); | 
|  | } | 
|  | if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) { | 
|  | NEW_AUX_ENT(AT_EXECFD, bprm->interp_data); | 
|  | } | 
|  | #undef NEW_AUX_ENT | 
|  | /* AT_NULL is zero; clear the rest too */ | 
|  | memset(&elf_info[ei_index], 0, | 
|  | sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]); | 
|  |  | 
|  | /* And advance past the AT_NULL entry.  */ | 
|  | ei_index += 2; | 
|  |  | 
|  | sp = STACK_ADD(p, ei_index); | 
|  |  | 
|  | items = (argc + 1) + (envc + 1) + 1; | 
|  | bprm->p = STACK_ROUND(sp, items); | 
|  |  | 
|  | /* Point sp at the lowest address on the stack */ | 
|  | #ifdef CONFIG_STACK_GROWSUP | 
|  | sp = (elf_addr_t __user *)bprm->p - items - ei_index; | 
|  | bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */ | 
|  | #else | 
|  | sp = (elf_addr_t __user *)bprm->p; | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Grow the stack manually; some architectures have a limit on how | 
|  | * far ahead a user-space access may be in order to grow the stack. | 
|  | */ | 
|  | vma = find_extend_vma(current->mm, bprm->p); | 
|  | if (!vma) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* Now, let's put argc (and argv, envp if appropriate) on the stack */ | 
|  | if (__put_user(argc, sp++)) | 
|  | return -EFAULT; | 
|  | argv = sp; | 
|  | envp = argv + argc + 1; | 
|  |  | 
|  | /* Populate argv and envp */ | 
|  | p = current->mm->arg_end = current->mm->arg_start; | 
|  | while (argc-- > 0) { | 
|  | size_t len; | 
|  | if (__put_user((elf_addr_t)p, argv++)) | 
|  | return -EFAULT; | 
|  | len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); | 
|  | if (!len || len > MAX_ARG_STRLEN) | 
|  | return -EINVAL; | 
|  | p += len; | 
|  | } | 
|  | if (__put_user(0, argv)) | 
|  | return -EFAULT; | 
|  | current->mm->arg_end = current->mm->env_start = p; | 
|  | while (envc-- > 0) { | 
|  | size_t len; | 
|  | if (__put_user((elf_addr_t)p, envp++)) | 
|  | return -EFAULT; | 
|  | len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); | 
|  | if (!len || len > MAX_ARG_STRLEN) | 
|  | return -EINVAL; | 
|  | p += len; | 
|  | } | 
|  | if (__put_user(0, envp)) | 
|  | return -EFAULT; | 
|  | current->mm->env_end = p; | 
|  |  | 
|  | /* Put the elf_info on the stack in the right place.  */ | 
|  | sp = (elf_addr_t __user *)envp + 1; | 
|  | if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t))) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned long elf_map(struct file *filep, unsigned long addr, | 
|  | struct elf_phdr *eppnt, int prot, int type, | 
|  | unsigned long total_size) | 
|  | { | 
|  | unsigned long map_addr; | 
|  | unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr); | 
|  | unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr); | 
|  | addr = ELF_PAGESTART(addr); | 
|  | size = ELF_PAGEALIGN(size); | 
|  |  | 
|  | /* mmap() will return -EINVAL if given a zero size, but a | 
|  | * segment with zero filesize is perfectly valid */ | 
|  | if (!size) | 
|  | return addr; | 
|  |  | 
|  | down_write(¤t->mm->mmap_sem); | 
|  | /* | 
|  | * total_size is the size of the ELF (interpreter) image. | 
|  | * The _first_ mmap needs to know the full size, otherwise | 
|  | * randomization might put this image into an overlapping | 
|  | * position with the ELF binary image. (since size < total_size) | 
|  | * So we first map the 'big' image - and unmap the remainder at | 
|  | * the end. (which unmap is needed for ELF images with holes.) | 
|  | */ | 
|  | if (total_size) { | 
|  | total_size = ELF_PAGEALIGN(total_size); | 
|  | map_addr = do_mmap(filep, addr, total_size, prot, type, off); | 
|  | if (!BAD_ADDR(map_addr)) | 
|  | do_munmap(current->mm, map_addr+size, total_size-size); | 
|  | } else | 
|  | map_addr = do_mmap(filep, addr, size, prot, type, off); | 
|  |  | 
|  | up_write(¤t->mm->mmap_sem); | 
|  | return(map_addr); | 
|  | } | 
|  |  | 
|  | static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr) | 
|  | { | 
|  | int i, first_idx = -1, last_idx = -1; | 
|  |  | 
|  | for (i = 0; i < nr; i++) { | 
|  | if (cmds[i].p_type == PT_LOAD) { | 
|  | last_idx = i; | 
|  | if (first_idx == -1) | 
|  | first_idx = i; | 
|  | } | 
|  | } | 
|  | if (first_idx == -1) | 
|  | return 0; | 
|  |  | 
|  | return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz - | 
|  | ELF_PAGESTART(cmds[first_idx].p_vaddr); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* This is much more generalized than the library routine read function, | 
|  | so we keep this separate.  Technically the library read function | 
|  | is only provided so that we can read a.out libraries that have | 
|  | an ELF header */ | 
|  |  | 
|  | static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex, | 
|  | struct file *interpreter, unsigned long *interp_map_addr, | 
|  | unsigned long no_base) | 
|  | { | 
|  | struct elf_phdr *elf_phdata; | 
|  | struct elf_phdr *eppnt; | 
|  | unsigned long load_addr = 0; | 
|  | int load_addr_set = 0; | 
|  | unsigned long last_bss = 0, elf_bss = 0; | 
|  | unsigned long error = ~0UL; | 
|  | unsigned long total_size; | 
|  | int retval, i, size; | 
|  |  | 
|  | /* First of all, some simple consistency checks */ | 
|  | if (interp_elf_ex->e_type != ET_EXEC && | 
|  | interp_elf_ex->e_type != ET_DYN) | 
|  | goto out; | 
|  | if (!elf_check_arch(interp_elf_ex)) | 
|  | goto out; | 
|  | if (!interpreter->f_op || !interpreter->f_op->mmap) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * If the size of this structure has changed, then punt, since | 
|  | * we will be doing the wrong thing. | 
|  | */ | 
|  | if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr)) | 
|  | goto out; | 
|  | if (interp_elf_ex->e_phnum < 1 || | 
|  | interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr)) | 
|  | goto out; | 
|  |  | 
|  | /* Now read in all of the header information */ | 
|  | size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum; | 
|  | if (size > ELF_MIN_ALIGN) | 
|  | goto out; | 
|  | elf_phdata = kmalloc(size, GFP_KERNEL); | 
|  | if (!elf_phdata) | 
|  | goto out; | 
|  |  | 
|  | retval = kernel_read(interpreter, interp_elf_ex->e_phoff, | 
|  | (char *)elf_phdata, size); | 
|  | error = -EIO; | 
|  | if (retval != size) { | 
|  | if (retval < 0) | 
|  | error = retval; | 
|  | goto out_close; | 
|  | } | 
|  |  | 
|  | total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum); | 
|  | if (!total_size) { | 
|  | error = -EINVAL; | 
|  | goto out_close; | 
|  | } | 
|  |  | 
|  | eppnt = elf_phdata; | 
|  | for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) { | 
|  | if (eppnt->p_type == PT_LOAD) { | 
|  | int elf_type = MAP_PRIVATE | MAP_DENYWRITE; | 
|  | int elf_prot = 0; | 
|  | unsigned long vaddr = 0; | 
|  | unsigned long k, map_addr; | 
|  |  | 
|  | if (eppnt->p_flags & PF_R) | 
|  | elf_prot = PROT_READ; | 
|  | if (eppnt->p_flags & PF_W) | 
|  | elf_prot |= PROT_WRITE; | 
|  | if (eppnt->p_flags & PF_X) | 
|  | elf_prot |= PROT_EXEC; | 
|  | vaddr = eppnt->p_vaddr; | 
|  | if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) | 
|  | elf_type |= MAP_FIXED; | 
|  | else if (no_base && interp_elf_ex->e_type == ET_DYN) | 
|  | load_addr = -vaddr; | 
|  |  | 
|  | map_addr = elf_map(interpreter, load_addr + vaddr, | 
|  | eppnt, elf_prot, elf_type, total_size); | 
|  | total_size = 0; | 
|  | if (!*interp_map_addr) | 
|  | *interp_map_addr = map_addr; | 
|  | error = map_addr; | 
|  | if (BAD_ADDR(map_addr)) | 
|  | goto out_close; | 
|  |  | 
|  | if (!load_addr_set && | 
|  | interp_elf_ex->e_type == ET_DYN) { | 
|  | load_addr = map_addr - ELF_PAGESTART(vaddr); | 
|  | load_addr_set = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check to see if the section's size will overflow the | 
|  | * allowed task size. Note that p_filesz must always be | 
|  | * <= p_memsize so it's only necessary to check p_memsz. | 
|  | */ | 
|  | k = load_addr + eppnt->p_vaddr; | 
|  | if (BAD_ADDR(k) || | 
|  | eppnt->p_filesz > eppnt->p_memsz || | 
|  | eppnt->p_memsz > TASK_SIZE || | 
|  | TASK_SIZE - eppnt->p_memsz < k) { | 
|  | error = -ENOMEM; | 
|  | goto out_close; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the end of the file mapping for this phdr, and | 
|  | * keep track of the largest address we see for this. | 
|  | */ | 
|  | k = load_addr + eppnt->p_vaddr + eppnt->p_filesz; | 
|  | if (k > elf_bss) | 
|  | elf_bss = k; | 
|  |  | 
|  | /* | 
|  | * Do the same thing for the memory mapping - between | 
|  | * elf_bss and last_bss is the bss section. | 
|  | */ | 
|  | k = load_addr + eppnt->p_memsz + eppnt->p_vaddr; | 
|  | if (k > last_bss) | 
|  | last_bss = k; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (last_bss > elf_bss) { | 
|  | /* | 
|  | * Now fill out the bss section.  First pad the last page up | 
|  | * to the page boundary, and then perform a mmap to make sure | 
|  | * that there are zero-mapped pages up to and including the | 
|  | * last bss page. | 
|  | */ | 
|  | if (padzero(elf_bss)) { | 
|  | error = -EFAULT; | 
|  | goto out_close; | 
|  | } | 
|  |  | 
|  | /* What we have mapped so far */ | 
|  | elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1); | 
|  |  | 
|  | /* Map the last of the bss segment */ | 
|  | down_write(¤t->mm->mmap_sem); | 
|  | error = do_brk(elf_bss, last_bss - elf_bss); | 
|  | up_write(¤t->mm->mmap_sem); | 
|  | if (BAD_ADDR(error)) | 
|  | goto out_close; | 
|  | } | 
|  |  | 
|  | error = load_addr; | 
|  |  | 
|  | out_close: | 
|  | kfree(elf_phdata); | 
|  | out: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These are the functions used to load ELF style executables and shared | 
|  | * libraries.  There is no binary dependent code anywhere else. | 
|  | */ | 
|  |  | 
|  | #define INTERPRETER_NONE 0 | 
|  | #define INTERPRETER_ELF 2 | 
|  |  | 
|  | #ifndef STACK_RND_MASK | 
|  | #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))	/* 8MB of VA */ | 
|  | #endif | 
|  |  | 
|  | static unsigned long randomize_stack_top(unsigned long stack_top) | 
|  | { | 
|  | unsigned int random_variable = 0; | 
|  |  | 
|  | if ((current->flags & PF_RANDOMIZE) && | 
|  | !(current->personality & ADDR_NO_RANDOMIZE)) { | 
|  | random_variable = get_random_int() & STACK_RND_MASK; | 
|  | random_variable <<= PAGE_SHIFT; | 
|  | } | 
|  | #ifdef CONFIG_STACK_GROWSUP | 
|  | return PAGE_ALIGN(stack_top) + random_variable; | 
|  | #else | 
|  | return PAGE_ALIGN(stack_top) - random_variable; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs) | 
|  | { | 
|  | struct file *interpreter = NULL; /* to shut gcc up */ | 
|  | unsigned long load_addr = 0, load_bias = 0; | 
|  | int load_addr_set = 0; | 
|  | char * elf_interpreter = NULL; | 
|  | unsigned long error; | 
|  | struct elf_phdr *elf_ppnt, *elf_phdata; | 
|  | unsigned long elf_bss, elf_brk; | 
|  | int retval, i; | 
|  | unsigned int size; | 
|  | unsigned long elf_entry; | 
|  | unsigned long interp_load_addr = 0; | 
|  | unsigned long start_code, end_code, start_data, end_data; | 
|  | unsigned long reloc_func_desc __maybe_unused = 0; | 
|  | int executable_stack = EXSTACK_DEFAULT; | 
|  | unsigned long def_flags = 0; | 
|  | struct { | 
|  | struct elfhdr elf_ex; | 
|  | struct elfhdr interp_elf_ex; | 
|  | } *loc; | 
|  |  | 
|  | loc = kmalloc(sizeof(*loc), GFP_KERNEL); | 
|  | if (!loc) { | 
|  | retval = -ENOMEM; | 
|  | goto out_ret; | 
|  | } | 
|  |  | 
|  | /* Get the exec-header */ | 
|  | loc->elf_ex = *((struct elfhdr *)bprm->buf); | 
|  |  | 
|  | retval = -ENOEXEC; | 
|  | /* First of all, some simple consistency checks */ | 
|  | if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0) | 
|  | goto out; | 
|  |  | 
|  | if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN) | 
|  | goto out; | 
|  | if (!elf_check_arch(&loc->elf_ex)) | 
|  | goto out; | 
|  | if (!bprm->file->f_op || !bprm->file->f_op->mmap) | 
|  | goto out; | 
|  |  | 
|  | /* Now read in all of the header information */ | 
|  | if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr)) | 
|  | goto out; | 
|  | if (loc->elf_ex.e_phnum < 1 || | 
|  | loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr)) | 
|  | goto out; | 
|  | size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr); | 
|  | retval = -ENOMEM; | 
|  | elf_phdata = kmalloc(size, GFP_KERNEL); | 
|  | if (!elf_phdata) | 
|  | goto out; | 
|  |  | 
|  | retval = kernel_read(bprm->file, loc->elf_ex.e_phoff, | 
|  | (char *)elf_phdata, size); | 
|  | if (retval != size) { | 
|  | if (retval >= 0) | 
|  | retval = -EIO; | 
|  | goto out_free_ph; | 
|  | } | 
|  |  | 
|  | elf_ppnt = elf_phdata; | 
|  | elf_bss = 0; | 
|  | elf_brk = 0; | 
|  |  | 
|  | start_code = ~0UL; | 
|  | end_code = 0; | 
|  | start_data = 0; | 
|  | end_data = 0; | 
|  |  | 
|  | for (i = 0; i < loc->elf_ex.e_phnum; i++) { | 
|  | if (elf_ppnt->p_type == PT_INTERP) { | 
|  | /* This is the program interpreter used for | 
|  | * shared libraries - for now assume that this | 
|  | * is an a.out format binary | 
|  | */ | 
|  | retval = -ENOEXEC; | 
|  | if (elf_ppnt->p_filesz > PATH_MAX || | 
|  | elf_ppnt->p_filesz < 2) | 
|  | goto out_free_ph; | 
|  |  | 
|  | retval = -ENOMEM; | 
|  | elf_interpreter = kmalloc(elf_ppnt->p_filesz, | 
|  | GFP_KERNEL); | 
|  | if (!elf_interpreter) | 
|  | goto out_free_ph; | 
|  |  | 
|  | retval = kernel_read(bprm->file, elf_ppnt->p_offset, | 
|  | elf_interpreter, | 
|  | elf_ppnt->p_filesz); | 
|  | if (retval != elf_ppnt->p_filesz) { | 
|  | if (retval >= 0) | 
|  | retval = -EIO; | 
|  | goto out_free_interp; | 
|  | } | 
|  | /* make sure path is NULL terminated */ | 
|  | retval = -ENOEXEC; | 
|  | if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0') | 
|  | goto out_free_interp; | 
|  |  | 
|  | interpreter = open_exec(elf_interpreter); | 
|  | retval = PTR_ERR(interpreter); | 
|  | if (IS_ERR(interpreter)) | 
|  | goto out_free_interp; | 
|  |  | 
|  | /* | 
|  | * If the binary is not readable then enforce | 
|  | * mm->dumpable = 0 regardless of the interpreter's | 
|  | * permissions. | 
|  | */ | 
|  | would_dump(bprm, interpreter); | 
|  |  | 
|  | retval = kernel_read(interpreter, 0, bprm->buf, | 
|  | BINPRM_BUF_SIZE); | 
|  | if (retval != BINPRM_BUF_SIZE) { | 
|  | if (retval >= 0) | 
|  | retval = -EIO; | 
|  | goto out_free_dentry; | 
|  | } | 
|  |  | 
|  | /* Get the exec headers */ | 
|  | loc->interp_elf_ex = *((struct elfhdr *)bprm->buf); | 
|  | break; | 
|  | } | 
|  | elf_ppnt++; | 
|  | } | 
|  |  | 
|  | elf_ppnt = elf_phdata; | 
|  | for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++) | 
|  | if (elf_ppnt->p_type == PT_GNU_STACK) { | 
|  | if (elf_ppnt->p_flags & PF_X) | 
|  | executable_stack = EXSTACK_ENABLE_X; | 
|  | else | 
|  | executable_stack = EXSTACK_DISABLE_X; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Some simple consistency checks for the interpreter */ | 
|  | if (elf_interpreter) { | 
|  | retval = -ELIBBAD; | 
|  | /* Not an ELF interpreter */ | 
|  | if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0) | 
|  | goto out_free_dentry; | 
|  | /* Verify the interpreter has a valid arch */ | 
|  | if (!elf_check_arch(&loc->interp_elf_ex)) | 
|  | goto out_free_dentry; | 
|  | } | 
|  |  | 
|  | /* Flush all traces of the currently running executable */ | 
|  | retval = flush_old_exec(bprm); | 
|  | if (retval) | 
|  | goto out_free_dentry; | 
|  |  | 
|  | /* OK, This is the point of no return */ | 
|  | current->flags &= ~PF_FORKNOEXEC; | 
|  | current->mm->def_flags = def_flags; | 
|  |  | 
|  | /* Do this immediately, since STACK_TOP as used in setup_arg_pages | 
|  | may depend on the personality.  */ | 
|  | SET_PERSONALITY(loc->elf_ex); | 
|  | if (elf_read_implies_exec(loc->elf_ex, executable_stack)) | 
|  | current->personality |= READ_IMPLIES_EXEC; | 
|  |  | 
|  | if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) | 
|  | current->flags |= PF_RANDOMIZE; | 
|  |  | 
|  | setup_new_exec(bprm); | 
|  |  | 
|  | /* Do this so that we can load the interpreter, if need be.  We will | 
|  | change some of these later */ | 
|  | current->mm->free_area_cache = current->mm->mmap_base; | 
|  | current->mm->cached_hole_size = 0; | 
|  | retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP), | 
|  | executable_stack); | 
|  | if (retval < 0) { | 
|  | send_sig(SIGKILL, current, 0); | 
|  | goto out_free_dentry; | 
|  | } | 
|  |  | 
|  | current->mm->start_stack = bprm->p; | 
|  |  | 
|  | /* Now we do a little grungy work by mmapping the ELF image into | 
|  | the correct location in memory. */ | 
|  | for(i = 0, elf_ppnt = elf_phdata; | 
|  | i < loc->elf_ex.e_phnum; i++, elf_ppnt++) { | 
|  | int elf_prot = 0, elf_flags; | 
|  | unsigned long k, vaddr; | 
|  |  | 
|  | if (elf_ppnt->p_type != PT_LOAD) | 
|  | continue; | 
|  |  | 
|  | if (unlikely (elf_brk > elf_bss)) { | 
|  | unsigned long nbyte; | 
|  |  | 
|  | /* There was a PT_LOAD segment with p_memsz > p_filesz | 
|  | before this one. Map anonymous pages, if needed, | 
|  | and clear the area.  */ | 
|  | retval = set_brk(elf_bss + load_bias, | 
|  | elf_brk + load_bias); | 
|  | if (retval) { | 
|  | send_sig(SIGKILL, current, 0); | 
|  | goto out_free_dentry; | 
|  | } | 
|  | nbyte = ELF_PAGEOFFSET(elf_bss); | 
|  | if (nbyte) { | 
|  | nbyte = ELF_MIN_ALIGN - nbyte; | 
|  | if (nbyte > elf_brk - elf_bss) | 
|  | nbyte = elf_brk - elf_bss; | 
|  | if (clear_user((void __user *)elf_bss + | 
|  | load_bias, nbyte)) { | 
|  | /* | 
|  | * This bss-zeroing can fail if the ELF | 
|  | * file specifies odd protections. So | 
|  | * we don't check the return value | 
|  | */ | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (elf_ppnt->p_flags & PF_R) | 
|  | elf_prot |= PROT_READ; | 
|  | if (elf_ppnt->p_flags & PF_W) | 
|  | elf_prot |= PROT_WRITE; | 
|  | if (elf_ppnt->p_flags & PF_X) | 
|  | elf_prot |= PROT_EXEC; | 
|  |  | 
|  | elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE; | 
|  |  | 
|  | vaddr = elf_ppnt->p_vaddr; | 
|  | if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) { | 
|  | elf_flags |= MAP_FIXED; | 
|  | } else if (loc->elf_ex.e_type == ET_DYN) { | 
|  | /* Try and get dynamic programs out of the way of the | 
|  | * default mmap base, as well as whatever program they | 
|  | * might try to exec.  This is because the brk will | 
|  | * follow the loader, and is not movable.  */ | 
|  | #ifdef CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE | 
|  | /* Memory randomization might have been switched off | 
|  | * in runtime via sysctl. | 
|  | * If that is the case, retain the original non-zero | 
|  | * load_bias value in order to establish proper | 
|  | * non-randomized mappings. | 
|  | */ | 
|  | if (current->flags & PF_RANDOMIZE) | 
|  | load_bias = 0; | 
|  | else | 
|  | load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr); | 
|  | #else | 
|  | load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt, | 
|  | elf_prot, elf_flags, 0); | 
|  | if (BAD_ADDR(error)) { | 
|  | send_sig(SIGKILL, current, 0); | 
|  | retval = IS_ERR((void *)error) ? | 
|  | PTR_ERR((void*)error) : -EINVAL; | 
|  | goto out_free_dentry; | 
|  | } | 
|  |  | 
|  | if (!load_addr_set) { | 
|  | load_addr_set = 1; | 
|  | load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset); | 
|  | if (loc->elf_ex.e_type == ET_DYN) { | 
|  | load_bias += error - | 
|  | ELF_PAGESTART(load_bias + vaddr); | 
|  | load_addr += load_bias; | 
|  | reloc_func_desc = load_bias; | 
|  | } | 
|  | } | 
|  | k = elf_ppnt->p_vaddr; | 
|  | if (k < start_code) | 
|  | start_code = k; | 
|  | if (start_data < k) | 
|  | start_data = k; | 
|  |  | 
|  | /* | 
|  | * Check to see if the section's size will overflow the | 
|  | * allowed task size. Note that p_filesz must always be | 
|  | * <= p_memsz so it is only necessary to check p_memsz. | 
|  | */ | 
|  | if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz || | 
|  | elf_ppnt->p_memsz > TASK_SIZE || | 
|  | TASK_SIZE - elf_ppnt->p_memsz < k) { | 
|  | /* set_brk can never work. Avoid overflows. */ | 
|  | send_sig(SIGKILL, current, 0); | 
|  | retval = -EINVAL; | 
|  | goto out_free_dentry; | 
|  | } | 
|  |  | 
|  | k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz; | 
|  |  | 
|  | if (k > elf_bss) | 
|  | elf_bss = k; | 
|  | if ((elf_ppnt->p_flags & PF_X) && end_code < k) | 
|  | end_code = k; | 
|  | if (end_data < k) | 
|  | end_data = k; | 
|  | k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz; | 
|  | if (k > elf_brk) | 
|  | elf_brk = k; | 
|  | } | 
|  |  | 
|  | loc->elf_ex.e_entry += load_bias; | 
|  | elf_bss += load_bias; | 
|  | elf_brk += load_bias; | 
|  | start_code += load_bias; | 
|  | end_code += load_bias; | 
|  | start_data += load_bias; | 
|  | end_data += load_bias; | 
|  |  | 
|  | /* Calling set_brk effectively mmaps the pages that we need | 
|  | * for the bss and break sections.  We must do this before | 
|  | * mapping in the interpreter, to make sure it doesn't wind | 
|  | * up getting placed where the bss needs to go. | 
|  | */ | 
|  | retval = set_brk(elf_bss, elf_brk); | 
|  | if (retval) { | 
|  | send_sig(SIGKILL, current, 0); | 
|  | goto out_free_dentry; | 
|  | } | 
|  | if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) { | 
|  | send_sig(SIGSEGV, current, 0); | 
|  | retval = -EFAULT; /* Nobody gets to see this, but.. */ | 
|  | goto out_free_dentry; | 
|  | } | 
|  |  | 
|  | if (elf_interpreter) { | 
|  | unsigned long uninitialized_var(interp_map_addr); | 
|  |  | 
|  | elf_entry = load_elf_interp(&loc->interp_elf_ex, | 
|  | interpreter, | 
|  | &interp_map_addr, | 
|  | load_bias); | 
|  | if (!IS_ERR((void *)elf_entry)) { | 
|  | /* | 
|  | * load_elf_interp() returns relocation | 
|  | * adjustment | 
|  | */ | 
|  | interp_load_addr = elf_entry; | 
|  | elf_entry += loc->interp_elf_ex.e_entry; | 
|  | } | 
|  | if (BAD_ADDR(elf_entry)) { | 
|  | force_sig(SIGSEGV, current); | 
|  | retval = IS_ERR((void *)elf_entry) ? | 
|  | (int)elf_entry : -EINVAL; | 
|  | goto out_free_dentry; | 
|  | } | 
|  | reloc_func_desc = interp_load_addr; | 
|  |  | 
|  | allow_write_access(interpreter); | 
|  | fput(interpreter); | 
|  | kfree(elf_interpreter); | 
|  | } else { | 
|  | elf_entry = loc->elf_ex.e_entry; | 
|  | if (BAD_ADDR(elf_entry)) { | 
|  | force_sig(SIGSEGV, current); | 
|  | retval = -EINVAL; | 
|  | goto out_free_dentry; | 
|  | } | 
|  | } | 
|  |  | 
|  | kfree(elf_phdata); | 
|  |  | 
|  | set_binfmt(&elf_format); | 
|  |  | 
|  | #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES | 
|  | retval = arch_setup_additional_pages(bprm, !!elf_interpreter); | 
|  | if (retval < 0) { | 
|  | send_sig(SIGKILL, current, 0); | 
|  | goto out; | 
|  | } | 
|  | #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */ | 
|  |  | 
|  | install_exec_creds(bprm); | 
|  | current->flags &= ~PF_FORKNOEXEC; | 
|  | retval = create_elf_tables(bprm, &loc->elf_ex, | 
|  | load_addr, interp_load_addr); | 
|  | if (retval < 0) { | 
|  | send_sig(SIGKILL, current, 0); | 
|  | goto out; | 
|  | } | 
|  | /* N.B. passed_fileno might not be initialized? */ | 
|  | current->mm->end_code = end_code; | 
|  | current->mm->start_code = start_code; | 
|  | current->mm->start_data = start_data; | 
|  | current->mm->end_data = end_data; | 
|  | current->mm->start_stack = bprm->p; | 
|  |  | 
|  | #ifdef arch_randomize_brk | 
|  | if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) { | 
|  | current->mm->brk = current->mm->start_brk = | 
|  | arch_randomize_brk(current->mm); | 
|  | #ifdef CONFIG_COMPAT_BRK | 
|  | current->brk_randomized = 1; | 
|  | #endif | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (current->personality & MMAP_PAGE_ZERO) { | 
|  | /* Why this, you ask???  Well SVr4 maps page 0 as read-only, | 
|  | and some applications "depend" upon this behavior. | 
|  | Since we do not have the power to recompile these, we | 
|  | emulate the SVr4 behavior. Sigh. */ | 
|  | down_write(¤t->mm->mmap_sem); | 
|  | error = do_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC, | 
|  | MAP_FIXED | MAP_PRIVATE, 0); | 
|  | up_write(¤t->mm->mmap_sem); | 
|  | } | 
|  |  | 
|  | #ifdef ELF_PLAT_INIT | 
|  | /* | 
|  | * The ABI may specify that certain registers be set up in special | 
|  | * ways (on i386 %edx is the address of a DT_FINI function, for | 
|  | * example.  In addition, it may also specify (eg, PowerPC64 ELF) | 
|  | * that the e_entry field is the address of the function descriptor | 
|  | * for the startup routine, rather than the address of the startup | 
|  | * routine itself.  This macro performs whatever initialization to | 
|  | * the regs structure is required as well as any relocations to the | 
|  | * function descriptor entries when executing dynamically links apps. | 
|  | */ | 
|  | ELF_PLAT_INIT(regs, reloc_func_desc); | 
|  | #endif | 
|  |  | 
|  | start_thread(regs, elf_entry, bprm->p); | 
|  | retval = 0; | 
|  | out: | 
|  | kfree(loc); | 
|  | out_ret: | 
|  | return retval; | 
|  |  | 
|  | /* error cleanup */ | 
|  | out_free_dentry: | 
|  | allow_write_access(interpreter); | 
|  | if (interpreter) | 
|  | fput(interpreter); | 
|  | out_free_interp: | 
|  | kfree(elf_interpreter); | 
|  | out_free_ph: | 
|  | kfree(elf_phdata); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* This is really simpleminded and specialized - we are loading an | 
|  | a.out library that is given an ELF header. */ | 
|  | static int load_elf_library(struct file *file) | 
|  | { | 
|  | struct elf_phdr *elf_phdata; | 
|  | struct elf_phdr *eppnt; | 
|  | unsigned long elf_bss, bss, len; | 
|  | int retval, error, i, j; | 
|  | struct elfhdr elf_ex; | 
|  |  | 
|  | error = -ENOEXEC; | 
|  | retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex)); | 
|  | if (retval != sizeof(elf_ex)) | 
|  | goto out; | 
|  |  | 
|  | if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0) | 
|  | goto out; | 
|  |  | 
|  | /* First of all, some simple consistency checks */ | 
|  | if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 || | 
|  | !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap) | 
|  | goto out; | 
|  |  | 
|  | /* Now read in all of the header information */ | 
|  |  | 
|  | j = sizeof(struct elf_phdr) * elf_ex.e_phnum; | 
|  | /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */ | 
|  |  | 
|  | error = -ENOMEM; | 
|  | elf_phdata = kmalloc(j, GFP_KERNEL); | 
|  | if (!elf_phdata) | 
|  | goto out; | 
|  |  | 
|  | eppnt = elf_phdata; | 
|  | error = -ENOEXEC; | 
|  | retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j); | 
|  | if (retval != j) | 
|  | goto out_free_ph; | 
|  |  | 
|  | for (j = 0, i = 0; i<elf_ex.e_phnum; i++) | 
|  | if ((eppnt + i)->p_type == PT_LOAD) | 
|  | j++; | 
|  | if (j != 1) | 
|  | goto out_free_ph; | 
|  |  | 
|  | while (eppnt->p_type != PT_LOAD) | 
|  | eppnt++; | 
|  |  | 
|  | /* Now use mmap to map the library into memory. */ | 
|  | down_write(¤t->mm->mmap_sem); | 
|  | error = do_mmap(file, | 
|  | ELF_PAGESTART(eppnt->p_vaddr), | 
|  | (eppnt->p_filesz + | 
|  | ELF_PAGEOFFSET(eppnt->p_vaddr)), | 
|  | PROT_READ | PROT_WRITE | PROT_EXEC, | 
|  | MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE, | 
|  | (eppnt->p_offset - | 
|  | ELF_PAGEOFFSET(eppnt->p_vaddr))); | 
|  | up_write(¤t->mm->mmap_sem); | 
|  | if (error != ELF_PAGESTART(eppnt->p_vaddr)) | 
|  | goto out_free_ph; | 
|  |  | 
|  | elf_bss = eppnt->p_vaddr + eppnt->p_filesz; | 
|  | if (padzero(elf_bss)) { | 
|  | error = -EFAULT; | 
|  | goto out_free_ph; | 
|  | } | 
|  |  | 
|  | len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr + | 
|  | ELF_MIN_ALIGN - 1); | 
|  | bss = eppnt->p_memsz + eppnt->p_vaddr; | 
|  | if (bss > len) { | 
|  | down_write(¤t->mm->mmap_sem); | 
|  | do_brk(len, bss - len); | 
|  | up_write(¤t->mm->mmap_sem); | 
|  | } | 
|  | error = 0; | 
|  |  | 
|  | out_free_ph: | 
|  | kfree(elf_phdata); | 
|  | out: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ELF_CORE | 
|  | /* | 
|  | * ELF core dumper | 
|  | * | 
|  | * Modelled on fs/exec.c:aout_core_dump() | 
|  | * Jeremy Fitzhardinge <jeremy@sw.oz.au> | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Decide what to dump of a segment, part, all or none. | 
|  | */ | 
|  | static unsigned long vma_dump_size(struct vm_area_struct *vma, | 
|  | unsigned long mm_flags) | 
|  | { | 
|  | #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type)) | 
|  |  | 
|  | /* The vma can be set up to tell us the answer directly.  */ | 
|  | if (vma->vm_flags & VM_ALWAYSDUMP) | 
|  | goto whole; | 
|  |  | 
|  | /* Hugetlb memory check */ | 
|  | if (vma->vm_flags & VM_HUGETLB) { | 
|  | if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED)) | 
|  | goto whole; | 
|  | if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE)) | 
|  | goto whole; | 
|  | } | 
|  |  | 
|  | /* Do not dump I/O mapped devices or special mappings */ | 
|  | if (vma->vm_flags & (VM_IO | VM_RESERVED)) | 
|  | return 0; | 
|  |  | 
|  | /* By default, dump shared memory if mapped from an anonymous file. */ | 
|  | if (vma->vm_flags & VM_SHARED) { | 
|  | if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ? | 
|  | FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED)) | 
|  | goto whole; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Dump segments that have been written to.  */ | 
|  | if (vma->anon_vma && FILTER(ANON_PRIVATE)) | 
|  | goto whole; | 
|  | if (vma->vm_file == NULL) | 
|  | return 0; | 
|  |  | 
|  | if (FILTER(MAPPED_PRIVATE)) | 
|  | goto whole; | 
|  |  | 
|  | /* | 
|  | * If this looks like the beginning of a DSO or executable mapping, | 
|  | * check for an ELF header.  If we find one, dump the first page to | 
|  | * aid in determining what was mapped here. | 
|  | */ | 
|  | if (FILTER(ELF_HEADERS) && | 
|  | vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) { | 
|  | u32 __user *header = (u32 __user *) vma->vm_start; | 
|  | u32 word; | 
|  | mm_segment_t fs = get_fs(); | 
|  | /* | 
|  | * Doing it this way gets the constant folded by GCC. | 
|  | */ | 
|  | union { | 
|  | u32 cmp; | 
|  | char elfmag[SELFMAG]; | 
|  | } magic; | 
|  | BUILD_BUG_ON(SELFMAG != sizeof word); | 
|  | magic.elfmag[EI_MAG0] = ELFMAG0; | 
|  | magic.elfmag[EI_MAG1] = ELFMAG1; | 
|  | magic.elfmag[EI_MAG2] = ELFMAG2; | 
|  | magic.elfmag[EI_MAG3] = ELFMAG3; | 
|  | /* | 
|  | * Switch to the user "segment" for get_user(), | 
|  | * then put back what elf_core_dump() had in place. | 
|  | */ | 
|  | set_fs(USER_DS); | 
|  | if (unlikely(get_user(word, header))) | 
|  | word = 0; | 
|  | set_fs(fs); | 
|  | if (word == magic.cmp) | 
|  | return PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | #undef	FILTER | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | whole: | 
|  | return vma->vm_end - vma->vm_start; | 
|  | } | 
|  |  | 
|  | /* An ELF note in memory */ | 
|  | struct memelfnote | 
|  | { | 
|  | const char *name; | 
|  | int type; | 
|  | unsigned int datasz; | 
|  | void *data; | 
|  | }; | 
|  |  | 
|  | static int notesize(struct memelfnote *en) | 
|  | { | 
|  | int sz; | 
|  |  | 
|  | sz = sizeof(struct elf_note); | 
|  | sz += roundup(strlen(en->name) + 1, 4); | 
|  | sz += roundup(en->datasz, 4); | 
|  |  | 
|  | return sz; | 
|  | } | 
|  |  | 
|  | #define DUMP_WRITE(addr, nr, foffset)	\ | 
|  | do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0) | 
|  |  | 
|  | static int alignfile(struct file *file, loff_t *foffset) | 
|  | { | 
|  | static const char buf[4] = { 0, }; | 
|  | DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int writenote(struct memelfnote *men, struct file *file, | 
|  | loff_t *foffset) | 
|  | { | 
|  | struct elf_note en; | 
|  | en.n_namesz = strlen(men->name) + 1; | 
|  | en.n_descsz = men->datasz; | 
|  | en.n_type = men->type; | 
|  |  | 
|  | DUMP_WRITE(&en, sizeof(en), foffset); | 
|  | DUMP_WRITE(men->name, en.n_namesz, foffset); | 
|  | if (!alignfile(file, foffset)) | 
|  | return 0; | 
|  | DUMP_WRITE(men->data, men->datasz, foffset); | 
|  | if (!alignfile(file, foffset)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | #undef DUMP_WRITE | 
|  |  | 
|  | static void fill_elf_header(struct elfhdr *elf, int segs, | 
|  | u16 machine, u32 flags, u8 osabi) | 
|  | { | 
|  | memset(elf, 0, sizeof(*elf)); | 
|  |  | 
|  | memcpy(elf->e_ident, ELFMAG, SELFMAG); | 
|  | elf->e_ident[EI_CLASS] = ELF_CLASS; | 
|  | elf->e_ident[EI_DATA] = ELF_DATA; | 
|  | elf->e_ident[EI_VERSION] = EV_CURRENT; | 
|  | elf->e_ident[EI_OSABI] = ELF_OSABI; | 
|  |  | 
|  | elf->e_type = ET_CORE; | 
|  | elf->e_machine = machine; | 
|  | elf->e_version = EV_CURRENT; | 
|  | elf->e_phoff = sizeof(struct elfhdr); | 
|  | elf->e_flags = flags; | 
|  | elf->e_ehsize = sizeof(struct elfhdr); | 
|  | elf->e_phentsize = sizeof(struct elf_phdr); | 
|  | elf->e_phnum = segs; | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset) | 
|  | { | 
|  | phdr->p_type = PT_NOTE; | 
|  | phdr->p_offset = offset; | 
|  | phdr->p_vaddr = 0; | 
|  | phdr->p_paddr = 0; | 
|  | phdr->p_filesz = sz; | 
|  | phdr->p_memsz = 0; | 
|  | phdr->p_flags = 0; | 
|  | phdr->p_align = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void fill_note(struct memelfnote *note, const char *name, int type, | 
|  | unsigned int sz, void *data) | 
|  | { | 
|  | note->name = name; | 
|  | note->type = type; | 
|  | note->datasz = sz; | 
|  | note->data = data; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fill up all the fields in prstatus from the given task struct, except | 
|  | * registers which need to be filled up separately. | 
|  | */ | 
|  | static void fill_prstatus(struct elf_prstatus *prstatus, | 
|  | struct task_struct *p, long signr) | 
|  | { | 
|  | prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; | 
|  | prstatus->pr_sigpend = p->pending.signal.sig[0]; | 
|  | prstatus->pr_sighold = p->blocked.sig[0]; | 
|  | rcu_read_lock(); | 
|  | prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); | 
|  | rcu_read_unlock(); | 
|  | prstatus->pr_pid = task_pid_vnr(p); | 
|  | prstatus->pr_pgrp = task_pgrp_vnr(p); | 
|  | prstatus->pr_sid = task_session_vnr(p); | 
|  | if (thread_group_leader(p)) { | 
|  | struct task_cputime cputime; | 
|  |  | 
|  | /* | 
|  | * This is the record for the group leader.  It shows the | 
|  | * group-wide total, not its individual thread total. | 
|  | */ | 
|  | thread_group_cputime(p, &cputime); | 
|  | cputime_to_timeval(cputime.utime, &prstatus->pr_utime); | 
|  | cputime_to_timeval(cputime.stime, &prstatus->pr_stime); | 
|  | } else { | 
|  | cputime_to_timeval(p->utime, &prstatus->pr_utime); | 
|  | cputime_to_timeval(p->stime, &prstatus->pr_stime); | 
|  | } | 
|  | cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime); | 
|  | cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime); | 
|  | } | 
|  |  | 
|  | static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p, | 
|  | struct mm_struct *mm) | 
|  | { | 
|  | const struct cred *cred; | 
|  | unsigned int i, len; | 
|  |  | 
|  | /* first copy the parameters from user space */ | 
|  | memset(psinfo, 0, sizeof(struct elf_prpsinfo)); | 
|  |  | 
|  | len = mm->arg_end - mm->arg_start; | 
|  | if (len >= ELF_PRARGSZ) | 
|  | len = ELF_PRARGSZ-1; | 
|  | if (copy_from_user(&psinfo->pr_psargs, | 
|  | (const char __user *)mm->arg_start, len)) | 
|  | return -EFAULT; | 
|  | for(i = 0; i < len; i++) | 
|  | if (psinfo->pr_psargs[i] == 0) | 
|  | psinfo->pr_psargs[i] = ' '; | 
|  | psinfo->pr_psargs[len] = 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); | 
|  | rcu_read_unlock(); | 
|  | psinfo->pr_pid = task_pid_vnr(p); | 
|  | psinfo->pr_pgrp = task_pgrp_vnr(p); | 
|  | psinfo->pr_sid = task_session_vnr(p); | 
|  |  | 
|  | i = p->state ? ffz(~p->state) + 1 : 0; | 
|  | psinfo->pr_state = i; | 
|  | psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i]; | 
|  | psinfo->pr_zomb = psinfo->pr_sname == 'Z'; | 
|  | psinfo->pr_nice = task_nice(p); | 
|  | psinfo->pr_flag = p->flags; | 
|  | rcu_read_lock(); | 
|  | cred = __task_cred(p); | 
|  | SET_UID(psinfo->pr_uid, cred->uid); | 
|  | SET_GID(psinfo->pr_gid, cred->gid); | 
|  | rcu_read_unlock(); | 
|  | strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm) | 
|  | { | 
|  | elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv; | 
|  | int i = 0; | 
|  | do | 
|  | i += 2; | 
|  | while (auxv[i - 2] != AT_NULL); | 
|  | fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv); | 
|  | } | 
|  |  | 
|  | #ifdef CORE_DUMP_USE_REGSET | 
|  | #include <linux/regset.h> | 
|  |  | 
|  | struct elf_thread_core_info { | 
|  | struct elf_thread_core_info *next; | 
|  | struct task_struct *task; | 
|  | struct elf_prstatus prstatus; | 
|  | struct memelfnote notes[0]; | 
|  | }; | 
|  |  | 
|  | struct elf_note_info { | 
|  | struct elf_thread_core_info *thread; | 
|  | struct memelfnote psinfo; | 
|  | struct memelfnote auxv; | 
|  | size_t size; | 
|  | int thread_notes; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * When a regset has a writeback hook, we call it on each thread before | 
|  | * dumping user memory.  On register window machines, this makes sure the | 
|  | * user memory backing the register data is up to date before we read it. | 
|  | */ | 
|  | static void do_thread_regset_writeback(struct task_struct *task, | 
|  | const struct user_regset *regset) | 
|  | { | 
|  | if (regset->writeback) | 
|  | regset->writeback(task, regset, 1); | 
|  | } | 
|  |  | 
|  | static int fill_thread_core_info(struct elf_thread_core_info *t, | 
|  | const struct user_regset_view *view, | 
|  | long signr, size_t *total) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | /* | 
|  | * NT_PRSTATUS is the one special case, because the regset data | 
|  | * goes into the pr_reg field inside the note contents, rather | 
|  | * than being the whole note contents.  We fill the reset in here. | 
|  | * We assume that regset 0 is NT_PRSTATUS. | 
|  | */ | 
|  | fill_prstatus(&t->prstatus, t->task, signr); | 
|  | (void) view->regsets[0].get(t->task, &view->regsets[0], | 
|  | 0, sizeof(t->prstatus.pr_reg), | 
|  | &t->prstatus.pr_reg, NULL); | 
|  |  | 
|  | fill_note(&t->notes[0], "CORE", NT_PRSTATUS, | 
|  | sizeof(t->prstatus), &t->prstatus); | 
|  | *total += notesize(&t->notes[0]); | 
|  |  | 
|  | do_thread_regset_writeback(t->task, &view->regsets[0]); | 
|  |  | 
|  | /* | 
|  | * Each other regset might generate a note too.  For each regset | 
|  | * that has no core_note_type or is inactive, we leave t->notes[i] | 
|  | * all zero and we'll know to skip writing it later. | 
|  | */ | 
|  | for (i = 1; i < view->n; ++i) { | 
|  | const struct user_regset *regset = &view->regsets[i]; | 
|  | do_thread_regset_writeback(t->task, regset); | 
|  | if (regset->core_note_type && | 
|  | (!regset->active || regset->active(t->task, regset))) { | 
|  | int ret; | 
|  | size_t size = regset->n * regset->size; | 
|  | void *data = kmalloc(size, GFP_KERNEL); | 
|  | if (unlikely(!data)) | 
|  | return 0; | 
|  | ret = regset->get(t->task, regset, | 
|  | 0, size, data, NULL); | 
|  | if (unlikely(ret)) | 
|  | kfree(data); | 
|  | else { | 
|  | if (regset->core_note_type != NT_PRFPREG) | 
|  | fill_note(&t->notes[i], "LINUX", | 
|  | regset->core_note_type, | 
|  | size, data); | 
|  | else { | 
|  | t->prstatus.pr_fpvalid = 1; | 
|  | fill_note(&t->notes[i], "CORE", | 
|  | NT_PRFPREG, size, data); | 
|  | } | 
|  | *total += notesize(&t->notes[i]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int fill_note_info(struct elfhdr *elf, int phdrs, | 
|  | struct elf_note_info *info, | 
|  | long signr, struct pt_regs *regs) | 
|  | { | 
|  | struct task_struct *dump_task = current; | 
|  | const struct user_regset_view *view = task_user_regset_view(dump_task); | 
|  | struct elf_thread_core_info *t; | 
|  | struct elf_prpsinfo *psinfo; | 
|  | struct core_thread *ct; | 
|  | unsigned int i; | 
|  |  | 
|  | info->size = 0; | 
|  | info->thread = NULL; | 
|  |  | 
|  | psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL); | 
|  | if (psinfo == NULL) | 
|  | return 0; | 
|  |  | 
|  | fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo); | 
|  |  | 
|  | /* | 
|  | * Figure out how many notes we're going to need for each thread. | 
|  | */ | 
|  | info->thread_notes = 0; | 
|  | for (i = 0; i < view->n; ++i) | 
|  | if (view->regsets[i].core_note_type != 0) | 
|  | ++info->thread_notes; | 
|  |  | 
|  | /* | 
|  | * Sanity check.  We rely on regset 0 being in NT_PRSTATUS, | 
|  | * since it is our one special case. | 
|  | */ | 
|  | if (unlikely(info->thread_notes == 0) || | 
|  | unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) { | 
|  | WARN_ON(1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the ELF file header. | 
|  | */ | 
|  | fill_elf_header(elf, phdrs, | 
|  | view->e_machine, view->e_flags, view->ei_osabi); | 
|  |  | 
|  | /* | 
|  | * Allocate a structure for each thread. | 
|  | */ | 
|  | for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) { | 
|  | t = kzalloc(offsetof(struct elf_thread_core_info, | 
|  | notes[info->thread_notes]), | 
|  | GFP_KERNEL); | 
|  | if (unlikely(!t)) | 
|  | return 0; | 
|  |  | 
|  | t->task = ct->task; | 
|  | if (ct->task == dump_task || !info->thread) { | 
|  | t->next = info->thread; | 
|  | info->thread = t; | 
|  | } else { | 
|  | /* | 
|  | * Make sure to keep the original task at | 
|  | * the head of the list. | 
|  | */ | 
|  | t->next = info->thread->next; | 
|  | info->thread->next = t; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now fill in each thread's information. | 
|  | */ | 
|  | for (t = info->thread; t != NULL; t = t->next) | 
|  | if (!fill_thread_core_info(t, view, signr, &info->size)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Fill in the two process-wide notes. | 
|  | */ | 
|  | fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm); | 
|  | info->size += notesize(&info->psinfo); | 
|  |  | 
|  | fill_auxv_note(&info->auxv, current->mm); | 
|  | info->size += notesize(&info->auxv); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static size_t get_note_info_size(struct elf_note_info *info) | 
|  | { | 
|  | return info->size; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write all the notes for each thread.  When writing the first thread, the | 
|  | * process-wide notes are interleaved after the first thread-specific note. | 
|  | */ | 
|  | static int write_note_info(struct elf_note_info *info, | 
|  | struct file *file, loff_t *foffset) | 
|  | { | 
|  | bool first = 1; | 
|  | struct elf_thread_core_info *t = info->thread; | 
|  |  | 
|  | do { | 
|  | int i; | 
|  |  | 
|  | if (!writenote(&t->notes[0], file, foffset)) | 
|  | return 0; | 
|  |  | 
|  | if (first && !writenote(&info->psinfo, file, foffset)) | 
|  | return 0; | 
|  | if (first && !writenote(&info->auxv, file, foffset)) | 
|  | return 0; | 
|  |  | 
|  | for (i = 1; i < info->thread_notes; ++i) | 
|  | if (t->notes[i].data && | 
|  | !writenote(&t->notes[i], file, foffset)) | 
|  | return 0; | 
|  |  | 
|  | first = 0; | 
|  | t = t->next; | 
|  | } while (t); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void free_note_info(struct elf_note_info *info) | 
|  | { | 
|  | struct elf_thread_core_info *threads = info->thread; | 
|  | while (threads) { | 
|  | unsigned int i; | 
|  | struct elf_thread_core_info *t = threads; | 
|  | threads = t->next; | 
|  | WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus); | 
|  | for (i = 1; i < info->thread_notes; ++i) | 
|  | kfree(t->notes[i].data); | 
|  | kfree(t); | 
|  | } | 
|  | kfree(info->psinfo.data); | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | /* Here is the structure in which status of each thread is captured. */ | 
|  | struct elf_thread_status | 
|  | { | 
|  | struct list_head list; | 
|  | struct elf_prstatus prstatus;	/* NT_PRSTATUS */ | 
|  | elf_fpregset_t fpu;		/* NT_PRFPREG */ | 
|  | struct task_struct *thread; | 
|  | #ifdef ELF_CORE_COPY_XFPREGS | 
|  | elf_fpxregset_t xfpu;		/* ELF_CORE_XFPREG_TYPE */ | 
|  | #endif | 
|  | struct memelfnote notes[3]; | 
|  | int num_notes; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * In order to add the specific thread information for the elf file format, | 
|  | * we need to keep a linked list of every threads pr_status and then create | 
|  | * a single section for them in the final core file. | 
|  | */ | 
|  | static int elf_dump_thread_status(long signr, struct elf_thread_status *t) | 
|  | { | 
|  | int sz = 0; | 
|  | struct task_struct *p = t->thread; | 
|  | t->num_notes = 0; | 
|  |  | 
|  | fill_prstatus(&t->prstatus, p, signr); | 
|  | elf_core_copy_task_regs(p, &t->prstatus.pr_reg); | 
|  |  | 
|  | fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus), | 
|  | &(t->prstatus)); | 
|  | t->num_notes++; | 
|  | sz += notesize(&t->notes[0]); | 
|  |  | 
|  | if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL, | 
|  | &t->fpu))) { | 
|  | fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu), | 
|  | &(t->fpu)); | 
|  | t->num_notes++; | 
|  | sz += notesize(&t->notes[1]); | 
|  | } | 
|  |  | 
|  | #ifdef ELF_CORE_COPY_XFPREGS | 
|  | if (elf_core_copy_task_xfpregs(p, &t->xfpu)) { | 
|  | fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE, | 
|  | sizeof(t->xfpu), &t->xfpu); | 
|  | t->num_notes++; | 
|  | sz += notesize(&t->notes[2]); | 
|  | } | 
|  | #endif | 
|  | return sz; | 
|  | } | 
|  |  | 
|  | struct elf_note_info { | 
|  | struct memelfnote *notes; | 
|  | struct elf_prstatus *prstatus;	/* NT_PRSTATUS */ | 
|  | struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */ | 
|  | struct list_head thread_list; | 
|  | elf_fpregset_t *fpu; | 
|  | #ifdef ELF_CORE_COPY_XFPREGS | 
|  | elf_fpxregset_t *xfpu; | 
|  | #endif | 
|  | int thread_status_size; | 
|  | int numnote; | 
|  | }; | 
|  |  | 
|  | static int elf_note_info_init(struct elf_note_info *info) | 
|  | { | 
|  | memset(info, 0, sizeof(*info)); | 
|  | INIT_LIST_HEAD(&info->thread_list); | 
|  |  | 
|  | /* Allocate space for six ELF notes */ | 
|  | info->notes = kmalloc(6 * sizeof(struct memelfnote), GFP_KERNEL); | 
|  | if (!info->notes) | 
|  | return 0; | 
|  | info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL); | 
|  | if (!info->psinfo) | 
|  | goto notes_free; | 
|  | info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL); | 
|  | if (!info->prstatus) | 
|  | goto psinfo_free; | 
|  | info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL); | 
|  | if (!info->fpu) | 
|  | goto prstatus_free; | 
|  | #ifdef ELF_CORE_COPY_XFPREGS | 
|  | info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL); | 
|  | if (!info->xfpu) | 
|  | goto fpu_free; | 
|  | #endif | 
|  | return 1; | 
|  | #ifdef ELF_CORE_COPY_XFPREGS | 
|  | fpu_free: | 
|  | kfree(info->fpu); | 
|  | #endif | 
|  | prstatus_free: | 
|  | kfree(info->prstatus); | 
|  | psinfo_free: | 
|  | kfree(info->psinfo); | 
|  | notes_free: | 
|  | kfree(info->notes); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int fill_note_info(struct elfhdr *elf, int phdrs, | 
|  | struct elf_note_info *info, | 
|  | long signr, struct pt_regs *regs) | 
|  | { | 
|  | struct list_head *t; | 
|  |  | 
|  | if (!elf_note_info_init(info)) | 
|  | return 0; | 
|  |  | 
|  | if (signr) { | 
|  | struct core_thread *ct; | 
|  | struct elf_thread_status *ets; | 
|  |  | 
|  | for (ct = current->mm->core_state->dumper.next; | 
|  | ct; ct = ct->next) { | 
|  | ets = kzalloc(sizeof(*ets), GFP_KERNEL); | 
|  | if (!ets) | 
|  | return 0; | 
|  |  | 
|  | ets->thread = ct->task; | 
|  | list_add(&ets->list, &info->thread_list); | 
|  | } | 
|  |  | 
|  | list_for_each(t, &info->thread_list) { | 
|  | int sz; | 
|  |  | 
|  | ets = list_entry(t, struct elf_thread_status, list); | 
|  | sz = elf_dump_thread_status(signr, ets); | 
|  | info->thread_status_size += sz; | 
|  | } | 
|  | } | 
|  | /* now collect the dump for the current */ | 
|  | memset(info->prstatus, 0, sizeof(*info->prstatus)); | 
|  | fill_prstatus(info->prstatus, current, signr); | 
|  | elf_core_copy_regs(&info->prstatus->pr_reg, regs); | 
|  |  | 
|  | /* Set up header */ | 
|  | fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI); | 
|  |  | 
|  | /* | 
|  | * Set up the notes in similar form to SVR4 core dumps made | 
|  | * with info from their /proc. | 
|  | */ | 
|  |  | 
|  | fill_note(info->notes + 0, "CORE", NT_PRSTATUS, | 
|  | sizeof(*info->prstatus), info->prstatus); | 
|  | fill_psinfo(info->psinfo, current->group_leader, current->mm); | 
|  | fill_note(info->notes + 1, "CORE", NT_PRPSINFO, | 
|  | sizeof(*info->psinfo), info->psinfo); | 
|  |  | 
|  | info->numnote = 2; | 
|  |  | 
|  | fill_auxv_note(&info->notes[info->numnote++], current->mm); | 
|  |  | 
|  | /* Try to dump the FPU. */ | 
|  | info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs, | 
|  | info->fpu); | 
|  | if (info->prstatus->pr_fpvalid) | 
|  | fill_note(info->notes + info->numnote++, | 
|  | "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu); | 
|  | #ifdef ELF_CORE_COPY_XFPREGS | 
|  | if (elf_core_copy_task_xfpregs(current, info->xfpu)) | 
|  | fill_note(info->notes + info->numnote++, | 
|  | "LINUX", ELF_CORE_XFPREG_TYPE, | 
|  | sizeof(*info->xfpu), info->xfpu); | 
|  | #endif | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static size_t get_note_info_size(struct elf_note_info *info) | 
|  | { | 
|  | int sz = 0; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < info->numnote; i++) | 
|  | sz += notesize(info->notes + i); | 
|  |  | 
|  | sz += info->thread_status_size; | 
|  |  | 
|  | return sz; | 
|  | } | 
|  |  | 
|  | static int write_note_info(struct elf_note_info *info, | 
|  | struct file *file, loff_t *foffset) | 
|  | { | 
|  | int i; | 
|  | struct list_head *t; | 
|  |  | 
|  | for (i = 0; i < info->numnote; i++) | 
|  | if (!writenote(info->notes + i, file, foffset)) | 
|  | return 0; | 
|  |  | 
|  | /* write out the thread status notes section */ | 
|  | list_for_each(t, &info->thread_list) { | 
|  | struct elf_thread_status *tmp = | 
|  | list_entry(t, struct elf_thread_status, list); | 
|  |  | 
|  | for (i = 0; i < tmp->num_notes; i++) | 
|  | if (!writenote(&tmp->notes[i], file, foffset)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void free_note_info(struct elf_note_info *info) | 
|  | { | 
|  | while (!list_empty(&info->thread_list)) { | 
|  | struct list_head *tmp = info->thread_list.next; | 
|  | list_del(tmp); | 
|  | kfree(list_entry(tmp, struct elf_thread_status, list)); | 
|  | } | 
|  |  | 
|  | kfree(info->prstatus); | 
|  | kfree(info->psinfo); | 
|  | kfree(info->notes); | 
|  | kfree(info->fpu); | 
|  | #ifdef ELF_CORE_COPY_XFPREGS | 
|  | kfree(info->xfpu); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static struct vm_area_struct *first_vma(struct task_struct *tsk, | 
|  | struct vm_area_struct *gate_vma) | 
|  | { | 
|  | struct vm_area_struct *ret = tsk->mm->mmap; | 
|  |  | 
|  | if (ret) | 
|  | return ret; | 
|  | return gate_vma; | 
|  | } | 
|  | /* | 
|  | * Helper function for iterating across a vma list.  It ensures that the caller | 
|  | * will visit `gate_vma' prior to terminating the search. | 
|  | */ | 
|  | static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma, | 
|  | struct vm_area_struct *gate_vma) | 
|  | { | 
|  | struct vm_area_struct *ret; | 
|  |  | 
|  | ret = this_vma->vm_next; | 
|  | if (ret) | 
|  | return ret; | 
|  | if (this_vma == gate_vma) | 
|  | return NULL; | 
|  | return gate_vma; | 
|  | } | 
|  |  | 
|  | static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum, | 
|  | elf_addr_t e_shoff, int segs) | 
|  | { | 
|  | elf->e_shoff = e_shoff; | 
|  | elf->e_shentsize = sizeof(*shdr4extnum); | 
|  | elf->e_shnum = 1; | 
|  | elf->e_shstrndx = SHN_UNDEF; | 
|  |  | 
|  | memset(shdr4extnum, 0, sizeof(*shdr4extnum)); | 
|  |  | 
|  | shdr4extnum->sh_type = SHT_NULL; | 
|  | shdr4extnum->sh_size = elf->e_shnum; | 
|  | shdr4extnum->sh_link = elf->e_shstrndx; | 
|  | shdr4extnum->sh_info = segs; | 
|  | } | 
|  |  | 
|  | static size_t elf_core_vma_data_size(struct vm_area_struct *gate_vma, | 
|  | unsigned long mm_flags) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | size_t size = 0; | 
|  |  | 
|  | for (vma = first_vma(current, gate_vma); vma != NULL; | 
|  | vma = next_vma(vma, gate_vma)) | 
|  | size += vma_dump_size(vma, mm_flags); | 
|  | return size; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Actual dumper | 
|  | * | 
|  | * This is a two-pass process; first we find the offsets of the bits, | 
|  | * and then they are actually written out.  If we run out of core limit | 
|  | * we just truncate. | 
|  | */ | 
|  | static int elf_core_dump(struct coredump_params *cprm) | 
|  | { | 
|  | int has_dumped = 0; | 
|  | mm_segment_t fs; | 
|  | int segs; | 
|  | size_t size = 0; | 
|  | struct vm_area_struct *vma, *gate_vma; | 
|  | struct elfhdr *elf = NULL; | 
|  | loff_t offset = 0, dataoff, foffset; | 
|  | struct elf_note_info info; | 
|  | struct elf_phdr *phdr4note = NULL; | 
|  | struct elf_shdr *shdr4extnum = NULL; | 
|  | Elf_Half e_phnum; | 
|  | elf_addr_t e_shoff; | 
|  |  | 
|  | /* | 
|  | * We no longer stop all VM operations. | 
|  | * | 
|  | * This is because those proceses that could possibly change map_count | 
|  | * or the mmap / vma pages are now blocked in do_exit on current | 
|  | * finishing this core dump. | 
|  | * | 
|  | * Only ptrace can touch these memory addresses, but it doesn't change | 
|  | * the map_count or the pages allocated. So no possibility of crashing | 
|  | * exists while dumping the mm->vm_next areas to the core file. | 
|  | */ | 
|  |  | 
|  | /* alloc memory for large data structures: too large to be on stack */ | 
|  | elf = kmalloc(sizeof(*elf), GFP_KERNEL); | 
|  | if (!elf) | 
|  | goto out; | 
|  | /* | 
|  | * The number of segs are recored into ELF header as 16bit value. | 
|  | * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here. | 
|  | */ | 
|  | segs = current->mm->map_count; | 
|  | segs += elf_core_extra_phdrs(); | 
|  |  | 
|  | gate_vma = get_gate_vma(current->mm); | 
|  | if (gate_vma != NULL) | 
|  | segs++; | 
|  |  | 
|  | /* for notes section */ | 
|  | segs++; | 
|  |  | 
|  | /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid | 
|  | * this, kernel supports extended numbering. Have a look at | 
|  | * include/linux/elf.h for further information. */ | 
|  | e_phnum = segs > PN_XNUM ? PN_XNUM : segs; | 
|  |  | 
|  | /* | 
|  | * Collect all the non-memory information about the process for the | 
|  | * notes.  This also sets up the file header. | 
|  | */ | 
|  | if (!fill_note_info(elf, e_phnum, &info, cprm->signr, cprm->regs)) | 
|  | goto cleanup; | 
|  |  | 
|  | has_dumped = 1; | 
|  | current->flags |= PF_DUMPCORE; | 
|  |  | 
|  | fs = get_fs(); | 
|  | set_fs(KERNEL_DS); | 
|  |  | 
|  | offset += sizeof(*elf);				/* Elf header */ | 
|  | offset += segs * sizeof(struct elf_phdr);	/* Program headers */ | 
|  | foffset = offset; | 
|  |  | 
|  | /* Write notes phdr entry */ | 
|  | { | 
|  | size_t sz = get_note_info_size(&info); | 
|  |  | 
|  | sz += elf_coredump_extra_notes_size(); | 
|  |  | 
|  | phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL); | 
|  | if (!phdr4note) | 
|  | goto end_coredump; | 
|  |  | 
|  | fill_elf_note_phdr(phdr4note, sz, offset); | 
|  | offset += sz; | 
|  | } | 
|  |  | 
|  | dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE); | 
|  |  | 
|  | offset += elf_core_vma_data_size(gate_vma, cprm->mm_flags); | 
|  | offset += elf_core_extra_data_size(); | 
|  | e_shoff = offset; | 
|  |  | 
|  | if (e_phnum == PN_XNUM) { | 
|  | shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL); | 
|  | if (!shdr4extnum) | 
|  | goto end_coredump; | 
|  | fill_extnum_info(elf, shdr4extnum, e_shoff, segs); | 
|  | } | 
|  |  | 
|  | offset = dataoff; | 
|  |  | 
|  | size += sizeof(*elf); | 
|  | if (size > cprm->limit || !dump_write(cprm->file, elf, sizeof(*elf))) | 
|  | goto end_coredump; | 
|  |  | 
|  | size += sizeof(*phdr4note); | 
|  | if (size > cprm->limit | 
|  | || !dump_write(cprm->file, phdr4note, sizeof(*phdr4note))) | 
|  | goto end_coredump; | 
|  |  | 
|  | /* Write program headers for segments dump */ | 
|  | for (vma = first_vma(current, gate_vma); vma != NULL; | 
|  | vma = next_vma(vma, gate_vma)) { | 
|  | struct elf_phdr phdr; | 
|  |  | 
|  | phdr.p_type = PT_LOAD; | 
|  | phdr.p_offset = offset; | 
|  | phdr.p_vaddr = vma->vm_start; | 
|  | phdr.p_paddr = 0; | 
|  | phdr.p_filesz = vma_dump_size(vma, cprm->mm_flags); | 
|  | phdr.p_memsz = vma->vm_end - vma->vm_start; | 
|  | offset += phdr.p_filesz; | 
|  | phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0; | 
|  | if (vma->vm_flags & VM_WRITE) | 
|  | phdr.p_flags |= PF_W; | 
|  | if (vma->vm_flags & VM_EXEC) | 
|  | phdr.p_flags |= PF_X; | 
|  | phdr.p_align = ELF_EXEC_PAGESIZE; | 
|  |  | 
|  | size += sizeof(phdr); | 
|  | if (size > cprm->limit | 
|  | || !dump_write(cprm->file, &phdr, sizeof(phdr))) | 
|  | goto end_coredump; | 
|  | } | 
|  |  | 
|  | if (!elf_core_write_extra_phdrs(cprm->file, offset, &size, cprm->limit)) | 
|  | goto end_coredump; | 
|  |  | 
|  | /* write out the notes section */ | 
|  | if (!write_note_info(&info, cprm->file, &foffset)) | 
|  | goto end_coredump; | 
|  |  | 
|  | if (elf_coredump_extra_notes_write(cprm->file, &foffset)) | 
|  | goto end_coredump; | 
|  |  | 
|  | /* Align to page */ | 
|  | if (!dump_seek(cprm->file, dataoff - foffset)) | 
|  | goto end_coredump; | 
|  |  | 
|  | for (vma = first_vma(current, gate_vma); vma != NULL; | 
|  | vma = next_vma(vma, gate_vma)) { | 
|  | unsigned long addr; | 
|  | unsigned long end; | 
|  |  | 
|  | end = vma->vm_start + vma_dump_size(vma, cprm->mm_flags); | 
|  |  | 
|  | for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) { | 
|  | struct page *page; | 
|  | int stop; | 
|  |  | 
|  | page = get_dump_page(addr); | 
|  | if (page) { | 
|  | void *kaddr = kmap(page); | 
|  | stop = ((size += PAGE_SIZE) > cprm->limit) || | 
|  | !dump_write(cprm->file, kaddr, | 
|  | PAGE_SIZE); | 
|  | kunmap(page); | 
|  | page_cache_release(page); | 
|  | } else | 
|  | stop = !dump_seek(cprm->file, PAGE_SIZE); | 
|  | if (stop) | 
|  | goto end_coredump; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!elf_core_write_extra_data(cprm->file, &size, cprm->limit)) | 
|  | goto end_coredump; | 
|  |  | 
|  | if (e_phnum == PN_XNUM) { | 
|  | size += sizeof(*shdr4extnum); | 
|  | if (size > cprm->limit | 
|  | || !dump_write(cprm->file, shdr4extnum, | 
|  | sizeof(*shdr4extnum))) | 
|  | goto end_coredump; | 
|  | } | 
|  |  | 
|  | end_coredump: | 
|  | set_fs(fs); | 
|  |  | 
|  | cleanup: | 
|  | free_note_info(&info); | 
|  | kfree(shdr4extnum); | 
|  | kfree(phdr4note); | 
|  | kfree(elf); | 
|  | out: | 
|  | return has_dumped; | 
|  | } | 
|  |  | 
|  | #endif		/* CONFIG_ELF_CORE */ | 
|  |  | 
|  | static int __init init_elf_binfmt(void) | 
|  | { | 
|  | return register_binfmt(&elf_format); | 
|  | } | 
|  |  | 
|  | static void __exit exit_elf_binfmt(void) | 
|  | { | 
|  | /* Remove the COFF and ELF loaders. */ | 
|  | unregister_binfmt(&elf_format); | 
|  | } | 
|  |  | 
|  | core_initcall(init_elf_binfmt); | 
|  | module_exit(exit_elf_binfmt); | 
|  | MODULE_LICENSE("GPL"); |