|  | /* | 
|  | * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com | 
|  | * Written by Alex Tomas <alex@clusterfs.com> | 
|  | * | 
|  | * Architecture independence: | 
|  | *   Copyright (c) 2005, Bull S.A. | 
|  | *   Written by Pierre Peiffer <pierre.peiffer@bull.net> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public Licens | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111- | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Extents support for EXT4 | 
|  | * | 
|  | * TODO: | 
|  | *   - ext4*_error() should be used in some situations | 
|  | *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate | 
|  | *   - smart tree reduction | 
|  | */ | 
|  |  | 
|  | #include <linux/fs.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/jbd2.h> | 
|  | #include <linux/highuid.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/quotaops.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/falloc.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <linux/fiemap.h> | 
|  | #include "ext4_jbd2.h" | 
|  |  | 
|  | #include <trace/events/ext4.h> | 
|  |  | 
|  | static int ext4_split_extent(handle_t *handle, | 
|  | struct inode *inode, | 
|  | struct ext4_ext_path *path, | 
|  | struct ext4_map_blocks *map, | 
|  | int split_flag, | 
|  | int flags); | 
|  |  | 
|  | static int ext4_ext_truncate_extend_restart(handle_t *handle, | 
|  | struct inode *inode, | 
|  | int needed) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (!ext4_handle_valid(handle)) | 
|  | return 0; | 
|  | if (handle->h_buffer_credits > needed) | 
|  | return 0; | 
|  | err = ext4_journal_extend(handle, needed); | 
|  | if (err <= 0) | 
|  | return err; | 
|  | err = ext4_truncate_restart_trans(handle, inode, needed); | 
|  | if (err == 0) | 
|  | err = -EAGAIN; | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * could return: | 
|  | *  - EROFS | 
|  | *  - ENOMEM | 
|  | */ | 
|  | static int ext4_ext_get_access(handle_t *handle, struct inode *inode, | 
|  | struct ext4_ext_path *path) | 
|  | { | 
|  | if (path->p_bh) { | 
|  | /* path points to block */ | 
|  | return ext4_journal_get_write_access(handle, path->p_bh); | 
|  | } | 
|  | /* path points to leaf/index in inode body */ | 
|  | /* we use in-core data, no need to protect them */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * could return: | 
|  | *  - EROFS | 
|  | *  - ENOMEM | 
|  | *  - EIO | 
|  | */ | 
|  | #define ext4_ext_dirty(handle, inode, path) \ | 
|  | __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path)) | 
|  | static int __ext4_ext_dirty(const char *where, unsigned int line, | 
|  | handle_t *handle, struct inode *inode, | 
|  | struct ext4_ext_path *path) | 
|  | { | 
|  | int err; | 
|  | if (path->p_bh) { | 
|  | /* path points to block */ | 
|  | err = __ext4_handle_dirty_metadata(where, line, handle, | 
|  | inode, path->p_bh); | 
|  | } else { | 
|  | /* path points to leaf/index in inode body */ | 
|  | err = ext4_mark_inode_dirty(handle, inode); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, | 
|  | struct ext4_ext_path *path, | 
|  | ext4_lblk_t block) | 
|  | { | 
|  | if (path) { | 
|  | int depth = path->p_depth; | 
|  | struct ext4_extent *ex; | 
|  |  | 
|  | /* | 
|  | * Try to predict block placement assuming that we are | 
|  | * filling in a file which will eventually be | 
|  | * non-sparse --- i.e., in the case of libbfd writing | 
|  | * an ELF object sections out-of-order but in a way | 
|  | * the eventually results in a contiguous object or | 
|  | * executable file, or some database extending a table | 
|  | * space file.  However, this is actually somewhat | 
|  | * non-ideal if we are writing a sparse file such as | 
|  | * qemu or KVM writing a raw image file that is going | 
|  | * to stay fairly sparse, since it will end up | 
|  | * fragmenting the file system's free space.  Maybe we | 
|  | * should have some hueristics or some way to allow | 
|  | * userspace to pass a hint to file system, | 
|  | * especially if the latter case turns out to be | 
|  | * common. | 
|  | */ | 
|  | ex = path[depth].p_ext; | 
|  | if (ex) { | 
|  | ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex); | 
|  | ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block); | 
|  |  | 
|  | if (block > ext_block) | 
|  | return ext_pblk + (block - ext_block); | 
|  | else | 
|  | return ext_pblk - (ext_block - block); | 
|  | } | 
|  |  | 
|  | /* it looks like index is empty; | 
|  | * try to find starting block from index itself */ | 
|  | if (path[depth].p_bh) | 
|  | return path[depth].p_bh->b_blocknr; | 
|  | } | 
|  |  | 
|  | /* OK. use inode's group */ | 
|  | return ext4_inode_to_goal_block(inode); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocation for a meta data block | 
|  | */ | 
|  | static ext4_fsblk_t | 
|  | ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, | 
|  | struct ext4_ext_path *path, | 
|  | struct ext4_extent *ex, int *err, unsigned int flags) | 
|  | { | 
|  | ext4_fsblk_t goal, newblock; | 
|  |  | 
|  | goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); | 
|  | newblock = ext4_new_meta_blocks(handle, inode, goal, flags, | 
|  | NULL, err); | 
|  | return newblock; | 
|  | } | 
|  |  | 
|  | static inline int ext4_ext_space_block(struct inode *inode, int check) | 
|  | { | 
|  | int size; | 
|  |  | 
|  | size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) | 
|  | / sizeof(struct ext4_extent); | 
|  | #ifdef AGGRESSIVE_TEST | 
|  | if (!check && size > 6) | 
|  | size = 6; | 
|  | #endif | 
|  | return size; | 
|  | } | 
|  |  | 
|  | static inline int ext4_ext_space_block_idx(struct inode *inode, int check) | 
|  | { | 
|  | int size; | 
|  |  | 
|  | size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) | 
|  | / sizeof(struct ext4_extent_idx); | 
|  | #ifdef AGGRESSIVE_TEST | 
|  | if (!check && size > 5) | 
|  | size = 5; | 
|  | #endif | 
|  | return size; | 
|  | } | 
|  |  | 
|  | static inline int ext4_ext_space_root(struct inode *inode, int check) | 
|  | { | 
|  | int size; | 
|  |  | 
|  | size = sizeof(EXT4_I(inode)->i_data); | 
|  | size -= sizeof(struct ext4_extent_header); | 
|  | size /= sizeof(struct ext4_extent); | 
|  | #ifdef AGGRESSIVE_TEST | 
|  | if (!check && size > 3) | 
|  | size = 3; | 
|  | #endif | 
|  | return size; | 
|  | } | 
|  |  | 
|  | static inline int ext4_ext_space_root_idx(struct inode *inode, int check) | 
|  | { | 
|  | int size; | 
|  |  | 
|  | size = sizeof(EXT4_I(inode)->i_data); | 
|  | size -= sizeof(struct ext4_extent_header); | 
|  | size /= sizeof(struct ext4_extent_idx); | 
|  | #ifdef AGGRESSIVE_TEST | 
|  | if (!check && size > 4) | 
|  | size = 4; | 
|  | #endif | 
|  | return size; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the number of metadata blocks needed | 
|  | * to allocate @blocks | 
|  | * Worse case is one block per extent | 
|  | */ | 
|  | int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) | 
|  | { | 
|  | struct ext4_inode_info *ei = EXT4_I(inode); | 
|  | int idxs; | 
|  |  | 
|  | idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) | 
|  | / sizeof(struct ext4_extent_idx)); | 
|  |  | 
|  | /* | 
|  | * If the new delayed allocation block is contiguous with the | 
|  | * previous da block, it can share index blocks with the | 
|  | * previous block, so we only need to allocate a new index | 
|  | * block every idxs leaf blocks.  At ldxs**2 blocks, we need | 
|  | * an additional index block, and at ldxs**3 blocks, yet | 
|  | * another index blocks. | 
|  | */ | 
|  | if (ei->i_da_metadata_calc_len && | 
|  | ei->i_da_metadata_calc_last_lblock+1 == lblock) { | 
|  | int num = 0; | 
|  |  | 
|  | if ((ei->i_da_metadata_calc_len % idxs) == 0) | 
|  | num++; | 
|  | if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0) | 
|  | num++; | 
|  | if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) { | 
|  | num++; | 
|  | ei->i_da_metadata_calc_len = 0; | 
|  | } else | 
|  | ei->i_da_metadata_calc_len++; | 
|  | ei->i_da_metadata_calc_last_lblock++; | 
|  | return num; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In the worst case we need a new set of index blocks at | 
|  | * every level of the inode's extent tree. | 
|  | */ | 
|  | ei->i_da_metadata_calc_len = 1; | 
|  | ei->i_da_metadata_calc_last_lblock = lblock; | 
|  | return ext_depth(inode) + 1; | 
|  | } | 
|  |  | 
|  | static int | 
|  | ext4_ext_max_entries(struct inode *inode, int depth) | 
|  | { | 
|  | int max; | 
|  |  | 
|  | if (depth == ext_depth(inode)) { | 
|  | if (depth == 0) | 
|  | max = ext4_ext_space_root(inode, 1); | 
|  | else | 
|  | max = ext4_ext_space_root_idx(inode, 1); | 
|  | } else { | 
|  | if (depth == 0) | 
|  | max = ext4_ext_space_block(inode, 1); | 
|  | else | 
|  | max = ext4_ext_space_block_idx(inode, 1); | 
|  | } | 
|  |  | 
|  | return max; | 
|  | } | 
|  |  | 
|  | static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) | 
|  | { | 
|  | ext4_fsblk_t block = ext4_ext_pblock(ext); | 
|  | int len = ext4_ext_get_actual_len(ext); | 
|  |  | 
|  | return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len); | 
|  | } | 
|  |  | 
|  | static int ext4_valid_extent_idx(struct inode *inode, | 
|  | struct ext4_extent_idx *ext_idx) | 
|  | { | 
|  | ext4_fsblk_t block = ext4_idx_pblock(ext_idx); | 
|  |  | 
|  | return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1); | 
|  | } | 
|  |  | 
|  | static int ext4_valid_extent_entries(struct inode *inode, | 
|  | struct ext4_extent_header *eh, | 
|  | int depth) | 
|  | { | 
|  | unsigned short entries; | 
|  | if (eh->eh_entries == 0) | 
|  | return 1; | 
|  |  | 
|  | entries = le16_to_cpu(eh->eh_entries); | 
|  |  | 
|  | if (depth == 0) { | 
|  | /* leaf entries */ | 
|  | struct ext4_extent *ext = EXT_FIRST_EXTENT(eh); | 
|  | while (entries) { | 
|  | if (!ext4_valid_extent(inode, ext)) | 
|  | return 0; | 
|  | ext++; | 
|  | entries--; | 
|  | } | 
|  | } else { | 
|  | struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh); | 
|  | while (entries) { | 
|  | if (!ext4_valid_extent_idx(inode, ext_idx)) | 
|  | return 0; | 
|  | ext_idx++; | 
|  | entries--; | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int __ext4_ext_check(const char *function, unsigned int line, | 
|  | struct inode *inode, struct ext4_extent_header *eh, | 
|  | int depth) | 
|  | { | 
|  | const char *error_msg; | 
|  | int max = 0; | 
|  |  | 
|  | if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { | 
|  | error_msg = "invalid magic"; | 
|  | goto corrupted; | 
|  | } | 
|  | if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { | 
|  | error_msg = "unexpected eh_depth"; | 
|  | goto corrupted; | 
|  | } | 
|  | if (unlikely(eh->eh_max == 0)) { | 
|  | error_msg = "invalid eh_max"; | 
|  | goto corrupted; | 
|  | } | 
|  | max = ext4_ext_max_entries(inode, depth); | 
|  | if (unlikely(le16_to_cpu(eh->eh_max) > max)) { | 
|  | error_msg = "too large eh_max"; | 
|  | goto corrupted; | 
|  | } | 
|  | if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { | 
|  | error_msg = "invalid eh_entries"; | 
|  | goto corrupted; | 
|  | } | 
|  | if (!ext4_valid_extent_entries(inode, eh, depth)) { | 
|  | error_msg = "invalid extent entries"; | 
|  | goto corrupted; | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | corrupted: | 
|  | ext4_error_inode(inode, function, line, 0, | 
|  | "bad header/extent: %s - magic %x, " | 
|  | "entries %u, max %u(%u), depth %u(%u)", | 
|  | error_msg, le16_to_cpu(eh->eh_magic), | 
|  | le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max), | 
|  | max, le16_to_cpu(eh->eh_depth), depth); | 
|  |  | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | #define ext4_ext_check(inode, eh, depth)	\ | 
|  | __ext4_ext_check(__func__, __LINE__, inode, eh, depth) | 
|  |  | 
|  | int ext4_ext_check_inode(struct inode *inode) | 
|  | { | 
|  | return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode)); | 
|  | } | 
|  |  | 
|  | #ifdef EXT_DEBUG | 
|  | static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) | 
|  | { | 
|  | int k, l = path->p_depth; | 
|  |  | 
|  | ext_debug("path:"); | 
|  | for (k = 0; k <= l; k++, path++) { | 
|  | if (path->p_idx) { | 
|  | ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block), | 
|  | ext4_idx_pblock(path->p_idx)); | 
|  | } else if (path->p_ext) { | 
|  | ext_debug("  %d:[%d]%d:%llu ", | 
|  | le32_to_cpu(path->p_ext->ee_block), | 
|  | ext4_ext_is_uninitialized(path->p_ext), | 
|  | ext4_ext_get_actual_len(path->p_ext), | 
|  | ext4_ext_pblock(path->p_ext)); | 
|  | } else | 
|  | ext_debug("  []"); | 
|  | } | 
|  | ext_debug("\n"); | 
|  | } | 
|  |  | 
|  | static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) | 
|  | { | 
|  | int depth = ext_depth(inode); | 
|  | struct ext4_extent_header *eh; | 
|  | struct ext4_extent *ex; | 
|  | int i; | 
|  |  | 
|  | if (!path) | 
|  | return; | 
|  |  | 
|  | eh = path[depth].p_hdr; | 
|  | ex = EXT_FIRST_EXTENT(eh); | 
|  |  | 
|  | ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino); | 
|  |  | 
|  | for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { | 
|  | ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block), | 
|  | ext4_ext_is_uninitialized(ex), | 
|  | ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex)); | 
|  | } | 
|  | ext_debug("\n"); | 
|  | } | 
|  |  | 
|  | static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path, | 
|  | ext4_fsblk_t newblock, int level) | 
|  | { | 
|  | int depth = ext_depth(inode); | 
|  | struct ext4_extent *ex; | 
|  |  | 
|  | if (depth != level) { | 
|  | struct ext4_extent_idx *idx; | 
|  | idx = path[level].p_idx; | 
|  | while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) { | 
|  | ext_debug("%d: move %d:%llu in new index %llu\n", level, | 
|  | le32_to_cpu(idx->ei_block), | 
|  | ext4_idx_pblock(idx), | 
|  | newblock); | 
|  | idx++; | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | ex = path[depth].p_ext; | 
|  | while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) { | 
|  | ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n", | 
|  | le32_to_cpu(ex->ee_block), | 
|  | ext4_ext_pblock(ex), | 
|  | ext4_ext_is_uninitialized(ex), | 
|  | ext4_ext_get_actual_len(ex), | 
|  | newblock); | 
|  | ex++; | 
|  | } | 
|  | } | 
|  |  | 
|  | #else | 
|  | #define ext4_ext_show_path(inode, path) | 
|  | #define ext4_ext_show_leaf(inode, path) | 
|  | #define ext4_ext_show_move(inode, path, newblock, level) | 
|  | #endif | 
|  |  | 
|  | void ext4_ext_drop_refs(struct ext4_ext_path *path) | 
|  | { | 
|  | int depth = path->p_depth; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i <= depth; i++, path++) | 
|  | if (path->p_bh) { | 
|  | brelse(path->p_bh); | 
|  | path->p_bh = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_ext_binsearch_idx: | 
|  | * binary search for the closest index of the given block | 
|  | * the header must be checked before calling this | 
|  | */ | 
|  | static void | 
|  | ext4_ext_binsearch_idx(struct inode *inode, | 
|  | struct ext4_ext_path *path, ext4_lblk_t block) | 
|  | { | 
|  | struct ext4_extent_header *eh = path->p_hdr; | 
|  | struct ext4_extent_idx *r, *l, *m; | 
|  |  | 
|  |  | 
|  | ext_debug("binsearch for %u(idx):  ", block); | 
|  |  | 
|  | l = EXT_FIRST_INDEX(eh) + 1; | 
|  | r = EXT_LAST_INDEX(eh); | 
|  | while (l <= r) { | 
|  | m = l + (r - l) / 2; | 
|  | if (block < le32_to_cpu(m->ei_block)) | 
|  | r = m - 1; | 
|  | else | 
|  | l = m + 1; | 
|  | ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block), | 
|  | m, le32_to_cpu(m->ei_block), | 
|  | r, le32_to_cpu(r->ei_block)); | 
|  | } | 
|  |  | 
|  | path->p_idx = l - 1; | 
|  | ext_debug("  -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block), | 
|  | ext4_idx_pblock(path->p_idx)); | 
|  |  | 
|  | #ifdef CHECK_BINSEARCH | 
|  | { | 
|  | struct ext4_extent_idx *chix, *ix; | 
|  | int k; | 
|  |  | 
|  | chix = ix = EXT_FIRST_INDEX(eh); | 
|  | for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { | 
|  | if (k != 0 && | 
|  | le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) { | 
|  | printk(KERN_DEBUG "k=%d, ix=0x%p, " | 
|  | "first=0x%p\n", k, | 
|  | ix, EXT_FIRST_INDEX(eh)); | 
|  | printk(KERN_DEBUG "%u <= %u\n", | 
|  | le32_to_cpu(ix->ei_block), | 
|  | le32_to_cpu(ix[-1].ei_block)); | 
|  | } | 
|  | BUG_ON(k && le32_to_cpu(ix->ei_block) | 
|  | <= le32_to_cpu(ix[-1].ei_block)); | 
|  | if (block < le32_to_cpu(ix->ei_block)) | 
|  | break; | 
|  | chix = ix; | 
|  | } | 
|  | BUG_ON(chix != path->p_idx); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_ext_binsearch: | 
|  | * binary search for closest extent of the given block | 
|  | * the header must be checked before calling this | 
|  | */ | 
|  | static void | 
|  | ext4_ext_binsearch(struct inode *inode, | 
|  | struct ext4_ext_path *path, ext4_lblk_t block) | 
|  | { | 
|  | struct ext4_extent_header *eh = path->p_hdr; | 
|  | struct ext4_extent *r, *l, *m; | 
|  |  | 
|  | if (eh->eh_entries == 0) { | 
|  | /* | 
|  | * this leaf is empty: | 
|  | * we get such a leaf in split/add case | 
|  | */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | ext_debug("binsearch for %u:  ", block); | 
|  |  | 
|  | l = EXT_FIRST_EXTENT(eh) + 1; | 
|  | r = EXT_LAST_EXTENT(eh); | 
|  |  | 
|  | while (l <= r) { | 
|  | m = l + (r - l) / 2; | 
|  | if (block < le32_to_cpu(m->ee_block)) | 
|  | r = m - 1; | 
|  | else | 
|  | l = m + 1; | 
|  | ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block), | 
|  | m, le32_to_cpu(m->ee_block), | 
|  | r, le32_to_cpu(r->ee_block)); | 
|  | } | 
|  |  | 
|  | path->p_ext = l - 1; | 
|  | ext_debug("  -> %d:%llu:[%d]%d ", | 
|  | le32_to_cpu(path->p_ext->ee_block), | 
|  | ext4_ext_pblock(path->p_ext), | 
|  | ext4_ext_is_uninitialized(path->p_ext), | 
|  | ext4_ext_get_actual_len(path->p_ext)); | 
|  |  | 
|  | #ifdef CHECK_BINSEARCH | 
|  | { | 
|  | struct ext4_extent *chex, *ex; | 
|  | int k; | 
|  |  | 
|  | chex = ex = EXT_FIRST_EXTENT(eh); | 
|  | for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { | 
|  | BUG_ON(k && le32_to_cpu(ex->ee_block) | 
|  | <= le32_to_cpu(ex[-1].ee_block)); | 
|  | if (block < le32_to_cpu(ex->ee_block)) | 
|  | break; | 
|  | chex = ex; | 
|  | } | 
|  | BUG_ON(chex != path->p_ext); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | } | 
|  |  | 
|  | int ext4_ext_tree_init(handle_t *handle, struct inode *inode) | 
|  | { | 
|  | struct ext4_extent_header *eh; | 
|  |  | 
|  | eh = ext_inode_hdr(inode); | 
|  | eh->eh_depth = 0; | 
|  | eh->eh_entries = 0; | 
|  | eh->eh_magic = EXT4_EXT_MAGIC; | 
|  | eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0)); | 
|  | ext4_mark_inode_dirty(handle, inode); | 
|  | ext4_ext_invalidate_cache(inode); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct ext4_ext_path * | 
|  | ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block, | 
|  | struct ext4_ext_path *path) | 
|  | { | 
|  | struct ext4_extent_header *eh; | 
|  | struct buffer_head *bh; | 
|  | short int depth, i, ppos = 0, alloc = 0; | 
|  |  | 
|  | eh = ext_inode_hdr(inode); | 
|  | depth = ext_depth(inode); | 
|  |  | 
|  | /* account possible depth increase */ | 
|  | if (!path) { | 
|  | path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2), | 
|  | GFP_NOFS); | 
|  | if (!path) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | alloc = 1; | 
|  | } | 
|  | path[0].p_hdr = eh; | 
|  | path[0].p_bh = NULL; | 
|  |  | 
|  | i = depth; | 
|  | /* walk through the tree */ | 
|  | while (i) { | 
|  | int need_to_validate = 0; | 
|  |  | 
|  | ext_debug("depth %d: num %d, max %d\n", | 
|  | ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); | 
|  |  | 
|  | ext4_ext_binsearch_idx(inode, path + ppos, block); | 
|  | path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx); | 
|  | path[ppos].p_depth = i; | 
|  | path[ppos].p_ext = NULL; | 
|  |  | 
|  | bh = sb_getblk(inode->i_sb, path[ppos].p_block); | 
|  | if (unlikely(!bh)) | 
|  | goto err; | 
|  | if (!bh_uptodate_or_lock(bh)) { | 
|  | trace_ext4_ext_load_extent(inode, block, | 
|  | path[ppos].p_block); | 
|  | if (bh_submit_read(bh) < 0) { | 
|  | put_bh(bh); | 
|  | goto err; | 
|  | } | 
|  | /* validate the extent entries */ | 
|  | need_to_validate = 1; | 
|  | } | 
|  | eh = ext_block_hdr(bh); | 
|  | ppos++; | 
|  | if (unlikely(ppos > depth)) { | 
|  | put_bh(bh); | 
|  | EXT4_ERROR_INODE(inode, | 
|  | "ppos %d > depth %d", ppos, depth); | 
|  | goto err; | 
|  | } | 
|  | path[ppos].p_bh = bh; | 
|  | path[ppos].p_hdr = eh; | 
|  | i--; | 
|  |  | 
|  | if (need_to_validate && ext4_ext_check(inode, eh, i)) | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | path[ppos].p_depth = i; | 
|  | path[ppos].p_ext = NULL; | 
|  | path[ppos].p_idx = NULL; | 
|  |  | 
|  | /* find extent */ | 
|  | ext4_ext_binsearch(inode, path + ppos, block); | 
|  | /* if not an empty leaf */ | 
|  | if (path[ppos].p_ext) | 
|  | path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext); | 
|  |  | 
|  | ext4_ext_show_path(inode, path); | 
|  |  | 
|  | return path; | 
|  |  | 
|  | err: | 
|  | ext4_ext_drop_refs(path); | 
|  | if (alloc) | 
|  | kfree(path); | 
|  | return ERR_PTR(-EIO); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_ext_insert_index: | 
|  | * insert new index [@logical;@ptr] into the block at @curp; | 
|  | * check where to insert: before @curp or after @curp | 
|  | */ | 
|  | static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, | 
|  | struct ext4_ext_path *curp, | 
|  | int logical, ext4_fsblk_t ptr) | 
|  | { | 
|  | struct ext4_extent_idx *ix; | 
|  | int len, err; | 
|  |  | 
|  | err = ext4_ext_get_access(handle, inode, curp); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) { | 
|  | EXT4_ERROR_INODE(inode, | 
|  | "logical %d == ei_block %d!", | 
|  | logical, le32_to_cpu(curp->p_idx->ei_block)); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries) | 
|  | >= le16_to_cpu(curp->p_hdr->eh_max))) { | 
|  | EXT4_ERROR_INODE(inode, | 
|  | "eh_entries %d >= eh_max %d!", | 
|  | le16_to_cpu(curp->p_hdr->eh_entries), | 
|  | le16_to_cpu(curp->p_hdr->eh_max)); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | if (logical > le32_to_cpu(curp->p_idx->ei_block)) { | 
|  | /* insert after */ | 
|  | ext_debug("insert new index %d after: %llu\n", logical, ptr); | 
|  | ix = curp->p_idx + 1; | 
|  | } else { | 
|  | /* insert before */ | 
|  | ext_debug("insert new index %d before: %llu\n", logical, ptr); | 
|  | ix = curp->p_idx; | 
|  | } | 
|  |  | 
|  | len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1; | 
|  | BUG_ON(len < 0); | 
|  | if (len > 0) { | 
|  | ext_debug("insert new index %d: " | 
|  | "move %d indices from 0x%p to 0x%p\n", | 
|  | logical, len, ix, ix + 1); | 
|  | memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx)); | 
|  | } | 
|  |  | 
|  | if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) { | 
|  | EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | ix->ei_block = cpu_to_le32(logical); | 
|  | ext4_idx_store_pblock(ix, ptr); | 
|  | le16_add_cpu(&curp->p_hdr->eh_entries, 1); | 
|  |  | 
|  | if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) { | 
|  | EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | err = ext4_ext_dirty(handle, inode, curp); | 
|  | ext4_std_error(inode->i_sb, err); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_ext_split: | 
|  | * inserts new subtree into the path, using free index entry | 
|  | * at depth @at: | 
|  | * - allocates all needed blocks (new leaf and all intermediate index blocks) | 
|  | * - makes decision where to split | 
|  | * - moves remaining extents and index entries (right to the split point) | 
|  | *   into the newly allocated blocks | 
|  | * - initializes subtree | 
|  | */ | 
|  | static int ext4_ext_split(handle_t *handle, struct inode *inode, | 
|  | unsigned int flags, | 
|  | struct ext4_ext_path *path, | 
|  | struct ext4_extent *newext, int at) | 
|  | { | 
|  | struct buffer_head *bh = NULL; | 
|  | int depth = ext_depth(inode); | 
|  | struct ext4_extent_header *neh; | 
|  | struct ext4_extent_idx *fidx; | 
|  | int i = at, k, m, a; | 
|  | ext4_fsblk_t newblock, oldblock; | 
|  | __le32 border; | 
|  | ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ | 
|  | int err = 0; | 
|  |  | 
|  | /* make decision: where to split? */ | 
|  | /* FIXME: now decision is simplest: at current extent */ | 
|  |  | 
|  | /* if current leaf will be split, then we should use | 
|  | * border from split point */ | 
|  | if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) { | 
|  | EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!"); | 
|  | return -EIO; | 
|  | } | 
|  | if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { | 
|  | border = path[depth].p_ext[1].ee_block; | 
|  | ext_debug("leaf will be split." | 
|  | " next leaf starts at %d\n", | 
|  | le32_to_cpu(border)); | 
|  | } else { | 
|  | border = newext->ee_block; | 
|  | ext_debug("leaf will be added." | 
|  | " next leaf starts at %d\n", | 
|  | le32_to_cpu(border)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If error occurs, then we break processing | 
|  | * and mark filesystem read-only. index won't | 
|  | * be inserted and tree will be in consistent | 
|  | * state. Next mount will repair buffers too. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Get array to track all allocated blocks. | 
|  | * We need this to handle errors and free blocks | 
|  | * upon them. | 
|  | */ | 
|  | ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS); | 
|  | if (!ablocks) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* allocate all needed blocks */ | 
|  | ext_debug("allocate %d blocks for indexes/leaf\n", depth - at); | 
|  | for (a = 0; a < depth - at; a++) { | 
|  | newblock = ext4_ext_new_meta_block(handle, inode, path, | 
|  | newext, &err, flags); | 
|  | if (newblock == 0) | 
|  | goto cleanup; | 
|  | ablocks[a] = newblock; | 
|  | } | 
|  |  | 
|  | /* initialize new leaf */ | 
|  | newblock = ablocks[--a]; | 
|  | if (unlikely(newblock == 0)) { | 
|  | EXT4_ERROR_INODE(inode, "newblock == 0!"); | 
|  | err = -EIO; | 
|  | goto cleanup; | 
|  | } | 
|  | bh = sb_getblk(inode->i_sb, newblock); | 
|  | if (!bh) { | 
|  | err = -EIO; | 
|  | goto cleanup; | 
|  | } | 
|  | lock_buffer(bh); | 
|  |  | 
|  | err = ext4_journal_get_create_access(handle, bh); | 
|  | if (err) | 
|  | goto cleanup; | 
|  |  | 
|  | neh = ext_block_hdr(bh); | 
|  | neh->eh_entries = 0; | 
|  | neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); | 
|  | neh->eh_magic = EXT4_EXT_MAGIC; | 
|  | neh->eh_depth = 0; | 
|  |  | 
|  | /* move remainder of path[depth] to the new leaf */ | 
|  | if (unlikely(path[depth].p_hdr->eh_entries != | 
|  | path[depth].p_hdr->eh_max)) { | 
|  | EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!", | 
|  | path[depth].p_hdr->eh_entries, | 
|  | path[depth].p_hdr->eh_max); | 
|  | err = -EIO; | 
|  | goto cleanup; | 
|  | } | 
|  | /* start copy from next extent */ | 
|  | m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++; | 
|  | ext4_ext_show_move(inode, path, newblock, depth); | 
|  | if (m) { | 
|  | struct ext4_extent *ex; | 
|  | ex = EXT_FIRST_EXTENT(neh); | 
|  | memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m); | 
|  | le16_add_cpu(&neh->eh_entries, m); | 
|  | } | 
|  |  | 
|  | set_buffer_uptodate(bh); | 
|  | unlock_buffer(bh); | 
|  |  | 
|  | err = ext4_handle_dirty_metadata(handle, inode, bh); | 
|  | if (err) | 
|  | goto cleanup; | 
|  | brelse(bh); | 
|  | bh = NULL; | 
|  |  | 
|  | /* correct old leaf */ | 
|  | if (m) { | 
|  | err = ext4_ext_get_access(handle, inode, path + depth); | 
|  | if (err) | 
|  | goto cleanup; | 
|  | le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); | 
|  | err = ext4_ext_dirty(handle, inode, path + depth); | 
|  | if (err) | 
|  | goto cleanup; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* create intermediate indexes */ | 
|  | k = depth - at - 1; | 
|  | if (unlikely(k < 0)) { | 
|  | EXT4_ERROR_INODE(inode, "k %d < 0!", k); | 
|  | err = -EIO; | 
|  | goto cleanup; | 
|  | } | 
|  | if (k) | 
|  | ext_debug("create %d intermediate indices\n", k); | 
|  | /* insert new index into current index block */ | 
|  | /* current depth stored in i var */ | 
|  | i = depth - 1; | 
|  | while (k--) { | 
|  | oldblock = newblock; | 
|  | newblock = ablocks[--a]; | 
|  | bh = sb_getblk(inode->i_sb, newblock); | 
|  | if (!bh) { | 
|  | err = -EIO; | 
|  | goto cleanup; | 
|  | } | 
|  | lock_buffer(bh); | 
|  |  | 
|  | err = ext4_journal_get_create_access(handle, bh); | 
|  | if (err) | 
|  | goto cleanup; | 
|  |  | 
|  | neh = ext_block_hdr(bh); | 
|  | neh->eh_entries = cpu_to_le16(1); | 
|  | neh->eh_magic = EXT4_EXT_MAGIC; | 
|  | neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); | 
|  | neh->eh_depth = cpu_to_le16(depth - i); | 
|  | fidx = EXT_FIRST_INDEX(neh); | 
|  | fidx->ei_block = border; | 
|  | ext4_idx_store_pblock(fidx, oldblock); | 
|  |  | 
|  | ext_debug("int.index at %d (block %llu): %u -> %llu\n", | 
|  | i, newblock, le32_to_cpu(border), oldblock); | 
|  |  | 
|  | /* move remainder of path[i] to the new index block */ | 
|  | if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) != | 
|  | EXT_LAST_INDEX(path[i].p_hdr))) { | 
|  | EXT4_ERROR_INODE(inode, | 
|  | "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!", | 
|  | le32_to_cpu(path[i].p_ext->ee_block)); | 
|  | err = -EIO; | 
|  | goto cleanup; | 
|  | } | 
|  | /* start copy indexes */ | 
|  | m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++; | 
|  | ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx, | 
|  | EXT_MAX_INDEX(path[i].p_hdr)); | 
|  | ext4_ext_show_move(inode, path, newblock, i); | 
|  | if (m) { | 
|  | memmove(++fidx, path[i].p_idx, | 
|  | sizeof(struct ext4_extent_idx) * m); | 
|  | le16_add_cpu(&neh->eh_entries, m); | 
|  | } | 
|  | set_buffer_uptodate(bh); | 
|  | unlock_buffer(bh); | 
|  |  | 
|  | err = ext4_handle_dirty_metadata(handle, inode, bh); | 
|  | if (err) | 
|  | goto cleanup; | 
|  | brelse(bh); | 
|  | bh = NULL; | 
|  |  | 
|  | /* correct old index */ | 
|  | if (m) { | 
|  | err = ext4_ext_get_access(handle, inode, path + i); | 
|  | if (err) | 
|  | goto cleanup; | 
|  | le16_add_cpu(&path[i].p_hdr->eh_entries, -m); | 
|  | err = ext4_ext_dirty(handle, inode, path + i); | 
|  | if (err) | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | i--; | 
|  | } | 
|  |  | 
|  | /* insert new index */ | 
|  | err = ext4_ext_insert_index(handle, inode, path + at, | 
|  | le32_to_cpu(border), newblock); | 
|  |  | 
|  | cleanup: | 
|  | if (bh) { | 
|  | if (buffer_locked(bh)) | 
|  | unlock_buffer(bh); | 
|  | brelse(bh); | 
|  | } | 
|  |  | 
|  | if (err) { | 
|  | /* free all allocated blocks in error case */ | 
|  | for (i = 0; i < depth; i++) { | 
|  | if (!ablocks[i]) | 
|  | continue; | 
|  | ext4_free_blocks(handle, inode, NULL, ablocks[i], 1, | 
|  | EXT4_FREE_BLOCKS_METADATA); | 
|  | } | 
|  | } | 
|  | kfree(ablocks); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_ext_grow_indepth: | 
|  | * implements tree growing procedure: | 
|  | * - allocates new block | 
|  | * - moves top-level data (index block or leaf) into the new block | 
|  | * - initializes new top-level, creating index that points to the | 
|  | *   just created block | 
|  | */ | 
|  | static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, | 
|  | unsigned int flags, | 
|  | struct ext4_extent *newext) | 
|  | { | 
|  | struct ext4_extent_header *neh; | 
|  | struct buffer_head *bh; | 
|  | ext4_fsblk_t newblock; | 
|  | int err = 0; | 
|  |  | 
|  | newblock = ext4_ext_new_meta_block(handle, inode, NULL, | 
|  | newext, &err, flags); | 
|  | if (newblock == 0) | 
|  | return err; | 
|  |  | 
|  | bh = sb_getblk(inode->i_sb, newblock); | 
|  | if (!bh) { | 
|  | err = -EIO; | 
|  | ext4_std_error(inode->i_sb, err); | 
|  | return err; | 
|  | } | 
|  | lock_buffer(bh); | 
|  |  | 
|  | err = ext4_journal_get_create_access(handle, bh); | 
|  | if (err) { | 
|  | unlock_buffer(bh); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* move top-level index/leaf into new block */ | 
|  | memmove(bh->b_data, EXT4_I(inode)->i_data, | 
|  | sizeof(EXT4_I(inode)->i_data)); | 
|  |  | 
|  | /* set size of new block */ | 
|  | neh = ext_block_hdr(bh); | 
|  | /* old root could have indexes or leaves | 
|  | * so calculate e_max right way */ | 
|  | if (ext_depth(inode)) | 
|  | neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); | 
|  | else | 
|  | neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); | 
|  | neh->eh_magic = EXT4_EXT_MAGIC; | 
|  | set_buffer_uptodate(bh); | 
|  | unlock_buffer(bh); | 
|  |  | 
|  | err = ext4_handle_dirty_metadata(handle, inode, bh); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | /* Update top-level index: num,max,pointer */ | 
|  | neh = ext_inode_hdr(inode); | 
|  | neh->eh_entries = cpu_to_le16(1); | 
|  | ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock); | 
|  | if (neh->eh_depth == 0) { | 
|  | /* Root extent block becomes index block */ | 
|  | neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0)); | 
|  | EXT_FIRST_INDEX(neh)->ei_block = | 
|  | EXT_FIRST_EXTENT(neh)->ee_block; | 
|  | } | 
|  | ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n", | 
|  | le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), | 
|  | le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block), | 
|  | ext4_idx_pblock(EXT_FIRST_INDEX(neh))); | 
|  |  | 
|  | neh->eh_depth = cpu_to_le16(le16_to_cpu(neh->eh_depth) + 1); | 
|  | ext4_mark_inode_dirty(handle, inode); | 
|  | out: | 
|  | brelse(bh); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_ext_create_new_leaf: | 
|  | * finds empty index and adds new leaf. | 
|  | * if no free index is found, then it requests in-depth growing. | 
|  | */ | 
|  | static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, | 
|  | unsigned int flags, | 
|  | struct ext4_ext_path *path, | 
|  | struct ext4_extent *newext) | 
|  | { | 
|  | struct ext4_ext_path *curp; | 
|  | int depth, i, err = 0; | 
|  |  | 
|  | repeat: | 
|  | i = depth = ext_depth(inode); | 
|  |  | 
|  | /* walk up to the tree and look for free index entry */ | 
|  | curp = path + depth; | 
|  | while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { | 
|  | i--; | 
|  | curp--; | 
|  | } | 
|  |  | 
|  | /* we use already allocated block for index block, | 
|  | * so subsequent data blocks should be contiguous */ | 
|  | if (EXT_HAS_FREE_INDEX(curp)) { | 
|  | /* if we found index with free entry, then use that | 
|  | * entry: create all needed subtree and add new leaf */ | 
|  | err = ext4_ext_split(handle, inode, flags, path, newext, i); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | /* refill path */ | 
|  | ext4_ext_drop_refs(path); | 
|  | path = ext4_ext_find_extent(inode, | 
|  | (ext4_lblk_t)le32_to_cpu(newext->ee_block), | 
|  | path); | 
|  | if (IS_ERR(path)) | 
|  | err = PTR_ERR(path); | 
|  | } else { | 
|  | /* tree is full, time to grow in depth */ | 
|  | err = ext4_ext_grow_indepth(handle, inode, flags, newext); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | /* refill path */ | 
|  | ext4_ext_drop_refs(path); | 
|  | path = ext4_ext_find_extent(inode, | 
|  | (ext4_lblk_t)le32_to_cpu(newext->ee_block), | 
|  | path); | 
|  | if (IS_ERR(path)) { | 
|  | err = PTR_ERR(path); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * only first (depth 0 -> 1) produces free space; | 
|  | * in all other cases we have to split the grown tree | 
|  | */ | 
|  | depth = ext_depth(inode); | 
|  | if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { | 
|  | /* now we need to split */ | 
|  | goto repeat; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * search the closest allocated block to the left for *logical | 
|  | * and returns it at @logical + it's physical address at @phys | 
|  | * if *logical is the smallest allocated block, the function | 
|  | * returns 0 at @phys | 
|  | * return value contains 0 (success) or error code | 
|  | */ | 
|  | static int ext4_ext_search_left(struct inode *inode, | 
|  | struct ext4_ext_path *path, | 
|  | ext4_lblk_t *logical, ext4_fsblk_t *phys) | 
|  | { | 
|  | struct ext4_extent_idx *ix; | 
|  | struct ext4_extent *ex; | 
|  | int depth, ee_len; | 
|  |  | 
|  | if (unlikely(path == NULL)) { | 
|  | EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); | 
|  | return -EIO; | 
|  | } | 
|  | depth = path->p_depth; | 
|  | *phys = 0; | 
|  |  | 
|  | if (depth == 0 && path->p_ext == NULL) | 
|  | return 0; | 
|  |  | 
|  | /* usually extent in the path covers blocks smaller | 
|  | * then *logical, but it can be that extent is the | 
|  | * first one in the file */ | 
|  |  | 
|  | ex = path[depth].p_ext; | 
|  | ee_len = ext4_ext_get_actual_len(ex); | 
|  | if (*logical < le32_to_cpu(ex->ee_block)) { | 
|  | if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { | 
|  | EXT4_ERROR_INODE(inode, | 
|  | "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!", | 
|  | *logical, le32_to_cpu(ex->ee_block)); | 
|  | return -EIO; | 
|  | } | 
|  | while (--depth >= 0) { | 
|  | ix = path[depth].p_idx; | 
|  | if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { | 
|  | EXT4_ERROR_INODE(inode, | 
|  | "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!", | 
|  | ix != NULL ? le32_to_cpu(ix->ei_block) : 0, | 
|  | EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ? | 
|  | le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0, | 
|  | depth); | 
|  | return -EIO; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { | 
|  | EXT4_ERROR_INODE(inode, | 
|  | "logical %d < ee_block %d + ee_len %d!", | 
|  | *logical, le32_to_cpu(ex->ee_block), ee_len); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | *logical = le32_to_cpu(ex->ee_block) + ee_len - 1; | 
|  | *phys = ext4_ext_pblock(ex) + ee_len - 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * search the closest allocated block to the right for *logical | 
|  | * and returns it at @logical + it's physical address at @phys | 
|  | * if *logical is the largest allocated block, the function | 
|  | * returns 0 at @phys | 
|  | * return value contains 0 (success) or error code | 
|  | */ | 
|  | static int ext4_ext_search_right(struct inode *inode, | 
|  | struct ext4_ext_path *path, | 
|  | ext4_lblk_t *logical, ext4_fsblk_t *phys, | 
|  | struct ext4_extent **ret_ex) | 
|  | { | 
|  | struct buffer_head *bh = NULL; | 
|  | struct ext4_extent_header *eh; | 
|  | struct ext4_extent_idx *ix; | 
|  | struct ext4_extent *ex; | 
|  | ext4_fsblk_t block; | 
|  | int depth;	/* Note, NOT eh_depth; depth from top of tree */ | 
|  | int ee_len; | 
|  |  | 
|  | if (unlikely(path == NULL)) { | 
|  | EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); | 
|  | return -EIO; | 
|  | } | 
|  | depth = path->p_depth; | 
|  | *phys = 0; | 
|  |  | 
|  | if (depth == 0 && path->p_ext == NULL) | 
|  | return 0; | 
|  |  | 
|  | /* usually extent in the path covers blocks smaller | 
|  | * then *logical, but it can be that extent is the | 
|  | * first one in the file */ | 
|  |  | 
|  | ex = path[depth].p_ext; | 
|  | ee_len = ext4_ext_get_actual_len(ex); | 
|  | if (*logical < le32_to_cpu(ex->ee_block)) { | 
|  | if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { | 
|  | EXT4_ERROR_INODE(inode, | 
|  | "first_extent(path[%d].p_hdr) != ex", | 
|  | depth); | 
|  | return -EIO; | 
|  | } | 
|  | while (--depth >= 0) { | 
|  | ix = path[depth].p_idx; | 
|  | if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { | 
|  | EXT4_ERROR_INODE(inode, | 
|  | "ix != EXT_FIRST_INDEX *logical %d!", | 
|  | *logical); | 
|  | return -EIO; | 
|  | } | 
|  | } | 
|  | goto found_extent; | 
|  | } | 
|  |  | 
|  | if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { | 
|  | EXT4_ERROR_INODE(inode, | 
|  | "logical %d < ee_block %d + ee_len %d!", | 
|  | *logical, le32_to_cpu(ex->ee_block), ee_len); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { | 
|  | /* next allocated block in this leaf */ | 
|  | ex++; | 
|  | goto found_extent; | 
|  | } | 
|  |  | 
|  | /* go up and search for index to the right */ | 
|  | while (--depth >= 0) { | 
|  | ix = path[depth].p_idx; | 
|  | if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) | 
|  | goto got_index; | 
|  | } | 
|  |  | 
|  | /* we've gone up to the root and found no index to the right */ | 
|  | return 0; | 
|  |  | 
|  | got_index: | 
|  | /* we've found index to the right, let's | 
|  | * follow it and find the closest allocated | 
|  | * block to the right */ | 
|  | ix++; | 
|  | block = ext4_idx_pblock(ix); | 
|  | while (++depth < path->p_depth) { | 
|  | bh = sb_bread(inode->i_sb, block); | 
|  | if (bh == NULL) | 
|  | return -EIO; | 
|  | eh = ext_block_hdr(bh); | 
|  | /* subtract from p_depth to get proper eh_depth */ | 
|  | if (ext4_ext_check(inode, eh, path->p_depth - depth)) { | 
|  | put_bh(bh); | 
|  | return -EIO; | 
|  | } | 
|  | ix = EXT_FIRST_INDEX(eh); | 
|  | block = ext4_idx_pblock(ix); | 
|  | put_bh(bh); | 
|  | } | 
|  |  | 
|  | bh = sb_bread(inode->i_sb, block); | 
|  | if (bh == NULL) | 
|  | return -EIO; | 
|  | eh = ext_block_hdr(bh); | 
|  | if (ext4_ext_check(inode, eh, path->p_depth - depth)) { | 
|  | put_bh(bh); | 
|  | return -EIO; | 
|  | } | 
|  | ex = EXT_FIRST_EXTENT(eh); | 
|  | found_extent: | 
|  | *logical = le32_to_cpu(ex->ee_block); | 
|  | *phys = ext4_ext_pblock(ex); | 
|  | *ret_ex = ex; | 
|  | if (bh) | 
|  | put_bh(bh); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_ext_next_allocated_block: | 
|  | * returns allocated block in subsequent extent or EXT_MAX_BLOCKS. | 
|  | * NOTE: it considers block number from index entry as | 
|  | * allocated block. Thus, index entries have to be consistent | 
|  | * with leaves. | 
|  | */ | 
|  | static ext4_lblk_t | 
|  | ext4_ext_next_allocated_block(struct ext4_ext_path *path) | 
|  | { | 
|  | int depth; | 
|  |  | 
|  | BUG_ON(path == NULL); | 
|  | depth = path->p_depth; | 
|  |  | 
|  | if (depth == 0 && path->p_ext == NULL) | 
|  | return EXT_MAX_BLOCKS; | 
|  |  | 
|  | while (depth >= 0) { | 
|  | if (depth == path->p_depth) { | 
|  | /* leaf */ | 
|  | if (path[depth].p_ext && | 
|  | path[depth].p_ext != | 
|  | EXT_LAST_EXTENT(path[depth].p_hdr)) | 
|  | return le32_to_cpu(path[depth].p_ext[1].ee_block); | 
|  | } else { | 
|  | /* index */ | 
|  | if (path[depth].p_idx != | 
|  | EXT_LAST_INDEX(path[depth].p_hdr)) | 
|  | return le32_to_cpu(path[depth].p_idx[1].ei_block); | 
|  | } | 
|  | depth--; | 
|  | } | 
|  |  | 
|  | return EXT_MAX_BLOCKS; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_ext_next_leaf_block: | 
|  | * returns first allocated block from next leaf or EXT_MAX_BLOCKS | 
|  | */ | 
|  | static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path) | 
|  | { | 
|  | int depth; | 
|  |  | 
|  | BUG_ON(path == NULL); | 
|  | depth = path->p_depth; | 
|  |  | 
|  | /* zero-tree has no leaf blocks at all */ | 
|  | if (depth == 0) | 
|  | return EXT_MAX_BLOCKS; | 
|  |  | 
|  | /* go to index block */ | 
|  | depth--; | 
|  |  | 
|  | while (depth >= 0) { | 
|  | if (path[depth].p_idx != | 
|  | EXT_LAST_INDEX(path[depth].p_hdr)) | 
|  | return (ext4_lblk_t) | 
|  | le32_to_cpu(path[depth].p_idx[1].ei_block); | 
|  | depth--; | 
|  | } | 
|  |  | 
|  | return EXT_MAX_BLOCKS; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_ext_correct_indexes: | 
|  | * if leaf gets modified and modified extent is first in the leaf, | 
|  | * then we have to correct all indexes above. | 
|  | * TODO: do we need to correct tree in all cases? | 
|  | */ | 
|  | static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, | 
|  | struct ext4_ext_path *path) | 
|  | { | 
|  | struct ext4_extent_header *eh; | 
|  | int depth = ext_depth(inode); | 
|  | struct ext4_extent *ex; | 
|  | __le32 border; | 
|  | int k, err = 0; | 
|  |  | 
|  | eh = path[depth].p_hdr; | 
|  | ex = path[depth].p_ext; | 
|  |  | 
|  | if (unlikely(ex == NULL || eh == NULL)) { | 
|  | EXT4_ERROR_INODE(inode, | 
|  | "ex %p == NULL or eh %p == NULL", ex, eh); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | if (depth == 0) { | 
|  | /* there is no tree at all */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (ex != EXT_FIRST_EXTENT(eh)) { | 
|  | /* we correct tree if first leaf got modified only */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * TODO: we need correction if border is smaller than current one | 
|  | */ | 
|  | k = depth - 1; | 
|  | border = path[depth].p_ext->ee_block; | 
|  | err = ext4_ext_get_access(handle, inode, path + k); | 
|  | if (err) | 
|  | return err; | 
|  | path[k].p_idx->ei_block = border; | 
|  | err = ext4_ext_dirty(handle, inode, path + k); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | while (k--) { | 
|  | /* change all left-side indexes */ | 
|  | if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) | 
|  | break; | 
|  | err = ext4_ext_get_access(handle, inode, path + k); | 
|  | if (err) | 
|  | break; | 
|  | path[k].p_idx->ei_block = border; | 
|  | err = ext4_ext_dirty(handle, inode, path + k); | 
|  | if (err) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int | 
|  | ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1, | 
|  | struct ext4_extent *ex2) | 
|  | { | 
|  | unsigned short ext1_ee_len, ext2_ee_len, max_len; | 
|  |  | 
|  | /* | 
|  | * Make sure that either both extents are uninitialized, or | 
|  | * both are _not_. | 
|  | */ | 
|  | if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2)) | 
|  | return 0; | 
|  |  | 
|  | if (ext4_ext_is_uninitialized(ex1)) | 
|  | max_len = EXT_UNINIT_MAX_LEN; | 
|  | else | 
|  | max_len = EXT_INIT_MAX_LEN; | 
|  |  | 
|  | ext1_ee_len = ext4_ext_get_actual_len(ex1); | 
|  | ext2_ee_len = ext4_ext_get_actual_len(ex2); | 
|  |  | 
|  | if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != | 
|  | le32_to_cpu(ex2->ee_block)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * To allow future support for preallocated extents to be added | 
|  | * as an RO_COMPAT feature, refuse to merge to extents if | 
|  | * this can result in the top bit of ee_len being set. | 
|  | */ | 
|  | if (ext1_ee_len + ext2_ee_len > max_len) | 
|  | return 0; | 
|  | #ifdef AGGRESSIVE_TEST | 
|  | if (ext1_ee_len >= 4) | 
|  | return 0; | 
|  | #endif | 
|  |  | 
|  | if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function tries to merge the "ex" extent to the next extent in the tree. | 
|  | * It always tries to merge towards right. If you want to merge towards | 
|  | * left, pass "ex - 1" as argument instead of "ex". | 
|  | * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns | 
|  | * 1 if they got merged. | 
|  | */ | 
|  | static int ext4_ext_try_to_merge_right(struct inode *inode, | 
|  | struct ext4_ext_path *path, | 
|  | struct ext4_extent *ex) | 
|  | { | 
|  | struct ext4_extent_header *eh; | 
|  | unsigned int depth, len; | 
|  | int merge_done = 0; | 
|  | int uninitialized = 0; | 
|  |  | 
|  | depth = ext_depth(inode); | 
|  | BUG_ON(path[depth].p_hdr == NULL); | 
|  | eh = path[depth].p_hdr; | 
|  |  | 
|  | while (ex < EXT_LAST_EXTENT(eh)) { | 
|  | if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) | 
|  | break; | 
|  | /* merge with next extent! */ | 
|  | if (ext4_ext_is_uninitialized(ex)) | 
|  | uninitialized = 1; | 
|  | ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) | 
|  | + ext4_ext_get_actual_len(ex + 1)); | 
|  | if (uninitialized) | 
|  | ext4_ext_mark_uninitialized(ex); | 
|  |  | 
|  | if (ex + 1 < EXT_LAST_EXTENT(eh)) { | 
|  | len = (EXT_LAST_EXTENT(eh) - ex - 1) | 
|  | * sizeof(struct ext4_extent); | 
|  | memmove(ex + 1, ex + 2, len); | 
|  | } | 
|  | le16_add_cpu(&eh->eh_entries, -1); | 
|  | merge_done = 1; | 
|  | WARN_ON(eh->eh_entries == 0); | 
|  | if (!eh->eh_entries) | 
|  | EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!"); | 
|  | } | 
|  |  | 
|  | return merge_done; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function tries to merge the @ex extent to neighbours in the tree. | 
|  | * return 1 if merge left else 0. | 
|  | */ | 
|  | static int ext4_ext_try_to_merge(struct inode *inode, | 
|  | struct ext4_ext_path *path, | 
|  | struct ext4_extent *ex) { | 
|  | struct ext4_extent_header *eh; | 
|  | unsigned int depth; | 
|  | int merge_done = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | depth = ext_depth(inode); | 
|  | BUG_ON(path[depth].p_hdr == NULL); | 
|  | eh = path[depth].p_hdr; | 
|  |  | 
|  | if (ex > EXT_FIRST_EXTENT(eh)) | 
|  | merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1); | 
|  |  | 
|  | if (!merge_done) | 
|  | ret = ext4_ext_try_to_merge_right(inode, path, ex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * check if a portion of the "newext" extent overlaps with an | 
|  | * existing extent. | 
|  | * | 
|  | * If there is an overlap discovered, it updates the length of the newext | 
|  | * such that there will be no overlap, and then returns 1. | 
|  | * If there is no overlap found, it returns 0. | 
|  | */ | 
|  | static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi, | 
|  | struct inode *inode, | 
|  | struct ext4_extent *newext, | 
|  | struct ext4_ext_path *path) | 
|  | { | 
|  | ext4_lblk_t b1, b2; | 
|  | unsigned int depth, len1; | 
|  | unsigned int ret = 0; | 
|  |  | 
|  | b1 = le32_to_cpu(newext->ee_block); | 
|  | len1 = ext4_ext_get_actual_len(newext); | 
|  | depth = ext_depth(inode); | 
|  | if (!path[depth].p_ext) | 
|  | goto out; | 
|  | b2 = le32_to_cpu(path[depth].p_ext->ee_block); | 
|  | b2 &= ~(sbi->s_cluster_ratio - 1); | 
|  |  | 
|  | /* | 
|  | * get the next allocated block if the extent in the path | 
|  | * is before the requested block(s) | 
|  | */ | 
|  | if (b2 < b1) { | 
|  | b2 = ext4_ext_next_allocated_block(path); | 
|  | if (b2 == EXT_MAX_BLOCKS) | 
|  | goto out; | 
|  | b2 &= ~(sbi->s_cluster_ratio - 1); | 
|  | } | 
|  |  | 
|  | /* check for wrap through zero on extent logical start block*/ | 
|  | if (b1 + len1 < b1) { | 
|  | len1 = EXT_MAX_BLOCKS - b1; | 
|  | newext->ee_len = cpu_to_le16(len1); | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | /* check for overlap */ | 
|  | if (b1 + len1 > b2) { | 
|  | newext->ee_len = cpu_to_le16(b2 - b1); | 
|  | ret = 1; | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_ext_insert_extent: | 
|  | * tries to merge requsted extent into the existing extent or | 
|  | * inserts requested extent as new one into the tree, | 
|  | * creating new leaf in the no-space case. | 
|  | */ | 
|  | int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, | 
|  | struct ext4_ext_path *path, | 
|  | struct ext4_extent *newext, int flag) | 
|  | { | 
|  | struct ext4_extent_header *eh; | 
|  | struct ext4_extent *ex, *fex; | 
|  | struct ext4_extent *nearex; /* nearest extent */ | 
|  | struct ext4_ext_path *npath = NULL; | 
|  | int depth, len, err; | 
|  | ext4_lblk_t next; | 
|  | unsigned uninitialized = 0; | 
|  | int flags = 0; | 
|  |  | 
|  | if (unlikely(ext4_ext_get_actual_len(newext) == 0)) { | 
|  | EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0"); | 
|  | return -EIO; | 
|  | } | 
|  | depth = ext_depth(inode); | 
|  | ex = path[depth].p_ext; | 
|  | if (unlikely(path[depth].p_hdr == NULL)) { | 
|  | EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* try to insert block into found extent and return */ | 
|  | if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO) | 
|  | && ext4_can_extents_be_merged(inode, ex, newext)) { | 
|  | ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n", | 
|  | ext4_ext_is_uninitialized(newext), | 
|  | ext4_ext_get_actual_len(newext), | 
|  | le32_to_cpu(ex->ee_block), | 
|  | ext4_ext_is_uninitialized(ex), | 
|  | ext4_ext_get_actual_len(ex), | 
|  | ext4_ext_pblock(ex)); | 
|  | err = ext4_ext_get_access(handle, inode, path + depth); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* | 
|  | * ext4_can_extents_be_merged should have checked that either | 
|  | * both extents are uninitialized, or both aren't. Thus we | 
|  | * need to check only one of them here. | 
|  | */ | 
|  | if (ext4_ext_is_uninitialized(ex)) | 
|  | uninitialized = 1; | 
|  | ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) | 
|  | + ext4_ext_get_actual_len(newext)); | 
|  | if (uninitialized) | 
|  | ext4_ext_mark_uninitialized(ex); | 
|  | eh = path[depth].p_hdr; | 
|  | nearex = ex; | 
|  | goto merge; | 
|  | } | 
|  |  | 
|  | depth = ext_depth(inode); | 
|  | eh = path[depth].p_hdr; | 
|  | if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) | 
|  | goto has_space; | 
|  |  | 
|  | /* probably next leaf has space for us? */ | 
|  | fex = EXT_LAST_EXTENT(eh); | 
|  | next = EXT_MAX_BLOCKS; | 
|  | if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)) | 
|  | next = ext4_ext_next_leaf_block(path); | 
|  | if (next != EXT_MAX_BLOCKS) { | 
|  | ext_debug("next leaf block - %u\n", next); | 
|  | BUG_ON(npath != NULL); | 
|  | npath = ext4_ext_find_extent(inode, next, NULL); | 
|  | if (IS_ERR(npath)) | 
|  | return PTR_ERR(npath); | 
|  | BUG_ON(npath->p_depth != path->p_depth); | 
|  | eh = npath[depth].p_hdr; | 
|  | if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { | 
|  | ext_debug("next leaf isn't full(%d)\n", | 
|  | le16_to_cpu(eh->eh_entries)); | 
|  | path = npath; | 
|  | goto has_space; | 
|  | } | 
|  | ext_debug("next leaf has no free space(%d,%d)\n", | 
|  | le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There is no free space in the found leaf. | 
|  | * We're gonna add a new leaf in the tree. | 
|  | */ | 
|  | if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) | 
|  | flags = EXT4_MB_USE_ROOT_BLOCKS; | 
|  | err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext); | 
|  | if (err) | 
|  | goto cleanup; | 
|  | depth = ext_depth(inode); | 
|  | eh = path[depth].p_hdr; | 
|  |  | 
|  | has_space: | 
|  | nearex = path[depth].p_ext; | 
|  |  | 
|  | err = ext4_ext_get_access(handle, inode, path + depth); | 
|  | if (err) | 
|  | goto cleanup; | 
|  |  | 
|  | if (!nearex) { | 
|  | /* there is no extent in this leaf, create first one */ | 
|  | ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n", | 
|  | le32_to_cpu(newext->ee_block), | 
|  | ext4_ext_pblock(newext), | 
|  | ext4_ext_is_uninitialized(newext), | 
|  | ext4_ext_get_actual_len(newext)); | 
|  | nearex = EXT_FIRST_EXTENT(eh); | 
|  | } else { | 
|  | if (le32_to_cpu(newext->ee_block) | 
|  | > le32_to_cpu(nearex->ee_block)) { | 
|  | /* Insert after */ | 
|  | ext_debug("insert %u:%llu:[%d]%d before: " | 
|  | "nearest %p\n", | 
|  | le32_to_cpu(newext->ee_block), | 
|  | ext4_ext_pblock(newext), | 
|  | ext4_ext_is_uninitialized(newext), | 
|  | ext4_ext_get_actual_len(newext), | 
|  | nearex); | 
|  | nearex++; | 
|  | } else { | 
|  | /* Insert before */ | 
|  | BUG_ON(newext->ee_block == nearex->ee_block); | 
|  | ext_debug("insert %u:%llu:[%d]%d after: " | 
|  | "nearest %p\n", | 
|  | le32_to_cpu(newext->ee_block), | 
|  | ext4_ext_pblock(newext), | 
|  | ext4_ext_is_uninitialized(newext), | 
|  | ext4_ext_get_actual_len(newext), | 
|  | nearex); | 
|  | } | 
|  | len = EXT_LAST_EXTENT(eh) - nearex + 1; | 
|  | if (len > 0) { | 
|  | ext_debug("insert %u:%llu:[%d]%d: " | 
|  | "move %d extents from 0x%p to 0x%p\n", | 
|  | le32_to_cpu(newext->ee_block), | 
|  | ext4_ext_pblock(newext), | 
|  | ext4_ext_is_uninitialized(newext), | 
|  | ext4_ext_get_actual_len(newext), | 
|  | len, nearex, nearex + 1); | 
|  | memmove(nearex + 1, nearex, | 
|  | len * sizeof(struct ext4_extent)); | 
|  | } | 
|  | } | 
|  |  | 
|  | le16_add_cpu(&eh->eh_entries, 1); | 
|  | path[depth].p_ext = nearex; | 
|  | nearex->ee_block = newext->ee_block; | 
|  | ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext)); | 
|  | nearex->ee_len = newext->ee_len; | 
|  |  | 
|  | merge: | 
|  | /* try to merge extents to the right */ | 
|  | if (!(flag & EXT4_GET_BLOCKS_PRE_IO)) | 
|  | ext4_ext_try_to_merge(inode, path, nearex); | 
|  |  | 
|  | /* try to merge extents to the left */ | 
|  |  | 
|  | /* time to correct all indexes above */ | 
|  | err = ext4_ext_correct_indexes(handle, inode, path); | 
|  | if (err) | 
|  | goto cleanup; | 
|  |  | 
|  | err = ext4_ext_dirty(handle, inode, path + depth); | 
|  |  | 
|  | cleanup: | 
|  | if (npath) { | 
|  | ext4_ext_drop_refs(npath); | 
|  | kfree(npath); | 
|  | } | 
|  | ext4_ext_invalidate_cache(inode); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block, | 
|  | ext4_lblk_t num, ext_prepare_callback func, | 
|  | void *cbdata) | 
|  | { | 
|  | struct ext4_ext_path *path = NULL; | 
|  | struct ext4_ext_cache cbex; | 
|  | struct ext4_extent *ex; | 
|  | ext4_lblk_t next, start = 0, end = 0; | 
|  | ext4_lblk_t last = block + num; | 
|  | int depth, exists, err = 0; | 
|  |  | 
|  | BUG_ON(func == NULL); | 
|  | BUG_ON(inode == NULL); | 
|  |  | 
|  | while (block < last && block != EXT_MAX_BLOCKS) { | 
|  | num = last - block; | 
|  | /* find extent for this block */ | 
|  | down_read(&EXT4_I(inode)->i_data_sem); | 
|  | path = ext4_ext_find_extent(inode, block, path); | 
|  | up_read(&EXT4_I(inode)->i_data_sem); | 
|  | if (IS_ERR(path)) { | 
|  | err = PTR_ERR(path); | 
|  | path = NULL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | depth = ext_depth(inode); | 
|  | if (unlikely(path[depth].p_hdr == NULL)) { | 
|  | EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); | 
|  | err = -EIO; | 
|  | break; | 
|  | } | 
|  | ex = path[depth].p_ext; | 
|  | next = ext4_ext_next_allocated_block(path); | 
|  |  | 
|  | exists = 0; | 
|  | if (!ex) { | 
|  | /* there is no extent yet, so try to allocate | 
|  | * all requested space */ | 
|  | start = block; | 
|  | end = block + num; | 
|  | } else if (le32_to_cpu(ex->ee_block) > block) { | 
|  | /* need to allocate space before found extent */ | 
|  | start = block; | 
|  | end = le32_to_cpu(ex->ee_block); | 
|  | if (block + num < end) | 
|  | end = block + num; | 
|  | } else if (block >= le32_to_cpu(ex->ee_block) | 
|  | + ext4_ext_get_actual_len(ex)) { | 
|  | /* need to allocate space after found extent */ | 
|  | start = block; | 
|  | end = block + num; | 
|  | if (end >= next) | 
|  | end = next; | 
|  | } else if (block >= le32_to_cpu(ex->ee_block)) { | 
|  | /* | 
|  | * some part of requested space is covered | 
|  | * by found extent | 
|  | */ | 
|  | start = block; | 
|  | end = le32_to_cpu(ex->ee_block) | 
|  | + ext4_ext_get_actual_len(ex); | 
|  | if (block + num < end) | 
|  | end = block + num; | 
|  | exists = 1; | 
|  | } else { | 
|  | BUG(); | 
|  | } | 
|  | BUG_ON(end <= start); | 
|  |  | 
|  | if (!exists) { | 
|  | cbex.ec_block = start; | 
|  | cbex.ec_len = end - start; | 
|  | cbex.ec_start = 0; | 
|  | } else { | 
|  | cbex.ec_block = le32_to_cpu(ex->ee_block); | 
|  | cbex.ec_len = ext4_ext_get_actual_len(ex); | 
|  | cbex.ec_start = ext4_ext_pblock(ex); | 
|  | } | 
|  |  | 
|  | if (unlikely(cbex.ec_len == 0)) { | 
|  | EXT4_ERROR_INODE(inode, "cbex.ec_len == 0"); | 
|  | err = -EIO; | 
|  | break; | 
|  | } | 
|  | err = func(inode, next, &cbex, ex, cbdata); | 
|  | ext4_ext_drop_refs(path); | 
|  |  | 
|  | if (err < 0) | 
|  | break; | 
|  |  | 
|  | if (err == EXT_REPEAT) | 
|  | continue; | 
|  | else if (err == EXT_BREAK) { | 
|  | err = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ext_depth(inode) != depth) { | 
|  | /* depth was changed. we have to realloc path */ | 
|  | kfree(path); | 
|  | path = NULL; | 
|  | } | 
|  |  | 
|  | block = cbex.ec_block + cbex.ec_len; | 
|  | } | 
|  |  | 
|  | if (path) { | 
|  | ext4_ext_drop_refs(path); | 
|  | kfree(path); | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void | 
|  | ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block, | 
|  | __u32 len, ext4_fsblk_t start) | 
|  | { | 
|  | struct ext4_ext_cache *cex; | 
|  | BUG_ON(len == 0); | 
|  | spin_lock(&EXT4_I(inode)->i_block_reservation_lock); | 
|  | trace_ext4_ext_put_in_cache(inode, block, len, start); | 
|  | cex = &EXT4_I(inode)->i_cached_extent; | 
|  | cex->ec_block = block; | 
|  | cex->ec_len = len; | 
|  | cex->ec_start = start; | 
|  | spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_ext_put_gap_in_cache: | 
|  | * calculate boundaries of the gap that the requested block fits into | 
|  | * and cache this gap | 
|  | */ | 
|  | static void | 
|  | ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path, | 
|  | ext4_lblk_t block) | 
|  | { | 
|  | int depth = ext_depth(inode); | 
|  | unsigned long len; | 
|  | ext4_lblk_t lblock; | 
|  | struct ext4_extent *ex; | 
|  |  | 
|  | ex = path[depth].p_ext; | 
|  | if (ex == NULL) { | 
|  | /* there is no extent yet, so gap is [0;-] */ | 
|  | lblock = 0; | 
|  | len = EXT_MAX_BLOCKS; | 
|  | ext_debug("cache gap(whole file):"); | 
|  | } else if (block < le32_to_cpu(ex->ee_block)) { | 
|  | lblock = block; | 
|  | len = le32_to_cpu(ex->ee_block) - block; | 
|  | ext_debug("cache gap(before): %u [%u:%u]", | 
|  | block, | 
|  | le32_to_cpu(ex->ee_block), | 
|  | ext4_ext_get_actual_len(ex)); | 
|  | } else if (block >= le32_to_cpu(ex->ee_block) | 
|  | + ext4_ext_get_actual_len(ex)) { | 
|  | ext4_lblk_t next; | 
|  | lblock = le32_to_cpu(ex->ee_block) | 
|  | + ext4_ext_get_actual_len(ex); | 
|  |  | 
|  | next = ext4_ext_next_allocated_block(path); | 
|  | ext_debug("cache gap(after): [%u:%u] %u", | 
|  | le32_to_cpu(ex->ee_block), | 
|  | ext4_ext_get_actual_len(ex), | 
|  | block); | 
|  | BUG_ON(next == lblock); | 
|  | len = next - lblock; | 
|  | } else { | 
|  | lblock = len = 0; | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | ext_debug(" -> %u:%lu\n", lblock, len); | 
|  | ext4_ext_put_in_cache(inode, lblock, len, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_ext_check_cache() | 
|  | * Checks to see if the given block is in the cache. | 
|  | * If it is, the cached extent is stored in the given | 
|  | * cache extent pointer.  If the cached extent is a hole, | 
|  | * this routine should be used instead of | 
|  | * ext4_ext_in_cache if the calling function needs to | 
|  | * know the size of the hole. | 
|  | * | 
|  | * @inode: The files inode | 
|  | * @block: The block to look for in the cache | 
|  | * @ex:    Pointer where the cached extent will be stored | 
|  | *         if it contains block | 
|  | * | 
|  | * Return 0 if cache is invalid; 1 if the cache is valid | 
|  | */ | 
|  | static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block, | 
|  | struct ext4_ext_cache *ex){ | 
|  | struct ext4_ext_cache *cex; | 
|  | struct ext4_sb_info *sbi; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * We borrow i_block_reservation_lock to protect i_cached_extent | 
|  | */ | 
|  | spin_lock(&EXT4_I(inode)->i_block_reservation_lock); | 
|  | cex = &EXT4_I(inode)->i_cached_extent; | 
|  | sbi = EXT4_SB(inode->i_sb); | 
|  |  | 
|  | /* has cache valid data? */ | 
|  | if (cex->ec_len == 0) | 
|  | goto errout; | 
|  |  | 
|  | if (in_range(block, cex->ec_block, cex->ec_len)) { | 
|  | memcpy(ex, cex, sizeof(struct ext4_ext_cache)); | 
|  | ext_debug("%u cached by %u:%u:%llu\n", | 
|  | block, | 
|  | cex->ec_block, cex->ec_len, cex->ec_start); | 
|  | ret = 1; | 
|  | } | 
|  | errout: | 
|  | if (!ret) | 
|  | sbi->extent_cache_misses++; | 
|  | else | 
|  | sbi->extent_cache_hits++; | 
|  | trace_ext4_ext_in_cache(inode, block, ret); | 
|  | spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_ext_in_cache() | 
|  | * Checks to see if the given block is in the cache. | 
|  | * If it is, the cached extent is stored in the given | 
|  | * extent pointer. | 
|  | * | 
|  | * @inode: The files inode | 
|  | * @block: The block to look for in the cache | 
|  | * @ex:    Pointer where the cached extent will be stored | 
|  | *         if it contains block | 
|  | * | 
|  | * Return 0 if cache is invalid; 1 if the cache is valid | 
|  | */ | 
|  | static int | 
|  | ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block, | 
|  | struct ext4_extent *ex) | 
|  | { | 
|  | struct ext4_ext_cache cex; | 
|  | int ret = 0; | 
|  |  | 
|  | if (ext4_ext_check_cache(inode, block, &cex)) { | 
|  | ex->ee_block = cpu_to_le32(cex.ec_block); | 
|  | ext4_ext_store_pblock(ex, cex.ec_start); | 
|  | ex->ee_len = cpu_to_le16(cex.ec_len); | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * ext4_ext_rm_idx: | 
|  | * removes index from the index block. | 
|  | */ | 
|  | static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, | 
|  | struct ext4_ext_path *path) | 
|  | { | 
|  | int err; | 
|  | ext4_fsblk_t leaf; | 
|  |  | 
|  | /* free index block */ | 
|  | path--; | 
|  | leaf = ext4_idx_pblock(path->p_idx); | 
|  | if (unlikely(path->p_hdr->eh_entries == 0)) { | 
|  | EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0"); | 
|  | return -EIO; | 
|  | } | 
|  | err = ext4_ext_get_access(handle, inode, path); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) { | 
|  | int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx; | 
|  | len *= sizeof(struct ext4_extent_idx); | 
|  | memmove(path->p_idx, path->p_idx + 1, len); | 
|  | } | 
|  |  | 
|  | le16_add_cpu(&path->p_hdr->eh_entries, -1); | 
|  | err = ext4_ext_dirty(handle, inode, path); | 
|  | if (err) | 
|  | return err; | 
|  | ext_debug("index is empty, remove it, free block %llu\n", leaf); | 
|  | trace_ext4_ext_rm_idx(inode, leaf); | 
|  |  | 
|  | ext4_free_blocks(handle, inode, NULL, leaf, 1, | 
|  | EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_ext_calc_credits_for_single_extent: | 
|  | * This routine returns max. credits that needed to insert an extent | 
|  | * to the extent tree. | 
|  | * When pass the actual path, the caller should calculate credits | 
|  | * under i_data_sem. | 
|  | */ | 
|  | int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, | 
|  | struct ext4_ext_path *path) | 
|  | { | 
|  | if (path) { | 
|  | int depth = ext_depth(inode); | 
|  | int ret = 0; | 
|  |  | 
|  | /* probably there is space in leaf? */ | 
|  | if (le16_to_cpu(path[depth].p_hdr->eh_entries) | 
|  | < le16_to_cpu(path[depth].p_hdr->eh_max)) { | 
|  |  | 
|  | /* | 
|  | *  There are some space in the leaf tree, no | 
|  | *  need to account for leaf block credit | 
|  | * | 
|  | *  bitmaps and block group descriptor blocks | 
|  | *  and other metadata blocks still need to be | 
|  | *  accounted. | 
|  | */ | 
|  | /* 1 bitmap, 1 block group descriptor */ | 
|  | ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ext4_chunk_trans_blocks(inode, nrblocks); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * How many index/leaf blocks need to change/allocate to modify nrblocks? | 
|  | * | 
|  | * if nrblocks are fit in a single extent (chunk flag is 1), then | 
|  | * in the worse case, each tree level index/leaf need to be changed | 
|  | * if the tree split due to insert a new extent, then the old tree | 
|  | * index/leaf need to be updated too | 
|  | * | 
|  | * If the nrblocks are discontiguous, they could cause | 
|  | * the whole tree split more than once, but this is really rare. | 
|  | */ | 
|  | int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) | 
|  | { | 
|  | int index; | 
|  | int depth = ext_depth(inode); | 
|  |  | 
|  | if (chunk) | 
|  | index = depth * 2; | 
|  | else | 
|  | index = depth * 3; | 
|  |  | 
|  | return index; | 
|  | } | 
|  |  | 
|  | static int ext4_remove_blocks(handle_t *handle, struct inode *inode, | 
|  | struct ext4_extent *ex, | 
|  | ext4_fsblk_t *partial_cluster, | 
|  | ext4_lblk_t from, ext4_lblk_t to) | 
|  | { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
|  | unsigned short ee_len =  ext4_ext_get_actual_len(ex); | 
|  | ext4_fsblk_t pblk; | 
|  | int flags = EXT4_FREE_BLOCKS_FORGET; | 
|  |  | 
|  | if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) | 
|  | flags |= EXT4_FREE_BLOCKS_METADATA; | 
|  | /* | 
|  | * For bigalloc file systems, we never free a partial cluster | 
|  | * at the beginning of the extent.  Instead, we make a note | 
|  | * that we tried freeing the cluster, and check to see if we | 
|  | * need to free it on a subsequent call to ext4_remove_blocks, | 
|  | * or at the end of the ext4_truncate() operation. | 
|  | */ | 
|  | flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER; | 
|  |  | 
|  | trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster); | 
|  | /* | 
|  | * If we have a partial cluster, and it's different from the | 
|  | * cluster of the last block, we need to explicitly free the | 
|  | * partial cluster here. | 
|  | */ | 
|  | pblk = ext4_ext_pblock(ex) + ee_len - 1; | 
|  | if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) { | 
|  | ext4_free_blocks(handle, inode, NULL, | 
|  | EXT4_C2B(sbi, *partial_cluster), | 
|  | sbi->s_cluster_ratio, flags); | 
|  | *partial_cluster = 0; | 
|  | } | 
|  |  | 
|  | #ifdef EXTENTS_STATS | 
|  | { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
|  | spin_lock(&sbi->s_ext_stats_lock); | 
|  | sbi->s_ext_blocks += ee_len; | 
|  | sbi->s_ext_extents++; | 
|  | if (ee_len < sbi->s_ext_min) | 
|  | sbi->s_ext_min = ee_len; | 
|  | if (ee_len > sbi->s_ext_max) | 
|  | sbi->s_ext_max = ee_len; | 
|  | if (ext_depth(inode) > sbi->s_depth_max) | 
|  | sbi->s_depth_max = ext_depth(inode); | 
|  | spin_unlock(&sbi->s_ext_stats_lock); | 
|  | } | 
|  | #endif | 
|  | if (from >= le32_to_cpu(ex->ee_block) | 
|  | && to == le32_to_cpu(ex->ee_block) + ee_len - 1) { | 
|  | /* tail removal */ | 
|  | ext4_lblk_t num; | 
|  |  | 
|  | num = le32_to_cpu(ex->ee_block) + ee_len - from; | 
|  | pblk = ext4_ext_pblock(ex) + ee_len - num; | 
|  | ext_debug("free last %u blocks starting %llu\n", num, pblk); | 
|  | ext4_free_blocks(handle, inode, NULL, pblk, num, flags); | 
|  | /* | 
|  | * If the block range to be freed didn't start at the | 
|  | * beginning of a cluster, and we removed the entire | 
|  | * extent, save the partial cluster here, since we | 
|  | * might need to delete if we determine that the | 
|  | * truncate operation has removed all of the blocks in | 
|  | * the cluster. | 
|  | */ | 
|  | if (pblk & (sbi->s_cluster_ratio - 1) && | 
|  | (ee_len == num)) | 
|  | *partial_cluster = EXT4_B2C(sbi, pblk); | 
|  | else | 
|  | *partial_cluster = 0; | 
|  | } else if (from == le32_to_cpu(ex->ee_block) | 
|  | && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) { | 
|  | /* head removal */ | 
|  | ext4_lblk_t num; | 
|  | ext4_fsblk_t start; | 
|  |  | 
|  | num = to - from; | 
|  | start = ext4_ext_pblock(ex); | 
|  |  | 
|  | ext_debug("free first %u blocks starting %llu\n", num, start); | 
|  | ext4_free_blocks(handle, inode, NULL, start, num, flags); | 
|  |  | 
|  | } else { | 
|  | printk(KERN_INFO "strange request: removal(2) " | 
|  | "%u-%u from %u:%u\n", | 
|  | from, to, le32_to_cpu(ex->ee_block), ee_len); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * ext4_ext_rm_leaf() Removes the extents associated with the | 
|  | * blocks appearing between "start" and "end", and splits the extents | 
|  | * if "start" and "end" appear in the same extent | 
|  | * | 
|  | * @handle: The journal handle | 
|  | * @inode:  The files inode | 
|  | * @path:   The path to the leaf | 
|  | * @start:  The first block to remove | 
|  | * @end:   The last block to remove | 
|  | */ | 
|  | static int | 
|  | ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, | 
|  | struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster, | 
|  | ext4_lblk_t start, ext4_lblk_t end) | 
|  | { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
|  | int err = 0, correct_index = 0; | 
|  | int depth = ext_depth(inode), credits; | 
|  | struct ext4_extent_header *eh; | 
|  | ext4_lblk_t a, b; | 
|  | unsigned num; | 
|  | ext4_lblk_t ex_ee_block; | 
|  | unsigned short ex_ee_len; | 
|  | unsigned uninitialized = 0; | 
|  | struct ext4_extent *ex; | 
|  |  | 
|  | /* the header must be checked already in ext4_ext_remove_space() */ | 
|  | ext_debug("truncate since %u in leaf\n", start); | 
|  | if (!path[depth].p_hdr) | 
|  | path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); | 
|  | eh = path[depth].p_hdr; | 
|  | if (unlikely(path[depth].p_hdr == NULL)) { | 
|  | EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); | 
|  | return -EIO; | 
|  | } | 
|  | /* find where to start removing */ | 
|  | ex = EXT_LAST_EXTENT(eh); | 
|  |  | 
|  | ex_ee_block = le32_to_cpu(ex->ee_block); | 
|  | ex_ee_len = ext4_ext_get_actual_len(ex); | 
|  |  | 
|  | trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster); | 
|  |  | 
|  | while (ex >= EXT_FIRST_EXTENT(eh) && | 
|  | ex_ee_block + ex_ee_len > start) { | 
|  |  | 
|  | if (ext4_ext_is_uninitialized(ex)) | 
|  | uninitialized = 1; | 
|  | else | 
|  | uninitialized = 0; | 
|  |  | 
|  | ext_debug("remove ext %u:[%d]%d\n", ex_ee_block, | 
|  | uninitialized, ex_ee_len); | 
|  | path[depth].p_ext = ex; | 
|  |  | 
|  | a = ex_ee_block > start ? ex_ee_block : start; | 
|  | b = ex_ee_block+ex_ee_len - 1 < end ? | 
|  | ex_ee_block+ex_ee_len - 1 : end; | 
|  |  | 
|  | ext_debug("  border %u:%u\n", a, b); | 
|  |  | 
|  | /* If this extent is beyond the end of the hole, skip it */ | 
|  | if (end <= ex_ee_block) { | 
|  | ex--; | 
|  | ex_ee_block = le32_to_cpu(ex->ee_block); | 
|  | ex_ee_len = ext4_ext_get_actual_len(ex); | 
|  | continue; | 
|  | } else if (b != ex_ee_block + ex_ee_len - 1) { | 
|  | EXT4_ERROR_INODE(inode,"  bad truncate %u:%u\n", | 
|  | start, end); | 
|  | err = -EIO; | 
|  | goto out; | 
|  | } else if (a != ex_ee_block) { | 
|  | /* remove tail of the extent */ | 
|  | num = a - ex_ee_block; | 
|  | } else { | 
|  | /* remove whole extent: excellent! */ | 
|  | num = 0; | 
|  | } | 
|  | /* | 
|  | * 3 for leaf, sb, and inode plus 2 (bmap and group | 
|  | * descriptor) for each block group; assume two block | 
|  | * groups plus ex_ee_len/blocks_per_block_group for | 
|  | * the worst case | 
|  | */ | 
|  | credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); | 
|  | if (ex == EXT_FIRST_EXTENT(eh)) { | 
|  | correct_index = 1; | 
|  | credits += (ext_depth(inode)) + 1; | 
|  | } | 
|  | credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); | 
|  |  | 
|  | err = ext4_ext_truncate_extend_restart(handle, inode, credits); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | err = ext4_ext_get_access(handle, inode, path + depth); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | err = ext4_remove_blocks(handle, inode, ex, partial_cluster, | 
|  | a, b); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | if (num == 0) | 
|  | /* this extent is removed; mark slot entirely unused */ | 
|  | ext4_ext_store_pblock(ex, 0); | 
|  |  | 
|  | ex->ee_len = cpu_to_le16(num); | 
|  | /* | 
|  | * Do not mark uninitialized if all the blocks in the | 
|  | * extent have been removed. | 
|  | */ | 
|  | if (uninitialized && num) | 
|  | ext4_ext_mark_uninitialized(ex); | 
|  | /* | 
|  | * If the extent was completely released, | 
|  | * we need to remove it from the leaf | 
|  | */ | 
|  | if (num == 0) { | 
|  | if (end != EXT_MAX_BLOCKS - 1) { | 
|  | /* | 
|  | * For hole punching, we need to scoot all the | 
|  | * extents up when an extent is removed so that | 
|  | * we dont have blank extents in the middle | 
|  | */ | 
|  | memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) * | 
|  | sizeof(struct ext4_extent)); | 
|  |  | 
|  | /* Now get rid of the one at the end */ | 
|  | memset(EXT_LAST_EXTENT(eh), 0, | 
|  | sizeof(struct ext4_extent)); | 
|  | } | 
|  | le16_add_cpu(&eh->eh_entries, -1); | 
|  | } else | 
|  | *partial_cluster = 0; | 
|  |  | 
|  | err = ext4_ext_dirty(handle, inode, path + depth); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num, | 
|  | ext4_ext_pblock(ex)); | 
|  | ex--; | 
|  | ex_ee_block = le32_to_cpu(ex->ee_block); | 
|  | ex_ee_len = ext4_ext_get_actual_len(ex); | 
|  | } | 
|  |  | 
|  | if (correct_index && eh->eh_entries) | 
|  | err = ext4_ext_correct_indexes(handle, inode, path); | 
|  |  | 
|  | /* | 
|  | * If there is still a entry in the leaf node, check to see if | 
|  | * it references the partial cluster.  This is the only place | 
|  | * where it could; if it doesn't, we can free the cluster. | 
|  | */ | 
|  | if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) && | 
|  | (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) != | 
|  | *partial_cluster)) { | 
|  | int flags = EXT4_FREE_BLOCKS_FORGET; | 
|  |  | 
|  | if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) | 
|  | flags |= EXT4_FREE_BLOCKS_METADATA; | 
|  |  | 
|  | ext4_free_blocks(handle, inode, NULL, | 
|  | EXT4_C2B(sbi, *partial_cluster), | 
|  | sbi->s_cluster_ratio, flags); | 
|  | *partial_cluster = 0; | 
|  | } | 
|  |  | 
|  | /* if this leaf is free, then we should | 
|  | * remove it from index block above */ | 
|  | if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) | 
|  | err = ext4_ext_rm_idx(handle, inode, path + depth); | 
|  |  | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_ext_more_to_rm: | 
|  | * returns 1 if current index has to be freed (even partial) | 
|  | */ | 
|  | static int | 
|  | ext4_ext_more_to_rm(struct ext4_ext_path *path) | 
|  | { | 
|  | BUG_ON(path->p_idx == NULL); | 
|  |  | 
|  | if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * if truncate on deeper level happened, it wasn't partial, | 
|  | * so we have to consider current index for truncation | 
|  | */ | 
|  | if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start) | 
|  | { | 
|  | struct super_block *sb = inode->i_sb; | 
|  | int depth = ext_depth(inode); | 
|  | struct ext4_ext_path *path; | 
|  | ext4_fsblk_t partial_cluster = 0; | 
|  | handle_t *handle; | 
|  | int i, err; | 
|  |  | 
|  | ext_debug("truncate since %u\n", start); | 
|  |  | 
|  | /* probably first extent we're gonna free will be last in block */ | 
|  | handle = ext4_journal_start(inode, depth + 1); | 
|  | if (IS_ERR(handle)) | 
|  | return PTR_ERR(handle); | 
|  |  | 
|  | again: | 
|  | ext4_ext_invalidate_cache(inode); | 
|  |  | 
|  | trace_ext4_ext_remove_space(inode, start, depth); | 
|  |  | 
|  | /* | 
|  | * We start scanning from right side, freeing all the blocks | 
|  | * after i_size and walking into the tree depth-wise. | 
|  | */ | 
|  | depth = ext_depth(inode); | 
|  | path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS); | 
|  | if (path == NULL) { | 
|  | ext4_journal_stop(handle); | 
|  | return -ENOMEM; | 
|  | } | 
|  | path[0].p_depth = depth; | 
|  | path[0].p_hdr = ext_inode_hdr(inode); | 
|  | if (ext4_ext_check(inode, path[0].p_hdr, depth)) { | 
|  | err = -EIO; | 
|  | goto out; | 
|  | } | 
|  | i = err = 0; | 
|  |  | 
|  | while (i >= 0 && err == 0) { | 
|  | if (i == depth) { | 
|  | /* this is leaf block */ | 
|  | err = ext4_ext_rm_leaf(handle, inode, path, | 
|  | &partial_cluster, start, | 
|  | EXT_MAX_BLOCKS - 1); | 
|  | /* root level has p_bh == NULL, brelse() eats this */ | 
|  | brelse(path[i].p_bh); | 
|  | path[i].p_bh = NULL; | 
|  | i--; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* this is index block */ | 
|  | if (!path[i].p_hdr) { | 
|  | ext_debug("initialize header\n"); | 
|  | path[i].p_hdr = ext_block_hdr(path[i].p_bh); | 
|  | } | 
|  |  | 
|  | if (!path[i].p_idx) { | 
|  | /* this level hasn't been touched yet */ | 
|  | path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); | 
|  | path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; | 
|  | ext_debug("init index ptr: hdr 0x%p, num %d\n", | 
|  | path[i].p_hdr, | 
|  | le16_to_cpu(path[i].p_hdr->eh_entries)); | 
|  | } else { | 
|  | /* we were already here, see at next index */ | 
|  | path[i].p_idx--; | 
|  | } | 
|  |  | 
|  | ext_debug("level %d - index, first 0x%p, cur 0x%p\n", | 
|  | i, EXT_FIRST_INDEX(path[i].p_hdr), | 
|  | path[i].p_idx); | 
|  | if (ext4_ext_more_to_rm(path + i)) { | 
|  | struct buffer_head *bh; | 
|  | /* go to the next level */ | 
|  | ext_debug("move to level %d (block %llu)\n", | 
|  | i + 1, ext4_idx_pblock(path[i].p_idx)); | 
|  | memset(path + i + 1, 0, sizeof(*path)); | 
|  | bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx)); | 
|  | if (!bh) { | 
|  | /* should we reset i_size? */ | 
|  | err = -EIO; | 
|  | break; | 
|  | } | 
|  | if (WARN_ON(i + 1 > depth)) { | 
|  | err = -EIO; | 
|  | break; | 
|  | } | 
|  | if (ext4_ext_check(inode, ext_block_hdr(bh), | 
|  | depth - i - 1)) { | 
|  | err = -EIO; | 
|  | break; | 
|  | } | 
|  | path[i + 1].p_bh = bh; | 
|  |  | 
|  | /* save actual number of indexes since this | 
|  | * number is changed at the next iteration */ | 
|  | path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); | 
|  | i++; | 
|  | } else { | 
|  | /* we finished processing this index, go up */ | 
|  | if (path[i].p_hdr->eh_entries == 0 && i > 0) { | 
|  | /* index is empty, remove it; | 
|  | * handle must be already prepared by the | 
|  | * truncatei_leaf() */ | 
|  | err = ext4_ext_rm_idx(handle, inode, path + i); | 
|  | } | 
|  | /* root level has p_bh == NULL, brelse() eats this */ | 
|  | brelse(path[i].p_bh); | 
|  | path[i].p_bh = NULL; | 
|  | i--; | 
|  | ext_debug("return to level %d\n", i); | 
|  | } | 
|  | } | 
|  |  | 
|  | trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster, | 
|  | path->p_hdr->eh_entries); | 
|  |  | 
|  | /* If we still have something in the partial cluster and we have removed | 
|  | * even the first extent, then we should free the blocks in the partial | 
|  | * cluster as well. */ | 
|  | if (partial_cluster && path->p_hdr->eh_entries == 0) { | 
|  | int flags = EXT4_FREE_BLOCKS_FORGET; | 
|  |  | 
|  | if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) | 
|  | flags |= EXT4_FREE_BLOCKS_METADATA; | 
|  |  | 
|  | ext4_free_blocks(handle, inode, NULL, | 
|  | EXT4_C2B(EXT4_SB(sb), partial_cluster), | 
|  | EXT4_SB(sb)->s_cluster_ratio, flags); | 
|  | partial_cluster = 0; | 
|  | } | 
|  |  | 
|  | /* TODO: flexible tree reduction should be here */ | 
|  | if (path->p_hdr->eh_entries == 0) { | 
|  | /* | 
|  | * truncate to zero freed all the tree, | 
|  | * so we need to correct eh_depth | 
|  | */ | 
|  | err = ext4_ext_get_access(handle, inode, path); | 
|  | if (err == 0) { | 
|  | ext_inode_hdr(inode)->eh_depth = 0; | 
|  | ext_inode_hdr(inode)->eh_max = | 
|  | cpu_to_le16(ext4_ext_space_root(inode, 0)); | 
|  | err = ext4_ext_dirty(handle, inode, path); | 
|  | } | 
|  | } | 
|  | out: | 
|  | ext4_ext_drop_refs(path); | 
|  | kfree(path); | 
|  | if (err == -EAGAIN) | 
|  | goto again; | 
|  | ext4_journal_stop(handle); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * called at mount time | 
|  | */ | 
|  | void ext4_ext_init(struct super_block *sb) | 
|  | { | 
|  | /* | 
|  | * possible initialization would be here | 
|  | */ | 
|  |  | 
|  | if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { | 
|  | #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS) | 
|  | printk(KERN_INFO "EXT4-fs: file extents enabled"); | 
|  | #ifdef AGGRESSIVE_TEST | 
|  | printk(", aggressive tests"); | 
|  | #endif | 
|  | #ifdef CHECK_BINSEARCH | 
|  | printk(", check binsearch"); | 
|  | #endif | 
|  | #ifdef EXTENTS_STATS | 
|  | printk(", stats"); | 
|  | #endif | 
|  | printk("\n"); | 
|  | #endif | 
|  | #ifdef EXTENTS_STATS | 
|  | spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); | 
|  | EXT4_SB(sb)->s_ext_min = 1 << 30; | 
|  | EXT4_SB(sb)->s_ext_max = 0; | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * called at umount time | 
|  | */ | 
|  | void ext4_ext_release(struct super_block *sb) | 
|  | { | 
|  | if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) | 
|  | return; | 
|  |  | 
|  | #ifdef EXTENTS_STATS | 
|  | if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(sb); | 
|  | printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", | 
|  | sbi->s_ext_blocks, sbi->s_ext_extents, | 
|  | sbi->s_ext_blocks / sbi->s_ext_extents); | 
|  | printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", | 
|  | sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* FIXME!! we need to try to merge to left or right after zero-out  */ | 
|  | static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) | 
|  | { | 
|  | ext4_fsblk_t ee_pblock; | 
|  | unsigned int ee_len; | 
|  | int ret; | 
|  |  | 
|  | ee_len    = ext4_ext_get_actual_len(ex); | 
|  | ee_pblock = ext4_ext_pblock(ex); | 
|  |  | 
|  | ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS); | 
|  | if (ret > 0) | 
|  | ret = 0; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * used by extent splitting. | 
|  | */ | 
|  | #define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \ | 
|  | due to ENOSPC */ | 
|  | #define EXT4_EXT_MARK_UNINIT1	0x2  /* mark first half uninitialized */ | 
|  | #define EXT4_EXT_MARK_UNINIT2	0x4  /* mark second half uninitialized */ | 
|  |  | 
|  | /* | 
|  | * ext4_split_extent_at() splits an extent at given block. | 
|  | * | 
|  | * @handle: the journal handle | 
|  | * @inode: the file inode | 
|  | * @path: the path to the extent | 
|  | * @split: the logical block where the extent is splitted. | 
|  | * @split_flags: indicates if the extent could be zeroout if split fails, and | 
|  | *		 the states(init or uninit) of new extents. | 
|  | * @flags: flags used to insert new extent to extent tree. | 
|  | * | 
|  | * | 
|  | * Splits extent [a, b] into two extents [a, @split) and [@split, b], states | 
|  | * of which are deterimined by split_flag. | 
|  | * | 
|  | * There are two cases: | 
|  | *  a> the extent are splitted into two extent. | 
|  | *  b> split is not needed, and just mark the extent. | 
|  | * | 
|  | * return 0 on success. | 
|  | */ | 
|  | static int ext4_split_extent_at(handle_t *handle, | 
|  | struct inode *inode, | 
|  | struct ext4_ext_path *path, | 
|  | ext4_lblk_t split, | 
|  | int split_flag, | 
|  | int flags) | 
|  | { | 
|  | ext4_fsblk_t newblock; | 
|  | ext4_lblk_t ee_block; | 
|  | struct ext4_extent *ex, newex, orig_ex; | 
|  | struct ext4_extent *ex2 = NULL; | 
|  | unsigned int ee_len, depth; | 
|  | int err = 0; | 
|  |  | 
|  | ext_debug("ext4_split_extents_at: inode %lu, logical" | 
|  | "block %llu\n", inode->i_ino, (unsigned long long)split); | 
|  |  | 
|  | ext4_ext_show_leaf(inode, path); | 
|  |  | 
|  | depth = ext_depth(inode); | 
|  | ex = path[depth].p_ext; | 
|  | ee_block = le32_to_cpu(ex->ee_block); | 
|  | ee_len = ext4_ext_get_actual_len(ex); | 
|  | newblock = split - ee_block + ext4_ext_pblock(ex); | 
|  |  | 
|  | BUG_ON(split < ee_block || split >= (ee_block + ee_len)); | 
|  |  | 
|  | err = ext4_ext_get_access(handle, inode, path + depth); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | if (split == ee_block) { | 
|  | /* | 
|  | * case b: block @split is the block that the extent begins with | 
|  | * then we just change the state of the extent, and splitting | 
|  | * is not needed. | 
|  | */ | 
|  | if (split_flag & EXT4_EXT_MARK_UNINIT2) | 
|  | ext4_ext_mark_uninitialized(ex); | 
|  | else | 
|  | ext4_ext_mark_initialized(ex); | 
|  |  | 
|  | if (!(flags & EXT4_GET_BLOCKS_PRE_IO)) | 
|  | ext4_ext_try_to_merge(inode, path, ex); | 
|  |  | 
|  | err = ext4_ext_dirty(handle, inode, path + depth); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* case a */ | 
|  | memcpy(&orig_ex, ex, sizeof(orig_ex)); | 
|  | ex->ee_len = cpu_to_le16(split - ee_block); | 
|  | if (split_flag & EXT4_EXT_MARK_UNINIT1) | 
|  | ext4_ext_mark_uninitialized(ex); | 
|  |  | 
|  | /* | 
|  | * path may lead to new leaf, not to original leaf any more | 
|  | * after ext4_ext_insert_extent() returns, | 
|  | */ | 
|  | err = ext4_ext_dirty(handle, inode, path + depth); | 
|  | if (err) | 
|  | goto fix_extent_len; | 
|  |  | 
|  | ex2 = &newex; | 
|  | ex2->ee_block = cpu_to_le32(split); | 
|  | ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block)); | 
|  | ext4_ext_store_pblock(ex2, newblock); | 
|  | if (split_flag & EXT4_EXT_MARK_UNINIT2) | 
|  | ext4_ext_mark_uninitialized(ex2); | 
|  |  | 
|  | err = ext4_ext_insert_extent(handle, inode, path, &newex, flags); | 
|  | if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) { | 
|  | err = ext4_ext_zeroout(inode, &orig_ex); | 
|  | if (err) | 
|  | goto fix_extent_len; | 
|  | /* update the extent length and mark as initialized */ | 
|  | ex->ee_len = cpu_to_le32(ee_len); | 
|  | ext4_ext_try_to_merge(inode, path, ex); | 
|  | err = ext4_ext_dirty(handle, inode, path + depth); | 
|  | goto out; | 
|  | } else if (err) | 
|  | goto fix_extent_len; | 
|  |  | 
|  | out: | 
|  | ext4_ext_show_leaf(inode, path); | 
|  | return err; | 
|  |  | 
|  | fix_extent_len: | 
|  | ex->ee_len = orig_ex.ee_len; | 
|  | ext4_ext_dirty(handle, inode, path + depth); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_split_extents() splits an extent and mark extent which is covered | 
|  | * by @map as split_flags indicates | 
|  | * | 
|  | * It may result in splitting the extent into multiple extents (upto three) | 
|  | * There are three possibilities: | 
|  | *   a> There is no split required | 
|  | *   b> Splits in two extents: Split is happening at either end of the extent | 
|  | *   c> Splits in three extents: Somone is splitting in middle of the extent | 
|  | * | 
|  | */ | 
|  | static int ext4_split_extent(handle_t *handle, | 
|  | struct inode *inode, | 
|  | struct ext4_ext_path *path, | 
|  | struct ext4_map_blocks *map, | 
|  | int split_flag, | 
|  | int flags) | 
|  | { | 
|  | ext4_lblk_t ee_block; | 
|  | struct ext4_extent *ex; | 
|  | unsigned int ee_len, depth; | 
|  | int err = 0; | 
|  | int uninitialized; | 
|  | int split_flag1, flags1; | 
|  |  | 
|  | depth = ext_depth(inode); | 
|  | ex = path[depth].p_ext; | 
|  | ee_block = le32_to_cpu(ex->ee_block); | 
|  | ee_len = ext4_ext_get_actual_len(ex); | 
|  | uninitialized = ext4_ext_is_uninitialized(ex); | 
|  |  | 
|  | if (map->m_lblk + map->m_len < ee_block + ee_len) { | 
|  | split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ? | 
|  | EXT4_EXT_MAY_ZEROOUT : 0; | 
|  | flags1 = flags | EXT4_GET_BLOCKS_PRE_IO; | 
|  | if (uninitialized) | 
|  | split_flag1 |= EXT4_EXT_MARK_UNINIT1 | | 
|  | EXT4_EXT_MARK_UNINIT2; | 
|  | err = ext4_split_extent_at(handle, inode, path, | 
|  | map->m_lblk + map->m_len, split_flag1, flags1); | 
|  | if (err) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ext4_ext_drop_refs(path); | 
|  | path = ext4_ext_find_extent(inode, map->m_lblk, path); | 
|  | if (IS_ERR(path)) | 
|  | return PTR_ERR(path); | 
|  |  | 
|  | if (map->m_lblk >= ee_block) { | 
|  | split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ? | 
|  | EXT4_EXT_MAY_ZEROOUT : 0; | 
|  | if (uninitialized) | 
|  | split_flag1 |= EXT4_EXT_MARK_UNINIT1; | 
|  | if (split_flag & EXT4_EXT_MARK_UNINIT2) | 
|  | split_flag1 |= EXT4_EXT_MARK_UNINIT2; | 
|  | err = ext4_split_extent_at(handle, inode, path, | 
|  | map->m_lblk, split_flag1, flags); | 
|  | if (err) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ext4_ext_show_leaf(inode, path); | 
|  | out: | 
|  | return err ? err : map->m_len; | 
|  | } | 
|  |  | 
|  | #define EXT4_EXT_ZERO_LEN 7 | 
|  | /* | 
|  | * This function is called by ext4_ext_map_blocks() if someone tries to write | 
|  | * to an uninitialized extent. It may result in splitting the uninitialized | 
|  | * extent into multiple extents (up to three - one initialized and two | 
|  | * uninitialized). | 
|  | * There are three possibilities: | 
|  | *   a> There is no split required: Entire extent should be initialized | 
|  | *   b> Splits in two extents: Write is happening at either end of the extent | 
|  | *   c> Splits in three extents: Somone is writing in middle of the extent | 
|  | * | 
|  | * Pre-conditions: | 
|  | *  - The extent pointed to by 'path' is uninitialized. | 
|  | *  - The extent pointed to by 'path' contains a superset | 
|  | *    of the logical span [map->m_lblk, map->m_lblk + map->m_len). | 
|  | * | 
|  | * Post-conditions on success: | 
|  | *  - the returned value is the number of blocks beyond map->l_lblk | 
|  | *    that are allocated and initialized. | 
|  | *    It is guaranteed to be >= map->m_len. | 
|  | */ | 
|  | static int ext4_ext_convert_to_initialized(handle_t *handle, | 
|  | struct inode *inode, | 
|  | struct ext4_map_blocks *map, | 
|  | struct ext4_ext_path *path) | 
|  | { | 
|  | struct ext4_extent_header *eh; | 
|  | struct ext4_map_blocks split_map; | 
|  | struct ext4_extent zero_ex; | 
|  | struct ext4_extent *ex; | 
|  | ext4_lblk_t ee_block, eof_block; | 
|  | unsigned int ee_len, depth; | 
|  | int allocated; | 
|  | int err = 0; | 
|  | int split_flag = 0; | 
|  |  | 
|  | ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical" | 
|  | "block %llu, max_blocks %u\n", inode->i_ino, | 
|  | (unsigned long long)map->m_lblk, map->m_len); | 
|  |  | 
|  | eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> | 
|  | inode->i_sb->s_blocksize_bits; | 
|  | if (eof_block < map->m_lblk + map->m_len) | 
|  | eof_block = map->m_lblk + map->m_len; | 
|  |  | 
|  | depth = ext_depth(inode); | 
|  | eh = path[depth].p_hdr; | 
|  | ex = path[depth].p_ext; | 
|  | ee_block = le32_to_cpu(ex->ee_block); | 
|  | ee_len = ext4_ext_get_actual_len(ex); | 
|  | allocated = ee_len - (map->m_lblk - ee_block); | 
|  |  | 
|  | trace_ext4_ext_convert_to_initialized_enter(inode, map, ex); | 
|  |  | 
|  | /* Pre-conditions */ | 
|  | BUG_ON(!ext4_ext_is_uninitialized(ex)); | 
|  | BUG_ON(!in_range(map->m_lblk, ee_block, ee_len)); | 
|  |  | 
|  | /* | 
|  | * Attempt to transfer newly initialized blocks from the currently | 
|  | * uninitialized extent to its left neighbor. This is much cheaper | 
|  | * than an insertion followed by a merge as those involve costly | 
|  | * memmove() calls. This is the common case in steady state for | 
|  | * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append | 
|  | * writes. | 
|  | * | 
|  | * Limitations of the current logic: | 
|  | *  - L1: we only deal with writes at the start of the extent. | 
|  | *    The approach could be extended to writes at the end | 
|  | *    of the extent but this scenario was deemed less common. | 
|  | *  - L2: we do not deal with writes covering the whole extent. | 
|  | *    This would require removing the extent if the transfer | 
|  | *    is possible. | 
|  | *  - L3: we only attempt to merge with an extent stored in the | 
|  | *    same extent tree node. | 
|  | */ | 
|  | if ((map->m_lblk == ee_block) &&	/*L1*/ | 
|  | (map->m_len < ee_len) &&	/*L2*/ | 
|  | (ex > EXT_FIRST_EXTENT(eh))) {	/*L3*/ | 
|  | struct ext4_extent *prev_ex; | 
|  | ext4_lblk_t prev_lblk; | 
|  | ext4_fsblk_t prev_pblk, ee_pblk; | 
|  | unsigned int prev_len, write_len; | 
|  |  | 
|  | prev_ex = ex - 1; | 
|  | prev_lblk = le32_to_cpu(prev_ex->ee_block); | 
|  | prev_len = ext4_ext_get_actual_len(prev_ex); | 
|  | prev_pblk = ext4_ext_pblock(prev_ex); | 
|  | ee_pblk = ext4_ext_pblock(ex); | 
|  | write_len = map->m_len; | 
|  |  | 
|  | /* | 
|  | * A transfer of blocks from 'ex' to 'prev_ex' is allowed | 
|  | * upon those conditions: | 
|  | * - C1: prev_ex is initialized, | 
|  | * - C2: prev_ex is logically abutting ex, | 
|  | * - C3: prev_ex is physically abutting ex, | 
|  | * - C4: prev_ex can receive the additional blocks without | 
|  | *   overflowing the (initialized) length limit. | 
|  | */ | 
|  | if ((!ext4_ext_is_uninitialized(prev_ex)) &&		/*C1*/ | 
|  | ((prev_lblk + prev_len) == ee_block) &&		/*C2*/ | 
|  | ((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/ | 
|  | (prev_len < (EXT_INIT_MAX_LEN - write_len))) {	/*C4*/ | 
|  | err = ext4_ext_get_access(handle, inode, path + depth); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | trace_ext4_ext_convert_to_initialized_fastpath(inode, | 
|  | map, ex, prev_ex); | 
|  |  | 
|  | /* Shift the start of ex by 'write_len' blocks */ | 
|  | ex->ee_block = cpu_to_le32(ee_block + write_len); | 
|  | ext4_ext_store_pblock(ex, ee_pblk + write_len); | 
|  | ex->ee_len = cpu_to_le16(ee_len - write_len); | 
|  | ext4_ext_mark_uninitialized(ex); /* Restore the flag */ | 
|  |  | 
|  | /* Extend prev_ex by 'write_len' blocks */ | 
|  | prev_ex->ee_len = cpu_to_le16(prev_len + write_len); | 
|  |  | 
|  | /* Mark the block containing both extents as dirty */ | 
|  | ext4_ext_dirty(handle, inode, path + depth); | 
|  |  | 
|  | /* Update path to point to the right extent */ | 
|  | path[depth].p_ext = prev_ex; | 
|  |  | 
|  | /* Result: number of initialized blocks past m_lblk */ | 
|  | allocated = write_len; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | WARN_ON(map->m_lblk < ee_block); | 
|  | /* | 
|  | * It is safe to convert extent to initialized via explicit | 
|  | * zeroout only if extent is fully insde i_size or new_size. | 
|  | */ | 
|  | split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; | 
|  |  | 
|  | /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */ | 
|  | if (ee_len <= 2*EXT4_EXT_ZERO_LEN && | 
|  | (EXT4_EXT_MAY_ZEROOUT & split_flag)) { | 
|  | err = ext4_ext_zeroout(inode, ex); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | err = ext4_ext_get_access(handle, inode, path + depth); | 
|  | if (err) | 
|  | goto out; | 
|  | ext4_ext_mark_initialized(ex); | 
|  | ext4_ext_try_to_merge(inode, path, ex); | 
|  | err = ext4_ext_dirty(handle, inode, path + depth); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * four cases: | 
|  | * 1. split the extent into three extents. | 
|  | * 2. split the extent into two extents, zeroout the first half. | 
|  | * 3. split the extent into two extents, zeroout the second half. | 
|  | * 4. split the extent into two extents with out zeroout. | 
|  | */ | 
|  | split_map.m_lblk = map->m_lblk; | 
|  | split_map.m_len = map->m_len; | 
|  |  | 
|  | if (allocated > map->m_len) { | 
|  | if (allocated <= EXT4_EXT_ZERO_LEN && | 
|  | (EXT4_EXT_MAY_ZEROOUT & split_flag)) { | 
|  | /* case 3 */ | 
|  | zero_ex.ee_block = | 
|  | cpu_to_le32(map->m_lblk); | 
|  | zero_ex.ee_len = cpu_to_le16(allocated); | 
|  | ext4_ext_store_pblock(&zero_ex, | 
|  | ext4_ext_pblock(ex) + map->m_lblk - ee_block); | 
|  | err = ext4_ext_zeroout(inode, &zero_ex); | 
|  | if (err) | 
|  | goto out; | 
|  | split_map.m_lblk = map->m_lblk; | 
|  | split_map.m_len = allocated; | 
|  | } else if ((map->m_lblk - ee_block + map->m_len < | 
|  | EXT4_EXT_ZERO_LEN) && | 
|  | (EXT4_EXT_MAY_ZEROOUT & split_flag)) { | 
|  | /* case 2 */ | 
|  | if (map->m_lblk != ee_block) { | 
|  | zero_ex.ee_block = ex->ee_block; | 
|  | zero_ex.ee_len = cpu_to_le16(map->m_lblk - | 
|  | ee_block); | 
|  | ext4_ext_store_pblock(&zero_ex, | 
|  | ext4_ext_pblock(ex)); | 
|  | err = ext4_ext_zeroout(inode, &zero_ex); | 
|  | if (err) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | split_map.m_lblk = ee_block; | 
|  | split_map.m_len = map->m_lblk - ee_block + map->m_len; | 
|  | allocated = map->m_len; | 
|  | } | 
|  | } | 
|  |  | 
|  | allocated = ext4_split_extent(handle, inode, path, | 
|  | &split_map, split_flag, 0); | 
|  | if (allocated < 0) | 
|  | err = allocated; | 
|  |  | 
|  | out: | 
|  | return err ? err : allocated; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function is called by ext4_ext_map_blocks() from | 
|  | * ext4_get_blocks_dio_write() when DIO to write | 
|  | * to an uninitialized extent. | 
|  | * | 
|  | * Writing to an uninitialized extent may result in splitting the uninitialized | 
|  | * extent into multiple /initialized uninitialized extents (up to three) | 
|  | * There are three possibilities: | 
|  | *   a> There is no split required: Entire extent should be uninitialized | 
|  | *   b> Splits in two extents: Write is happening at either end of the extent | 
|  | *   c> Splits in three extents: Somone is writing in middle of the extent | 
|  | * | 
|  | * One of more index blocks maybe needed if the extent tree grow after | 
|  | * the uninitialized extent split. To prevent ENOSPC occur at the IO | 
|  | * complete, we need to split the uninitialized extent before DIO submit | 
|  | * the IO. The uninitialized extent called at this time will be split | 
|  | * into three uninitialized extent(at most). After IO complete, the part | 
|  | * being filled will be convert to initialized by the end_io callback function | 
|  | * via ext4_convert_unwritten_extents(). | 
|  | * | 
|  | * Returns the size of uninitialized extent to be written on success. | 
|  | */ | 
|  | static int ext4_split_unwritten_extents(handle_t *handle, | 
|  | struct inode *inode, | 
|  | struct ext4_map_blocks *map, | 
|  | struct ext4_ext_path *path, | 
|  | int flags) | 
|  | { | 
|  | ext4_lblk_t eof_block; | 
|  | ext4_lblk_t ee_block; | 
|  | struct ext4_extent *ex; | 
|  | unsigned int ee_len; | 
|  | int split_flag = 0, depth; | 
|  |  | 
|  | ext_debug("ext4_split_unwritten_extents: inode %lu, logical" | 
|  | "block %llu, max_blocks %u\n", inode->i_ino, | 
|  | (unsigned long long)map->m_lblk, map->m_len); | 
|  |  | 
|  | eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> | 
|  | inode->i_sb->s_blocksize_bits; | 
|  | if (eof_block < map->m_lblk + map->m_len) | 
|  | eof_block = map->m_lblk + map->m_len; | 
|  | /* | 
|  | * It is safe to convert extent to initialized via explicit | 
|  | * zeroout only if extent is fully insde i_size or new_size. | 
|  | */ | 
|  | depth = ext_depth(inode); | 
|  | ex = path[depth].p_ext; | 
|  | ee_block = le32_to_cpu(ex->ee_block); | 
|  | ee_len = ext4_ext_get_actual_len(ex); | 
|  |  | 
|  | split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; | 
|  | split_flag |= EXT4_EXT_MARK_UNINIT2; | 
|  |  | 
|  | flags |= EXT4_GET_BLOCKS_PRE_IO; | 
|  | return ext4_split_extent(handle, inode, path, map, split_flag, flags); | 
|  | } | 
|  |  | 
|  | static int ext4_convert_unwritten_extents_endio(handle_t *handle, | 
|  | struct inode *inode, | 
|  | struct ext4_ext_path *path) | 
|  | { | 
|  | struct ext4_extent *ex; | 
|  | int depth; | 
|  | int err = 0; | 
|  |  | 
|  | depth = ext_depth(inode); | 
|  | ex = path[depth].p_ext; | 
|  |  | 
|  | ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical" | 
|  | "block %llu, max_blocks %u\n", inode->i_ino, | 
|  | (unsigned long long)le32_to_cpu(ex->ee_block), | 
|  | ext4_ext_get_actual_len(ex)); | 
|  |  | 
|  | err = ext4_ext_get_access(handle, inode, path + depth); | 
|  | if (err) | 
|  | goto out; | 
|  | /* first mark the extent as initialized */ | 
|  | ext4_ext_mark_initialized(ex); | 
|  |  | 
|  | /* note: ext4_ext_correct_indexes() isn't needed here because | 
|  | * borders are not changed | 
|  | */ | 
|  | ext4_ext_try_to_merge(inode, path, ex); | 
|  |  | 
|  | /* Mark modified extent as dirty */ | 
|  | err = ext4_ext_dirty(handle, inode, path + depth); | 
|  | out: | 
|  | ext4_ext_show_leaf(inode, path); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void unmap_underlying_metadata_blocks(struct block_device *bdev, | 
|  | sector_t block, int count) | 
|  | { | 
|  | int i; | 
|  | for (i = 0; i < count; i++) | 
|  | unmap_underlying_metadata(bdev, block + i); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle EOFBLOCKS_FL flag, clearing it if necessary | 
|  | */ | 
|  | static int check_eofblocks_fl(handle_t *handle, struct inode *inode, | 
|  | ext4_lblk_t lblk, | 
|  | struct ext4_ext_path *path, | 
|  | unsigned int len) | 
|  | { | 
|  | int i, depth; | 
|  | struct ext4_extent_header *eh; | 
|  | struct ext4_extent *last_ex; | 
|  |  | 
|  | if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) | 
|  | return 0; | 
|  |  | 
|  | depth = ext_depth(inode); | 
|  | eh = path[depth].p_hdr; | 
|  |  | 
|  | if (unlikely(!eh->eh_entries)) { | 
|  | EXT4_ERROR_INODE(inode, "eh->eh_entries == 0 and " | 
|  | "EOFBLOCKS_FL set"); | 
|  | return -EIO; | 
|  | } | 
|  | last_ex = EXT_LAST_EXTENT(eh); | 
|  | /* | 
|  | * We should clear the EOFBLOCKS_FL flag if we are writing the | 
|  | * last block in the last extent in the file.  We test this by | 
|  | * first checking to see if the caller to | 
|  | * ext4_ext_get_blocks() was interested in the last block (or | 
|  | * a block beyond the last block) in the current extent.  If | 
|  | * this turns out to be false, we can bail out from this | 
|  | * function immediately. | 
|  | */ | 
|  | if (lblk + len < le32_to_cpu(last_ex->ee_block) + | 
|  | ext4_ext_get_actual_len(last_ex)) | 
|  | return 0; | 
|  | /* | 
|  | * If the caller does appear to be planning to write at or | 
|  | * beyond the end of the current extent, we then test to see | 
|  | * if the current extent is the last extent in the file, by | 
|  | * checking to make sure it was reached via the rightmost node | 
|  | * at each level of the tree. | 
|  | */ | 
|  | for (i = depth-1; i >= 0; i--) | 
|  | if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr)) | 
|  | return 0; | 
|  | ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); | 
|  | return ext4_mark_inode_dirty(handle, inode); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ext4_find_delalloc_range: find delayed allocated block in the given range. | 
|  | * | 
|  | * Goes through the buffer heads in the range [lblk_start, lblk_end] and returns | 
|  | * whether there are any buffers marked for delayed allocation. It returns '1' | 
|  | * on the first delalloc'ed buffer head found. If no buffer head in the given | 
|  | * range is marked for delalloc, it returns 0. | 
|  | * lblk_start should always be <= lblk_end. | 
|  | * search_hint_reverse is to indicate that searching in reverse from lblk_end to | 
|  | * lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed | 
|  | * block sooner). This is useful when blocks are truncated sequentially from | 
|  | * lblk_start towards lblk_end. | 
|  | */ | 
|  | static int ext4_find_delalloc_range(struct inode *inode, | 
|  | ext4_lblk_t lblk_start, | 
|  | ext4_lblk_t lblk_end, | 
|  | int search_hint_reverse) | 
|  | { | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  | struct buffer_head *head, *bh = NULL; | 
|  | struct page *page; | 
|  | ext4_lblk_t i, pg_lblk; | 
|  | pgoff_t index; | 
|  |  | 
|  | if (!test_opt(inode->i_sb, DELALLOC)) | 
|  | return 0; | 
|  |  | 
|  | /* reverse search wont work if fs block size is less than page size */ | 
|  | if (inode->i_blkbits < PAGE_CACHE_SHIFT) | 
|  | search_hint_reverse = 0; | 
|  |  | 
|  | if (search_hint_reverse) | 
|  | i = lblk_end; | 
|  | else | 
|  | i = lblk_start; | 
|  |  | 
|  | index = i >> (PAGE_CACHE_SHIFT - inode->i_blkbits); | 
|  |  | 
|  | while ((i >= lblk_start) && (i <= lblk_end)) { | 
|  | page = find_get_page(mapping, index); | 
|  | if (!page) | 
|  | goto nextpage; | 
|  |  | 
|  | if (!page_has_buffers(page)) | 
|  | goto nextpage; | 
|  |  | 
|  | head = page_buffers(page); | 
|  | if (!head) | 
|  | goto nextpage; | 
|  |  | 
|  | bh = head; | 
|  | pg_lblk = index << (PAGE_CACHE_SHIFT - | 
|  | inode->i_blkbits); | 
|  | do { | 
|  | if (unlikely(pg_lblk < lblk_start)) { | 
|  | /* | 
|  | * This is possible when fs block size is less | 
|  | * than page size and our cluster starts/ends in | 
|  | * middle of the page. So we need to skip the | 
|  | * initial few blocks till we reach the 'lblk' | 
|  | */ | 
|  | pg_lblk++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Check if the buffer is delayed allocated and that it | 
|  | * is not yet mapped. (when da-buffers are mapped during | 
|  | * their writeout, their da_mapped bit is set.) | 
|  | */ | 
|  | if (buffer_delay(bh) && !buffer_da_mapped(bh)) { | 
|  | page_cache_release(page); | 
|  | trace_ext4_find_delalloc_range(inode, | 
|  | lblk_start, lblk_end, | 
|  | search_hint_reverse, | 
|  | 1, i); | 
|  | return 1; | 
|  | } | 
|  | if (search_hint_reverse) | 
|  | i--; | 
|  | else | 
|  | i++; | 
|  | } while ((i >= lblk_start) && (i <= lblk_end) && | 
|  | ((bh = bh->b_this_page) != head)); | 
|  | nextpage: | 
|  | if (page) | 
|  | page_cache_release(page); | 
|  | /* | 
|  | * Move to next page. 'i' will be the first lblk in the next | 
|  | * page. | 
|  | */ | 
|  | if (search_hint_reverse) | 
|  | index--; | 
|  | else | 
|  | index++; | 
|  | i = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); | 
|  | } | 
|  |  | 
|  | trace_ext4_find_delalloc_range(inode, lblk_start, lblk_end, | 
|  | search_hint_reverse, 0, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk, | 
|  | int search_hint_reverse) | 
|  | { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
|  | ext4_lblk_t lblk_start, lblk_end; | 
|  | lblk_start = lblk & (~(sbi->s_cluster_ratio - 1)); | 
|  | lblk_end = lblk_start + sbi->s_cluster_ratio - 1; | 
|  |  | 
|  | return ext4_find_delalloc_range(inode, lblk_start, lblk_end, | 
|  | search_hint_reverse); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Determines how many complete clusters (out of those specified by the 'map') | 
|  | * are under delalloc and were reserved quota for. | 
|  | * This function is called when we are writing out the blocks that were | 
|  | * originally written with their allocation delayed, but then the space was | 
|  | * allocated using fallocate() before the delayed allocation could be resolved. | 
|  | * The cases to look for are: | 
|  | * ('=' indicated delayed allocated blocks | 
|  | *  '-' indicates non-delayed allocated blocks) | 
|  | * (a) partial clusters towards beginning and/or end outside of allocated range | 
|  | *     are not delalloc'ed. | 
|  | *	Ex: | 
|  | *	|----c---=|====c====|====c====|===-c----| | 
|  | *	         |++++++ allocated ++++++| | 
|  | *	==> 4 complete clusters in above example | 
|  | * | 
|  | * (b) partial cluster (outside of allocated range) towards either end is | 
|  | *     marked for delayed allocation. In this case, we will exclude that | 
|  | *     cluster. | 
|  | *	Ex: | 
|  | *	|----====c========|========c========| | 
|  | *	     |++++++ allocated ++++++| | 
|  | *	==> 1 complete clusters in above example | 
|  | * | 
|  | *	Ex: | 
|  | *	|================c================| | 
|  | *            |++++++ allocated ++++++| | 
|  | *	==> 0 complete clusters in above example | 
|  | * | 
|  | * The ext4_da_update_reserve_space will be called only if we | 
|  | * determine here that there were some "entire" clusters that span | 
|  | * this 'allocated' range. | 
|  | * In the non-bigalloc case, this function will just end up returning num_blks | 
|  | * without ever calling ext4_find_delalloc_range. | 
|  | */ | 
|  | static unsigned int | 
|  | get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start, | 
|  | unsigned int num_blks) | 
|  | { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
|  | ext4_lblk_t alloc_cluster_start, alloc_cluster_end; | 
|  | ext4_lblk_t lblk_from, lblk_to, c_offset; | 
|  | unsigned int allocated_clusters = 0; | 
|  |  | 
|  | alloc_cluster_start = EXT4_B2C(sbi, lblk_start); | 
|  | alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1); | 
|  |  | 
|  | /* max possible clusters for this allocation */ | 
|  | allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1; | 
|  |  | 
|  | trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks); | 
|  |  | 
|  | /* Check towards left side */ | 
|  | c_offset = lblk_start & (sbi->s_cluster_ratio - 1); | 
|  | if (c_offset) { | 
|  | lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1)); | 
|  | lblk_to = lblk_from + c_offset - 1; | 
|  |  | 
|  | if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0)) | 
|  | allocated_clusters--; | 
|  | } | 
|  |  | 
|  | /* Now check towards right. */ | 
|  | c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1); | 
|  | if (allocated_clusters && c_offset) { | 
|  | lblk_from = lblk_start + num_blks; | 
|  | lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1; | 
|  |  | 
|  | if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0)) | 
|  | allocated_clusters--; | 
|  | } | 
|  |  | 
|  | return allocated_clusters; | 
|  | } | 
|  |  | 
|  | static int | 
|  | ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode, | 
|  | struct ext4_map_blocks *map, | 
|  | struct ext4_ext_path *path, int flags, | 
|  | unsigned int allocated, ext4_fsblk_t newblock) | 
|  | { | 
|  | int ret = 0; | 
|  | int err = 0; | 
|  | ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio; | 
|  |  | 
|  | ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical " | 
|  | "block %llu, max_blocks %u, flags %x, allocated %u\n", | 
|  | inode->i_ino, (unsigned long long)map->m_lblk, map->m_len, | 
|  | flags, allocated); | 
|  | ext4_ext_show_leaf(inode, path); | 
|  |  | 
|  | trace_ext4_ext_handle_uninitialized_extents(inode, map, allocated, | 
|  | newblock); | 
|  |  | 
|  | /* get_block() before submit the IO, split the extent */ | 
|  | if ((flags & EXT4_GET_BLOCKS_PRE_IO)) { | 
|  | ret = ext4_split_unwritten_extents(handle, inode, map, | 
|  | path, flags); | 
|  | /* | 
|  | * Flag the inode(non aio case) or end_io struct (aio case) | 
|  | * that this IO needs to conversion to written when IO is | 
|  | * completed | 
|  | */ | 
|  | if (io) | 
|  | ext4_set_io_unwritten_flag(inode, io); | 
|  | else | 
|  | ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); | 
|  | if (ext4_should_dioread_nolock(inode)) | 
|  | map->m_flags |= EXT4_MAP_UNINIT; | 
|  | goto out; | 
|  | } | 
|  | /* IO end_io complete, convert the filled extent to written */ | 
|  | if ((flags & EXT4_GET_BLOCKS_CONVERT)) { | 
|  | ret = ext4_convert_unwritten_extents_endio(handle, inode, | 
|  | path); | 
|  | if (ret >= 0) { | 
|  | ext4_update_inode_fsync_trans(handle, inode, 1); | 
|  | err = check_eofblocks_fl(handle, inode, map->m_lblk, | 
|  | path, map->m_len); | 
|  | } else | 
|  | err = ret; | 
|  | goto out2; | 
|  | } | 
|  | /* buffered IO case */ | 
|  | /* | 
|  | * repeat fallocate creation request | 
|  | * we already have an unwritten extent | 
|  | */ | 
|  | if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) | 
|  | goto map_out; | 
|  |  | 
|  | /* buffered READ or buffered write_begin() lookup */ | 
|  | if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { | 
|  | /* | 
|  | * We have blocks reserved already.  We | 
|  | * return allocated blocks so that delalloc | 
|  | * won't do block reservation for us.  But | 
|  | * the buffer head will be unmapped so that | 
|  | * a read from the block returns 0s. | 
|  | */ | 
|  | map->m_flags |= EXT4_MAP_UNWRITTEN; | 
|  | goto out1; | 
|  | } | 
|  |  | 
|  | /* buffered write, writepage time, convert*/ | 
|  | ret = ext4_ext_convert_to_initialized(handle, inode, map, path); | 
|  | if (ret >= 0) | 
|  | ext4_update_inode_fsync_trans(handle, inode, 1); | 
|  | out: | 
|  | if (ret <= 0) { | 
|  | err = ret; | 
|  | goto out2; | 
|  | } else | 
|  | allocated = ret; | 
|  | map->m_flags |= EXT4_MAP_NEW; | 
|  | /* | 
|  | * if we allocated more blocks than requested | 
|  | * we need to make sure we unmap the extra block | 
|  | * allocated. The actual needed block will get | 
|  | * unmapped later when we find the buffer_head marked | 
|  | * new. | 
|  | */ | 
|  | if (allocated > map->m_len) { | 
|  | unmap_underlying_metadata_blocks(inode->i_sb->s_bdev, | 
|  | newblock + map->m_len, | 
|  | allocated - map->m_len); | 
|  | allocated = map->m_len; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we have done fallocate with the offset that is already | 
|  | * delayed allocated, we would have block reservation | 
|  | * and quota reservation done in the delayed write path. | 
|  | * But fallocate would have already updated quota and block | 
|  | * count for this offset. So cancel these reservation | 
|  | */ | 
|  | if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { | 
|  | unsigned int reserved_clusters; | 
|  | reserved_clusters = get_reserved_cluster_alloc(inode, | 
|  | map->m_lblk, map->m_len); | 
|  | if (reserved_clusters) | 
|  | ext4_da_update_reserve_space(inode, | 
|  | reserved_clusters, | 
|  | 0); | 
|  | } | 
|  |  | 
|  | map_out: | 
|  | map->m_flags |= EXT4_MAP_MAPPED; | 
|  | if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) { | 
|  | err = check_eofblocks_fl(handle, inode, map->m_lblk, path, | 
|  | map->m_len); | 
|  | if (err < 0) | 
|  | goto out2; | 
|  | } | 
|  | out1: | 
|  | if (allocated > map->m_len) | 
|  | allocated = map->m_len; | 
|  | ext4_ext_show_leaf(inode, path); | 
|  | map->m_pblk = newblock; | 
|  | map->m_len = allocated; | 
|  | out2: | 
|  | if (path) { | 
|  | ext4_ext_drop_refs(path); | 
|  | kfree(path); | 
|  | } | 
|  | return err ? err : allocated; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * get_implied_cluster_alloc - check to see if the requested | 
|  | * allocation (in the map structure) overlaps with a cluster already | 
|  | * allocated in an extent. | 
|  | *	@sb	The filesystem superblock structure | 
|  | *	@map	The requested lblk->pblk mapping | 
|  | *	@ex	The extent structure which might contain an implied | 
|  | *			cluster allocation | 
|  | * | 
|  | * This function is called by ext4_ext_map_blocks() after we failed to | 
|  | * find blocks that were already in the inode's extent tree.  Hence, | 
|  | * we know that the beginning of the requested region cannot overlap | 
|  | * the extent from the inode's extent tree.  There are three cases we | 
|  | * want to catch.  The first is this case: | 
|  | * | 
|  | *		 |--- cluster # N--| | 
|  | *    |--- extent ---|	|---- requested region ---| | 
|  | *			|==========| | 
|  | * | 
|  | * The second case that we need to test for is this one: | 
|  | * | 
|  | *   |--------- cluster # N ----------------| | 
|  | *	   |--- requested region --|   |------- extent ----| | 
|  | *	   |=======================| | 
|  | * | 
|  | * The third case is when the requested region lies between two extents | 
|  | * within the same cluster: | 
|  | *          |------------- cluster # N-------------| | 
|  | * |----- ex -----|                  |---- ex_right ----| | 
|  | *                  |------ requested region ------| | 
|  | *                  |================| | 
|  | * | 
|  | * In each of the above cases, we need to set the map->m_pblk and | 
|  | * map->m_len so it corresponds to the return the extent labelled as | 
|  | * "|====|" from cluster #N, since it is already in use for data in | 
|  | * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to | 
|  | * signal to ext4_ext_map_blocks() that map->m_pblk should be treated | 
|  | * as a new "allocated" block region.  Otherwise, we will return 0 and | 
|  | * ext4_ext_map_blocks() will then allocate one or more new clusters | 
|  | * by calling ext4_mb_new_blocks(). | 
|  | */ | 
|  | static int get_implied_cluster_alloc(struct super_block *sb, | 
|  | struct ext4_map_blocks *map, | 
|  | struct ext4_extent *ex, | 
|  | struct ext4_ext_path *path) | 
|  | { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(sb); | 
|  | ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1); | 
|  | ext4_lblk_t ex_cluster_start, ex_cluster_end; | 
|  | ext4_lblk_t rr_cluster_start; | 
|  | ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); | 
|  | ext4_fsblk_t ee_start = ext4_ext_pblock(ex); | 
|  | unsigned short ee_len = ext4_ext_get_actual_len(ex); | 
|  |  | 
|  | /* The extent passed in that we are trying to match */ | 
|  | ex_cluster_start = EXT4_B2C(sbi, ee_block); | 
|  | ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1); | 
|  |  | 
|  | /* The requested region passed into ext4_map_blocks() */ | 
|  | rr_cluster_start = EXT4_B2C(sbi, map->m_lblk); | 
|  |  | 
|  | if ((rr_cluster_start == ex_cluster_end) || | 
|  | (rr_cluster_start == ex_cluster_start)) { | 
|  | if (rr_cluster_start == ex_cluster_end) | 
|  | ee_start += ee_len - 1; | 
|  | map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) + | 
|  | c_offset; | 
|  | map->m_len = min(map->m_len, | 
|  | (unsigned) sbi->s_cluster_ratio - c_offset); | 
|  | /* | 
|  | * Check for and handle this case: | 
|  | * | 
|  | *   |--------- cluster # N-------------| | 
|  | *		       |------- extent ----| | 
|  | *	   |--- requested region ---| | 
|  | *	   |===========| | 
|  | */ | 
|  |  | 
|  | if (map->m_lblk < ee_block) | 
|  | map->m_len = min(map->m_len, ee_block - map->m_lblk); | 
|  |  | 
|  | /* | 
|  | * Check for the case where there is already another allocated | 
|  | * block to the right of 'ex' but before the end of the cluster. | 
|  | * | 
|  | *          |------------- cluster # N-------------| | 
|  | * |----- ex -----|                  |---- ex_right ----| | 
|  | *                  |------ requested region ------| | 
|  | *                  |================| | 
|  | */ | 
|  | if (map->m_lblk > ee_block) { | 
|  | ext4_lblk_t next = ext4_ext_next_allocated_block(path); | 
|  | map->m_len = min(map->m_len, next - map->m_lblk); | 
|  | } | 
|  |  | 
|  | trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Block allocation/map/preallocation routine for extents based files | 
|  | * | 
|  | * | 
|  | * Need to be called with | 
|  | * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block | 
|  | * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) | 
|  | * | 
|  | * return > 0, number of of blocks already mapped/allocated | 
|  | *          if create == 0 and these are pre-allocated blocks | 
|  | *          	buffer head is unmapped | 
|  | *          otherwise blocks are mapped | 
|  | * | 
|  | * return = 0, if plain look up failed (blocks have not been allocated) | 
|  | *          buffer head is unmapped | 
|  | * | 
|  | * return < 0, error case. | 
|  | */ | 
|  | int ext4_ext_map_blocks(handle_t *handle, struct inode *inode, | 
|  | struct ext4_map_blocks *map, int flags) | 
|  | { | 
|  | struct ext4_ext_path *path = NULL; | 
|  | struct ext4_extent newex, *ex, *ex2; | 
|  | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
|  | ext4_fsblk_t newblock = 0; | 
|  | int free_on_err = 0, err = 0, depth, ret; | 
|  | unsigned int allocated = 0, offset = 0; | 
|  | unsigned int allocated_clusters = 0; | 
|  | unsigned int punched_out = 0; | 
|  | unsigned int result = 0; | 
|  | struct ext4_allocation_request ar; | 
|  | ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio; | 
|  | ext4_lblk_t cluster_offset; | 
|  |  | 
|  | ext_debug("blocks %u/%u requested for inode %lu\n", | 
|  | map->m_lblk, map->m_len, inode->i_ino); | 
|  | trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); | 
|  |  | 
|  | /* check in cache */ | 
|  | if (!(flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) && | 
|  | ext4_ext_in_cache(inode, map->m_lblk, &newex)) { | 
|  | if (!newex.ee_start_lo && !newex.ee_start_hi) { | 
|  | if ((sbi->s_cluster_ratio > 1) && | 
|  | ext4_find_delalloc_cluster(inode, map->m_lblk, 0)) | 
|  | map->m_flags |= EXT4_MAP_FROM_CLUSTER; | 
|  |  | 
|  | if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { | 
|  | /* | 
|  | * block isn't allocated yet and | 
|  | * user doesn't want to allocate it | 
|  | */ | 
|  | goto out2; | 
|  | } | 
|  | /* we should allocate requested block */ | 
|  | } else { | 
|  | /* block is already allocated */ | 
|  | if (sbi->s_cluster_ratio > 1) | 
|  | map->m_flags |= EXT4_MAP_FROM_CLUSTER; | 
|  | newblock = map->m_lblk | 
|  | - le32_to_cpu(newex.ee_block) | 
|  | + ext4_ext_pblock(&newex); | 
|  | /* number of remaining blocks in the extent */ | 
|  | allocated = ext4_ext_get_actual_len(&newex) - | 
|  | (map->m_lblk - le32_to_cpu(newex.ee_block)); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* find extent for this block */ | 
|  | path = ext4_ext_find_extent(inode, map->m_lblk, NULL); | 
|  | if (IS_ERR(path)) { | 
|  | err = PTR_ERR(path); | 
|  | path = NULL; | 
|  | goto out2; | 
|  | } | 
|  |  | 
|  | depth = ext_depth(inode); | 
|  |  | 
|  | /* | 
|  | * consistent leaf must not be empty; | 
|  | * this situation is possible, though, _during_ tree modification; | 
|  | * this is why assert can't be put in ext4_ext_find_extent() | 
|  | */ | 
|  | if (unlikely(path[depth].p_ext == NULL && depth != 0)) { | 
|  | EXT4_ERROR_INODE(inode, "bad extent address " | 
|  | "lblock: %lu, depth: %d pblock %lld", | 
|  | (unsigned long) map->m_lblk, depth, | 
|  | path[depth].p_block); | 
|  | err = -EIO; | 
|  | goto out2; | 
|  | } | 
|  |  | 
|  | ex = path[depth].p_ext; | 
|  | if (ex) { | 
|  | ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); | 
|  | ext4_fsblk_t ee_start = ext4_ext_pblock(ex); | 
|  | unsigned short ee_len; | 
|  |  | 
|  | /* | 
|  | * Uninitialized extents are treated as holes, except that | 
|  | * we split out initialized portions during a write. | 
|  | */ | 
|  | ee_len = ext4_ext_get_actual_len(ex); | 
|  |  | 
|  | trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len); | 
|  |  | 
|  | /* if found extent covers block, simply return it */ | 
|  | if (in_range(map->m_lblk, ee_block, ee_len)) { | 
|  | struct ext4_map_blocks punch_map; | 
|  | ext4_fsblk_t partial_cluster = 0; | 
|  |  | 
|  | newblock = map->m_lblk - ee_block + ee_start; | 
|  | /* number of remaining blocks in the extent */ | 
|  | allocated = ee_len - (map->m_lblk - ee_block); | 
|  | ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk, | 
|  | ee_block, ee_len, newblock); | 
|  |  | 
|  | if ((flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) == 0) { | 
|  | /* | 
|  | * Do not put uninitialized extent | 
|  | * in the cache | 
|  | */ | 
|  | if (!ext4_ext_is_uninitialized(ex)) { | 
|  | ext4_ext_put_in_cache(inode, ee_block, | 
|  | ee_len, ee_start); | 
|  | goto out; | 
|  | } | 
|  | ret = ext4_ext_handle_uninitialized_extents( | 
|  | handle, inode, map, path, flags, | 
|  | allocated, newblock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Punch out the map length, but only to the | 
|  | * end of the extent | 
|  | */ | 
|  | punched_out = allocated < map->m_len ? | 
|  | allocated : map->m_len; | 
|  |  | 
|  | /* | 
|  | * Sense extents need to be converted to | 
|  | * uninitialized, they must fit in an | 
|  | * uninitialized extent | 
|  | */ | 
|  | if (punched_out > EXT_UNINIT_MAX_LEN) | 
|  | punched_out = EXT_UNINIT_MAX_LEN; | 
|  |  | 
|  | punch_map.m_lblk = map->m_lblk; | 
|  | punch_map.m_pblk = newblock; | 
|  | punch_map.m_len = punched_out; | 
|  | punch_map.m_flags = 0; | 
|  |  | 
|  | /* Check to see if the extent needs to be split */ | 
|  | if (punch_map.m_len != ee_len || | 
|  | punch_map.m_lblk != ee_block) { | 
|  |  | 
|  | ret = ext4_split_extent(handle, inode, | 
|  | path, &punch_map, 0, | 
|  | EXT4_GET_BLOCKS_PUNCH_OUT_EXT | | 
|  | EXT4_GET_BLOCKS_PRE_IO); | 
|  |  | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | goto out2; | 
|  | } | 
|  | /* | 
|  | * find extent for the block at | 
|  | * the start of the hole | 
|  | */ | 
|  | ext4_ext_drop_refs(path); | 
|  | kfree(path); | 
|  |  | 
|  | path = ext4_ext_find_extent(inode, | 
|  | map->m_lblk, NULL); | 
|  | if (IS_ERR(path)) { | 
|  | err = PTR_ERR(path); | 
|  | path = NULL; | 
|  | goto out2; | 
|  | } | 
|  |  | 
|  | depth = ext_depth(inode); | 
|  | ex = path[depth].p_ext; | 
|  | ee_len = ext4_ext_get_actual_len(ex); | 
|  | ee_block = le32_to_cpu(ex->ee_block); | 
|  | ee_start = ext4_ext_pblock(ex); | 
|  |  | 
|  | } | 
|  |  | 
|  | ext4_ext_mark_uninitialized(ex); | 
|  |  | 
|  | ext4_ext_invalidate_cache(inode); | 
|  |  | 
|  | err = ext4_ext_rm_leaf(handle, inode, path, | 
|  | &partial_cluster, map->m_lblk, | 
|  | map->m_lblk + punched_out); | 
|  |  | 
|  | if (!err && path->p_hdr->eh_entries == 0) { | 
|  | /* | 
|  | * Punch hole freed all of this sub tree, | 
|  | * so we need to correct eh_depth | 
|  | */ | 
|  | err = ext4_ext_get_access(handle, inode, path); | 
|  | if (err == 0) { | 
|  | ext_inode_hdr(inode)->eh_depth = 0; | 
|  | ext_inode_hdr(inode)->eh_max = | 
|  | cpu_to_le16(ext4_ext_space_root( | 
|  | inode, 0)); | 
|  |  | 
|  | err = ext4_ext_dirty( | 
|  | handle, inode, path); | 
|  | } | 
|  | } | 
|  |  | 
|  | goto out2; | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((sbi->s_cluster_ratio > 1) && | 
|  | ext4_find_delalloc_cluster(inode, map->m_lblk, 0)) | 
|  | map->m_flags |= EXT4_MAP_FROM_CLUSTER; | 
|  |  | 
|  | /* | 
|  | * requested block isn't allocated yet; | 
|  | * we couldn't try to create block if create flag is zero | 
|  | */ | 
|  | if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { | 
|  | /* | 
|  | * put just found gap into cache to speed up | 
|  | * subsequent requests | 
|  | */ | 
|  | ext4_ext_put_gap_in_cache(inode, path, map->m_lblk); | 
|  | goto out2; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Okay, we need to do block allocation. | 
|  | */ | 
|  | map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; | 
|  | newex.ee_block = cpu_to_le32(map->m_lblk); | 
|  | cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1); | 
|  |  | 
|  | /* | 
|  | * If we are doing bigalloc, check to see if the extent returned | 
|  | * by ext4_ext_find_extent() implies a cluster we can use. | 
|  | */ | 
|  | if (cluster_offset && ex && | 
|  | get_implied_cluster_alloc(inode->i_sb, map, ex, path)) { | 
|  | ar.len = allocated = map->m_len; | 
|  | newblock = map->m_pblk; | 
|  | map->m_flags |= EXT4_MAP_FROM_CLUSTER; | 
|  | goto got_allocated_blocks; | 
|  | } | 
|  |  | 
|  | /* find neighbour allocated blocks */ | 
|  | ar.lleft = map->m_lblk; | 
|  | err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); | 
|  | if (err) | 
|  | goto out2; | 
|  | ar.lright = map->m_lblk; | 
|  | ex2 = NULL; | 
|  | err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2); | 
|  | if (err) | 
|  | goto out2; | 
|  |  | 
|  | /* Check if the extent after searching to the right implies a | 
|  | * cluster we can use. */ | 
|  | if ((sbi->s_cluster_ratio > 1) && ex2 && | 
|  | get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) { | 
|  | ar.len = allocated = map->m_len; | 
|  | newblock = map->m_pblk; | 
|  | map->m_flags |= EXT4_MAP_FROM_CLUSTER; | 
|  | goto got_allocated_blocks; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * See if request is beyond maximum number of blocks we can have in | 
|  | * a single extent. For an initialized extent this limit is | 
|  | * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is | 
|  | * EXT_UNINIT_MAX_LEN. | 
|  | */ | 
|  | if (map->m_len > EXT_INIT_MAX_LEN && | 
|  | !(flags & EXT4_GET_BLOCKS_UNINIT_EXT)) | 
|  | map->m_len = EXT_INIT_MAX_LEN; | 
|  | else if (map->m_len > EXT_UNINIT_MAX_LEN && | 
|  | (flags & EXT4_GET_BLOCKS_UNINIT_EXT)) | 
|  | map->m_len = EXT_UNINIT_MAX_LEN; | 
|  |  | 
|  | /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */ | 
|  | newex.ee_len = cpu_to_le16(map->m_len); | 
|  | err = ext4_ext_check_overlap(sbi, inode, &newex, path); | 
|  | if (err) | 
|  | allocated = ext4_ext_get_actual_len(&newex); | 
|  | else | 
|  | allocated = map->m_len; | 
|  |  | 
|  | /* allocate new block */ | 
|  | ar.inode = inode; | 
|  | ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk); | 
|  | ar.logical = map->m_lblk; | 
|  | /* | 
|  | * We calculate the offset from the beginning of the cluster | 
|  | * for the logical block number, since when we allocate a | 
|  | * physical cluster, the physical block should start at the | 
|  | * same offset from the beginning of the cluster.  This is | 
|  | * needed so that future calls to get_implied_cluster_alloc() | 
|  | * work correctly. | 
|  | */ | 
|  | offset = map->m_lblk & (sbi->s_cluster_ratio - 1); | 
|  | ar.len = EXT4_NUM_B2C(sbi, offset+allocated); | 
|  | ar.goal -= offset; | 
|  | ar.logical -= offset; | 
|  | if (S_ISREG(inode->i_mode)) | 
|  | ar.flags = EXT4_MB_HINT_DATA; | 
|  | else | 
|  | /* disable in-core preallocation for non-regular files */ | 
|  | ar.flags = 0; | 
|  | if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE) | 
|  | ar.flags |= EXT4_MB_HINT_NOPREALLOC; | 
|  | newblock = ext4_mb_new_blocks(handle, &ar, &err); | 
|  | if (!newblock) | 
|  | goto out2; | 
|  | ext_debug("allocate new block: goal %llu, found %llu/%u\n", | 
|  | ar.goal, newblock, allocated); | 
|  | free_on_err = 1; | 
|  | allocated_clusters = ar.len; | 
|  | ar.len = EXT4_C2B(sbi, ar.len) - offset; | 
|  | if (ar.len > allocated) | 
|  | ar.len = allocated; | 
|  |  | 
|  | got_allocated_blocks: | 
|  | /* try to insert new extent into found leaf and return */ | 
|  | ext4_ext_store_pblock(&newex, newblock + offset); | 
|  | newex.ee_len = cpu_to_le16(ar.len); | 
|  | /* Mark uninitialized */ | 
|  | if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){ | 
|  | ext4_ext_mark_uninitialized(&newex); | 
|  | /* | 
|  | * io_end structure was created for every IO write to an | 
|  | * uninitialized extent. To avoid unnecessary conversion, | 
|  | * here we flag the IO that really needs the conversion. | 
|  | * For non asycn direct IO case, flag the inode state | 
|  | * that we need to perform conversion when IO is done. | 
|  | */ | 
|  | if ((flags & EXT4_GET_BLOCKS_PRE_IO)) { | 
|  | if (io) | 
|  | ext4_set_io_unwritten_flag(inode, io); | 
|  | else | 
|  | ext4_set_inode_state(inode, | 
|  | EXT4_STATE_DIO_UNWRITTEN); | 
|  | } | 
|  | if (ext4_should_dioread_nolock(inode)) | 
|  | map->m_flags |= EXT4_MAP_UNINIT; | 
|  | } | 
|  |  | 
|  | err = 0; | 
|  | if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) | 
|  | err = check_eofblocks_fl(handle, inode, map->m_lblk, | 
|  | path, ar.len); | 
|  | if (!err) | 
|  | err = ext4_ext_insert_extent(handle, inode, path, | 
|  | &newex, flags); | 
|  | if (err && free_on_err) { | 
|  | int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ? | 
|  | EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0; | 
|  | /* free data blocks we just allocated */ | 
|  | /* not a good idea to call discard here directly, | 
|  | * but otherwise we'd need to call it every free() */ | 
|  | ext4_discard_preallocations(inode); | 
|  | ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex), | 
|  | ext4_ext_get_actual_len(&newex), fb_flags); | 
|  | goto out2; | 
|  | } | 
|  |  | 
|  | /* previous routine could use block we allocated */ | 
|  | newblock = ext4_ext_pblock(&newex); | 
|  | allocated = ext4_ext_get_actual_len(&newex); | 
|  | if (allocated > map->m_len) | 
|  | allocated = map->m_len; | 
|  | map->m_flags |= EXT4_MAP_NEW; | 
|  |  | 
|  | /* | 
|  | * Update reserved blocks/metadata blocks after successful | 
|  | * block allocation which had been deferred till now. | 
|  | */ | 
|  | if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { | 
|  | unsigned int reserved_clusters; | 
|  | /* | 
|  | * Check how many clusters we had reserved this allocated range | 
|  | */ | 
|  | reserved_clusters = get_reserved_cluster_alloc(inode, | 
|  | map->m_lblk, allocated); | 
|  | if (map->m_flags & EXT4_MAP_FROM_CLUSTER) { | 
|  | if (reserved_clusters) { | 
|  | /* | 
|  | * We have clusters reserved for this range. | 
|  | * But since we are not doing actual allocation | 
|  | * and are simply using blocks from previously | 
|  | * allocated cluster, we should release the | 
|  | * reservation and not claim quota. | 
|  | */ | 
|  | ext4_da_update_reserve_space(inode, | 
|  | reserved_clusters, 0); | 
|  | } | 
|  | } else { | 
|  | BUG_ON(allocated_clusters < reserved_clusters); | 
|  | /* We will claim quota for all newly allocated blocks.*/ | 
|  | ext4_da_update_reserve_space(inode, allocated_clusters, | 
|  | 1); | 
|  | if (reserved_clusters < allocated_clusters) { | 
|  | struct ext4_inode_info *ei = EXT4_I(inode); | 
|  | int reservation = allocated_clusters - | 
|  | reserved_clusters; | 
|  | /* | 
|  | * It seems we claimed few clusters outside of | 
|  | * the range of this allocation. We should give | 
|  | * it back to the reservation pool. This can | 
|  | * happen in the following case: | 
|  | * | 
|  | * * Suppose s_cluster_ratio is 4 (i.e., each | 
|  | *   cluster has 4 blocks. Thus, the clusters | 
|  | *   are [0-3],[4-7],[8-11]... | 
|  | * * First comes delayed allocation write for | 
|  | *   logical blocks 10 & 11. Since there were no | 
|  | *   previous delayed allocated blocks in the | 
|  | *   range [8-11], we would reserve 1 cluster | 
|  | *   for this write. | 
|  | * * Next comes write for logical blocks 3 to 8. | 
|  | *   In this case, we will reserve 2 clusters | 
|  | *   (for [0-3] and [4-7]; and not for [8-11] as | 
|  | *   that range has a delayed allocated blocks. | 
|  | *   Thus total reserved clusters now becomes 3. | 
|  | * * Now, during the delayed allocation writeout | 
|  | *   time, we will first write blocks [3-8] and | 
|  | *   allocate 3 clusters for writing these | 
|  | *   blocks. Also, we would claim all these | 
|  | *   three clusters above. | 
|  | * * Now when we come here to writeout the | 
|  | *   blocks [10-11], we would expect to claim | 
|  | *   the reservation of 1 cluster we had made | 
|  | *   (and we would claim it since there are no | 
|  | *   more delayed allocated blocks in the range | 
|  | *   [8-11]. But our reserved cluster count had | 
|  | *   already gone to 0. | 
|  | * | 
|  | *   Thus, at the step 4 above when we determine | 
|  | *   that there are still some unwritten delayed | 
|  | *   allocated blocks outside of our current | 
|  | *   block range, we should increment the | 
|  | *   reserved clusters count so that when the | 
|  | *   remaining blocks finally gets written, we | 
|  | *   could claim them. | 
|  | */ | 
|  | dquot_reserve_block(inode, | 
|  | EXT4_C2B(sbi, reservation)); | 
|  | spin_lock(&ei->i_block_reservation_lock); | 
|  | ei->i_reserved_data_blocks += reservation; | 
|  | spin_unlock(&ei->i_block_reservation_lock); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Cache the extent and update transaction to commit on fdatasync only | 
|  | * when it is _not_ an uninitialized extent. | 
|  | */ | 
|  | if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) { | 
|  | ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock); | 
|  | ext4_update_inode_fsync_trans(handle, inode, 1); | 
|  | } else | 
|  | ext4_update_inode_fsync_trans(handle, inode, 0); | 
|  | out: | 
|  | if (allocated > map->m_len) | 
|  | allocated = map->m_len; | 
|  | ext4_ext_show_leaf(inode, path); | 
|  | map->m_flags |= EXT4_MAP_MAPPED; | 
|  | map->m_pblk = newblock; | 
|  | map->m_len = allocated; | 
|  | out2: | 
|  | if (path) { | 
|  | ext4_ext_drop_refs(path); | 
|  | kfree(path); | 
|  | } | 
|  | result = (flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) ? | 
|  | punched_out : allocated; | 
|  |  | 
|  | trace_ext4_ext_map_blocks_exit(inode, map->m_lblk, | 
|  | newblock, map->m_len, err ? err : result); | 
|  |  | 
|  | return err ? err : result; | 
|  | } | 
|  |  | 
|  | void ext4_ext_truncate(struct inode *inode) | 
|  | { | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  | struct super_block *sb = inode->i_sb; | 
|  | ext4_lblk_t last_block; | 
|  | handle_t *handle; | 
|  | loff_t page_len; | 
|  | int err = 0; | 
|  |  | 
|  | /* | 
|  | * finish any pending end_io work so we won't run the risk of | 
|  | * converting any truncated blocks to initialized later | 
|  | */ | 
|  | ext4_flush_completed_IO(inode); | 
|  |  | 
|  | /* | 
|  | * probably first extent we're gonna free will be last in block | 
|  | */ | 
|  | err = ext4_writepage_trans_blocks(inode); | 
|  | handle = ext4_journal_start(inode, err); | 
|  | if (IS_ERR(handle)) | 
|  | return; | 
|  |  | 
|  | if (inode->i_size % PAGE_CACHE_SIZE != 0) { | 
|  | page_len = PAGE_CACHE_SIZE - | 
|  | (inode->i_size & (PAGE_CACHE_SIZE - 1)); | 
|  |  | 
|  | err = ext4_discard_partial_page_buffers(handle, | 
|  | mapping, inode->i_size, page_len, 0); | 
|  |  | 
|  | if (err) | 
|  | goto out_stop; | 
|  | } | 
|  |  | 
|  | if (ext4_orphan_add(handle, inode)) | 
|  | goto out_stop; | 
|  |  | 
|  | down_write(&EXT4_I(inode)->i_data_sem); | 
|  | ext4_ext_invalidate_cache(inode); | 
|  |  | 
|  | ext4_discard_preallocations(inode); | 
|  |  | 
|  | /* | 
|  | * TODO: optimization is possible here. | 
|  | * Probably we need not scan at all, | 
|  | * because page truncation is enough. | 
|  | */ | 
|  |  | 
|  | /* we have to know where to truncate from in crash case */ | 
|  | EXT4_I(inode)->i_disksize = inode->i_size; | 
|  | ext4_mark_inode_dirty(handle, inode); | 
|  |  | 
|  | last_block = (inode->i_size + sb->s_blocksize - 1) | 
|  | >> EXT4_BLOCK_SIZE_BITS(sb); | 
|  | err = ext4_ext_remove_space(inode, last_block); | 
|  |  | 
|  | /* In a multi-transaction truncate, we only make the final | 
|  | * transaction synchronous. | 
|  | */ | 
|  | if (IS_SYNC(inode)) | 
|  | ext4_handle_sync(handle); | 
|  |  | 
|  | up_write(&EXT4_I(inode)->i_data_sem); | 
|  |  | 
|  | out_stop: | 
|  | /* | 
|  | * If this was a simple ftruncate() and the file will remain alive, | 
|  | * then we need to clear up the orphan record which we created above. | 
|  | * However, if this was a real unlink then we were called by | 
|  | * ext4_delete_inode(), and we allow that function to clean up the | 
|  | * orphan info for us. | 
|  | */ | 
|  | if (inode->i_nlink) | 
|  | ext4_orphan_del(handle, inode); | 
|  |  | 
|  | inode->i_mtime = inode->i_ctime = ext4_current_time(inode); | 
|  | ext4_mark_inode_dirty(handle, inode); | 
|  | ext4_journal_stop(handle); | 
|  | } | 
|  |  | 
|  | static void ext4_falloc_update_inode(struct inode *inode, | 
|  | int mode, loff_t new_size, int update_ctime) | 
|  | { | 
|  | struct timespec now; | 
|  |  | 
|  | if (update_ctime) { | 
|  | now = current_fs_time(inode->i_sb); | 
|  | if (!timespec_equal(&inode->i_ctime, &now)) | 
|  | inode->i_ctime = now; | 
|  | } | 
|  | /* | 
|  | * Update only when preallocation was requested beyond | 
|  | * the file size. | 
|  | */ | 
|  | if (!(mode & FALLOC_FL_KEEP_SIZE)) { | 
|  | if (new_size > i_size_read(inode)) | 
|  | i_size_write(inode, new_size); | 
|  | if (new_size > EXT4_I(inode)->i_disksize) | 
|  | ext4_update_i_disksize(inode, new_size); | 
|  | } else { | 
|  | /* | 
|  | * Mark that we allocate beyond EOF so the subsequent truncate | 
|  | * can proceed even if the new size is the same as i_size. | 
|  | */ | 
|  | if (new_size > i_size_read(inode)) | 
|  | ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * preallocate space for a file. This implements ext4's fallocate file | 
|  | * operation, which gets called from sys_fallocate system call. | 
|  | * For block-mapped files, posix_fallocate should fall back to the method | 
|  | * of writing zeroes to the required new blocks (the same behavior which is | 
|  | * expected for file systems which do not support fallocate() system call). | 
|  | */ | 
|  | long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len) | 
|  | { | 
|  | struct inode *inode = file->f_path.dentry->d_inode; | 
|  | handle_t *handle; | 
|  | loff_t new_size; | 
|  | unsigned int max_blocks; | 
|  | int ret = 0; | 
|  | int ret2 = 0; | 
|  | int retries = 0; | 
|  | int flags; | 
|  | struct ext4_map_blocks map; | 
|  | unsigned int credits, blkbits = inode->i_blkbits; | 
|  |  | 
|  | /* | 
|  | * currently supporting (pre)allocate mode for extent-based | 
|  | * files _only_ | 
|  | */ | 
|  | if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | /* Return error if mode is not supported */ | 
|  | if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (mode & FALLOC_FL_PUNCH_HOLE) | 
|  | return ext4_punch_hole(file, offset, len); | 
|  |  | 
|  | trace_ext4_fallocate_enter(inode, offset, len, mode); | 
|  | map.m_lblk = offset >> blkbits; | 
|  | /* | 
|  | * We can't just convert len to max_blocks because | 
|  | * If blocksize = 4096 offset = 3072 and len = 2048 | 
|  | */ | 
|  | max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) | 
|  | - map.m_lblk; | 
|  | /* | 
|  | * credits to insert 1 extent into extent tree | 
|  | */ | 
|  | credits = ext4_chunk_trans_blocks(inode, max_blocks); | 
|  | mutex_lock(&inode->i_mutex); | 
|  | ret = inode_newsize_ok(inode, (len + offset)); | 
|  | if (ret) { | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | trace_ext4_fallocate_exit(inode, offset, max_blocks, ret); | 
|  | return ret; | 
|  | } | 
|  | flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT; | 
|  | if (mode & FALLOC_FL_KEEP_SIZE) | 
|  | flags |= EXT4_GET_BLOCKS_KEEP_SIZE; | 
|  | /* | 
|  | * Don't normalize the request if it can fit in one extent so | 
|  | * that it doesn't get unnecessarily split into multiple | 
|  | * extents. | 
|  | */ | 
|  | if (len <= EXT_UNINIT_MAX_LEN << blkbits) | 
|  | flags |= EXT4_GET_BLOCKS_NO_NORMALIZE; | 
|  | retry: | 
|  | while (ret >= 0 && ret < max_blocks) { | 
|  | map.m_lblk = map.m_lblk + ret; | 
|  | map.m_len = max_blocks = max_blocks - ret; | 
|  | handle = ext4_journal_start(inode, credits); | 
|  | if (IS_ERR(handle)) { | 
|  | ret = PTR_ERR(handle); | 
|  | break; | 
|  | } | 
|  | ret = ext4_map_blocks(handle, inode, &map, flags); | 
|  | if (ret <= 0) { | 
|  | #ifdef EXT4FS_DEBUG | 
|  | WARN_ON(ret <= 0); | 
|  | printk(KERN_ERR "%s: ext4_ext_map_blocks " | 
|  | "returned error inode#%lu, block=%u, " | 
|  | "max_blocks=%u", __func__, | 
|  | inode->i_ino, map.m_lblk, max_blocks); | 
|  | #endif | 
|  | ext4_mark_inode_dirty(handle, inode); | 
|  | ret2 = ext4_journal_stop(handle); | 
|  | break; | 
|  | } | 
|  | if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len, | 
|  | blkbits) >> blkbits)) | 
|  | new_size = offset + len; | 
|  | else | 
|  | new_size = ((loff_t) map.m_lblk + ret) << blkbits; | 
|  |  | 
|  | ext4_falloc_update_inode(inode, mode, new_size, | 
|  | (map.m_flags & EXT4_MAP_NEW)); | 
|  | ext4_mark_inode_dirty(handle, inode); | 
|  | ret2 = ext4_journal_stop(handle); | 
|  | if (ret2) | 
|  | break; | 
|  | } | 
|  | if (ret == -ENOSPC && | 
|  | ext4_should_retry_alloc(inode->i_sb, &retries)) { | 
|  | ret = 0; | 
|  | goto retry; | 
|  | } | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | trace_ext4_fallocate_exit(inode, offset, max_blocks, | 
|  | ret > 0 ? ret2 : ret); | 
|  | return ret > 0 ? ret2 : ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function convert a range of blocks to written extents | 
|  | * The caller of this function will pass the start offset and the size. | 
|  | * all unwritten extents within this range will be converted to | 
|  | * written extents. | 
|  | * | 
|  | * This function is called from the direct IO end io call back | 
|  | * function, to convert the fallocated extents after IO is completed. | 
|  | * Returns 0 on success. | 
|  | */ | 
|  | int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset, | 
|  | ssize_t len) | 
|  | { | 
|  | handle_t *handle; | 
|  | unsigned int max_blocks; | 
|  | int ret = 0; | 
|  | int ret2 = 0; | 
|  | struct ext4_map_blocks map; | 
|  | unsigned int credits, blkbits = inode->i_blkbits; | 
|  |  | 
|  | map.m_lblk = offset >> blkbits; | 
|  | /* | 
|  | * We can't just convert len to max_blocks because | 
|  | * If blocksize = 4096 offset = 3072 and len = 2048 | 
|  | */ | 
|  | max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) - | 
|  | map.m_lblk); | 
|  | /* | 
|  | * credits to insert 1 extent into extent tree | 
|  | */ | 
|  | credits = ext4_chunk_trans_blocks(inode, max_blocks); | 
|  | while (ret >= 0 && ret < max_blocks) { | 
|  | map.m_lblk += ret; | 
|  | map.m_len = (max_blocks -= ret); | 
|  | handle = ext4_journal_start(inode, credits); | 
|  | if (IS_ERR(handle)) { | 
|  | ret = PTR_ERR(handle); | 
|  | break; | 
|  | } | 
|  | ret = ext4_map_blocks(handle, inode, &map, | 
|  | EXT4_GET_BLOCKS_IO_CONVERT_EXT); | 
|  | if (ret <= 0) { | 
|  | WARN_ON(ret <= 0); | 
|  | printk(KERN_ERR "%s: ext4_ext_map_blocks " | 
|  | "returned error inode#%lu, block=%u, " | 
|  | "max_blocks=%u", __func__, | 
|  | inode->i_ino, map.m_lblk, map.m_len); | 
|  | } | 
|  | ext4_mark_inode_dirty(handle, inode); | 
|  | ret2 = ext4_journal_stop(handle); | 
|  | if (ret <= 0 || ret2 ) | 
|  | break; | 
|  | } | 
|  | return ret > 0 ? ret2 : ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Callback function called for each extent to gather FIEMAP information. | 
|  | */ | 
|  | static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next, | 
|  | struct ext4_ext_cache *newex, struct ext4_extent *ex, | 
|  | void *data) | 
|  | { | 
|  | __u64	logical; | 
|  | __u64	physical; | 
|  | __u64	length; | 
|  | __u32	flags = 0; | 
|  | int		ret = 0; | 
|  | struct fiemap_extent_info *fieinfo = data; | 
|  | unsigned char blksize_bits; | 
|  |  | 
|  | blksize_bits = inode->i_sb->s_blocksize_bits; | 
|  | logical = (__u64)newex->ec_block << blksize_bits; | 
|  |  | 
|  | if (newex->ec_start == 0) { | 
|  | /* | 
|  | * No extent in extent-tree contains block @newex->ec_start, | 
|  | * then the block may stay in 1)a hole or 2)delayed-extent. | 
|  | * | 
|  | * Holes or delayed-extents are processed as follows. | 
|  | * 1. lookup dirty pages with specified range in pagecache. | 
|  | *    If no page is got, then there is no delayed-extent and | 
|  | *    return with EXT_CONTINUE. | 
|  | * 2. find the 1st mapped buffer, | 
|  | * 3. check if the mapped buffer is both in the request range | 
|  | *    and a delayed buffer. If not, there is no delayed-extent, | 
|  | *    then return. | 
|  | * 4. a delayed-extent is found, the extent will be collected. | 
|  | */ | 
|  | ext4_lblk_t	end = 0; | 
|  | pgoff_t		last_offset; | 
|  | pgoff_t		offset; | 
|  | pgoff_t		index; | 
|  | pgoff_t		start_index = 0; | 
|  | struct page	**pages = NULL; | 
|  | struct buffer_head *bh = NULL; | 
|  | struct buffer_head *head = NULL; | 
|  | unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *); | 
|  |  | 
|  | pages = kmalloc(PAGE_SIZE, GFP_KERNEL); | 
|  | if (pages == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | offset = logical >> PAGE_SHIFT; | 
|  | repeat: | 
|  | last_offset = offset; | 
|  | head = NULL; | 
|  | ret = find_get_pages_tag(inode->i_mapping, &offset, | 
|  | PAGECACHE_TAG_DIRTY, nr_pages, pages); | 
|  |  | 
|  | if (!(flags & FIEMAP_EXTENT_DELALLOC)) { | 
|  | /* First time, try to find a mapped buffer. */ | 
|  | if (ret == 0) { | 
|  | out: | 
|  | for (index = 0; index < ret; index++) | 
|  | page_cache_release(pages[index]); | 
|  | /* just a hole. */ | 
|  | kfree(pages); | 
|  | return EXT_CONTINUE; | 
|  | } | 
|  | index = 0; | 
|  |  | 
|  | next_page: | 
|  | /* Try to find the 1st mapped buffer. */ | 
|  | end = ((__u64)pages[index]->index << PAGE_SHIFT) >> | 
|  | blksize_bits; | 
|  | if (!page_has_buffers(pages[index])) | 
|  | goto out; | 
|  | head = page_buffers(pages[index]); | 
|  | if (!head) | 
|  | goto out; | 
|  |  | 
|  | index++; | 
|  | bh = head; | 
|  | do { | 
|  | if (end >= newex->ec_block + | 
|  | newex->ec_len) | 
|  | /* The buffer is out of | 
|  | * the request range. | 
|  | */ | 
|  | goto out; | 
|  |  | 
|  | if (buffer_mapped(bh) && | 
|  | end >= newex->ec_block) { | 
|  | start_index = index - 1; | 
|  | /* get the 1st mapped buffer. */ | 
|  | goto found_mapped_buffer; | 
|  | } | 
|  |  | 
|  | bh = bh->b_this_page; | 
|  | end++; | 
|  | } while (bh != head); | 
|  |  | 
|  | /* No mapped buffer in the range found in this page, | 
|  | * We need to look up next page. | 
|  | */ | 
|  | if (index >= ret) { | 
|  | /* There is no page left, but we need to limit | 
|  | * newex->ec_len. | 
|  | */ | 
|  | newex->ec_len = end - newex->ec_block; | 
|  | goto out; | 
|  | } | 
|  | goto next_page; | 
|  | } else { | 
|  | /*Find contiguous delayed buffers. */ | 
|  | if (ret > 0 && pages[0]->index == last_offset) | 
|  | head = page_buffers(pages[0]); | 
|  | bh = head; | 
|  | index = 1; | 
|  | start_index = 0; | 
|  | } | 
|  |  | 
|  | found_mapped_buffer: | 
|  | if (bh != NULL && buffer_delay(bh)) { | 
|  | /* 1st or contiguous delayed buffer found. */ | 
|  | if (!(flags & FIEMAP_EXTENT_DELALLOC)) { | 
|  | /* | 
|  | * 1st delayed buffer found, record | 
|  | * the start of extent. | 
|  | */ | 
|  | flags |= FIEMAP_EXTENT_DELALLOC; | 
|  | newex->ec_block = end; | 
|  | logical = (__u64)end << blksize_bits; | 
|  | } | 
|  | /* Find contiguous delayed buffers. */ | 
|  | do { | 
|  | if (!buffer_delay(bh)) | 
|  | goto found_delayed_extent; | 
|  | bh = bh->b_this_page; | 
|  | end++; | 
|  | } while (bh != head); | 
|  |  | 
|  | for (; index < ret; index++) { | 
|  | if (!page_has_buffers(pages[index])) { | 
|  | bh = NULL; | 
|  | break; | 
|  | } | 
|  | head = page_buffers(pages[index]); | 
|  | if (!head) { | 
|  | bh = NULL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (pages[index]->index != | 
|  | pages[start_index]->index + index | 
|  | - start_index) { | 
|  | /* Blocks are not contiguous. */ | 
|  | bh = NULL; | 
|  | break; | 
|  | } | 
|  | bh = head; | 
|  | do { | 
|  | if (!buffer_delay(bh)) | 
|  | /* Delayed-extent ends. */ | 
|  | goto found_delayed_extent; | 
|  | bh = bh->b_this_page; | 
|  | end++; | 
|  | } while (bh != head); | 
|  | } | 
|  | } else if (!(flags & FIEMAP_EXTENT_DELALLOC)) | 
|  | /* a hole found. */ | 
|  | goto out; | 
|  |  | 
|  | found_delayed_extent: | 
|  | newex->ec_len = min(end - newex->ec_block, | 
|  | (ext4_lblk_t)EXT_INIT_MAX_LEN); | 
|  | if (ret == nr_pages && bh != NULL && | 
|  | newex->ec_len < EXT_INIT_MAX_LEN && | 
|  | buffer_delay(bh)) { | 
|  | /* Have not collected an extent and continue. */ | 
|  | for (index = 0; index < ret; index++) | 
|  | page_cache_release(pages[index]); | 
|  | goto repeat; | 
|  | } | 
|  |  | 
|  | for (index = 0; index < ret; index++) | 
|  | page_cache_release(pages[index]); | 
|  | kfree(pages); | 
|  | } | 
|  |  | 
|  | physical = (__u64)newex->ec_start << blksize_bits; | 
|  | length =   (__u64)newex->ec_len << blksize_bits; | 
|  |  | 
|  | if (ex && ext4_ext_is_uninitialized(ex)) | 
|  | flags |= FIEMAP_EXTENT_UNWRITTEN; | 
|  |  | 
|  | if (next == EXT_MAX_BLOCKS) | 
|  | flags |= FIEMAP_EXTENT_LAST; | 
|  |  | 
|  | ret = fiemap_fill_next_extent(fieinfo, logical, physical, | 
|  | length, flags); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (ret == 1) | 
|  | return EXT_BREAK; | 
|  | return EXT_CONTINUE; | 
|  | } | 
|  | /* fiemap flags we can handle specified here */ | 
|  | #define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR) | 
|  |  | 
|  | static int ext4_xattr_fiemap(struct inode *inode, | 
|  | struct fiemap_extent_info *fieinfo) | 
|  | { | 
|  | __u64 physical = 0; | 
|  | __u64 length; | 
|  | __u32 flags = FIEMAP_EXTENT_LAST; | 
|  | int blockbits = inode->i_sb->s_blocksize_bits; | 
|  | int error = 0; | 
|  |  | 
|  | /* in-inode? */ | 
|  | if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { | 
|  | struct ext4_iloc iloc; | 
|  | int offset;	/* offset of xattr in inode */ | 
|  |  | 
|  | error = ext4_get_inode_loc(inode, &iloc); | 
|  | if (error) | 
|  | return error; | 
|  | physical = iloc.bh->b_blocknr << blockbits; | 
|  | offset = EXT4_GOOD_OLD_INODE_SIZE + | 
|  | EXT4_I(inode)->i_extra_isize; | 
|  | physical += offset; | 
|  | length = EXT4_SB(inode->i_sb)->s_inode_size - offset; | 
|  | flags |= FIEMAP_EXTENT_DATA_INLINE; | 
|  | brelse(iloc.bh); | 
|  | } else { /* external block */ | 
|  | physical = EXT4_I(inode)->i_file_acl << blockbits; | 
|  | length = inode->i_sb->s_blocksize; | 
|  | } | 
|  |  | 
|  | if (physical) | 
|  | error = fiemap_fill_next_extent(fieinfo, 0, physical, | 
|  | length, flags); | 
|  | return (error < 0 ? error : 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_ext_punch_hole | 
|  | * | 
|  | * Punches a hole of "length" bytes in a file starting | 
|  | * at byte "offset" | 
|  | * | 
|  | * @inode:  The inode of the file to punch a hole in | 
|  | * @offset: The starting byte offset of the hole | 
|  | * @length: The length of the hole | 
|  | * | 
|  | * Returns the number of blocks removed or negative on err | 
|  | */ | 
|  | int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length) | 
|  | { | 
|  | struct inode *inode = file->f_path.dentry->d_inode; | 
|  | struct super_block *sb = inode->i_sb; | 
|  | struct ext4_ext_cache cache_ex; | 
|  | ext4_lblk_t first_block, last_block, num_blocks, iblock, max_blocks; | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  | struct ext4_map_blocks map; | 
|  | handle_t *handle; | 
|  | loff_t first_page, last_page, page_len; | 
|  | loff_t first_page_offset, last_page_offset; | 
|  | int ret, credits, blocks_released, err = 0; | 
|  |  | 
|  | /* No need to punch hole beyond i_size */ | 
|  | if (offset >= inode->i_size) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If the hole extends beyond i_size, set the hole | 
|  | * to end after the page that contains i_size | 
|  | */ | 
|  | if (offset + length > inode->i_size) { | 
|  | length = inode->i_size + | 
|  | PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - | 
|  | offset; | 
|  | } | 
|  |  | 
|  | first_block = (offset + sb->s_blocksize - 1) >> | 
|  | EXT4_BLOCK_SIZE_BITS(sb); | 
|  | last_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); | 
|  |  | 
|  | first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | 
|  | last_page = (offset + length) >> PAGE_CACHE_SHIFT; | 
|  |  | 
|  | first_page_offset = first_page << PAGE_CACHE_SHIFT; | 
|  | last_page_offset = last_page << PAGE_CACHE_SHIFT; | 
|  |  | 
|  | /* | 
|  | * Write out all dirty pages to avoid race conditions | 
|  | * Then release them. | 
|  | */ | 
|  | if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { | 
|  | err = filemap_write_and_wait_range(mapping, | 
|  | offset, offset + length - 1); | 
|  |  | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* Now release the pages */ | 
|  | if (last_page_offset > first_page_offset) { | 
|  | truncate_inode_pages_range(mapping, first_page_offset, | 
|  | last_page_offset-1); | 
|  | } | 
|  |  | 
|  | /* finish any pending end_io work */ | 
|  | ext4_flush_completed_IO(inode); | 
|  |  | 
|  | credits = ext4_writepage_trans_blocks(inode); | 
|  | handle = ext4_journal_start(inode, credits); | 
|  | if (IS_ERR(handle)) | 
|  | return PTR_ERR(handle); | 
|  |  | 
|  | err = ext4_orphan_add(handle, inode); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Now we need to zero out the non-page-aligned data in the | 
|  | * pages at the start and tail of the hole, and unmap the buffer | 
|  | * heads for the block aligned regions of the page that were | 
|  | * completely zeroed. | 
|  | */ | 
|  | if (first_page > last_page) { | 
|  | /* | 
|  | * If the file space being truncated is contained within a page | 
|  | * just zero out and unmap the middle of that page | 
|  | */ | 
|  | err = ext4_discard_partial_page_buffers(handle, | 
|  | mapping, offset, length, 0); | 
|  |  | 
|  | if (err) | 
|  | goto out; | 
|  | } else { | 
|  | /* | 
|  | * zero out and unmap the partial page that contains | 
|  | * the start of the hole | 
|  | */ | 
|  | page_len  = first_page_offset - offset; | 
|  | if (page_len > 0) { | 
|  | err = ext4_discard_partial_page_buffers(handle, mapping, | 
|  | offset, page_len, 0); | 
|  | if (err) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * zero out and unmap the partial page that contains | 
|  | * the end of the hole | 
|  | */ | 
|  | page_len = offset + length - last_page_offset; | 
|  | if (page_len > 0) { | 
|  | err = ext4_discard_partial_page_buffers(handle, mapping, | 
|  | last_page_offset, page_len, 0); | 
|  | if (err) | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * If i_size is contained in the last page, we need to | 
|  | * unmap and zero the partial page after i_size | 
|  | */ | 
|  | if (inode->i_size >> PAGE_CACHE_SHIFT == last_page && | 
|  | inode->i_size % PAGE_CACHE_SIZE != 0) { | 
|  |  | 
|  | page_len = PAGE_CACHE_SIZE - | 
|  | (inode->i_size & (PAGE_CACHE_SIZE - 1)); | 
|  |  | 
|  | if (page_len > 0) { | 
|  | err = ext4_discard_partial_page_buffers(handle, | 
|  | mapping, inode->i_size, page_len, 0); | 
|  |  | 
|  | if (err) | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If there are no blocks to remove, return now */ | 
|  | if (first_block >= last_block) | 
|  | goto out; | 
|  |  | 
|  | down_write(&EXT4_I(inode)->i_data_sem); | 
|  | ext4_ext_invalidate_cache(inode); | 
|  | ext4_discard_preallocations(inode); | 
|  |  | 
|  | /* | 
|  | * Loop over all the blocks and identify blocks | 
|  | * that need to be punched out | 
|  | */ | 
|  | iblock = first_block; | 
|  | blocks_released = 0; | 
|  | while (iblock < last_block) { | 
|  | max_blocks = last_block - iblock; | 
|  | num_blocks = 1; | 
|  | memset(&map, 0, sizeof(map)); | 
|  | map.m_lblk = iblock; | 
|  | map.m_len = max_blocks; | 
|  | ret = ext4_ext_map_blocks(handle, inode, &map, | 
|  | EXT4_GET_BLOCKS_PUNCH_OUT_EXT); | 
|  |  | 
|  | if (ret > 0) { | 
|  | blocks_released += ret; | 
|  | num_blocks = ret; | 
|  | } else if (ret == 0) { | 
|  | /* | 
|  | * If map blocks could not find the block, | 
|  | * then it is in a hole.  If the hole was | 
|  | * not already cached, then map blocks should | 
|  | * put it in the cache.  So we can get the hole | 
|  | * out of the cache | 
|  | */ | 
|  | memset(&cache_ex, 0, sizeof(cache_ex)); | 
|  | if ((ext4_ext_check_cache(inode, iblock, &cache_ex)) && | 
|  | !cache_ex.ec_start) { | 
|  |  | 
|  | /* The hole is cached */ | 
|  | num_blocks = cache_ex.ec_block + | 
|  | cache_ex.ec_len - iblock; | 
|  |  | 
|  | } else { | 
|  | /* The block could not be identified */ | 
|  | err = -EIO; | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | /* Map blocks error */ | 
|  | err = ret; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (num_blocks == 0) { | 
|  | /* This condition should never happen */ | 
|  | ext_debug("Block lookup failed"); | 
|  | err = -EIO; | 
|  | break; | 
|  | } | 
|  |  | 
|  | iblock += num_blocks; | 
|  | } | 
|  |  | 
|  | if (blocks_released > 0) { | 
|  | ext4_ext_invalidate_cache(inode); | 
|  | ext4_discard_preallocations(inode); | 
|  | } | 
|  |  | 
|  | if (IS_SYNC(inode)) | 
|  | ext4_handle_sync(handle); | 
|  |  | 
|  | up_write(&EXT4_I(inode)->i_data_sem); | 
|  |  | 
|  | out: | 
|  | ext4_orphan_del(handle, inode); | 
|  | inode->i_mtime = inode->i_ctime = ext4_current_time(inode); | 
|  | ext4_mark_inode_dirty(handle, inode); | 
|  | ext4_journal_stop(handle); | 
|  | return err; | 
|  | } | 
|  | int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, | 
|  | __u64 start, __u64 len) | 
|  | { | 
|  | ext4_lblk_t start_blk; | 
|  | int error = 0; | 
|  |  | 
|  | /* fallback to generic here if not in extents fmt */ | 
|  | if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) | 
|  | return generic_block_fiemap(inode, fieinfo, start, len, | 
|  | ext4_get_block); | 
|  |  | 
|  | if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS)) | 
|  | return -EBADR; | 
|  |  | 
|  | if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { | 
|  | error = ext4_xattr_fiemap(inode, fieinfo); | 
|  | } else { | 
|  | ext4_lblk_t len_blks; | 
|  | __u64 last_blk; | 
|  |  | 
|  | start_blk = start >> inode->i_sb->s_blocksize_bits; | 
|  | last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits; | 
|  | if (last_blk >= EXT_MAX_BLOCKS) | 
|  | last_blk = EXT_MAX_BLOCKS-1; | 
|  | len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1; | 
|  |  | 
|  | /* | 
|  | * Walk the extent tree gathering extent information. | 
|  | * ext4_ext_fiemap_cb will push extents back to user. | 
|  | */ | 
|  | error = ext4_ext_walk_space(inode, start_blk, len_blks, | 
|  | ext4_ext_fiemap_cb, fieinfo); | 
|  | } | 
|  |  | 
|  | return error; | 
|  | } |