|  | /* calibrate.c: default delay calibration | 
|  | * | 
|  | * Excised from init/main.c | 
|  | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|  | */ | 
|  |  | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/timex.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/percpu.h> | 
|  |  | 
|  | unsigned long lpj_fine; | 
|  | unsigned long preset_lpj; | 
|  | static int __init lpj_setup(char *str) | 
|  | { | 
|  | preset_lpj = simple_strtoul(str,NULL,0); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("lpj=", lpj_setup); | 
|  |  | 
|  | #ifdef ARCH_HAS_READ_CURRENT_TIMER | 
|  |  | 
|  | /* This routine uses the read_current_timer() routine and gets the | 
|  | * loops per jiffy directly, instead of guessing it using delay(). | 
|  | * Also, this code tries to handle non-maskable asynchronous events | 
|  | * (like SMIs) | 
|  | */ | 
|  | #define DELAY_CALIBRATION_TICKS			((HZ < 100) ? 1 : (HZ/100)) | 
|  | #define MAX_DIRECT_CALIBRATION_RETRIES		5 | 
|  |  | 
|  | static unsigned long __cpuinit calibrate_delay_direct(void) | 
|  | { | 
|  | unsigned long pre_start, start, post_start; | 
|  | unsigned long pre_end, end, post_end; | 
|  | unsigned long start_jiffies; | 
|  | unsigned long timer_rate_min, timer_rate_max; | 
|  | unsigned long good_timer_sum = 0; | 
|  | unsigned long good_timer_count = 0; | 
|  | unsigned long measured_times[MAX_DIRECT_CALIBRATION_RETRIES]; | 
|  | int max = -1; /* index of measured_times with max/min values or not set */ | 
|  | int min = -1; | 
|  | int i; | 
|  |  | 
|  | if (read_current_timer(&pre_start) < 0 ) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * A simple loop like | 
|  | *	while ( jiffies < start_jiffies+1) | 
|  | *		start = read_current_timer(); | 
|  | * will not do. As we don't really know whether jiffy switch | 
|  | * happened first or timer_value was read first. And some asynchronous | 
|  | * event can happen between these two events introducing errors in lpj. | 
|  | * | 
|  | * So, we do | 
|  | * 1. pre_start <- When we are sure that jiffy switch hasn't happened | 
|  | * 2. check jiffy switch | 
|  | * 3. start <- timer value before or after jiffy switch | 
|  | * 4. post_start <- When we are sure that jiffy switch has happened | 
|  | * | 
|  | * Note, we don't know anything about order of 2 and 3. | 
|  | * Now, by looking at post_start and pre_start difference, we can | 
|  | * check whether any asynchronous event happened or not | 
|  | */ | 
|  |  | 
|  | for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) { | 
|  | pre_start = 0; | 
|  | read_current_timer(&start); | 
|  | start_jiffies = jiffies; | 
|  | while (time_before_eq(jiffies, start_jiffies + 1)) { | 
|  | pre_start = start; | 
|  | read_current_timer(&start); | 
|  | } | 
|  | read_current_timer(&post_start); | 
|  |  | 
|  | pre_end = 0; | 
|  | end = post_start; | 
|  | while (time_before_eq(jiffies, start_jiffies + 1 + | 
|  | DELAY_CALIBRATION_TICKS)) { | 
|  | pre_end = end; | 
|  | read_current_timer(&end); | 
|  | } | 
|  | read_current_timer(&post_end); | 
|  |  | 
|  | timer_rate_max = (post_end - pre_start) / | 
|  | DELAY_CALIBRATION_TICKS; | 
|  | timer_rate_min = (pre_end - post_start) / | 
|  | DELAY_CALIBRATION_TICKS; | 
|  |  | 
|  | /* | 
|  | * If the upper limit and lower limit of the timer_rate is | 
|  | * >= 12.5% apart, redo calibration. | 
|  | */ | 
|  | if (start >= post_end) | 
|  | printk(KERN_NOTICE "calibrate_delay_direct() ignoring " | 
|  | "timer_rate as we had a TSC wrap around" | 
|  | " start=%lu >=post_end=%lu\n", | 
|  | start, post_end); | 
|  | if (start < post_end && pre_start != 0 && pre_end != 0 && | 
|  | (timer_rate_max - timer_rate_min) < (timer_rate_max >> 3)) { | 
|  | good_timer_count++; | 
|  | good_timer_sum += timer_rate_max; | 
|  | measured_times[i] = timer_rate_max; | 
|  | if (max < 0 || timer_rate_max > measured_times[max]) | 
|  | max = i; | 
|  | if (min < 0 || timer_rate_max < measured_times[min]) | 
|  | min = i; | 
|  | } else | 
|  | measured_times[i] = 0; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the maximum & minimum - if they differ too much throw out the | 
|  | * one with the largest difference from the mean and try again... | 
|  | */ | 
|  | while (good_timer_count > 1) { | 
|  | unsigned long estimate; | 
|  | unsigned long maxdiff; | 
|  |  | 
|  | /* compute the estimate */ | 
|  | estimate = (good_timer_sum/good_timer_count); | 
|  | maxdiff = estimate >> 3; | 
|  |  | 
|  | /* if range is within 12% let's take it */ | 
|  | if ((measured_times[max] - measured_times[min]) < maxdiff) | 
|  | return estimate; | 
|  |  | 
|  | /* ok - drop the worse value and try again... */ | 
|  | good_timer_sum = 0; | 
|  | good_timer_count = 0; | 
|  | if ((measured_times[max] - estimate) < | 
|  | (estimate - measured_times[min])) { | 
|  | printk(KERN_NOTICE "calibrate_delay_direct() dropping " | 
|  | "min bogoMips estimate %d = %lu\n", | 
|  | min, measured_times[min]); | 
|  | measured_times[min] = 0; | 
|  | min = max; | 
|  | } else { | 
|  | printk(KERN_NOTICE "calibrate_delay_direct() dropping " | 
|  | "max bogoMips estimate %d = %lu\n", | 
|  | max, measured_times[max]); | 
|  | measured_times[max] = 0; | 
|  | max = min; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) { | 
|  | if (measured_times[i] == 0) | 
|  | continue; | 
|  | good_timer_count++; | 
|  | good_timer_sum += measured_times[i]; | 
|  | if (measured_times[i] < measured_times[min]) | 
|  | min = i; | 
|  | if (measured_times[i] > measured_times[max]) | 
|  | max = i; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | printk(KERN_NOTICE "calibrate_delay_direct() failed to get a good " | 
|  | "estimate for loops_per_jiffy.\nProbably due to long platform " | 
|  | "interrupts. Consider using \"lpj=\" boot option.\n"); | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | static unsigned long __cpuinit calibrate_delay_direct(void) {return 0;} | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * This is the number of bits of precision for the loops_per_jiffy.  Each | 
|  | * time we refine our estimate after the first takes 1.5/HZ seconds, so try | 
|  | * to start with a good estimate. | 
|  | * For the boot cpu we can skip the delay calibration and assign it a value | 
|  | * calculated based on the timer frequency. | 
|  | * For the rest of the CPUs we cannot assume that the timer frequency is same as | 
|  | * the cpu frequency, hence do the calibration for those. | 
|  | */ | 
|  | #define LPS_PREC 8 | 
|  |  | 
|  | static unsigned long __cpuinit calibrate_delay_converge(void) | 
|  | { | 
|  | /* First stage - slowly accelerate to find initial bounds */ | 
|  | unsigned long lpj, lpj_base, ticks, loopadd, loopadd_base, chop_limit; | 
|  | int trials = 0, band = 0, trial_in_band = 0; | 
|  |  | 
|  | lpj = (1<<12); | 
|  |  | 
|  | /* wait for "start of" clock tick */ | 
|  | ticks = jiffies; | 
|  | while (ticks == jiffies) | 
|  | ; /* nothing */ | 
|  | /* Go .. */ | 
|  | ticks = jiffies; | 
|  | do { | 
|  | if (++trial_in_band == (1<<band)) { | 
|  | ++band; | 
|  | trial_in_band = 0; | 
|  | } | 
|  | __delay(lpj * band); | 
|  | trials += band; | 
|  | } while (ticks == jiffies); | 
|  | /* | 
|  | * We overshot, so retreat to a clear underestimate. Then estimate | 
|  | * the largest likely undershoot. This defines our chop bounds. | 
|  | */ | 
|  | trials -= band; | 
|  | loopadd_base = lpj * band; | 
|  | lpj_base = lpj * trials; | 
|  |  | 
|  | recalibrate: | 
|  | lpj = lpj_base; | 
|  | loopadd = loopadd_base; | 
|  |  | 
|  | /* | 
|  | * Do a binary approximation to get lpj set to | 
|  | * equal one clock (up to LPS_PREC bits) | 
|  | */ | 
|  | chop_limit = lpj >> LPS_PREC; | 
|  | while (loopadd > chop_limit) { | 
|  | lpj += loopadd; | 
|  | ticks = jiffies; | 
|  | while (ticks == jiffies) | 
|  | ; /* nothing */ | 
|  | ticks = jiffies; | 
|  | __delay(lpj); | 
|  | if (jiffies != ticks)	/* longer than 1 tick */ | 
|  | lpj -= loopadd; | 
|  | loopadd >>= 1; | 
|  | } | 
|  | /* | 
|  | * If we incremented every single time possible, presume we've | 
|  | * massively underestimated initially, and retry with a higher | 
|  | * start, and larger range. (Only seen on x86_64, due to SMIs) | 
|  | */ | 
|  | if (lpj + loopadd * 2 == lpj_base + loopadd_base * 2) { | 
|  | lpj_base = lpj; | 
|  | loopadd_base <<= 2; | 
|  | goto recalibrate; | 
|  | } | 
|  |  | 
|  | return lpj; | 
|  | } | 
|  |  | 
|  | static DEFINE_PER_CPU(unsigned long, cpu_loops_per_jiffy) = { 0 }; | 
|  |  | 
|  | /* | 
|  | * Check if cpu calibration delay is already known. For example, | 
|  | * some processors with multi-core sockets may have all cores | 
|  | * with the same calibration delay. | 
|  | * | 
|  | * Architectures should override this function if a faster calibration | 
|  | * method is available. | 
|  | */ | 
|  | unsigned long __attribute__((weak)) __cpuinit calibrate_delay_is_known(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __cpuinit calibrate_delay(void) | 
|  | { | 
|  | unsigned long lpj; | 
|  | static bool printed; | 
|  | int this_cpu = smp_processor_id(); | 
|  |  | 
|  | if (per_cpu(cpu_loops_per_jiffy, this_cpu)) { | 
|  | lpj = per_cpu(cpu_loops_per_jiffy, this_cpu); | 
|  | pr_info("Calibrating delay loop (skipped) " | 
|  | "already calibrated this CPU"); | 
|  | } else if (preset_lpj) { | 
|  | lpj = preset_lpj; | 
|  | if (!printed) | 
|  | pr_info("Calibrating delay loop (skipped) " | 
|  | "preset value.. "); | 
|  | } else if ((!printed) && lpj_fine) { | 
|  | lpj = lpj_fine; | 
|  | pr_info("Calibrating delay loop (skipped), " | 
|  | "value calculated using timer frequency.. "); | 
|  | } else if ((lpj = calibrate_delay_is_known())) { | 
|  | ; | 
|  | } else if ((lpj = calibrate_delay_direct()) != 0) { | 
|  | if (!printed) | 
|  | pr_info("Calibrating delay using timer " | 
|  | "specific routine.. "); | 
|  | } else { | 
|  | if (!printed) | 
|  | pr_info("Calibrating delay loop... "); | 
|  | lpj = calibrate_delay_converge(); | 
|  | } | 
|  | per_cpu(cpu_loops_per_jiffy, this_cpu) = lpj; | 
|  | if (!printed) | 
|  | pr_cont("%lu.%02lu BogoMIPS (lpj=%lu)\n", | 
|  | lpj/(500000/HZ), | 
|  | (lpj/(5000/HZ)) % 100, lpj); | 
|  |  | 
|  | loops_per_jiffy = lpj; | 
|  | printed = true; | 
|  | } |