|  | /* | 
|  | *	An async IO implementation for Linux | 
|  | *	Written by Benjamin LaHaise <bcrl@kvack.org> | 
|  | * | 
|  | *	Implements an efficient asynchronous io interface. | 
|  | * | 
|  | *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved. | 
|  | * | 
|  | *	See ../COPYING for licensing terms. | 
|  | */ | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/aio_abi.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/uio.h> | 
|  |  | 
|  | #define DEBUG 0 | 
|  |  | 
|  | #include <linux/sched.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/timer.h> | 
|  | #include <linux/aio.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/eventfd.h> | 
|  |  | 
|  | #include <asm/kmap_types.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/mmu_context.h> | 
|  |  | 
|  | #if DEBUG > 1 | 
|  | #define dprintk		printk | 
|  | #else | 
|  | #define dprintk(x...)	do { ; } while (0) | 
|  | #endif | 
|  |  | 
|  | /*------ sysctl variables----*/ | 
|  | static DEFINE_SPINLOCK(aio_nr_lock); | 
|  | unsigned long aio_nr;		/* current system wide number of aio requests */ | 
|  | unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ | 
|  | /*----end sysctl variables---*/ | 
|  |  | 
|  | static struct kmem_cache	*kiocb_cachep; | 
|  | static struct kmem_cache	*kioctx_cachep; | 
|  |  | 
|  | static struct workqueue_struct *aio_wq; | 
|  |  | 
|  | /* Used for rare fput completion. */ | 
|  | static void aio_fput_routine(struct work_struct *); | 
|  | static DECLARE_WORK(fput_work, aio_fput_routine); | 
|  |  | 
|  | static DEFINE_SPINLOCK(fput_lock); | 
|  | static LIST_HEAD(fput_head); | 
|  |  | 
|  | static void aio_kick_handler(struct work_struct *); | 
|  | static void aio_queue_work(struct kioctx *); | 
|  |  | 
|  | /* aio_setup | 
|  | *	Creates the slab caches used by the aio routines, panic on | 
|  | *	failure as this is done early during the boot sequence. | 
|  | */ | 
|  | static int __init aio_setup(void) | 
|  | { | 
|  | kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); | 
|  | kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); | 
|  |  | 
|  | aio_wq = create_workqueue("aio"); | 
|  |  | 
|  | pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void aio_free_ring(struct kioctx *ctx) | 
|  | { | 
|  | struct aio_ring_info *info = &ctx->ring_info; | 
|  | long i; | 
|  |  | 
|  | for (i=0; i<info->nr_pages; i++) | 
|  | put_page(info->ring_pages[i]); | 
|  |  | 
|  | if (info->mmap_size) { | 
|  | down_write(&ctx->mm->mmap_sem); | 
|  | do_munmap(ctx->mm, info->mmap_base, info->mmap_size); | 
|  | up_write(&ctx->mm->mmap_sem); | 
|  | } | 
|  |  | 
|  | if (info->ring_pages && info->ring_pages != info->internal_pages) | 
|  | kfree(info->ring_pages); | 
|  | info->ring_pages = NULL; | 
|  | info->nr = 0; | 
|  | } | 
|  |  | 
|  | static int aio_setup_ring(struct kioctx *ctx) | 
|  | { | 
|  | struct aio_ring *ring; | 
|  | struct aio_ring_info *info = &ctx->ring_info; | 
|  | unsigned nr_events = ctx->max_reqs; | 
|  | unsigned long size; | 
|  | int nr_pages; | 
|  |  | 
|  | /* Compensate for the ring buffer's head/tail overlap entry */ | 
|  | nr_events += 2;	/* 1 is required, 2 for good luck */ | 
|  |  | 
|  | size = sizeof(struct aio_ring); | 
|  | size += sizeof(struct io_event) * nr_events; | 
|  | nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT; | 
|  |  | 
|  | if (nr_pages < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event); | 
|  |  | 
|  | info->nr = 0; | 
|  | info->ring_pages = info->internal_pages; | 
|  | if (nr_pages > AIO_RING_PAGES) { | 
|  | info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); | 
|  | if (!info->ring_pages) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | info->mmap_size = nr_pages * PAGE_SIZE; | 
|  | dprintk("attempting mmap of %lu bytes\n", info->mmap_size); | 
|  | down_write(&ctx->mm->mmap_sem); | 
|  | info->mmap_base = do_mmap(NULL, 0, info->mmap_size, | 
|  | PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, | 
|  | 0); | 
|  | if (IS_ERR((void *)info->mmap_base)) { | 
|  | up_write(&ctx->mm->mmap_sem); | 
|  | info->mmap_size = 0; | 
|  | aio_free_ring(ctx); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | dprintk("mmap address: 0x%08lx\n", info->mmap_base); | 
|  | info->nr_pages = get_user_pages(current, ctx->mm, | 
|  | info->mmap_base, nr_pages, | 
|  | 1, 0, info->ring_pages, NULL); | 
|  | up_write(&ctx->mm->mmap_sem); | 
|  |  | 
|  | if (unlikely(info->nr_pages != nr_pages)) { | 
|  | aio_free_ring(ctx); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | ctx->user_id = info->mmap_base; | 
|  |  | 
|  | info->nr = nr_events;		/* trusted copy */ | 
|  |  | 
|  | ring = kmap_atomic(info->ring_pages[0], KM_USER0); | 
|  | ring->nr = nr_events;	/* user copy */ | 
|  | ring->id = ctx->user_id; | 
|  | ring->head = ring->tail = 0; | 
|  | ring->magic = AIO_RING_MAGIC; | 
|  | ring->compat_features = AIO_RING_COMPAT_FEATURES; | 
|  | ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; | 
|  | ring->header_length = sizeof(struct aio_ring); | 
|  | kunmap_atomic(ring, KM_USER0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* aio_ring_event: returns a pointer to the event at the given index from | 
|  | * kmap_atomic(, km).  Release the pointer with put_aio_ring_event(); | 
|  | */ | 
|  | #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event)) | 
|  | #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) | 
|  | #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) | 
|  |  | 
|  | #define aio_ring_event(info, nr, km) ({					\ | 
|  | unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\ | 
|  | struct io_event *__event;					\ | 
|  | __event = kmap_atomic(						\ | 
|  | (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \ | 
|  | __event += pos % AIO_EVENTS_PER_PAGE;				\ | 
|  | __event;							\ | 
|  | }) | 
|  |  | 
|  | #define put_aio_ring_event(event, km) do {	\ | 
|  | struct io_event *__event = (event);	\ | 
|  | (void)__event;				\ | 
|  | kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \ | 
|  | } while(0) | 
|  |  | 
|  | static void ctx_rcu_free(struct rcu_head *head) | 
|  | { | 
|  | struct kioctx *ctx = container_of(head, struct kioctx, rcu_head); | 
|  | unsigned nr_events = ctx->max_reqs; | 
|  |  | 
|  | kmem_cache_free(kioctx_cachep, ctx); | 
|  |  | 
|  | if (nr_events) { | 
|  | spin_lock(&aio_nr_lock); | 
|  | BUG_ON(aio_nr - nr_events > aio_nr); | 
|  | aio_nr -= nr_events; | 
|  | spin_unlock(&aio_nr_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* __put_ioctx | 
|  | *	Called when the last user of an aio context has gone away, | 
|  | *	and the struct needs to be freed. | 
|  | */ | 
|  | static void __put_ioctx(struct kioctx *ctx) | 
|  | { | 
|  | BUG_ON(ctx->reqs_active); | 
|  |  | 
|  | cancel_delayed_work(&ctx->wq); | 
|  | cancel_work_sync(&ctx->wq.work); | 
|  | aio_free_ring(ctx); | 
|  | mmdrop(ctx->mm); | 
|  | ctx->mm = NULL; | 
|  | pr_debug("__put_ioctx: freeing %p\n", ctx); | 
|  | call_rcu(&ctx->rcu_head, ctx_rcu_free); | 
|  | } | 
|  |  | 
|  | #define get_ioctx(kioctx) do {						\ | 
|  | BUG_ON(atomic_read(&(kioctx)->users) <= 0);			\ | 
|  | atomic_inc(&(kioctx)->users);					\ | 
|  | } while (0) | 
|  | #define put_ioctx(kioctx) do {						\ | 
|  | BUG_ON(atomic_read(&(kioctx)->users) <= 0);			\ | 
|  | if (unlikely(atomic_dec_and_test(&(kioctx)->users))) 		\ | 
|  | __put_ioctx(kioctx);					\ | 
|  | } while (0) | 
|  |  | 
|  | /* ioctx_alloc | 
|  | *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed. | 
|  | */ | 
|  | static struct kioctx *ioctx_alloc(unsigned nr_events) | 
|  | { | 
|  | struct mm_struct *mm; | 
|  | struct kioctx *ctx; | 
|  | int did_sync = 0; | 
|  |  | 
|  | /* Prevent overflows */ | 
|  | if ((nr_events > (0x10000000U / sizeof(struct io_event))) || | 
|  | (nr_events > (0x10000000U / sizeof(struct kiocb)))) { | 
|  | pr_debug("ENOMEM: nr_events too high\n"); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | if ((unsigned long)nr_events > aio_max_nr) | 
|  | return ERR_PTR(-EAGAIN); | 
|  |  | 
|  | ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); | 
|  | if (!ctx) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | ctx->max_reqs = nr_events; | 
|  | mm = ctx->mm = current->mm; | 
|  | atomic_inc(&mm->mm_count); | 
|  |  | 
|  | atomic_set(&ctx->users, 1); | 
|  | spin_lock_init(&ctx->ctx_lock); | 
|  | spin_lock_init(&ctx->ring_info.ring_lock); | 
|  | init_waitqueue_head(&ctx->wait); | 
|  |  | 
|  | INIT_LIST_HEAD(&ctx->active_reqs); | 
|  | INIT_LIST_HEAD(&ctx->run_list); | 
|  | INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler); | 
|  |  | 
|  | if (aio_setup_ring(ctx) < 0) | 
|  | goto out_freectx; | 
|  |  | 
|  | /* limit the number of system wide aios */ | 
|  | do { | 
|  | spin_lock_bh(&aio_nr_lock); | 
|  | if (aio_nr + nr_events > aio_max_nr || | 
|  | aio_nr + nr_events < aio_nr) | 
|  | ctx->max_reqs = 0; | 
|  | else | 
|  | aio_nr += ctx->max_reqs; | 
|  | spin_unlock_bh(&aio_nr_lock); | 
|  | if (ctx->max_reqs || did_sync) | 
|  | break; | 
|  |  | 
|  | /* wait for rcu callbacks to have completed before giving up */ | 
|  | synchronize_rcu(); | 
|  | did_sync = 1; | 
|  | ctx->max_reqs = nr_events; | 
|  | } while (1); | 
|  |  | 
|  | if (ctx->max_reqs == 0) | 
|  | goto out_cleanup; | 
|  |  | 
|  | /* now link into global list. */ | 
|  | spin_lock(&mm->ioctx_lock); | 
|  | hlist_add_head_rcu(&ctx->list, &mm->ioctx_list); | 
|  | spin_unlock(&mm->ioctx_lock); | 
|  |  | 
|  | dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", | 
|  | ctx, ctx->user_id, current->mm, ctx->ring_info.nr); | 
|  | return ctx; | 
|  |  | 
|  | out_cleanup: | 
|  | __put_ioctx(ctx); | 
|  | return ERR_PTR(-EAGAIN); | 
|  |  | 
|  | out_freectx: | 
|  | mmdrop(mm); | 
|  | kmem_cache_free(kioctx_cachep, ctx); | 
|  | ctx = ERR_PTR(-ENOMEM); | 
|  |  | 
|  | dprintk("aio: error allocating ioctx %p\n", ctx); | 
|  | return ctx; | 
|  | } | 
|  |  | 
|  | /* aio_cancel_all | 
|  | *	Cancels all outstanding aio requests on an aio context.  Used | 
|  | *	when the processes owning a context have all exited to encourage | 
|  | *	the rapid destruction of the kioctx. | 
|  | */ | 
|  | static void aio_cancel_all(struct kioctx *ctx) | 
|  | { | 
|  | int (*cancel)(struct kiocb *, struct io_event *); | 
|  | struct io_event res; | 
|  | spin_lock_irq(&ctx->ctx_lock); | 
|  | ctx->dead = 1; | 
|  | while (!list_empty(&ctx->active_reqs)) { | 
|  | struct list_head *pos = ctx->active_reqs.next; | 
|  | struct kiocb *iocb = list_kiocb(pos); | 
|  | list_del_init(&iocb->ki_list); | 
|  | cancel = iocb->ki_cancel; | 
|  | kiocbSetCancelled(iocb); | 
|  | if (cancel) { | 
|  | iocb->ki_users++; | 
|  | spin_unlock_irq(&ctx->ctx_lock); | 
|  | cancel(iocb, &res); | 
|  | spin_lock_irq(&ctx->ctx_lock); | 
|  | } | 
|  | } | 
|  | spin_unlock_irq(&ctx->ctx_lock); | 
|  | } | 
|  |  | 
|  | static void wait_for_all_aios(struct kioctx *ctx) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  | DECLARE_WAITQUEUE(wait, tsk); | 
|  |  | 
|  | spin_lock_irq(&ctx->ctx_lock); | 
|  | if (!ctx->reqs_active) | 
|  | goto out; | 
|  |  | 
|  | add_wait_queue(&ctx->wait, &wait); | 
|  | set_task_state(tsk, TASK_UNINTERRUPTIBLE); | 
|  | while (ctx->reqs_active) { | 
|  | spin_unlock_irq(&ctx->ctx_lock); | 
|  | io_schedule(); | 
|  | set_task_state(tsk, TASK_UNINTERRUPTIBLE); | 
|  | spin_lock_irq(&ctx->ctx_lock); | 
|  | } | 
|  | __set_task_state(tsk, TASK_RUNNING); | 
|  | remove_wait_queue(&ctx->wait, &wait); | 
|  |  | 
|  | out: | 
|  | spin_unlock_irq(&ctx->ctx_lock); | 
|  | } | 
|  |  | 
|  | /* wait_on_sync_kiocb: | 
|  | *	Waits on the given sync kiocb to complete. | 
|  | */ | 
|  | ssize_t wait_on_sync_kiocb(struct kiocb *iocb) | 
|  | { | 
|  | while (iocb->ki_users) { | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | if (!iocb->ki_users) | 
|  | break; | 
|  | io_schedule(); | 
|  | } | 
|  | __set_current_state(TASK_RUNNING); | 
|  | return iocb->ki_user_data; | 
|  | } | 
|  |  | 
|  | /* exit_aio: called when the last user of mm goes away.  At this point, | 
|  | * there is no way for any new requests to be submited or any of the | 
|  | * io_* syscalls to be called on the context.  However, there may be | 
|  | * outstanding requests which hold references to the context; as they | 
|  | * go away, they will call put_ioctx and release any pinned memory | 
|  | * associated with the request (held via struct page * references). | 
|  | */ | 
|  | void exit_aio(struct mm_struct *mm) | 
|  | { | 
|  | struct kioctx *ctx; | 
|  |  | 
|  | while (!hlist_empty(&mm->ioctx_list)) { | 
|  | ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list); | 
|  | hlist_del_rcu(&ctx->list); | 
|  |  | 
|  | aio_cancel_all(ctx); | 
|  |  | 
|  | wait_for_all_aios(ctx); | 
|  | /* | 
|  | * Ensure we don't leave the ctx on the aio_wq | 
|  | */ | 
|  | cancel_work_sync(&ctx->wq.work); | 
|  |  | 
|  | if (1 != atomic_read(&ctx->users)) | 
|  | printk(KERN_DEBUG | 
|  | "exit_aio:ioctx still alive: %d %d %d\n", | 
|  | atomic_read(&ctx->users), ctx->dead, | 
|  | ctx->reqs_active); | 
|  | put_ioctx(ctx); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* aio_get_req | 
|  | *	Allocate a slot for an aio request.  Increments the users count | 
|  | * of the kioctx so that the kioctx stays around until all requests are | 
|  | * complete.  Returns NULL if no requests are free. | 
|  | * | 
|  | * Returns with kiocb->users set to 2.  The io submit code path holds | 
|  | * an extra reference while submitting the i/o. | 
|  | * This prevents races between the aio code path referencing the | 
|  | * req (after submitting it) and aio_complete() freeing the req. | 
|  | */ | 
|  | static struct kiocb *__aio_get_req(struct kioctx *ctx) | 
|  | { | 
|  | struct kiocb *req = NULL; | 
|  | struct aio_ring *ring; | 
|  | int okay = 0; | 
|  |  | 
|  | req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); | 
|  | if (unlikely(!req)) | 
|  | return NULL; | 
|  |  | 
|  | req->ki_flags = 0; | 
|  | req->ki_users = 2; | 
|  | req->ki_key = 0; | 
|  | req->ki_ctx = ctx; | 
|  | req->ki_cancel = NULL; | 
|  | req->ki_retry = NULL; | 
|  | req->ki_dtor = NULL; | 
|  | req->private = NULL; | 
|  | req->ki_iovec = NULL; | 
|  | INIT_LIST_HEAD(&req->ki_run_list); | 
|  | req->ki_eventfd = NULL; | 
|  |  | 
|  | /* Check if the completion queue has enough free space to | 
|  | * accept an event from this io. | 
|  | */ | 
|  | spin_lock_irq(&ctx->ctx_lock); | 
|  | ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0); | 
|  | if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) { | 
|  | list_add(&req->ki_list, &ctx->active_reqs); | 
|  | ctx->reqs_active++; | 
|  | okay = 1; | 
|  | } | 
|  | kunmap_atomic(ring, KM_USER0); | 
|  | spin_unlock_irq(&ctx->ctx_lock); | 
|  |  | 
|  | if (!okay) { | 
|  | kmem_cache_free(kiocb_cachep, req); | 
|  | req = NULL; | 
|  | } | 
|  |  | 
|  | return req; | 
|  | } | 
|  |  | 
|  | static inline struct kiocb *aio_get_req(struct kioctx *ctx) | 
|  | { | 
|  | struct kiocb *req; | 
|  | /* Handle a potential starvation case -- should be exceedingly rare as | 
|  | * requests will be stuck on fput_head only if the aio_fput_routine is | 
|  | * delayed and the requests were the last user of the struct file. | 
|  | */ | 
|  | req = __aio_get_req(ctx); | 
|  | if (unlikely(NULL == req)) { | 
|  | aio_fput_routine(NULL); | 
|  | req = __aio_get_req(ctx); | 
|  | } | 
|  | return req; | 
|  | } | 
|  |  | 
|  | static inline void really_put_req(struct kioctx *ctx, struct kiocb *req) | 
|  | { | 
|  | assert_spin_locked(&ctx->ctx_lock); | 
|  |  | 
|  | if (req->ki_eventfd != NULL) | 
|  | eventfd_ctx_put(req->ki_eventfd); | 
|  | if (req->ki_dtor) | 
|  | req->ki_dtor(req); | 
|  | if (req->ki_iovec != &req->ki_inline_vec) | 
|  | kfree(req->ki_iovec); | 
|  | kmem_cache_free(kiocb_cachep, req); | 
|  | ctx->reqs_active--; | 
|  |  | 
|  | if (unlikely(!ctx->reqs_active && ctx->dead)) | 
|  | wake_up(&ctx->wait); | 
|  | } | 
|  |  | 
|  | static void aio_fput_routine(struct work_struct *data) | 
|  | { | 
|  | spin_lock_irq(&fput_lock); | 
|  | while (likely(!list_empty(&fput_head))) { | 
|  | struct kiocb *req = list_kiocb(fput_head.next); | 
|  | struct kioctx *ctx = req->ki_ctx; | 
|  |  | 
|  | list_del(&req->ki_list); | 
|  | spin_unlock_irq(&fput_lock); | 
|  |  | 
|  | /* Complete the fput(s) */ | 
|  | if (req->ki_filp != NULL) | 
|  | __fput(req->ki_filp); | 
|  |  | 
|  | /* Link the iocb into the context's free list */ | 
|  | spin_lock_irq(&ctx->ctx_lock); | 
|  | really_put_req(ctx, req); | 
|  | spin_unlock_irq(&ctx->ctx_lock); | 
|  |  | 
|  | put_ioctx(ctx); | 
|  | spin_lock_irq(&fput_lock); | 
|  | } | 
|  | spin_unlock_irq(&fput_lock); | 
|  | } | 
|  |  | 
|  | /* __aio_put_req | 
|  | *	Returns true if this put was the last user of the request. | 
|  | */ | 
|  | static int __aio_put_req(struct kioctx *ctx, struct kiocb *req) | 
|  | { | 
|  | dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n", | 
|  | req, atomic_long_read(&req->ki_filp->f_count)); | 
|  |  | 
|  | assert_spin_locked(&ctx->ctx_lock); | 
|  |  | 
|  | req->ki_users--; | 
|  | BUG_ON(req->ki_users < 0); | 
|  | if (likely(req->ki_users)) | 
|  | return 0; | 
|  | list_del(&req->ki_list);		/* remove from active_reqs */ | 
|  | req->ki_cancel = NULL; | 
|  | req->ki_retry = NULL; | 
|  |  | 
|  | /* | 
|  | * Try to optimize the aio and eventfd file* puts, by avoiding to | 
|  | * schedule work in case it is not __fput() time. In normal cases, | 
|  | * we would not be holding the last reference to the file*, so | 
|  | * this function will be executed w/out any aio kthread wakeup. | 
|  | */ | 
|  | if (unlikely(atomic_long_dec_and_test(&req->ki_filp->f_count))) { | 
|  | get_ioctx(ctx); | 
|  | spin_lock(&fput_lock); | 
|  | list_add(&req->ki_list, &fput_head); | 
|  | spin_unlock(&fput_lock); | 
|  | queue_work(aio_wq, &fput_work); | 
|  | } else { | 
|  | req->ki_filp = NULL; | 
|  | really_put_req(ctx, req); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* aio_put_req | 
|  | *	Returns true if this put was the last user of the kiocb, | 
|  | *	false if the request is still in use. | 
|  | */ | 
|  | int aio_put_req(struct kiocb *req) | 
|  | { | 
|  | struct kioctx *ctx = req->ki_ctx; | 
|  | int ret; | 
|  | spin_lock_irq(&ctx->ctx_lock); | 
|  | ret = __aio_put_req(ctx, req); | 
|  | spin_unlock_irq(&ctx->ctx_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct kioctx *lookup_ioctx(unsigned long ctx_id) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct kioctx *ctx, *ret = NULL; | 
|  | struct hlist_node *n; | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) { | 
|  | if (ctx->user_id == ctx_id && !ctx->dead) { | 
|  | get_ioctx(ctx); | 
|  | ret = ctx; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * use_mm | 
|  | *	Makes the calling kernel thread take on the specified | 
|  | *	mm context. | 
|  | *	Called by the retry thread execute retries within the | 
|  | *	iocb issuer's mm context, so that copy_from/to_user | 
|  | *	operations work seamlessly for aio. | 
|  | *	(Note: this routine is intended to be called only | 
|  | *	from a kernel thread context) | 
|  | */ | 
|  | static void use_mm(struct mm_struct *mm) | 
|  | { | 
|  | struct mm_struct *active_mm; | 
|  | struct task_struct *tsk = current; | 
|  |  | 
|  | task_lock(tsk); | 
|  | active_mm = tsk->active_mm; | 
|  | atomic_inc(&mm->mm_count); | 
|  | tsk->mm = mm; | 
|  | tsk->active_mm = mm; | 
|  | switch_mm(active_mm, mm, tsk); | 
|  | task_unlock(tsk); | 
|  |  | 
|  | mmdrop(active_mm); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * unuse_mm | 
|  | *	Reverses the effect of use_mm, i.e. releases the | 
|  | *	specified mm context which was earlier taken on | 
|  | *	by the calling kernel thread | 
|  | *	(Note: this routine is intended to be called only | 
|  | *	from a kernel thread context) | 
|  | */ | 
|  | static void unuse_mm(struct mm_struct *mm) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  |  | 
|  | task_lock(tsk); | 
|  | tsk->mm = NULL; | 
|  | /* active_mm is still 'mm' */ | 
|  | enter_lazy_tlb(mm, tsk); | 
|  | task_unlock(tsk); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Queue up a kiocb to be retried. Assumes that the kiocb | 
|  | * has already been marked as kicked, and places it on | 
|  | * the retry run list for the corresponding ioctx, if it | 
|  | * isn't already queued. Returns 1 if it actually queued | 
|  | * the kiocb (to tell the caller to activate the work | 
|  | * queue to process it), or 0, if it found that it was | 
|  | * already queued. | 
|  | */ | 
|  | static inline int __queue_kicked_iocb(struct kiocb *iocb) | 
|  | { | 
|  | struct kioctx *ctx = iocb->ki_ctx; | 
|  |  | 
|  | assert_spin_locked(&ctx->ctx_lock); | 
|  |  | 
|  | if (list_empty(&iocb->ki_run_list)) { | 
|  | list_add_tail(&iocb->ki_run_list, | 
|  | &ctx->run_list); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* aio_run_iocb | 
|  | *	This is the core aio execution routine. It is | 
|  | *	invoked both for initial i/o submission and | 
|  | *	subsequent retries via the aio_kick_handler. | 
|  | *	Expects to be invoked with iocb->ki_ctx->lock | 
|  | *	already held. The lock is released and reacquired | 
|  | *	as needed during processing. | 
|  | * | 
|  | * Calls the iocb retry method (already setup for the | 
|  | * iocb on initial submission) for operation specific | 
|  | * handling, but takes care of most of common retry | 
|  | * execution details for a given iocb. The retry method | 
|  | * needs to be non-blocking as far as possible, to avoid | 
|  | * holding up other iocbs waiting to be serviced by the | 
|  | * retry kernel thread. | 
|  | * | 
|  | * The trickier parts in this code have to do with | 
|  | * ensuring that only one retry instance is in progress | 
|  | * for a given iocb at any time. Providing that guarantee | 
|  | * simplifies the coding of individual aio operations as | 
|  | * it avoids various potential races. | 
|  | */ | 
|  | static ssize_t aio_run_iocb(struct kiocb *iocb) | 
|  | { | 
|  | struct kioctx	*ctx = iocb->ki_ctx; | 
|  | ssize_t (*retry)(struct kiocb *); | 
|  | ssize_t ret; | 
|  |  | 
|  | if (!(retry = iocb->ki_retry)) { | 
|  | printk("aio_run_iocb: iocb->ki_retry = NULL\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We don't want the next retry iteration for this | 
|  | * operation to start until this one has returned and | 
|  | * updated the iocb state. However, wait_queue functions | 
|  | * can trigger a kick_iocb from interrupt context in the | 
|  | * meantime, indicating that data is available for the next | 
|  | * iteration. We want to remember that and enable the | 
|  | * next retry iteration _after_ we are through with | 
|  | * this one. | 
|  | * | 
|  | * So, in order to be able to register a "kick", but | 
|  | * prevent it from being queued now, we clear the kick | 
|  | * flag, but make the kick code *think* that the iocb is | 
|  | * still on the run list until we are actually done. | 
|  | * When we are done with this iteration, we check if | 
|  | * the iocb was kicked in the meantime and if so, queue | 
|  | * it up afresh. | 
|  | */ | 
|  |  | 
|  | kiocbClearKicked(iocb); | 
|  |  | 
|  | /* | 
|  | * This is so that aio_complete knows it doesn't need to | 
|  | * pull the iocb off the run list (We can't just call | 
|  | * INIT_LIST_HEAD because we don't want a kick_iocb to | 
|  | * queue this on the run list yet) | 
|  | */ | 
|  | iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL; | 
|  | spin_unlock_irq(&ctx->ctx_lock); | 
|  |  | 
|  | /* Quit retrying if the i/o has been cancelled */ | 
|  | if (kiocbIsCancelled(iocb)) { | 
|  | ret = -EINTR; | 
|  | aio_complete(iocb, ret, 0); | 
|  | /* must not access the iocb after this */ | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now we are all set to call the retry method in async | 
|  | * context. | 
|  | */ | 
|  | ret = retry(iocb); | 
|  |  | 
|  | if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) { | 
|  | BUG_ON(!list_empty(&iocb->ki_wait.task_list)); | 
|  | aio_complete(iocb, ret, 0); | 
|  | } | 
|  | out: | 
|  | spin_lock_irq(&ctx->ctx_lock); | 
|  |  | 
|  | if (-EIOCBRETRY == ret) { | 
|  | /* | 
|  | * OK, now that we are done with this iteration | 
|  | * and know that there is more left to go, | 
|  | * this is where we let go so that a subsequent | 
|  | * "kick" can start the next iteration | 
|  | */ | 
|  |  | 
|  | /* will make __queue_kicked_iocb succeed from here on */ | 
|  | INIT_LIST_HEAD(&iocb->ki_run_list); | 
|  | /* we must queue the next iteration ourselves, if it | 
|  | * has already been kicked */ | 
|  | if (kiocbIsKicked(iocb)) { | 
|  | __queue_kicked_iocb(iocb); | 
|  |  | 
|  | /* | 
|  | * __queue_kicked_iocb will always return 1 here, because | 
|  | * iocb->ki_run_list is empty at this point so it should | 
|  | * be safe to unconditionally queue the context into the | 
|  | * work queue. | 
|  | */ | 
|  | aio_queue_work(ctx); | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __aio_run_iocbs: | 
|  | * 	Process all pending retries queued on the ioctx | 
|  | * 	run list. | 
|  | * Assumes it is operating within the aio issuer's mm | 
|  | * context. | 
|  | */ | 
|  | static int __aio_run_iocbs(struct kioctx *ctx) | 
|  | { | 
|  | struct kiocb *iocb; | 
|  | struct list_head run_list; | 
|  |  | 
|  | assert_spin_locked(&ctx->ctx_lock); | 
|  |  | 
|  | list_replace_init(&ctx->run_list, &run_list); | 
|  | while (!list_empty(&run_list)) { | 
|  | iocb = list_entry(run_list.next, struct kiocb, | 
|  | ki_run_list); | 
|  | list_del(&iocb->ki_run_list); | 
|  | /* | 
|  | * Hold an extra reference while retrying i/o. | 
|  | */ | 
|  | iocb->ki_users++;       /* grab extra reference */ | 
|  | aio_run_iocb(iocb); | 
|  | __aio_put_req(ctx, iocb); | 
|  | } | 
|  | if (!list_empty(&ctx->run_list)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void aio_queue_work(struct kioctx * ctx) | 
|  | { | 
|  | unsigned long timeout; | 
|  | /* | 
|  | * if someone is waiting, get the work started right | 
|  | * away, otherwise, use a longer delay | 
|  | */ | 
|  | smp_mb(); | 
|  | if (waitqueue_active(&ctx->wait)) | 
|  | timeout = 1; | 
|  | else | 
|  | timeout = HZ/10; | 
|  | queue_delayed_work(aio_wq, &ctx->wq, timeout); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * aio_run_iocbs: | 
|  | * 	Process all pending retries queued on the ioctx | 
|  | * 	run list. | 
|  | * Assumes it is operating within the aio issuer's mm | 
|  | * context. | 
|  | */ | 
|  | static inline void aio_run_iocbs(struct kioctx *ctx) | 
|  | { | 
|  | int requeue; | 
|  |  | 
|  | spin_lock_irq(&ctx->ctx_lock); | 
|  |  | 
|  | requeue = __aio_run_iocbs(ctx); | 
|  | spin_unlock_irq(&ctx->ctx_lock); | 
|  | if (requeue) | 
|  | aio_queue_work(ctx); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * just like aio_run_iocbs, but keeps running them until | 
|  | * the list stays empty | 
|  | */ | 
|  | static inline void aio_run_all_iocbs(struct kioctx *ctx) | 
|  | { | 
|  | spin_lock_irq(&ctx->ctx_lock); | 
|  | while (__aio_run_iocbs(ctx)) | 
|  | ; | 
|  | spin_unlock_irq(&ctx->ctx_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * aio_kick_handler: | 
|  | * 	Work queue handler triggered to process pending | 
|  | * 	retries on an ioctx. Takes on the aio issuer's | 
|  | *	mm context before running the iocbs, so that | 
|  | *	copy_xxx_user operates on the issuer's address | 
|  | *      space. | 
|  | * Run on aiod's context. | 
|  | */ | 
|  | static void aio_kick_handler(struct work_struct *work) | 
|  | { | 
|  | struct kioctx *ctx = container_of(work, struct kioctx, wq.work); | 
|  | mm_segment_t oldfs = get_fs(); | 
|  | struct mm_struct *mm; | 
|  | int requeue; | 
|  |  | 
|  | set_fs(USER_DS); | 
|  | use_mm(ctx->mm); | 
|  | spin_lock_irq(&ctx->ctx_lock); | 
|  | requeue =__aio_run_iocbs(ctx); | 
|  | mm = ctx->mm; | 
|  | spin_unlock_irq(&ctx->ctx_lock); | 
|  | unuse_mm(mm); | 
|  | set_fs(oldfs); | 
|  | /* | 
|  | * we're in a worker thread already, don't use queue_delayed_work, | 
|  | */ | 
|  | if (requeue) | 
|  | queue_delayed_work(aio_wq, &ctx->wq, 0); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Called by kick_iocb to queue the kiocb for retry | 
|  | * and if required activate the aio work queue to process | 
|  | * it | 
|  | */ | 
|  | static void try_queue_kicked_iocb(struct kiocb *iocb) | 
|  | { | 
|  | struct kioctx	*ctx = iocb->ki_ctx; | 
|  | unsigned long flags; | 
|  | int run = 0; | 
|  |  | 
|  | /* We're supposed to be the only path putting the iocb back on the run | 
|  | * list.  If we find that the iocb is *back* on a wait queue already | 
|  | * than retry has happened before we could queue the iocb.  This also | 
|  | * means that the retry could have completed and freed our iocb, no | 
|  | * good. */ | 
|  | BUG_ON((!list_empty(&iocb->ki_wait.task_list))); | 
|  |  | 
|  | spin_lock_irqsave(&ctx->ctx_lock, flags); | 
|  | /* set this inside the lock so that we can't race with aio_run_iocb() | 
|  | * testing it and putting the iocb on the run list under the lock */ | 
|  | if (!kiocbTryKick(iocb)) | 
|  | run = __queue_kicked_iocb(iocb); | 
|  | spin_unlock_irqrestore(&ctx->ctx_lock, flags); | 
|  | if (run) | 
|  | aio_queue_work(ctx); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * kick_iocb: | 
|  | *      Called typically from a wait queue callback context | 
|  | *      (aio_wake_function) to trigger a retry of the iocb. | 
|  | *      The retry is usually executed by aio workqueue | 
|  | *      threads (See aio_kick_handler). | 
|  | */ | 
|  | void kick_iocb(struct kiocb *iocb) | 
|  | { | 
|  | /* sync iocbs are easy: they can only ever be executing from a | 
|  | * single context. */ | 
|  | if (is_sync_kiocb(iocb)) { | 
|  | kiocbSetKicked(iocb); | 
|  | wake_up_process(iocb->ki_obj.tsk); | 
|  | return; | 
|  | } | 
|  |  | 
|  | try_queue_kicked_iocb(iocb); | 
|  | } | 
|  | EXPORT_SYMBOL(kick_iocb); | 
|  |  | 
|  | /* aio_complete | 
|  | *	Called when the io request on the given iocb is complete. | 
|  | *	Returns true if this is the last user of the request.  The | 
|  | *	only other user of the request can be the cancellation code. | 
|  | */ | 
|  | int aio_complete(struct kiocb *iocb, long res, long res2) | 
|  | { | 
|  | struct kioctx	*ctx = iocb->ki_ctx; | 
|  | struct aio_ring_info	*info; | 
|  | struct aio_ring	*ring; | 
|  | struct io_event	*event; | 
|  | unsigned long	flags; | 
|  | unsigned long	tail; | 
|  | int		ret; | 
|  |  | 
|  | /* | 
|  | * Special case handling for sync iocbs: | 
|  | *  - events go directly into the iocb for fast handling | 
|  | *  - the sync task with the iocb in its stack holds the single iocb | 
|  | *    ref, no other paths have a way to get another ref | 
|  | *  - the sync task helpfully left a reference to itself in the iocb | 
|  | */ | 
|  | if (is_sync_kiocb(iocb)) { | 
|  | BUG_ON(iocb->ki_users != 1); | 
|  | iocb->ki_user_data = res; | 
|  | iocb->ki_users = 0; | 
|  | wake_up_process(iocb->ki_obj.tsk); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | info = &ctx->ring_info; | 
|  |  | 
|  | /* add a completion event to the ring buffer. | 
|  | * must be done holding ctx->ctx_lock to prevent | 
|  | * other code from messing with the tail | 
|  | * pointer since we might be called from irq | 
|  | * context. | 
|  | */ | 
|  | spin_lock_irqsave(&ctx->ctx_lock, flags); | 
|  |  | 
|  | if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list)) | 
|  | list_del_init(&iocb->ki_run_list); | 
|  |  | 
|  | /* | 
|  | * cancelled requests don't get events, userland was given one | 
|  | * when the event got cancelled. | 
|  | */ | 
|  | if (kiocbIsCancelled(iocb)) | 
|  | goto put_rq; | 
|  |  | 
|  | ring = kmap_atomic(info->ring_pages[0], KM_IRQ1); | 
|  |  | 
|  | tail = info->tail; | 
|  | event = aio_ring_event(info, tail, KM_IRQ0); | 
|  | if (++tail >= info->nr) | 
|  | tail = 0; | 
|  |  | 
|  | event->obj = (u64)(unsigned long)iocb->ki_obj.user; | 
|  | event->data = iocb->ki_user_data; | 
|  | event->res = res; | 
|  | event->res2 = res2; | 
|  |  | 
|  | dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n", | 
|  | ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, | 
|  | res, res2); | 
|  |  | 
|  | /* after flagging the request as done, we | 
|  | * must never even look at it again | 
|  | */ | 
|  | smp_wmb();	/* make event visible before updating tail */ | 
|  |  | 
|  | info->tail = tail; | 
|  | ring->tail = tail; | 
|  |  | 
|  | put_aio_ring_event(event, KM_IRQ0); | 
|  | kunmap_atomic(ring, KM_IRQ1); | 
|  |  | 
|  | pr_debug("added to ring %p at [%lu]\n", iocb, tail); | 
|  |  | 
|  | /* | 
|  | * Check if the user asked us to deliver the result through an | 
|  | * eventfd. The eventfd_signal() function is safe to be called | 
|  | * from IRQ context. | 
|  | */ | 
|  | if (iocb->ki_eventfd != NULL) | 
|  | eventfd_signal(iocb->ki_eventfd, 1); | 
|  |  | 
|  | put_rq: | 
|  | /* everything turned out well, dispose of the aiocb. */ | 
|  | ret = __aio_put_req(ctx, iocb); | 
|  |  | 
|  | /* | 
|  | * We have to order our ring_info tail store above and test | 
|  | * of the wait list below outside the wait lock.  This is | 
|  | * like in wake_up_bit() where clearing a bit has to be | 
|  | * ordered with the unlocked test. | 
|  | */ | 
|  | smp_mb(); | 
|  |  | 
|  | if (waitqueue_active(&ctx->wait)) | 
|  | wake_up(&ctx->wait); | 
|  |  | 
|  | spin_unlock_irqrestore(&ctx->ctx_lock, flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* aio_read_evt | 
|  | *	Pull an event off of the ioctx's event ring.  Returns the number of | 
|  | *	events fetched (0 or 1 ;-) | 
|  | *	FIXME: make this use cmpxchg. | 
|  | *	TODO: make the ringbuffer user mmap()able (requires FIXME). | 
|  | */ | 
|  | static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent) | 
|  | { | 
|  | struct aio_ring_info *info = &ioctx->ring_info; | 
|  | struct aio_ring *ring; | 
|  | unsigned long head; | 
|  | int ret = 0; | 
|  |  | 
|  | ring = kmap_atomic(info->ring_pages[0], KM_USER0); | 
|  | dprintk("in aio_read_evt h%lu t%lu m%lu\n", | 
|  | (unsigned long)ring->head, (unsigned long)ring->tail, | 
|  | (unsigned long)ring->nr); | 
|  |  | 
|  | if (ring->head == ring->tail) | 
|  | goto out; | 
|  |  | 
|  | spin_lock(&info->ring_lock); | 
|  |  | 
|  | head = ring->head % info->nr; | 
|  | if (head != ring->tail) { | 
|  | struct io_event *evp = aio_ring_event(info, head, KM_USER1); | 
|  | *ent = *evp; | 
|  | head = (head + 1) % info->nr; | 
|  | smp_mb(); /* finish reading the event before updatng the head */ | 
|  | ring->head = head; | 
|  | ret = 1; | 
|  | put_aio_ring_event(evp, KM_USER1); | 
|  | } | 
|  | spin_unlock(&info->ring_lock); | 
|  |  | 
|  | out: | 
|  | kunmap_atomic(ring, KM_USER0); | 
|  | dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret, | 
|  | (unsigned long)ring->head, (unsigned long)ring->tail); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct aio_timeout { | 
|  | struct timer_list	timer; | 
|  | int			timed_out; | 
|  | struct task_struct	*p; | 
|  | }; | 
|  |  | 
|  | static void timeout_func(unsigned long data) | 
|  | { | 
|  | struct aio_timeout *to = (struct aio_timeout *)data; | 
|  |  | 
|  | to->timed_out = 1; | 
|  | wake_up_process(to->p); | 
|  | } | 
|  |  | 
|  | static inline void init_timeout(struct aio_timeout *to) | 
|  | { | 
|  | setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to); | 
|  | to->timed_out = 0; | 
|  | to->p = current; | 
|  | } | 
|  |  | 
|  | static inline void set_timeout(long start_jiffies, struct aio_timeout *to, | 
|  | const struct timespec *ts) | 
|  | { | 
|  | to->timer.expires = start_jiffies + timespec_to_jiffies(ts); | 
|  | if (time_after(to->timer.expires, jiffies)) | 
|  | add_timer(&to->timer); | 
|  | else | 
|  | to->timed_out = 1; | 
|  | } | 
|  |  | 
|  | static inline void clear_timeout(struct aio_timeout *to) | 
|  | { | 
|  | del_singleshot_timer_sync(&to->timer); | 
|  | } | 
|  |  | 
|  | static int read_events(struct kioctx *ctx, | 
|  | long min_nr, long nr, | 
|  | struct io_event __user *event, | 
|  | struct timespec __user *timeout) | 
|  | { | 
|  | long			start_jiffies = jiffies; | 
|  | struct task_struct	*tsk = current; | 
|  | DECLARE_WAITQUEUE(wait, tsk); | 
|  | int			ret; | 
|  | int			i = 0; | 
|  | struct io_event		ent; | 
|  | struct aio_timeout	to; | 
|  | int			retry = 0; | 
|  |  | 
|  | /* needed to zero any padding within an entry (there shouldn't be | 
|  | * any, but C is fun! | 
|  | */ | 
|  | memset(&ent, 0, sizeof(ent)); | 
|  | retry: | 
|  | ret = 0; | 
|  | while (likely(i < nr)) { | 
|  | ret = aio_read_evt(ctx, &ent); | 
|  | if (unlikely(ret <= 0)) | 
|  | break; | 
|  |  | 
|  | dprintk("read event: %Lx %Lx %Lx %Lx\n", | 
|  | ent.data, ent.obj, ent.res, ent.res2); | 
|  |  | 
|  | /* Could we split the check in two? */ | 
|  | ret = -EFAULT; | 
|  | if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { | 
|  | dprintk("aio: lost an event due to EFAULT.\n"); | 
|  | break; | 
|  | } | 
|  | ret = 0; | 
|  |  | 
|  | /* Good, event copied to userland, update counts. */ | 
|  | event ++; | 
|  | i ++; | 
|  | } | 
|  |  | 
|  | if (min_nr <= i) | 
|  | return i; | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* End fast path */ | 
|  |  | 
|  | /* racey check, but it gets redone */ | 
|  | if (!retry && unlikely(!list_empty(&ctx->run_list))) { | 
|  | retry = 1; | 
|  | aio_run_all_iocbs(ctx); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | init_timeout(&to); | 
|  | if (timeout) { | 
|  | struct timespec	ts; | 
|  | ret = -EFAULT; | 
|  | if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) | 
|  | goto out; | 
|  |  | 
|  | set_timeout(start_jiffies, &to, &ts); | 
|  | } | 
|  |  | 
|  | while (likely(i < nr)) { | 
|  | add_wait_queue_exclusive(&ctx->wait, &wait); | 
|  | do { | 
|  | set_task_state(tsk, TASK_INTERRUPTIBLE); | 
|  | ret = aio_read_evt(ctx, &ent); | 
|  | if (ret) | 
|  | break; | 
|  | if (min_nr <= i) | 
|  | break; | 
|  | if (unlikely(ctx->dead)) { | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  | if (to.timed_out)	/* Only check after read evt */ | 
|  | break; | 
|  | /* Try to only show up in io wait if there are ops | 
|  | *  in flight */ | 
|  | if (ctx->reqs_active) | 
|  | io_schedule(); | 
|  | else | 
|  | schedule(); | 
|  | if (signal_pending(tsk)) { | 
|  | ret = -EINTR; | 
|  | break; | 
|  | } | 
|  | /*ret = aio_read_evt(ctx, &ent);*/ | 
|  | } while (1) ; | 
|  |  | 
|  | set_task_state(tsk, TASK_RUNNING); | 
|  | remove_wait_queue(&ctx->wait, &wait); | 
|  |  | 
|  | if (unlikely(ret <= 0)) | 
|  | break; | 
|  |  | 
|  | ret = -EFAULT; | 
|  | if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { | 
|  | dprintk("aio: lost an event due to EFAULT.\n"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Good, event copied to userland, update counts. */ | 
|  | event ++; | 
|  | i ++; | 
|  | } | 
|  |  | 
|  | if (timeout) | 
|  | clear_timeout(&to); | 
|  | out: | 
|  | destroy_timer_on_stack(&to.timer); | 
|  | return i ? i : ret; | 
|  | } | 
|  |  | 
|  | /* Take an ioctx and remove it from the list of ioctx's.  Protects | 
|  | * against races with itself via ->dead. | 
|  | */ | 
|  | static void io_destroy(struct kioctx *ioctx) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | int was_dead; | 
|  |  | 
|  | /* delete the entry from the list is someone else hasn't already */ | 
|  | spin_lock(&mm->ioctx_lock); | 
|  | was_dead = ioctx->dead; | 
|  | ioctx->dead = 1; | 
|  | hlist_del_rcu(&ioctx->list); | 
|  | spin_unlock(&mm->ioctx_lock); | 
|  |  | 
|  | dprintk("aio_release(%p)\n", ioctx); | 
|  | if (likely(!was_dead)) | 
|  | put_ioctx(ioctx);	/* twice for the list */ | 
|  |  | 
|  | aio_cancel_all(ioctx); | 
|  | wait_for_all_aios(ioctx); | 
|  |  | 
|  | /* | 
|  | * Wake up any waiters.  The setting of ctx->dead must be seen | 
|  | * by other CPUs at this point.  Right now, we rely on the | 
|  | * locking done by the above calls to ensure this consistency. | 
|  | */ | 
|  | wake_up(&ioctx->wait); | 
|  | put_ioctx(ioctx);	/* once for the lookup */ | 
|  | } | 
|  |  | 
|  | /* sys_io_setup: | 
|  | *	Create an aio_context capable of receiving at least nr_events. | 
|  | *	ctxp must not point to an aio_context that already exists, and | 
|  | *	must be initialized to 0 prior to the call.  On successful | 
|  | *	creation of the aio_context, *ctxp is filled in with the resulting | 
|  | *	handle.  May fail with -EINVAL if *ctxp is not initialized, | 
|  | *	if the specified nr_events exceeds internal limits.  May fail | 
|  | *	with -EAGAIN if the specified nr_events exceeds the user's limit | 
|  | *	of available events.  May fail with -ENOMEM if insufficient kernel | 
|  | *	resources are available.  May fail with -EFAULT if an invalid | 
|  | *	pointer is passed for ctxp.  Will fail with -ENOSYS if not | 
|  | *	implemented. | 
|  | */ | 
|  | SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) | 
|  | { | 
|  | struct kioctx *ioctx = NULL; | 
|  | unsigned long ctx; | 
|  | long ret; | 
|  |  | 
|  | ret = get_user(ctx, ctxp); | 
|  | if (unlikely(ret)) | 
|  | goto out; | 
|  |  | 
|  | ret = -EINVAL; | 
|  | if (unlikely(ctx || nr_events == 0)) { | 
|  | pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", | 
|  | ctx, nr_events); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ioctx = ioctx_alloc(nr_events); | 
|  | ret = PTR_ERR(ioctx); | 
|  | if (!IS_ERR(ioctx)) { | 
|  | ret = put_user(ioctx->user_id, ctxp); | 
|  | if (!ret) | 
|  | return 0; | 
|  |  | 
|  | get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */ | 
|  | io_destroy(ioctx); | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* sys_io_destroy: | 
|  | *	Destroy the aio_context specified.  May cancel any outstanding | 
|  | *	AIOs and block on completion.  Will fail with -ENOSYS if not | 
|  | *	implemented.  May fail with -EFAULT if the context pointed to | 
|  | *	is invalid. | 
|  | */ | 
|  | SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) | 
|  | { | 
|  | struct kioctx *ioctx = lookup_ioctx(ctx); | 
|  | if (likely(NULL != ioctx)) { | 
|  | io_destroy(ioctx); | 
|  | return 0; | 
|  | } | 
|  | pr_debug("EINVAL: io_destroy: invalid context id\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret) | 
|  | { | 
|  | struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg]; | 
|  |  | 
|  | BUG_ON(ret <= 0); | 
|  |  | 
|  | while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) { | 
|  | ssize_t this = min((ssize_t)iov->iov_len, ret); | 
|  | iov->iov_base += this; | 
|  | iov->iov_len -= this; | 
|  | iocb->ki_left -= this; | 
|  | ret -= this; | 
|  | if (iov->iov_len == 0) { | 
|  | iocb->ki_cur_seg++; | 
|  | iov++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* the caller should not have done more io than what fit in | 
|  | * the remaining iovecs */ | 
|  | BUG_ON(ret > 0 && iocb->ki_left == 0); | 
|  | } | 
|  |  | 
|  | static ssize_t aio_rw_vect_retry(struct kiocb *iocb) | 
|  | { | 
|  | struct file *file = iocb->ki_filp; | 
|  | struct address_space *mapping = file->f_mapping; | 
|  | struct inode *inode = mapping->host; | 
|  | ssize_t (*rw_op)(struct kiocb *, const struct iovec *, | 
|  | unsigned long, loff_t); | 
|  | ssize_t ret = 0; | 
|  | unsigned short opcode; | 
|  |  | 
|  | if ((iocb->ki_opcode == IOCB_CMD_PREADV) || | 
|  | (iocb->ki_opcode == IOCB_CMD_PREAD)) { | 
|  | rw_op = file->f_op->aio_read; | 
|  | opcode = IOCB_CMD_PREADV; | 
|  | } else { | 
|  | rw_op = file->f_op->aio_write; | 
|  | opcode = IOCB_CMD_PWRITEV; | 
|  | } | 
|  |  | 
|  | /* This matches the pread()/pwrite() logic */ | 
|  | if (iocb->ki_pos < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | do { | 
|  | ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg], | 
|  | iocb->ki_nr_segs - iocb->ki_cur_seg, | 
|  | iocb->ki_pos); | 
|  | if (ret > 0) | 
|  | aio_advance_iovec(iocb, ret); | 
|  |  | 
|  | /* retry all partial writes.  retry partial reads as long as its a | 
|  | * regular file. */ | 
|  | } while (ret > 0 && iocb->ki_left > 0 && | 
|  | (opcode == IOCB_CMD_PWRITEV || | 
|  | (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode)))); | 
|  |  | 
|  | /* This means we must have transferred all that we could */ | 
|  | /* No need to retry anymore */ | 
|  | if ((ret == 0) || (iocb->ki_left == 0)) | 
|  | ret = iocb->ki_nbytes - iocb->ki_left; | 
|  |  | 
|  | /* If we managed to write some out we return that, rather than | 
|  | * the eventual error. */ | 
|  | if (opcode == IOCB_CMD_PWRITEV | 
|  | && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY | 
|  | && iocb->ki_nbytes - iocb->ki_left) | 
|  | ret = iocb->ki_nbytes - iocb->ki_left; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static ssize_t aio_fdsync(struct kiocb *iocb) | 
|  | { | 
|  | struct file *file = iocb->ki_filp; | 
|  | ssize_t ret = -EINVAL; | 
|  |  | 
|  | if (file->f_op->aio_fsync) | 
|  | ret = file->f_op->aio_fsync(iocb, 1); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static ssize_t aio_fsync(struct kiocb *iocb) | 
|  | { | 
|  | struct file *file = iocb->ki_filp; | 
|  | ssize_t ret = -EINVAL; | 
|  |  | 
|  | if (file->f_op->aio_fsync) | 
|  | ret = file->f_op->aio_fsync(iocb, 0); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb) | 
|  | { | 
|  | ssize_t ret; | 
|  |  | 
|  | ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf, | 
|  | kiocb->ki_nbytes, 1, | 
|  | &kiocb->ki_inline_vec, &kiocb->ki_iovec); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | kiocb->ki_nr_segs = kiocb->ki_nbytes; | 
|  | kiocb->ki_cur_seg = 0; | 
|  | /* ki_nbytes/left now reflect bytes instead of segs */ | 
|  | kiocb->ki_nbytes = ret; | 
|  | kiocb->ki_left = ret; | 
|  |  | 
|  | ret = 0; | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static ssize_t aio_setup_single_vector(struct kiocb *kiocb) | 
|  | { | 
|  | kiocb->ki_iovec = &kiocb->ki_inline_vec; | 
|  | kiocb->ki_iovec->iov_base = kiocb->ki_buf; | 
|  | kiocb->ki_iovec->iov_len = kiocb->ki_left; | 
|  | kiocb->ki_nr_segs = 1; | 
|  | kiocb->ki_cur_seg = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * aio_setup_iocb: | 
|  | *	Performs the initial checks and aio retry method | 
|  | *	setup for the kiocb at the time of io submission. | 
|  | */ | 
|  | static ssize_t aio_setup_iocb(struct kiocb *kiocb) | 
|  | { | 
|  | struct file *file = kiocb->ki_filp; | 
|  | ssize_t ret = 0; | 
|  |  | 
|  | switch (kiocb->ki_opcode) { | 
|  | case IOCB_CMD_PREAD: | 
|  | ret = -EBADF; | 
|  | if (unlikely(!(file->f_mode & FMODE_READ))) | 
|  | break; | 
|  | ret = -EFAULT; | 
|  | if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf, | 
|  | kiocb->ki_left))) | 
|  | break; | 
|  | ret = security_file_permission(file, MAY_READ); | 
|  | if (unlikely(ret)) | 
|  | break; | 
|  | ret = aio_setup_single_vector(kiocb); | 
|  | if (ret) | 
|  | break; | 
|  | ret = -EINVAL; | 
|  | if (file->f_op->aio_read) | 
|  | kiocb->ki_retry = aio_rw_vect_retry; | 
|  | break; | 
|  | case IOCB_CMD_PWRITE: | 
|  | ret = -EBADF; | 
|  | if (unlikely(!(file->f_mode & FMODE_WRITE))) | 
|  | break; | 
|  | ret = -EFAULT; | 
|  | if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf, | 
|  | kiocb->ki_left))) | 
|  | break; | 
|  | ret = security_file_permission(file, MAY_WRITE); | 
|  | if (unlikely(ret)) | 
|  | break; | 
|  | ret = aio_setup_single_vector(kiocb); | 
|  | if (ret) | 
|  | break; | 
|  | ret = -EINVAL; | 
|  | if (file->f_op->aio_write) | 
|  | kiocb->ki_retry = aio_rw_vect_retry; | 
|  | break; | 
|  | case IOCB_CMD_PREADV: | 
|  | ret = -EBADF; | 
|  | if (unlikely(!(file->f_mode & FMODE_READ))) | 
|  | break; | 
|  | ret = security_file_permission(file, MAY_READ); | 
|  | if (unlikely(ret)) | 
|  | break; | 
|  | ret = aio_setup_vectored_rw(READ, kiocb); | 
|  | if (ret) | 
|  | break; | 
|  | ret = -EINVAL; | 
|  | if (file->f_op->aio_read) | 
|  | kiocb->ki_retry = aio_rw_vect_retry; | 
|  | break; | 
|  | case IOCB_CMD_PWRITEV: | 
|  | ret = -EBADF; | 
|  | if (unlikely(!(file->f_mode & FMODE_WRITE))) | 
|  | break; | 
|  | ret = security_file_permission(file, MAY_WRITE); | 
|  | if (unlikely(ret)) | 
|  | break; | 
|  | ret = aio_setup_vectored_rw(WRITE, kiocb); | 
|  | if (ret) | 
|  | break; | 
|  | ret = -EINVAL; | 
|  | if (file->f_op->aio_write) | 
|  | kiocb->ki_retry = aio_rw_vect_retry; | 
|  | break; | 
|  | case IOCB_CMD_FDSYNC: | 
|  | ret = -EINVAL; | 
|  | if (file->f_op->aio_fsync) | 
|  | kiocb->ki_retry = aio_fdsync; | 
|  | break; | 
|  | case IOCB_CMD_FSYNC: | 
|  | ret = -EINVAL; | 
|  | if (file->f_op->aio_fsync) | 
|  | kiocb->ki_retry = aio_fsync; | 
|  | break; | 
|  | default: | 
|  | dprintk("EINVAL: io_submit: no operation provided\n"); | 
|  | ret = -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!kiocb->ki_retry) | 
|  | return ret; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * aio_wake_function: | 
|  | * 	wait queue callback function for aio notification, | 
|  | * 	Simply triggers a retry of the operation via kick_iocb. | 
|  | * | 
|  | * 	This callback is specified in the wait queue entry in | 
|  | *	a kiocb. | 
|  | * | 
|  | * Note: | 
|  | * This routine is executed with the wait queue lock held. | 
|  | * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests | 
|  | * the ioctx lock inside the wait queue lock. This is safe | 
|  | * because this callback isn't used for wait queues which | 
|  | * are nested inside ioctx lock (i.e. ctx->wait) | 
|  | */ | 
|  | static int aio_wake_function(wait_queue_t *wait, unsigned mode, | 
|  | int sync, void *key) | 
|  | { | 
|  | struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait); | 
|  |  | 
|  | list_del_init(&wait->task_list); | 
|  | kick_iocb(iocb); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, | 
|  | struct iocb *iocb) | 
|  | { | 
|  | struct kiocb *req; | 
|  | struct file *file; | 
|  | ssize_t ret; | 
|  |  | 
|  | /* enforce forwards compatibility on users */ | 
|  | if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { | 
|  | pr_debug("EINVAL: io_submit: reserve field set\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* prevent overflows */ | 
|  | if (unlikely( | 
|  | (iocb->aio_buf != (unsigned long)iocb->aio_buf) || | 
|  | (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || | 
|  | ((ssize_t)iocb->aio_nbytes < 0) | 
|  | )) { | 
|  | pr_debug("EINVAL: io_submit: overflow check\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | file = fget(iocb->aio_fildes); | 
|  | if (unlikely(!file)) | 
|  | return -EBADF; | 
|  |  | 
|  | req = aio_get_req(ctx);		/* returns with 2 references to req */ | 
|  | if (unlikely(!req)) { | 
|  | fput(file); | 
|  | return -EAGAIN; | 
|  | } | 
|  | req->ki_filp = file; | 
|  | if (iocb->aio_flags & IOCB_FLAG_RESFD) { | 
|  | /* | 
|  | * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an | 
|  | * instance of the file* now. The file descriptor must be | 
|  | * an eventfd() fd, and will be signaled for each completed | 
|  | * event using the eventfd_signal() function. | 
|  | */ | 
|  | req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); | 
|  | if (IS_ERR(req->ki_eventfd)) { | 
|  | ret = PTR_ERR(req->ki_eventfd); | 
|  | req->ki_eventfd = NULL; | 
|  | goto out_put_req; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = put_user(req->ki_key, &user_iocb->aio_key); | 
|  | if (unlikely(ret)) { | 
|  | dprintk("EFAULT: aio_key\n"); | 
|  | goto out_put_req; | 
|  | } | 
|  |  | 
|  | req->ki_obj.user = user_iocb; | 
|  | req->ki_user_data = iocb->aio_data; | 
|  | req->ki_pos = iocb->aio_offset; | 
|  |  | 
|  | req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf; | 
|  | req->ki_left = req->ki_nbytes = iocb->aio_nbytes; | 
|  | req->ki_opcode = iocb->aio_lio_opcode; | 
|  | init_waitqueue_func_entry(&req->ki_wait, aio_wake_function); | 
|  | INIT_LIST_HEAD(&req->ki_wait.task_list); | 
|  |  | 
|  | ret = aio_setup_iocb(req); | 
|  |  | 
|  | if (ret) | 
|  | goto out_put_req; | 
|  |  | 
|  | spin_lock_irq(&ctx->ctx_lock); | 
|  | aio_run_iocb(req); | 
|  | if (!list_empty(&ctx->run_list)) { | 
|  | /* drain the run list */ | 
|  | while (__aio_run_iocbs(ctx)) | 
|  | ; | 
|  | } | 
|  | spin_unlock_irq(&ctx->ctx_lock); | 
|  | aio_put_req(req);	/* drop extra ref to req */ | 
|  | return 0; | 
|  |  | 
|  | out_put_req: | 
|  | aio_put_req(req);	/* drop extra ref to req */ | 
|  | aio_put_req(req);	/* drop i/o ref to req */ | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* sys_io_submit: | 
|  | *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns | 
|  | *	the number of iocbs queued.  May return -EINVAL if the aio_context | 
|  | *	specified by ctx_id is invalid, if nr is < 0, if the iocb at | 
|  | *	*iocbpp[0] is not properly initialized, if the operation specified | 
|  | *	is invalid for the file descriptor in the iocb.  May fail with | 
|  | *	-EFAULT if any of the data structures point to invalid data.  May | 
|  | *	fail with -EBADF if the file descriptor specified in the first | 
|  | *	iocb is invalid.  May fail with -EAGAIN if insufficient resources | 
|  | *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will | 
|  | *	fail with -ENOSYS if not implemented. | 
|  | */ | 
|  | SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, | 
|  | struct iocb __user * __user *, iocbpp) | 
|  | { | 
|  | struct kioctx *ctx; | 
|  | long ret = 0; | 
|  | int i; | 
|  |  | 
|  | if (unlikely(nr < 0)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) | 
|  | return -EFAULT; | 
|  |  | 
|  | ctx = lookup_ioctx(ctx_id); | 
|  | if (unlikely(!ctx)) { | 
|  | pr_debug("EINVAL: io_submit: invalid context id\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * AKPM: should this return a partial result if some of the IOs were | 
|  | * successfully submitted? | 
|  | */ | 
|  | for (i=0; i<nr; i++) { | 
|  | struct iocb __user *user_iocb; | 
|  | struct iocb tmp; | 
|  |  | 
|  | if (unlikely(__get_user(user_iocb, iocbpp + i))) { | 
|  | ret = -EFAULT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { | 
|  | ret = -EFAULT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ret = io_submit_one(ctx, user_iocb, &tmp); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  |  | 
|  | put_ioctx(ctx); | 
|  | return i ? i : ret; | 
|  | } | 
|  |  | 
|  | /* lookup_kiocb | 
|  | *	Finds a given iocb for cancellation. | 
|  | */ | 
|  | static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, | 
|  | u32 key) | 
|  | { | 
|  | struct list_head *pos; | 
|  |  | 
|  | assert_spin_locked(&ctx->ctx_lock); | 
|  |  | 
|  | /* TODO: use a hash or array, this sucks. */ | 
|  | list_for_each(pos, &ctx->active_reqs) { | 
|  | struct kiocb *kiocb = list_kiocb(pos); | 
|  | if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key) | 
|  | return kiocb; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* sys_io_cancel: | 
|  | *	Attempts to cancel an iocb previously passed to io_submit.  If | 
|  | *	the operation is successfully cancelled, the resulting event is | 
|  | *	copied into the memory pointed to by result without being placed | 
|  | *	into the completion queue and 0 is returned.  May fail with | 
|  | *	-EFAULT if any of the data structures pointed to are invalid. | 
|  | *	May fail with -EINVAL if aio_context specified by ctx_id is | 
|  | *	invalid.  May fail with -EAGAIN if the iocb specified was not | 
|  | *	cancelled.  Will fail with -ENOSYS if not implemented. | 
|  | */ | 
|  | SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, | 
|  | struct io_event __user *, result) | 
|  | { | 
|  | int (*cancel)(struct kiocb *iocb, struct io_event *res); | 
|  | struct kioctx *ctx; | 
|  | struct kiocb *kiocb; | 
|  | u32 key; | 
|  | int ret; | 
|  |  | 
|  | ret = get_user(key, &iocb->aio_key); | 
|  | if (unlikely(ret)) | 
|  | return -EFAULT; | 
|  |  | 
|  | ctx = lookup_ioctx(ctx_id); | 
|  | if (unlikely(!ctx)) | 
|  | return -EINVAL; | 
|  |  | 
|  | spin_lock_irq(&ctx->ctx_lock); | 
|  | ret = -EAGAIN; | 
|  | kiocb = lookup_kiocb(ctx, iocb, key); | 
|  | if (kiocb && kiocb->ki_cancel) { | 
|  | cancel = kiocb->ki_cancel; | 
|  | kiocb->ki_users ++; | 
|  | kiocbSetCancelled(kiocb); | 
|  | } else | 
|  | cancel = NULL; | 
|  | spin_unlock_irq(&ctx->ctx_lock); | 
|  |  | 
|  | if (NULL != cancel) { | 
|  | struct io_event tmp; | 
|  | pr_debug("calling cancel\n"); | 
|  | memset(&tmp, 0, sizeof(tmp)); | 
|  | tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user; | 
|  | tmp.data = kiocb->ki_user_data; | 
|  | ret = cancel(kiocb, &tmp); | 
|  | if (!ret) { | 
|  | /* Cancellation succeeded -- copy the result | 
|  | * into the user's buffer. | 
|  | */ | 
|  | if (copy_to_user(result, &tmp, sizeof(tmp))) | 
|  | ret = -EFAULT; | 
|  | } | 
|  | } else | 
|  | ret = -EINVAL; | 
|  |  | 
|  | put_ioctx(ctx); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* io_getevents: | 
|  | *	Attempts to read at least min_nr events and up to nr events from | 
|  | *	the completion queue for the aio_context specified by ctx_id.  May | 
|  | *	fail with -EINVAL if ctx_id is invalid, if min_nr is out of range, | 
|  | *	if nr is out of range, if when is out of range.  May fail with | 
|  | *	-EFAULT if any of the memory specified to is invalid.  May return | 
|  | *	0 or < min_nr if no events are available and the timeout specified | 
|  | *	by when	has elapsed, where when == NULL specifies an infinite | 
|  | *	timeout.  Note that the timeout pointed to by when is relative and | 
|  | *	will be updated if not NULL and the operation blocks.  Will fail | 
|  | *	with -ENOSYS if not implemented. | 
|  | */ | 
|  | SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, | 
|  | long, min_nr, | 
|  | long, nr, | 
|  | struct io_event __user *, events, | 
|  | struct timespec __user *, timeout) | 
|  | { | 
|  | struct kioctx *ioctx = lookup_ioctx(ctx_id); | 
|  | long ret = -EINVAL; | 
|  |  | 
|  | if (likely(ioctx)) { | 
|  | if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0)) | 
|  | ret = read_events(ioctx, min_nr, nr, events, timeout); | 
|  | put_ioctx(ioctx); | 
|  | } | 
|  |  | 
|  | asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | __initcall(aio_setup); | 
|  |  | 
|  | EXPORT_SYMBOL(aio_complete); | 
|  | EXPORT_SYMBOL(aio_put_req); | 
|  | EXPORT_SYMBOL(wait_on_sync_kiocb); |