|  | /* | 
|  | * Copyright (C) 2008 Red Hat.  All rights reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public | 
|  | * License v2 as published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public | 
|  | * License along with this program; if not, write to the | 
|  | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
|  | * Boston, MA 021110-1307, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/math64.h> | 
|  | #include "ctree.h" | 
|  | #include "free-space-cache.h" | 
|  | #include "transaction.h" | 
|  |  | 
|  | #define BITS_PER_BITMAP		(PAGE_CACHE_SIZE * 8) | 
|  | #define MAX_CACHE_BYTES_PER_GIG	(32 * 1024) | 
|  |  | 
|  | static inline unsigned long offset_to_bit(u64 bitmap_start, u64 sectorsize, | 
|  | u64 offset) | 
|  | { | 
|  | BUG_ON(offset < bitmap_start); | 
|  | offset -= bitmap_start; | 
|  | return (unsigned long)(div64_u64(offset, sectorsize)); | 
|  | } | 
|  |  | 
|  | static inline unsigned long bytes_to_bits(u64 bytes, u64 sectorsize) | 
|  | { | 
|  | return (unsigned long)(div64_u64(bytes, sectorsize)); | 
|  | } | 
|  |  | 
|  | static inline u64 offset_to_bitmap(struct btrfs_block_group_cache *block_group, | 
|  | u64 offset) | 
|  | { | 
|  | u64 bitmap_start; | 
|  | u64 bytes_per_bitmap; | 
|  |  | 
|  | bytes_per_bitmap = BITS_PER_BITMAP * block_group->sectorsize; | 
|  | bitmap_start = offset - block_group->key.objectid; | 
|  | bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap); | 
|  | bitmap_start *= bytes_per_bitmap; | 
|  | bitmap_start += block_group->key.objectid; | 
|  |  | 
|  | return bitmap_start; | 
|  | } | 
|  |  | 
|  | static int tree_insert_offset(struct rb_root *root, u64 offset, | 
|  | struct rb_node *node, int bitmap) | 
|  | { | 
|  | struct rb_node **p = &root->rb_node; | 
|  | struct rb_node *parent = NULL; | 
|  | struct btrfs_free_space *info; | 
|  |  | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | info = rb_entry(parent, struct btrfs_free_space, offset_index); | 
|  |  | 
|  | if (offset < info->offset) { | 
|  | p = &(*p)->rb_left; | 
|  | } else if (offset > info->offset) { | 
|  | p = &(*p)->rb_right; | 
|  | } else { | 
|  | /* | 
|  | * we could have a bitmap entry and an extent entry | 
|  | * share the same offset.  If this is the case, we want | 
|  | * the extent entry to always be found first if we do a | 
|  | * linear search through the tree, since we want to have | 
|  | * the quickest allocation time, and allocating from an | 
|  | * extent is faster than allocating from a bitmap.  So | 
|  | * if we're inserting a bitmap and we find an entry at | 
|  | * this offset, we want to go right, or after this entry | 
|  | * logically.  If we are inserting an extent and we've | 
|  | * found a bitmap, we want to go left, or before | 
|  | * logically. | 
|  | */ | 
|  | if (bitmap) { | 
|  | WARN_ON(info->bitmap); | 
|  | p = &(*p)->rb_right; | 
|  | } else { | 
|  | WARN_ON(!info->bitmap); | 
|  | p = &(*p)->rb_left; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | rb_link_node(node, parent, p); | 
|  | rb_insert_color(node, root); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * searches the tree for the given offset. | 
|  | * | 
|  | * fuzzy - If this is set, then we are trying to make an allocation, and we just | 
|  | * want a section that has at least bytes size and comes at or after the given | 
|  | * offset. | 
|  | */ | 
|  | static struct btrfs_free_space * | 
|  | tree_search_offset(struct btrfs_block_group_cache *block_group, | 
|  | u64 offset, int bitmap_only, int fuzzy) | 
|  | { | 
|  | struct rb_node *n = block_group->free_space_offset.rb_node; | 
|  | struct btrfs_free_space *entry, *prev = NULL; | 
|  |  | 
|  | /* find entry that is closest to the 'offset' */ | 
|  | while (1) { | 
|  | if (!n) { | 
|  | entry = NULL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | entry = rb_entry(n, struct btrfs_free_space, offset_index); | 
|  | prev = entry; | 
|  |  | 
|  | if (offset < entry->offset) | 
|  | n = n->rb_left; | 
|  | else if (offset > entry->offset) | 
|  | n = n->rb_right; | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (bitmap_only) { | 
|  | if (!entry) | 
|  | return NULL; | 
|  | if (entry->bitmap) | 
|  | return entry; | 
|  |  | 
|  | /* | 
|  | * bitmap entry and extent entry may share same offset, | 
|  | * in that case, bitmap entry comes after extent entry. | 
|  | */ | 
|  | n = rb_next(n); | 
|  | if (!n) | 
|  | return NULL; | 
|  | entry = rb_entry(n, struct btrfs_free_space, offset_index); | 
|  | if (entry->offset != offset) | 
|  | return NULL; | 
|  |  | 
|  | WARN_ON(!entry->bitmap); | 
|  | return entry; | 
|  | } else if (entry) { | 
|  | if (entry->bitmap) { | 
|  | /* | 
|  | * if previous extent entry covers the offset, | 
|  | * we should return it instead of the bitmap entry | 
|  | */ | 
|  | n = &entry->offset_index; | 
|  | while (1) { | 
|  | n = rb_prev(n); | 
|  | if (!n) | 
|  | break; | 
|  | prev = rb_entry(n, struct btrfs_free_space, | 
|  | offset_index); | 
|  | if (!prev->bitmap) { | 
|  | if (prev->offset + prev->bytes > offset) | 
|  | entry = prev; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | if (!prev) | 
|  | return NULL; | 
|  |  | 
|  | /* find last entry before the 'offset' */ | 
|  | entry = prev; | 
|  | if (entry->offset > offset) { | 
|  | n = rb_prev(&entry->offset_index); | 
|  | if (n) { | 
|  | entry = rb_entry(n, struct btrfs_free_space, | 
|  | offset_index); | 
|  | BUG_ON(entry->offset > offset); | 
|  | } else { | 
|  | if (fuzzy) | 
|  | return entry; | 
|  | else | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (entry->bitmap) { | 
|  | n = &entry->offset_index; | 
|  | while (1) { | 
|  | n = rb_prev(n); | 
|  | if (!n) | 
|  | break; | 
|  | prev = rb_entry(n, struct btrfs_free_space, | 
|  | offset_index); | 
|  | if (!prev->bitmap) { | 
|  | if (prev->offset + prev->bytes > offset) | 
|  | return prev; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (entry->offset + BITS_PER_BITMAP * | 
|  | block_group->sectorsize > offset) | 
|  | return entry; | 
|  | } else if (entry->offset + entry->bytes > offset) | 
|  | return entry; | 
|  |  | 
|  | if (!fuzzy) | 
|  | return NULL; | 
|  |  | 
|  | while (1) { | 
|  | if (entry->bitmap) { | 
|  | if (entry->offset + BITS_PER_BITMAP * | 
|  | block_group->sectorsize > offset) | 
|  | break; | 
|  | } else { | 
|  | if (entry->offset + entry->bytes > offset) | 
|  | break; | 
|  | } | 
|  |  | 
|  | n = rb_next(&entry->offset_index); | 
|  | if (!n) | 
|  | return NULL; | 
|  | entry = rb_entry(n, struct btrfs_free_space, offset_index); | 
|  | } | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | static void unlink_free_space(struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_free_space *info) | 
|  | { | 
|  | rb_erase(&info->offset_index, &block_group->free_space_offset); | 
|  | block_group->free_extents--; | 
|  | block_group->free_space -= info->bytes; | 
|  | } | 
|  |  | 
|  | static int link_free_space(struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_free_space *info) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | BUG_ON(!info->bitmap && !info->bytes); | 
|  | ret = tree_insert_offset(&block_group->free_space_offset, info->offset, | 
|  | &info->offset_index, (info->bitmap != NULL)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | block_group->free_space += info->bytes; | 
|  | block_group->free_extents++; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void recalculate_thresholds(struct btrfs_block_group_cache *block_group) | 
|  | { | 
|  | u64 max_bytes, possible_bytes; | 
|  |  | 
|  | /* | 
|  | * The goal is to keep the total amount of memory used per 1gb of space | 
|  | * at or below 32k, so we need to adjust how much memory we allow to be | 
|  | * used by extent based free space tracking | 
|  | */ | 
|  | max_bytes = MAX_CACHE_BYTES_PER_GIG * | 
|  | (div64_u64(block_group->key.offset, 1024 * 1024 * 1024)); | 
|  |  | 
|  | possible_bytes = (block_group->total_bitmaps * PAGE_CACHE_SIZE) + | 
|  | (sizeof(struct btrfs_free_space) * | 
|  | block_group->extents_thresh); | 
|  |  | 
|  | if (possible_bytes > max_bytes) { | 
|  | int extent_bytes = max_bytes - | 
|  | (block_group->total_bitmaps * PAGE_CACHE_SIZE); | 
|  |  | 
|  | if (extent_bytes <= 0) { | 
|  | block_group->extents_thresh = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | block_group->extents_thresh = extent_bytes / | 
|  | (sizeof(struct btrfs_free_space)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bitmap_clear_bits(struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_free_space *info, u64 offset, | 
|  | u64 bytes) | 
|  | { | 
|  | unsigned long start, end; | 
|  | unsigned long i; | 
|  |  | 
|  | start = offset_to_bit(info->offset, block_group->sectorsize, offset); | 
|  | end = start + bytes_to_bits(bytes, block_group->sectorsize); | 
|  | BUG_ON(end > BITS_PER_BITMAP); | 
|  |  | 
|  | for (i = start; i < end; i++) | 
|  | clear_bit(i, info->bitmap); | 
|  |  | 
|  | info->bytes -= bytes; | 
|  | block_group->free_space -= bytes; | 
|  | } | 
|  |  | 
|  | static void bitmap_set_bits(struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_free_space *info, u64 offset, | 
|  | u64 bytes) | 
|  | { | 
|  | unsigned long start, end; | 
|  | unsigned long i; | 
|  |  | 
|  | start = offset_to_bit(info->offset, block_group->sectorsize, offset); | 
|  | end = start + bytes_to_bits(bytes, block_group->sectorsize); | 
|  | BUG_ON(end > BITS_PER_BITMAP); | 
|  |  | 
|  | for (i = start; i < end; i++) | 
|  | set_bit(i, info->bitmap); | 
|  |  | 
|  | info->bytes += bytes; | 
|  | block_group->free_space += bytes; | 
|  | } | 
|  |  | 
|  | static int search_bitmap(struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_free_space *bitmap_info, u64 *offset, | 
|  | u64 *bytes) | 
|  | { | 
|  | unsigned long found_bits = 0; | 
|  | unsigned long bits, i; | 
|  | unsigned long next_zero; | 
|  |  | 
|  | i = offset_to_bit(bitmap_info->offset, block_group->sectorsize, | 
|  | max_t(u64, *offset, bitmap_info->offset)); | 
|  | bits = bytes_to_bits(*bytes, block_group->sectorsize); | 
|  |  | 
|  | for (i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i); | 
|  | i < BITS_PER_BITMAP; | 
|  | i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i + 1)) { | 
|  | next_zero = find_next_zero_bit(bitmap_info->bitmap, | 
|  | BITS_PER_BITMAP, i); | 
|  | if ((next_zero - i) >= bits) { | 
|  | found_bits = next_zero - i; | 
|  | break; | 
|  | } | 
|  | i = next_zero; | 
|  | } | 
|  |  | 
|  | if (found_bits) { | 
|  | *offset = (u64)(i * block_group->sectorsize) + | 
|  | bitmap_info->offset; | 
|  | *bytes = (u64)(found_bits) * block_group->sectorsize; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static struct btrfs_free_space *find_free_space(struct btrfs_block_group_cache | 
|  | *block_group, u64 *offset, | 
|  | u64 *bytes, int debug) | 
|  | { | 
|  | struct btrfs_free_space *entry; | 
|  | struct rb_node *node; | 
|  | int ret; | 
|  |  | 
|  | if (!block_group->free_space_offset.rb_node) | 
|  | return NULL; | 
|  |  | 
|  | entry = tree_search_offset(block_group, | 
|  | offset_to_bitmap(block_group, *offset), | 
|  | 0, 1); | 
|  | if (!entry) | 
|  | return NULL; | 
|  |  | 
|  | for (node = &entry->offset_index; node; node = rb_next(node)) { | 
|  | entry = rb_entry(node, struct btrfs_free_space, offset_index); | 
|  | if (entry->bytes < *bytes) | 
|  | continue; | 
|  |  | 
|  | if (entry->bitmap) { | 
|  | ret = search_bitmap(block_group, entry, offset, bytes); | 
|  | if (!ret) | 
|  | return entry; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | *offset = entry->offset; | 
|  | *bytes = entry->bytes; | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void add_new_bitmap(struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_free_space *info, u64 offset) | 
|  | { | 
|  | u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize; | 
|  | int max_bitmaps = (int)div64_u64(block_group->key.offset + | 
|  | bytes_per_bg - 1, bytes_per_bg); | 
|  | BUG_ON(block_group->total_bitmaps >= max_bitmaps); | 
|  |  | 
|  | info->offset = offset_to_bitmap(block_group, offset); | 
|  | link_free_space(block_group, info); | 
|  | block_group->total_bitmaps++; | 
|  |  | 
|  | recalculate_thresholds(block_group); | 
|  | } | 
|  |  | 
|  | static noinline int remove_from_bitmap(struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_free_space *bitmap_info, | 
|  | u64 *offset, u64 *bytes) | 
|  | { | 
|  | u64 end; | 
|  |  | 
|  | again: | 
|  | end = bitmap_info->offset + | 
|  | (u64)(BITS_PER_BITMAP * block_group->sectorsize) - 1; | 
|  |  | 
|  | if (*offset > bitmap_info->offset && *offset + *bytes > end) { | 
|  | bitmap_clear_bits(block_group, bitmap_info, *offset, | 
|  | end - *offset + 1); | 
|  | *bytes -= end - *offset + 1; | 
|  | *offset = end + 1; | 
|  | } else if (*offset >= bitmap_info->offset && *offset + *bytes <= end) { | 
|  | bitmap_clear_bits(block_group, bitmap_info, *offset, *bytes); | 
|  | *bytes = 0; | 
|  | } | 
|  |  | 
|  | if (*bytes) { | 
|  | if (!bitmap_info->bytes) { | 
|  | unlink_free_space(block_group, bitmap_info); | 
|  | kfree(bitmap_info->bitmap); | 
|  | kfree(bitmap_info); | 
|  | block_group->total_bitmaps--; | 
|  | recalculate_thresholds(block_group); | 
|  | } | 
|  |  | 
|  | bitmap_info = tree_search_offset(block_group, | 
|  | offset_to_bitmap(block_group, | 
|  | *offset), | 
|  | 1, 0); | 
|  | if (!bitmap_info) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!bitmap_info->bitmap) | 
|  | return -EAGAIN; | 
|  |  | 
|  | goto again; | 
|  | } else if (!bitmap_info->bytes) { | 
|  | unlink_free_space(block_group, bitmap_info); | 
|  | kfree(bitmap_info->bitmap); | 
|  | kfree(bitmap_info); | 
|  | block_group->total_bitmaps--; | 
|  | recalculate_thresholds(block_group); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int insert_into_bitmap(struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_free_space *info) | 
|  | { | 
|  | struct btrfs_free_space *bitmap_info; | 
|  | int added = 0; | 
|  | u64 bytes, offset, end; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * If we are below the extents threshold then we can add this as an | 
|  | * extent, and don't have to deal with the bitmap | 
|  | */ | 
|  | if (block_group->free_extents < block_group->extents_thresh && | 
|  | info->bytes > block_group->sectorsize * 4) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * some block groups are so tiny they can't be enveloped by a bitmap, so | 
|  | * don't even bother to create a bitmap for this | 
|  | */ | 
|  | if (BITS_PER_BITMAP * block_group->sectorsize > | 
|  | block_group->key.offset) | 
|  | return 0; | 
|  |  | 
|  | bytes = info->bytes; | 
|  | offset = info->offset; | 
|  |  | 
|  | again: | 
|  | bitmap_info = tree_search_offset(block_group, | 
|  | offset_to_bitmap(block_group, offset), | 
|  | 1, 0); | 
|  | if (!bitmap_info) { | 
|  | BUG_ON(added); | 
|  | goto new_bitmap; | 
|  | } | 
|  |  | 
|  | end = bitmap_info->offset + | 
|  | (u64)(BITS_PER_BITMAP * block_group->sectorsize); | 
|  |  | 
|  | if (offset >= bitmap_info->offset && offset + bytes > end) { | 
|  | bitmap_set_bits(block_group, bitmap_info, offset, | 
|  | end - offset); | 
|  | bytes -= end - offset; | 
|  | offset = end; | 
|  | added = 0; | 
|  | } else if (offset >= bitmap_info->offset && offset + bytes <= end) { | 
|  | bitmap_set_bits(block_group, bitmap_info, offset, bytes); | 
|  | bytes = 0; | 
|  | } else { | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | if (!bytes) { | 
|  | ret = 1; | 
|  | goto out; | 
|  | } else | 
|  | goto again; | 
|  |  | 
|  | new_bitmap: | 
|  | if (info && info->bitmap) { | 
|  | add_new_bitmap(block_group, info, offset); | 
|  | added = 1; | 
|  | info = NULL; | 
|  | goto again; | 
|  | } else { | 
|  | spin_unlock(&block_group->tree_lock); | 
|  |  | 
|  | /* no pre-allocated info, allocate a new one */ | 
|  | if (!info) { | 
|  | info = kzalloc(sizeof(struct btrfs_free_space), | 
|  | GFP_NOFS); | 
|  | if (!info) { | 
|  | spin_lock(&block_group->tree_lock); | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* allocate the bitmap */ | 
|  | info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS); | 
|  | spin_lock(&block_group->tree_lock); | 
|  | if (!info->bitmap) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | out: | 
|  | if (info) { | 
|  | if (info->bitmap) | 
|  | kfree(info->bitmap); | 
|  | kfree(info); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_add_free_space(struct btrfs_block_group_cache *block_group, | 
|  | u64 offset, u64 bytes) | 
|  | { | 
|  | struct btrfs_free_space *right_info = NULL; | 
|  | struct btrfs_free_space *left_info = NULL; | 
|  | struct btrfs_free_space *info = NULL; | 
|  | int ret = 0; | 
|  |  | 
|  | info = kzalloc(sizeof(struct btrfs_free_space), GFP_NOFS); | 
|  | if (!info) | 
|  | return -ENOMEM; | 
|  |  | 
|  | info->offset = offset; | 
|  | info->bytes = bytes; | 
|  |  | 
|  | spin_lock(&block_group->tree_lock); | 
|  |  | 
|  | /* | 
|  | * first we want to see if there is free space adjacent to the range we | 
|  | * are adding, if there is remove that struct and add a new one to | 
|  | * cover the entire range | 
|  | */ | 
|  | right_info = tree_search_offset(block_group, offset + bytes, 0, 0); | 
|  | if (right_info && rb_prev(&right_info->offset_index)) | 
|  | left_info = rb_entry(rb_prev(&right_info->offset_index), | 
|  | struct btrfs_free_space, offset_index); | 
|  | else | 
|  | left_info = tree_search_offset(block_group, offset - 1, 0, 0); | 
|  |  | 
|  | /* | 
|  | * If there was no extent directly to the left or right of this new | 
|  | * extent then we know we're going to have to allocate a new extent, so | 
|  | * before we do that see if we need to drop this into a bitmap | 
|  | */ | 
|  | if ((!left_info || left_info->bitmap) && | 
|  | (!right_info || right_info->bitmap)) { | 
|  | ret = insert_into_bitmap(block_group, info); | 
|  |  | 
|  | if (ret < 0) { | 
|  | goto out; | 
|  | } else if (ret) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (right_info && !right_info->bitmap) { | 
|  | unlink_free_space(block_group, right_info); | 
|  | info->bytes += right_info->bytes; | 
|  | kfree(right_info); | 
|  | } | 
|  |  | 
|  | if (left_info && !left_info->bitmap && | 
|  | left_info->offset + left_info->bytes == offset) { | 
|  | unlink_free_space(block_group, left_info); | 
|  | info->offset = left_info->offset; | 
|  | info->bytes += left_info->bytes; | 
|  | kfree(left_info); | 
|  | } | 
|  |  | 
|  | ret = link_free_space(block_group, info); | 
|  | if (ret) | 
|  | kfree(info); | 
|  | out: | 
|  | spin_unlock(&block_group->tree_lock); | 
|  |  | 
|  | if (ret) { | 
|  | printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret); | 
|  | BUG_ON(ret == -EEXIST); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group, | 
|  | u64 offset, u64 bytes) | 
|  | { | 
|  | struct btrfs_free_space *info; | 
|  | struct btrfs_free_space *next_info = NULL; | 
|  | int ret = 0; | 
|  |  | 
|  | spin_lock(&block_group->tree_lock); | 
|  |  | 
|  | again: | 
|  | info = tree_search_offset(block_group, offset, 0, 0); | 
|  | if (!info) { | 
|  | WARN_ON(1); | 
|  | goto out_lock; | 
|  | } | 
|  |  | 
|  | if (info->bytes < bytes && rb_next(&info->offset_index)) { | 
|  | u64 end; | 
|  | next_info = rb_entry(rb_next(&info->offset_index), | 
|  | struct btrfs_free_space, | 
|  | offset_index); | 
|  |  | 
|  | if (next_info->bitmap) | 
|  | end = next_info->offset + BITS_PER_BITMAP * | 
|  | block_group->sectorsize - 1; | 
|  | else | 
|  | end = next_info->offset + next_info->bytes; | 
|  |  | 
|  | if (next_info->bytes < bytes || | 
|  | next_info->offset > offset || offset > end) { | 
|  | printk(KERN_CRIT "Found free space at %llu, size %llu," | 
|  | " trying to use %llu\n", | 
|  | (unsigned long long)info->offset, | 
|  | (unsigned long long)info->bytes, | 
|  | (unsigned long long)bytes); | 
|  | WARN_ON(1); | 
|  | ret = -EINVAL; | 
|  | goto out_lock; | 
|  | } | 
|  |  | 
|  | info = next_info; | 
|  | } | 
|  |  | 
|  | if (info->bytes == bytes) { | 
|  | unlink_free_space(block_group, info); | 
|  | if (info->bitmap) { | 
|  | kfree(info->bitmap); | 
|  | block_group->total_bitmaps--; | 
|  | } | 
|  | kfree(info); | 
|  | goto out_lock; | 
|  | } | 
|  |  | 
|  | if (!info->bitmap && info->offset == offset) { | 
|  | unlink_free_space(block_group, info); | 
|  | info->offset += bytes; | 
|  | info->bytes -= bytes; | 
|  | link_free_space(block_group, info); | 
|  | goto out_lock; | 
|  | } | 
|  |  | 
|  | if (!info->bitmap && info->offset <= offset && | 
|  | info->offset + info->bytes >= offset + bytes) { | 
|  | u64 old_start = info->offset; | 
|  | /* | 
|  | * we're freeing space in the middle of the info, | 
|  | * this can happen during tree log replay | 
|  | * | 
|  | * first unlink the old info and then | 
|  | * insert it again after the hole we're creating | 
|  | */ | 
|  | unlink_free_space(block_group, info); | 
|  | if (offset + bytes < info->offset + info->bytes) { | 
|  | u64 old_end = info->offset + info->bytes; | 
|  |  | 
|  | info->offset = offset + bytes; | 
|  | info->bytes = old_end - info->offset; | 
|  | ret = link_free_space(block_group, info); | 
|  | WARN_ON(ret); | 
|  | if (ret) | 
|  | goto out_lock; | 
|  | } else { | 
|  | /* the hole we're creating ends at the end | 
|  | * of the info struct, just free the info | 
|  | */ | 
|  | kfree(info); | 
|  | } | 
|  | spin_unlock(&block_group->tree_lock); | 
|  |  | 
|  | /* step two, insert a new info struct to cover | 
|  | * anything before the hole | 
|  | */ | 
|  | ret = btrfs_add_free_space(block_group, old_start, | 
|  | offset - old_start); | 
|  | WARN_ON(ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = remove_from_bitmap(block_group, info, &offset, &bytes); | 
|  | if (ret == -EAGAIN) | 
|  | goto again; | 
|  | BUG_ON(ret); | 
|  | out_lock: | 
|  | spin_unlock(&block_group->tree_lock); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group, | 
|  | u64 bytes) | 
|  | { | 
|  | struct btrfs_free_space *info; | 
|  | struct rb_node *n; | 
|  | int count = 0; | 
|  |  | 
|  | for (n = rb_first(&block_group->free_space_offset); n; n = rb_next(n)) { | 
|  | info = rb_entry(n, struct btrfs_free_space, offset_index); | 
|  | if (info->bytes >= bytes) | 
|  | count++; | 
|  | printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n", | 
|  | (unsigned long long)info->offset, | 
|  | (unsigned long long)info->bytes, | 
|  | (info->bitmap) ? "yes" : "no"); | 
|  | } | 
|  | printk(KERN_INFO "block group has cluster?: %s\n", | 
|  | list_empty(&block_group->cluster_list) ? "no" : "yes"); | 
|  | printk(KERN_INFO "%d blocks of free space at or bigger than bytes is" | 
|  | "\n", count); | 
|  | } | 
|  |  | 
|  | u64 btrfs_block_group_free_space(struct btrfs_block_group_cache *block_group) | 
|  | { | 
|  | struct btrfs_free_space *info; | 
|  | struct rb_node *n; | 
|  | u64 ret = 0; | 
|  |  | 
|  | for (n = rb_first(&block_group->free_space_offset); n; | 
|  | n = rb_next(n)) { | 
|  | info = rb_entry(n, struct btrfs_free_space, offset_index); | 
|  | ret += info->bytes; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * for a given cluster, put all of its extents back into the free | 
|  | * space cache.  If the block group passed doesn't match the block group | 
|  | * pointed to by the cluster, someone else raced in and freed the | 
|  | * cluster already.  In that case, we just return without changing anything | 
|  | */ | 
|  | static int | 
|  | __btrfs_return_cluster_to_free_space( | 
|  | struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_free_cluster *cluster) | 
|  | { | 
|  | struct btrfs_free_space *entry; | 
|  | struct rb_node *node; | 
|  | bool bitmap; | 
|  |  | 
|  | spin_lock(&cluster->lock); | 
|  | if (cluster->block_group != block_group) | 
|  | goto out; | 
|  |  | 
|  | bitmap = cluster->points_to_bitmap; | 
|  | cluster->block_group = NULL; | 
|  | cluster->window_start = 0; | 
|  | list_del_init(&cluster->block_group_list); | 
|  | cluster->points_to_bitmap = false; | 
|  |  | 
|  | if (bitmap) | 
|  | goto out; | 
|  |  | 
|  | node = rb_first(&cluster->root); | 
|  | while (node) { | 
|  | entry = rb_entry(node, struct btrfs_free_space, offset_index); | 
|  | node = rb_next(&entry->offset_index); | 
|  | rb_erase(&entry->offset_index, &cluster->root); | 
|  | BUG_ON(entry->bitmap); | 
|  | tree_insert_offset(&block_group->free_space_offset, | 
|  | entry->offset, &entry->offset_index, 0); | 
|  | } | 
|  | cluster->root.rb_node = NULL; | 
|  |  | 
|  | out: | 
|  | spin_unlock(&cluster->lock); | 
|  | btrfs_put_block_group(block_group); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group) | 
|  | { | 
|  | struct btrfs_free_space *info; | 
|  | struct rb_node *node; | 
|  | struct btrfs_free_cluster *cluster; | 
|  | struct list_head *head; | 
|  |  | 
|  | spin_lock(&block_group->tree_lock); | 
|  | while ((head = block_group->cluster_list.next) != | 
|  | &block_group->cluster_list) { | 
|  | cluster = list_entry(head, struct btrfs_free_cluster, | 
|  | block_group_list); | 
|  |  | 
|  | WARN_ON(cluster->block_group != block_group); | 
|  | __btrfs_return_cluster_to_free_space(block_group, cluster); | 
|  | if (need_resched()) { | 
|  | spin_unlock(&block_group->tree_lock); | 
|  | cond_resched(); | 
|  | spin_lock(&block_group->tree_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | while ((node = rb_last(&block_group->free_space_offset)) != NULL) { | 
|  | info = rb_entry(node, struct btrfs_free_space, offset_index); | 
|  | unlink_free_space(block_group, info); | 
|  | if (info->bitmap) | 
|  | kfree(info->bitmap); | 
|  | kfree(info); | 
|  | if (need_resched()) { | 
|  | spin_unlock(&block_group->tree_lock); | 
|  | cond_resched(); | 
|  | spin_lock(&block_group->tree_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock(&block_group->tree_lock); | 
|  | } | 
|  |  | 
|  | u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group, | 
|  | u64 offset, u64 bytes, u64 empty_size) | 
|  | { | 
|  | struct btrfs_free_space *entry = NULL; | 
|  | u64 bytes_search = bytes + empty_size; | 
|  | u64 ret = 0; | 
|  |  | 
|  | spin_lock(&block_group->tree_lock); | 
|  | entry = find_free_space(block_group, &offset, &bytes_search, 0); | 
|  | if (!entry) | 
|  | goto out; | 
|  |  | 
|  | ret = offset; | 
|  | if (entry->bitmap) { | 
|  | bitmap_clear_bits(block_group, entry, offset, bytes); | 
|  | if (!entry->bytes) { | 
|  | unlink_free_space(block_group, entry); | 
|  | kfree(entry->bitmap); | 
|  | kfree(entry); | 
|  | block_group->total_bitmaps--; | 
|  | recalculate_thresholds(block_group); | 
|  | } | 
|  | } else { | 
|  | unlink_free_space(block_group, entry); | 
|  | entry->offset += bytes; | 
|  | entry->bytes -= bytes; | 
|  | if (!entry->bytes) | 
|  | kfree(entry); | 
|  | else | 
|  | link_free_space(block_group, entry); | 
|  | } | 
|  |  | 
|  | out: | 
|  | spin_unlock(&block_group->tree_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * given a cluster, put all of its extents back into the free space | 
|  | * cache.  If a block group is passed, this function will only free | 
|  | * a cluster that belongs to the passed block group. | 
|  | * | 
|  | * Otherwise, it'll get a reference on the block group pointed to by the | 
|  | * cluster and remove the cluster from it. | 
|  | */ | 
|  | int btrfs_return_cluster_to_free_space( | 
|  | struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_free_cluster *cluster) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* first, get a safe pointer to the block group */ | 
|  | spin_lock(&cluster->lock); | 
|  | if (!block_group) { | 
|  | block_group = cluster->block_group; | 
|  | if (!block_group) { | 
|  | spin_unlock(&cluster->lock); | 
|  | return 0; | 
|  | } | 
|  | } else if (cluster->block_group != block_group) { | 
|  | /* someone else has already freed it don't redo their work */ | 
|  | spin_unlock(&cluster->lock); | 
|  | return 0; | 
|  | } | 
|  | atomic_inc(&block_group->count); | 
|  | spin_unlock(&cluster->lock); | 
|  |  | 
|  | /* now return any extents the cluster had on it */ | 
|  | spin_lock(&block_group->tree_lock); | 
|  | ret = __btrfs_return_cluster_to_free_space(block_group, cluster); | 
|  | spin_unlock(&block_group->tree_lock); | 
|  |  | 
|  | /* finally drop our ref */ | 
|  | btrfs_put_block_group(block_group); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_free_cluster *cluster, | 
|  | u64 bytes, u64 min_start) | 
|  | { | 
|  | struct btrfs_free_space *entry; | 
|  | int err; | 
|  | u64 search_start = cluster->window_start; | 
|  | u64 search_bytes = bytes; | 
|  | u64 ret = 0; | 
|  |  | 
|  | spin_lock(&block_group->tree_lock); | 
|  | spin_lock(&cluster->lock); | 
|  |  | 
|  | if (!cluster->points_to_bitmap) | 
|  | goto out; | 
|  |  | 
|  | if (cluster->block_group != block_group) | 
|  | goto out; | 
|  |  | 
|  | entry = tree_search_offset(block_group, search_start, 0, 0); | 
|  |  | 
|  | if (!entry || !entry->bitmap) | 
|  | goto out; | 
|  |  | 
|  | search_start = min_start; | 
|  | search_bytes = bytes; | 
|  |  | 
|  | err = search_bitmap(block_group, entry, &search_start, | 
|  | &search_bytes); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | ret = search_start; | 
|  | bitmap_clear_bits(block_group, entry, ret, bytes); | 
|  | out: | 
|  | spin_unlock(&cluster->lock); | 
|  | spin_unlock(&block_group->tree_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * given a cluster, try to allocate 'bytes' from it, returns 0 | 
|  | * if it couldn't find anything suitably large, or a logical disk offset | 
|  | * if things worked out | 
|  | */ | 
|  | u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_free_cluster *cluster, u64 bytes, | 
|  | u64 min_start) | 
|  | { | 
|  | struct btrfs_free_space *entry = NULL; | 
|  | struct rb_node *node; | 
|  | u64 ret = 0; | 
|  |  | 
|  | if (cluster->points_to_bitmap) | 
|  | return btrfs_alloc_from_bitmap(block_group, cluster, bytes, | 
|  | min_start); | 
|  |  | 
|  | spin_lock(&cluster->lock); | 
|  | if (bytes > cluster->max_size) | 
|  | goto out; | 
|  |  | 
|  | if (cluster->block_group != block_group) | 
|  | goto out; | 
|  |  | 
|  | node = rb_first(&cluster->root); | 
|  | if (!node) | 
|  | goto out; | 
|  |  | 
|  | entry = rb_entry(node, struct btrfs_free_space, offset_index); | 
|  |  | 
|  | while(1) { | 
|  | if (entry->bytes < bytes || entry->offset < min_start) { | 
|  | struct rb_node *node; | 
|  |  | 
|  | node = rb_next(&entry->offset_index); | 
|  | if (!node) | 
|  | break; | 
|  | entry = rb_entry(node, struct btrfs_free_space, | 
|  | offset_index); | 
|  | continue; | 
|  | } | 
|  | ret = entry->offset; | 
|  |  | 
|  | entry->offset += bytes; | 
|  | entry->bytes -= bytes; | 
|  |  | 
|  | if (entry->bytes == 0) { | 
|  | rb_erase(&entry->offset_index, &cluster->root); | 
|  | kfree(entry); | 
|  | } | 
|  | break; | 
|  | } | 
|  | out: | 
|  | spin_unlock(&cluster->lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_free_space *entry, | 
|  | struct btrfs_free_cluster *cluster, | 
|  | u64 offset, u64 bytes, u64 min_bytes) | 
|  | { | 
|  | unsigned long next_zero; | 
|  | unsigned long i; | 
|  | unsigned long search_bits; | 
|  | unsigned long total_bits; | 
|  | unsigned long found_bits; | 
|  | unsigned long start = 0; | 
|  | unsigned long total_found = 0; | 
|  | bool found = false; | 
|  |  | 
|  | i = offset_to_bit(entry->offset, block_group->sectorsize, | 
|  | max_t(u64, offset, entry->offset)); | 
|  | search_bits = bytes_to_bits(min_bytes, block_group->sectorsize); | 
|  | total_bits = bytes_to_bits(bytes, block_group->sectorsize); | 
|  |  | 
|  | again: | 
|  | found_bits = 0; | 
|  | for (i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i); | 
|  | i < BITS_PER_BITMAP; | 
|  | i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i + 1)) { | 
|  | next_zero = find_next_zero_bit(entry->bitmap, | 
|  | BITS_PER_BITMAP, i); | 
|  | if (next_zero - i >= search_bits) { | 
|  | found_bits = next_zero - i; | 
|  | break; | 
|  | } | 
|  | i = next_zero; | 
|  | } | 
|  |  | 
|  | if (!found_bits) | 
|  | return -1; | 
|  |  | 
|  | if (!found) { | 
|  | start = i; | 
|  | found = true; | 
|  | } | 
|  |  | 
|  | total_found += found_bits; | 
|  |  | 
|  | if (cluster->max_size < found_bits * block_group->sectorsize) | 
|  | cluster->max_size = found_bits * block_group->sectorsize; | 
|  |  | 
|  | if (total_found < total_bits) { | 
|  | i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, next_zero); | 
|  | if (i - start > total_bits * 2) { | 
|  | total_found = 0; | 
|  | cluster->max_size = 0; | 
|  | found = false; | 
|  | } | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | cluster->window_start = start * block_group->sectorsize + | 
|  | entry->offset; | 
|  | cluster->points_to_bitmap = true; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * here we try to find a cluster of blocks in a block group.  The goal | 
|  | * is to find at least bytes free and up to empty_size + bytes free. | 
|  | * We might not find them all in one contiguous area. | 
|  | * | 
|  | * returns zero and sets up cluster if things worked out, otherwise | 
|  | * it returns -enospc | 
|  | */ | 
|  | int btrfs_find_space_cluster(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_free_cluster *cluster, | 
|  | u64 offset, u64 bytes, u64 empty_size) | 
|  | { | 
|  | struct btrfs_free_space *entry = NULL; | 
|  | struct rb_node *node; | 
|  | struct btrfs_free_space *next; | 
|  | struct btrfs_free_space *last = NULL; | 
|  | u64 min_bytes; | 
|  | u64 window_start; | 
|  | u64 window_free; | 
|  | u64 max_extent = 0; | 
|  | bool found_bitmap = false; | 
|  | int ret; | 
|  |  | 
|  | /* for metadata, allow allocates with more holes */ | 
|  | if (btrfs_test_opt(root, SSD_SPREAD)) { | 
|  | min_bytes = bytes + empty_size; | 
|  | } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) { | 
|  | /* | 
|  | * we want to do larger allocations when we are | 
|  | * flushing out the delayed refs, it helps prevent | 
|  | * making more work as we go along. | 
|  | */ | 
|  | if (trans->transaction->delayed_refs.flushing) | 
|  | min_bytes = max(bytes, (bytes + empty_size) >> 1); | 
|  | else | 
|  | min_bytes = max(bytes, (bytes + empty_size) >> 4); | 
|  | } else | 
|  | min_bytes = max(bytes, (bytes + empty_size) >> 2); | 
|  |  | 
|  | spin_lock(&block_group->tree_lock); | 
|  | spin_lock(&cluster->lock); | 
|  |  | 
|  | /* someone already found a cluster, hooray */ | 
|  | if (cluster->block_group) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  | again: | 
|  | entry = tree_search_offset(block_group, offset, found_bitmap, 1); | 
|  | if (!entry) { | 
|  | ret = -ENOSPC; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If found_bitmap is true, we exhausted our search for extent entries, | 
|  | * and we just want to search all of the bitmaps that we can find, and | 
|  | * ignore any extent entries we find. | 
|  | */ | 
|  | while (entry->bitmap || found_bitmap || | 
|  | (!entry->bitmap && entry->bytes < min_bytes)) { | 
|  | struct rb_node *node = rb_next(&entry->offset_index); | 
|  |  | 
|  | if (entry->bitmap && entry->bytes > bytes + empty_size) { | 
|  | ret = btrfs_bitmap_cluster(block_group, entry, cluster, | 
|  | offset, bytes + empty_size, | 
|  | min_bytes); | 
|  | if (!ret) | 
|  | goto got_it; | 
|  | } | 
|  |  | 
|  | if (!node) { | 
|  | ret = -ENOSPC; | 
|  | goto out; | 
|  | } | 
|  | entry = rb_entry(node, struct btrfs_free_space, offset_index); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We already searched all the extent entries from the passed in offset | 
|  | * to the end and didn't find enough space for the cluster, and we also | 
|  | * didn't find any bitmaps that met our criteria, just go ahead and exit | 
|  | */ | 
|  | if (found_bitmap) { | 
|  | ret = -ENOSPC; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | cluster->points_to_bitmap = false; | 
|  | window_start = entry->offset; | 
|  | window_free = entry->bytes; | 
|  | last = entry; | 
|  | max_extent = entry->bytes; | 
|  |  | 
|  | while (1) { | 
|  | /* out window is just right, lets fill it */ | 
|  | if (window_free >= bytes + empty_size) | 
|  | break; | 
|  |  | 
|  | node = rb_next(&last->offset_index); | 
|  | if (!node) { | 
|  | if (found_bitmap) | 
|  | goto again; | 
|  | ret = -ENOSPC; | 
|  | goto out; | 
|  | } | 
|  | next = rb_entry(node, struct btrfs_free_space, offset_index); | 
|  |  | 
|  | /* | 
|  | * we found a bitmap, so if this search doesn't result in a | 
|  | * cluster, we know to go and search again for the bitmaps and | 
|  | * start looking for space there | 
|  | */ | 
|  | if (next->bitmap) { | 
|  | if (!found_bitmap) | 
|  | offset = next->offset; | 
|  | found_bitmap = true; | 
|  | last = next; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * we haven't filled the empty size and the window is | 
|  | * very large.  reset and try again | 
|  | */ | 
|  | if (next->offset - (last->offset + last->bytes) > 128 * 1024 || | 
|  | next->offset - window_start > (bytes + empty_size) * 2) { | 
|  | entry = next; | 
|  | window_start = entry->offset; | 
|  | window_free = entry->bytes; | 
|  | last = entry; | 
|  | max_extent = 0; | 
|  | } else { | 
|  | last = next; | 
|  | window_free += next->bytes; | 
|  | if (entry->bytes > max_extent) | 
|  | max_extent = entry->bytes; | 
|  | } | 
|  | } | 
|  |  | 
|  | cluster->window_start = entry->offset; | 
|  |  | 
|  | /* | 
|  | * now we've found our entries, pull them out of the free space | 
|  | * cache and put them into the cluster rbtree | 
|  | * | 
|  | * The cluster includes an rbtree, but only uses the offset index | 
|  | * of each free space cache entry. | 
|  | */ | 
|  | while (1) { | 
|  | node = rb_next(&entry->offset_index); | 
|  | if (entry->bitmap && node) { | 
|  | entry = rb_entry(node, struct btrfs_free_space, | 
|  | offset_index); | 
|  | continue; | 
|  | } else if (entry->bitmap && !node) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | rb_erase(&entry->offset_index, &block_group->free_space_offset); | 
|  | ret = tree_insert_offset(&cluster->root, entry->offset, | 
|  | &entry->offset_index, 0); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | if (!node || entry == last) | 
|  | break; | 
|  |  | 
|  | entry = rb_entry(node, struct btrfs_free_space, offset_index); | 
|  | } | 
|  |  | 
|  | cluster->max_size = max_extent; | 
|  | got_it: | 
|  | ret = 0; | 
|  | atomic_inc(&block_group->count); | 
|  | list_add_tail(&cluster->block_group_list, &block_group->cluster_list); | 
|  | cluster->block_group = block_group; | 
|  | out: | 
|  | spin_unlock(&cluster->lock); | 
|  | spin_unlock(&block_group->tree_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * simple code to zero out a cluster | 
|  | */ | 
|  | void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster) | 
|  | { | 
|  | spin_lock_init(&cluster->lock); | 
|  | spin_lock_init(&cluster->refill_lock); | 
|  | cluster->root.rb_node = NULL; | 
|  | cluster->max_size = 0; | 
|  | cluster->points_to_bitmap = false; | 
|  | INIT_LIST_HEAD(&cluster->block_group_list); | 
|  | cluster->block_group = NULL; | 
|  | } | 
|  |  |