| #include <linux/errno.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/prctl.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/module.h> | 
 | #include <linux/pm.h> | 
 | #include <linux/clockchips.h> | 
 | #include <linux/random.h> | 
 | #include <linux/user-return-notifier.h> | 
 | #include <linux/dmi.h> | 
 | #include <linux/utsname.h> | 
 | #include <trace/events/power.h> | 
 | #include <linux/hw_breakpoint.h> | 
 | #include <asm/system.h> | 
 | #include <asm/apic.h> | 
 | #include <asm/syscalls.h> | 
 | #include <asm/idle.h> | 
 | #include <asm/uaccess.h> | 
 | #include <asm/i387.h> | 
 | #include <asm/debugreg.h> | 
 |  | 
 | unsigned long idle_halt; | 
 | EXPORT_SYMBOL(idle_halt); | 
 | unsigned long idle_nomwait; | 
 | EXPORT_SYMBOL(idle_nomwait); | 
 |  | 
 | struct kmem_cache *task_xstate_cachep; | 
 | EXPORT_SYMBOL_GPL(task_xstate_cachep); | 
 |  | 
 | int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	*dst = *src; | 
 | 	if (fpu_allocated(&src->thread.fpu)) { | 
 | 		memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu)); | 
 | 		ret = fpu_alloc(&dst->thread.fpu); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 		fpu_copy(&dst->thread.fpu, &src->thread.fpu); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | void free_thread_xstate(struct task_struct *tsk) | 
 | { | 
 | 	fpu_free(&tsk->thread.fpu); | 
 | } | 
 |  | 
 | void free_thread_info(struct thread_info *ti) | 
 | { | 
 | 	free_thread_xstate(ti->task); | 
 | 	free_pages((unsigned long)ti, get_order(THREAD_SIZE)); | 
 | } | 
 |  | 
 | void arch_task_cache_init(void) | 
 | { | 
 |         task_xstate_cachep = | 
 |         	kmem_cache_create("task_xstate", xstate_size, | 
 | 				  __alignof__(union thread_xstate), | 
 | 				  SLAB_PANIC | SLAB_NOTRACK, NULL); | 
 | } | 
 |  | 
 | /* | 
 |  * Free current thread data structures etc.. | 
 |  */ | 
 | void exit_thread(void) | 
 | { | 
 | 	struct task_struct *me = current; | 
 | 	struct thread_struct *t = &me->thread; | 
 | 	unsigned long *bp = t->io_bitmap_ptr; | 
 |  | 
 | 	if (bp) { | 
 | 		struct tss_struct *tss = &per_cpu(init_tss, get_cpu()); | 
 |  | 
 | 		t->io_bitmap_ptr = NULL; | 
 | 		clear_thread_flag(TIF_IO_BITMAP); | 
 | 		/* | 
 | 		 * Careful, clear this in the TSS too: | 
 | 		 */ | 
 | 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max); | 
 | 		t->io_bitmap_max = 0; | 
 | 		put_cpu(); | 
 | 		kfree(bp); | 
 | 	} | 
 | } | 
 |  | 
 | void show_regs(struct pt_regs *regs) | 
 | { | 
 | 	show_registers(regs); | 
 | 	show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs), | 
 | 		   regs->bp); | 
 | } | 
 |  | 
 | void show_regs_common(void) | 
 | { | 
 | 	const char *board, *product; | 
 |  | 
 | 	board = dmi_get_system_info(DMI_BOARD_NAME); | 
 | 	if (!board) | 
 | 		board = ""; | 
 | 	product = dmi_get_system_info(DMI_PRODUCT_NAME); | 
 | 	if (!product) | 
 | 		product = ""; | 
 |  | 
 | 	printk(KERN_CONT "\n"); | 
 | 	printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s/%s\n", | 
 | 		current->pid, current->comm, print_tainted(), | 
 | 		init_utsname()->release, | 
 | 		(int)strcspn(init_utsname()->version, " "), | 
 | 		init_utsname()->version, board, product); | 
 | } | 
 |  | 
 | void flush_thread(void) | 
 | { | 
 | 	struct task_struct *tsk = current; | 
 |  | 
 | 	flush_ptrace_hw_breakpoint(tsk); | 
 | 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); | 
 | 	/* | 
 | 	 * Forget coprocessor state.. | 
 | 	 */ | 
 | 	tsk->fpu_counter = 0; | 
 | 	clear_fpu(tsk); | 
 | 	clear_used_math(); | 
 | } | 
 |  | 
 | static void hard_disable_TSC(void) | 
 | { | 
 | 	write_cr4(read_cr4() | X86_CR4_TSD); | 
 | } | 
 |  | 
 | void disable_TSC(void) | 
 | { | 
 | 	preempt_disable(); | 
 | 	if (!test_and_set_thread_flag(TIF_NOTSC)) | 
 | 		/* | 
 | 		 * Must flip the CPU state synchronously with | 
 | 		 * TIF_NOTSC in the current running context. | 
 | 		 */ | 
 | 		hard_disable_TSC(); | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | static void hard_enable_TSC(void) | 
 | { | 
 | 	write_cr4(read_cr4() & ~X86_CR4_TSD); | 
 | } | 
 |  | 
 | static void enable_TSC(void) | 
 | { | 
 | 	preempt_disable(); | 
 | 	if (test_and_clear_thread_flag(TIF_NOTSC)) | 
 | 		/* | 
 | 		 * Must flip the CPU state synchronously with | 
 | 		 * TIF_NOTSC in the current running context. | 
 | 		 */ | 
 | 		hard_enable_TSC(); | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | int get_tsc_mode(unsigned long adr) | 
 | { | 
 | 	unsigned int val; | 
 |  | 
 | 	if (test_thread_flag(TIF_NOTSC)) | 
 | 		val = PR_TSC_SIGSEGV; | 
 | 	else | 
 | 		val = PR_TSC_ENABLE; | 
 |  | 
 | 	return put_user(val, (unsigned int __user *)adr); | 
 | } | 
 |  | 
 | int set_tsc_mode(unsigned int val) | 
 | { | 
 | 	if (val == PR_TSC_SIGSEGV) | 
 | 		disable_TSC(); | 
 | 	else if (val == PR_TSC_ENABLE) | 
 | 		enable_TSC(); | 
 | 	else | 
 | 		return -EINVAL; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, | 
 | 		      struct tss_struct *tss) | 
 | { | 
 | 	struct thread_struct *prev, *next; | 
 |  | 
 | 	prev = &prev_p->thread; | 
 | 	next = &next_p->thread; | 
 |  | 
 | 	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^ | 
 | 	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) { | 
 | 		unsigned long debugctl = get_debugctlmsr(); | 
 |  | 
 | 		debugctl &= ~DEBUGCTLMSR_BTF; | 
 | 		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) | 
 | 			debugctl |= DEBUGCTLMSR_BTF; | 
 |  | 
 | 		update_debugctlmsr(debugctl); | 
 | 	} | 
 |  | 
 | 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ | 
 | 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) { | 
 | 		/* prev and next are different */ | 
 | 		if (test_tsk_thread_flag(next_p, TIF_NOTSC)) | 
 | 			hard_disable_TSC(); | 
 | 		else | 
 | 			hard_enable_TSC(); | 
 | 	} | 
 |  | 
 | 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { | 
 | 		/* | 
 | 		 * Copy the relevant range of the IO bitmap. | 
 | 		 * Normally this is 128 bytes or less: | 
 | 		 */ | 
 | 		memcpy(tss->io_bitmap, next->io_bitmap_ptr, | 
 | 		       max(prev->io_bitmap_max, next->io_bitmap_max)); | 
 | 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) { | 
 | 		/* | 
 | 		 * Clear any possible leftover bits: | 
 | 		 */ | 
 | 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); | 
 | 	} | 
 | 	propagate_user_return_notify(prev_p, next_p); | 
 | } | 
 |  | 
 | int sys_fork(struct pt_regs *regs) | 
 | { | 
 | 	return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL); | 
 | } | 
 |  | 
 | /* | 
 |  * This is trivial, and on the face of it looks like it | 
 |  * could equally well be done in user mode. | 
 |  * | 
 |  * Not so, for quite unobvious reasons - register pressure. | 
 |  * In user mode vfork() cannot have a stack frame, and if | 
 |  * done by calling the "clone()" system call directly, you | 
 |  * do not have enough call-clobbered registers to hold all | 
 |  * the information you need. | 
 |  */ | 
 | int sys_vfork(struct pt_regs *regs) | 
 | { | 
 | 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0, | 
 | 		       NULL, NULL); | 
 | } | 
 |  | 
 | long | 
 | sys_clone(unsigned long clone_flags, unsigned long newsp, | 
 | 	  void __user *parent_tid, void __user *child_tid, struct pt_regs *regs) | 
 | { | 
 | 	if (!newsp) | 
 | 		newsp = regs->sp; | 
 | 	return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid); | 
 | } | 
 |  | 
 | /* | 
 |  * This gets run with %si containing the | 
 |  * function to call, and %di containing | 
 |  * the "args". | 
 |  */ | 
 | extern void kernel_thread_helper(void); | 
 |  | 
 | /* | 
 |  * Create a kernel thread | 
 |  */ | 
 | int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) | 
 | { | 
 | 	struct pt_regs regs; | 
 |  | 
 | 	memset(®s, 0, sizeof(regs)); | 
 |  | 
 | 	regs.si = (unsigned long) fn; | 
 | 	regs.di = (unsigned long) arg; | 
 |  | 
 | #ifdef CONFIG_X86_32 | 
 | 	regs.ds = __USER_DS; | 
 | 	regs.es = __USER_DS; | 
 | 	regs.fs = __KERNEL_PERCPU; | 
 | 	regs.gs = __KERNEL_STACK_CANARY; | 
 | #else | 
 | 	regs.ss = __KERNEL_DS; | 
 | #endif | 
 |  | 
 | 	regs.orig_ax = -1; | 
 | 	regs.ip = (unsigned long) kernel_thread_helper; | 
 | 	regs.cs = __KERNEL_CS | get_kernel_rpl(); | 
 | 	regs.flags = X86_EFLAGS_IF | 0x2; | 
 |  | 
 | 	/* Ok, create the new process.. */ | 
 | 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); | 
 | } | 
 | EXPORT_SYMBOL(kernel_thread); | 
 |  | 
 | /* | 
 |  * sys_execve() executes a new program. | 
 |  */ | 
 | long sys_execve(const char __user *name, | 
 | 		const char __user *const __user *argv, | 
 | 		const char __user *const __user *envp, struct pt_regs *regs) | 
 | { | 
 | 	long error; | 
 | 	char *filename; | 
 |  | 
 | 	filename = getname(name); | 
 | 	error = PTR_ERR(filename); | 
 | 	if (IS_ERR(filename)) | 
 | 		return error; | 
 | 	error = do_execve(filename, argv, envp, regs); | 
 |  | 
 | #ifdef CONFIG_X86_32 | 
 | 	if (error == 0) { | 
 | 		/* Make sure we don't return using sysenter.. */ | 
 |                 set_thread_flag(TIF_IRET); | 
 |         } | 
 | #endif | 
 |  | 
 | 	putname(filename); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Idle related variables and functions | 
 |  */ | 
 | unsigned long boot_option_idle_override = 0; | 
 | EXPORT_SYMBOL(boot_option_idle_override); | 
 |  | 
 | /* | 
 |  * Powermanagement idle function, if any.. | 
 |  */ | 
 | void (*pm_idle)(void); | 
 | EXPORT_SYMBOL(pm_idle); | 
 |  | 
 | #ifdef CONFIG_X86_32 | 
 | /* | 
 |  * This halt magic was a workaround for ancient floppy DMA | 
 |  * wreckage. It should be safe to remove. | 
 |  */ | 
 | static int hlt_counter; | 
 | void disable_hlt(void) | 
 | { | 
 | 	hlt_counter++; | 
 | } | 
 | EXPORT_SYMBOL(disable_hlt); | 
 |  | 
 | void enable_hlt(void) | 
 | { | 
 | 	hlt_counter--; | 
 | } | 
 | EXPORT_SYMBOL(enable_hlt); | 
 |  | 
 | static inline int hlt_use_halt(void) | 
 | { | 
 | 	return (!hlt_counter && boot_cpu_data.hlt_works_ok); | 
 | } | 
 | #else | 
 | static inline int hlt_use_halt(void) | 
 | { | 
 | 	return 1; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * We use this if we don't have any better | 
 |  * idle routine.. | 
 |  */ | 
 | void default_idle(void) | 
 | { | 
 | 	if (hlt_use_halt()) { | 
 | 		trace_power_start(POWER_CSTATE, 1, smp_processor_id()); | 
 | 		current_thread_info()->status &= ~TS_POLLING; | 
 | 		/* | 
 | 		 * TS_POLLING-cleared state must be visible before we | 
 | 		 * test NEED_RESCHED: | 
 | 		 */ | 
 | 		smp_mb(); | 
 |  | 
 | 		if (!need_resched()) | 
 | 			safe_halt();	/* enables interrupts racelessly */ | 
 | 		else | 
 | 			local_irq_enable(); | 
 | 		current_thread_info()->status |= TS_POLLING; | 
 | 	} else { | 
 | 		local_irq_enable(); | 
 | 		/* loop is done by the caller */ | 
 | 		cpu_relax(); | 
 | 	} | 
 | } | 
 | #ifdef CONFIG_APM_MODULE | 
 | EXPORT_SYMBOL(default_idle); | 
 | #endif | 
 |  | 
 | void stop_this_cpu(void *dummy) | 
 | { | 
 | 	local_irq_disable(); | 
 | 	/* | 
 | 	 * Remove this CPU: | 
 | 	 */ | 
 | 	set_cpu_online(smp_processor_id(), false); | 
 | 	disable_local_APIC(); | 
 |  | 
 | 	for (;;) { | 
 | 		if (hlt_works(smp_processor_id())) | 
 | 			halt(); | 
 | 	} | 
 | } | 
 |  | 
 | static void do_nothing(void *unused) | 
 | { | 
 | } | 
 |  | 
 | /* | 
 |  * cpu_idle_wait - Used to ensure that all the CPUs discard old value of | 
 |  * pm_idle and update to new pm_idle value. Required while changing pm_idle | 
 |  * handler on SMP systems. | 
 |  * | 
 |  * Caller must have changed pm_idle to the new value before the call. Old | 
 |  * pm_idle value will not be used by any CPU after the return of this function. | 
 |  */ | 
 | void cpu_idle_wait(void) | 
 | { | 
 | 	smp_mb(); | 
 | 	/* kick all the CPUs so that they exit out of pm_idle */ | 
 | 	smp_call_function(do_nothing, NULL, 1); | 
 | } | 
 | EXPORT_SYMBOL_GPL(cpu_idle_wait); | 
 |  | 
 | /* | 
 |  * This uses new MONITOR/MWAIT instructions on P4 processors with PNI, | 
 |  * which can obviate IPI to trigger checking of need_resched. | 
 |  * We execute MONITOR against need_resched and enter optimized wait state | 
 |  * through MWAIT. Whenever someone changes need_resched, we would be woken | 
 |  * up from MWAIT (without an IPI). | 
 |  * | 
 |  * New with Core Duo processors, MWAIT can take some hints based on CPU | 
 |  * capability. | 
 |  */ | 
 | void mwait_idle_with_hints(unsigned long ax, unsigned long cx) | 
 | { | 
 | 	trace_power_start(POWER_CSTATE, (ax>>4)+1, smp_processor_id()); | 
 | 	if (!need_resched()) { | 
 | 		if (cpu_has(¤t_cpu_data, X86_FEATURE_CLFLUSH_MONITOR)) | 
 | 			clflush((void *)¤t_thread_info()->flags); | 
 |  | 
 | 		__monitor((void *)¤t_thread_info()->flags, 0, 0); | 
 | 		smp_mb(); | 
 | 		if (!need_resched()) | 
 | 			__mwait(ax, cx); | 
 | 	} | 
 | } | 
 |  | 
 | /* Default MONITOR/MWAIT with no hints, used for default C1 state */ | 
 | static void mwait_idle(void) | 
 | { | 
 | 	if (!need_resched()) { | 
 | 		trace_power_start(POWER_CSTATE, 1, smp_processor_id()); | 
 | 		if (cpu_has(¤t_cpu_data, X86_FEATURE_CLFLUSH_MONITOR)) | 
 | 			clflush((void *)¤t_thread_info()->flags); | 
 |  | 
 | 		__monitor((void *)¤t_thread_info()->flags, 0, 0); | 
 | 		smp_mb(); | 
 | 		if (!need_resched()) | 
 | 			__sti_mwait(0, 0); | 
 | 		else | 
 | 			local_irq_enable(); | 
 | 	} else | 
 | 		local_irq_enable(); | 
 | } | 
 |  | 
 | /* | 
 |  * On SMP it's slightly faster (but much more power-consuming!) | 
 |  * to poll the ->work.need_resched flag instead of waiting for the | 
 |  * cross-CPU IPI to arrive. Use this option with caution. | 
 |  */ | 
 | static void poll_idle(void) | 
 | { | 
 | 	trace_power_start(POWER_CSTATE, 0, smp_processor_id()); | 
 | 	local_irq_enable(); | 
 | 	while (!need_resched()) | 
 | 		cpu_relax(); | 
 | 	trace_power_end(0); | 
 | } | 
 |  | 
 | /* | 
 |  * mwait selection logic: | 
 |  * | 
 |  * It depends on the CPU. For AMD CPUs that support MWAIT this is | 
 |  * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings | 
 |  * then depend on a clock divisor and current Pstate of the core. If | 
 |  * all cores of a processor are in halt state (C1) the processor can | 
 |  * enter the C1E (C1 enhanced) state. If mwait is used this will never | 
 |  * happen. | 
 |  * | 
 |  * idle=mwait overrides this decision and forces the usage of mwait. | 
 |  */ | 
 | static int __cpuinitdata force_mwait; | 
 |  | 
 | #define MWAIT_INFO			0x05 | 
 | #define MWAIT_ECX_EXTENDED_INFO		0x01 | 
 | #define MWAIT_EDX_C1			0xf0 | 
 |  | 
 | static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c) | 
 | { | 
 | 	u32 eax, ebx, ecx, edx; | 
 |  | 
 | 	if (force_mwait) | 
 | 		return 1; | 
 |  | 
 | 	if (c->cpuid_level < MWAIT_INFO) | 
 | 		return 0; | 
 |  | 
 | 	cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx); | 
 | 	/* Check, whether EDX has extended info about MWAIT */ | 
 | 	if (!(ecx & MWAIT_ECX_EXTENDED_INFO)) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * edx enumeratios MONITOR/MWAIT extensions. Check, whether | 
 | 	 * C1  supports MWAIT | 
 | 	 */ | 
 | 	return (edx & MWAIT_EDX_C1); | 
 | } | 
 |  | 
 | bool c1e_detected; | 
 | EXPORT_SYMBOL(c1e_detected); | 
 |  | 
 | static cpumask_var_t c1e_mask; | 
 |  | 
 | void c1e_remove_cpu(int cpu) | 
 | { | 
 | 	if (c1e_mask != NULL) | 
 | 		cpumask_clear_cpu(cpu, c1e_mask); | 
 | } | 
 |  | 
 | /* | 
 |  * C1E aware idle routine. We check for C1E active in the interrupt | 
 |  * pending message MSR. If we detect C1E, then we handle it the same | 
 |  * way as C3 power states (local apic timer and TSC stop) | 
 |  */ | 
 | static void c1e_idle(void) | 
 | { | 
 | 	if (need_resched()) | 
 | 		return; | 
 |  | 
 | 	if (!c1e_detected) { | 
 | 		u32 lo, hi; | 
 |  | 
 | 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); | 
 |  | 
 | 		if (lo & K8_INTP_C1E_ACTIVE_MASK) { | 
 | 			c1e_detected = true; | 
 | 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) | 
 | 				mark_tsc_unstable("TSC halt in AMD C1E"); | 
 | 			printk(KERN_INFO "System has AMD C1E enabled\n"); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (c1e_detected) { | 
 | 		int cpu = smp_processor_id(); | 
 |  | 
 | 		if (!cpumask_test_cpu(cpu, c1e_mask)) { | 
 | 			cpumask_set_cpu(cpu, c1e_mask); | 
 | 			/* | 
 | 			 * Force broadcast so ACPI can not interfere. | 
 | 			 */ | 
 | 			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE, | 
 | 					   &cpu); | 
 | 			printk(KERN_INFO "Switch to broadcast mode on CPU%d\n", | 
 | 			       cpu); | 
 | 		} | 
 | 		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu); | 
 |  | 
 | 		default_idle(); | 
 |  | 
 | 		/* | 
 | 		 * The switch back from broadcast mode needs to be | 
 | 		 * called with interrupts disabled. | 
 | 		 */ | 
 | 		 local_irq_disable(); | 
 | 		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu); | 
 | 		 local_irq_enable(); | 
 | 	} else | 
 | 		default_idle(); | 
 | } | 
 |  | 
 | void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	if (pm_idle == poll_idle && smp_num_siblings > 1) { | 
 | 		printk_once(KERN_WARNING "WARNING: polling idle and HT enabled," | 
 | 			" performance may degrade.\n"); | 
 | 	} | 
 | #endif | 
 | 	if (pm_idle) | 
 | 		return; | 
 |  | 
 | 	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) { | 
 | 		/* | 
 | 		 * One CPU supports mwait => All CPUs supports mwait | 
 | 		 */ | 
 | 		printk(KERN_INFO "using mwait in idle threads.\n"); | 
 | 		pm_idle = mwait_idle; | 
 | 	} else if (cpu_has_amd_erratum(amd_erratum_400)) { | 
 | 		/* E400: APIC timer interrupt does not wake up CPU from C1e */ | 
 | 		printk(KERN_INFO "using C1E aware idle routine\n"); | 
 | 		pm_idle = c1e_idle; | 
 | 	} else | 
 | 		pm_idle = default_idle; | 
 | } | 
 |  | 
 | void __init init_c1e_mask(void) | 
 | { | 
 | 	/* If we're using c1e_idle, we need to allocate c1e_mask. */ | 
 | 	if (pm_idle == c1e_idle) | 
 | 		zalloc_cpumask_var(&c1e_mask, GFP_KERNEL); | 
 | } | 
 |  | 
 | static int __init idle_setup(char *str) | 
 | { | 
 | 	if (!str) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!strcmp(str, "poll")) { | 
 | 		printk("using polling idle threads.\n"); | 
 | 		pm_idle = poll_idle; | 
 | 	} else if (!strcmp(str, "mwait")) | 
 | 		force_mwait = 1; | 
 | 	else if (!strcmp(str, "halt")) { | 
 | 		/* | 
 | 		 * When the boot option of idle=halt is added, halt is | 
 | 		 * forced to be used for CPU idle. In such case CPU C2/C3 | 
 | 		 * won't be used again. | 
 | 		 * To continue to load the CPU idle driver, don't touch | 
 | 		 * the boot_option_idle_override. | 
 | 		 */ | 
 | 		pm_idle = default_idle; | 
 | 		idle_halt = 1; | 
 | 		return 0; | 
 | 	} else if (!strcmp(str, "nomwait")) { | 
 | 		/* | 
 | 		 * If the boot option of "idle=nomwait" is added, | 
 | 		 * it means that mwait will be disabled for CPU C2/C3 | 
 | 		 * states. In such case it won't touch the variable | 
 | 		 * of boot_option_idle_override. | 
 | 		 */ | 
 | 		idle_nomwait = 1; | 
 | 		return 0; | 
 | 	} else | 
 | 		return -1; | 
 |  | 
 | 	boot_option_idle_override = 1; | 
 | 	return 0; | 
 | } | 
 | early_param("idle", idle_setup); | 
 |  | 
 | unsigned long arch_align_stack(unsigned long sp) | 
 | { | 
 | 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) | 
 | 		sp -= get_random_int() % 8192; | 
 | 	return sp & ~0xf; | 
 | } | 
 |  | 
 | unsigned long arch_randomize_brk(struct mm_struct *mm) | 
 | { | 
 | 	unsigned long range_end = mm->brk + 0x02000000; | 
 | 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk; | 
 | } | 
 |  |