|  | /* | 
|  | * Optimized version of the strlen_user() function | 
|  | * | 
|  | * Inputs: | 
|  | *	in0	address of buffer | 
|  | * | 
|  | * Outputs: | 
|  | *	ret0	0 in case of fault, strlen(buffer)+1 otherwise | 
|  | * | 
|  | * Copyright (C) 1998, 1999, 2001 Hewlett-Packard Co | 
|  | *	David Mosberger-Tang <davidm@hpl.hp.com> | 
|  | *	Stephane Eranian <eranian@hpl.hp.com> | 
|  | * | 
|  | * 01/19/99 S.Eranian heavily enhanced version (see details below) | 
|  | * 09/24/99 S.Eranian added speculation recovery code | 
|  | */ | 
|  |  | 
|  | #include <asm/asmmacro.h> | 
|  |  | 
|  | // | 
|  | // int strlen_user(char *) | 
|  | // ------------------------ | 
|  | // Returns: | 
|  | //	- length of string + 1 | 
|  | //	- 0 in case an exception is raised | 
|  | // | 
|  | // This is an enhanced version of the basic strlen_user. it includes a | 
|  | // combination of compute zero index (czx), parallel comparisons, speculative | 
|  | // loads and loop unroll using rotating registers. | 
|  | // | 
|  | // General Ideas about the algorithm: | 
|  | //	  The goal is to look at the string in chunks of 8 bytes. | 
|  | //	  so we need to do a few extra checks at the beginning because the | 
|  | //	  string may not be 8-byte aligned. In this case we load the 8byte | 
|  | //	  quantity which includes the start of the string and mask the unused | 
|  | //	  bytes with 0xff to avoid confusing czx. | 
|  | //	  We use speculative loads and software pipelining to hide memory | 
|  | //	  latency and do read ahead safely. This way we defer any exception. | 
|  | // | 
|  | //	  Because we don't want the kernel to be relying on particular | 
|  | //	  settings of the DCR register, we provide recovery code in case | 
|  | //	  speculation fails. The recovery code is going to "redo" the work using | 
|  | //	  only normal loads. If we still get a fault then we return an | 
|  | //	  error (ret0=0). Otherwise we return the strlen+1 as usual. | 
|  | //	  The fact that speculation may fail can be caused, for instance, by | 
|  | //	  the DCR.dm bit being set. In this case TLB misses are deferred, i.e., | 
|  | //	  a NaT bit will be set if the translation is not present. The normal | 
|  | //	  load, on the other hand, will cause the translation to be inserted | 
|  | //	  if the mapping exists. | 
|  | // | 
|  | //	  It should be noted that we execute recovery code only when we need | 
|  | //	  to use the data that has been speculatively loaded: we don't execute | 
|  | //	  recovery code on pure read ahead data. | 
|  | // | 
|  | // Remarks: | 
|  | //	- the cmp r0,r0 is used as a fast way to initialize a predicate | 
|  | //	  register to 1. This is required to make sure that we get the parallel | 
|  | //	  compare correct. | 
|  | // | 
|  | //	- we don't use the epilogue counter to exit the loop but we need to set | 
|  | //	  it to zero beforehand. | 
|  | // | 
|  | //	- after the loop we must test for Nat values because neither the | 
|  | //	  czx nor cmp instruction raise a NaT consumption fault. We must be | 
|  | //	  careful not to look too far for a Nat for which we don't care. | 
|  | //	  For instance we don't need to look at a NaT in val2 if the zero byte | 
|  | //	  was in val1. | 
|  | // | 
|  | //	- Clearly performance tuning is required. | 
|  | // | 
|  |  | 
|  | #define saved_pfs	r11 | 
|  | #define	tmp		r10 | 
|  | #define base		r16 | 
|  | #define orig		r17 | 
|  | #define saved_pr	r18 | 
|  | #define src		r19 | 
|  | #define mask		r20 | 
|  | #define val		r21 | 
|  | #define val1		r22 | 
|  | #define val2		r23 | 
|  |  | 
|  | GLOBAL_ENTRY(__strlen_user) | 
|  | .prologue | 
|  | .save ar.pfs, saved_pfs | 
|  | alloc saved_pfs=ar.pfs,11,0,0,8 | 
|  |  | 
|  | .rotr v[2], w[2]	// declares our 4 aliases | 
|  |  | 
|  | extr.u tmp=in0,0,3	// tmp=least significant 3 bits | 
|  | mov orig=in0		// keep trackof initial byte address | 
|  | dep src=0,in0,0,3	// src=8byte-aligned in0 address | 
|  | .save pr, saved_pr | 
|  | mov saved_pr=pr		// preserve predicates (rotation) | 
|  | ;; | 
|  |  | 
|  | .body | 
|  |  | 
|  | ld8.s v[1]=[src],8	// load the initial 8bytes (must speculate) | 
|  | shl tmp=tmp,3		// multiply by 8bits/byte | 
|  | mov mask=-1		// our mask | 
|  | ;; | 
|  | ld8.s w[1]=[src],8	// load next 8 bytes in 2nd pipeline | 
|  | cmp.eq p6,p0=r0,r0	// sets p6 (required because of // cmp.and) | 
|  | sub tmp=64,tmp		// how many bits to shift our mask on the right | 
|  | ;; | 
|  | shr.u	mask=mask,tmp	// zero enough bits to hold v[1] valuable part | 
|  | mov ar.ec=r0		// clear epilogue counter (saved in ar.pfs) | 
|  | ;; | 
|  | add base=-16,src	// keep track of aligned base | 
|  | chk.s v[1], .recover	// if already NaT, then directly skip to recover | 
|  | or v[1]=v[1],mask	// now we have a safe initial byte pattern | 
|  | ;; | 
|  | 1: | 
|  | ld8.s v[0]=[src],8	// speculatively load next | 
|  | czx1.r val1=v[1]	// search 0 byte from right | 
|  | czx1.r val2=w[1]	// search 0 byte from right following 8bytes | 
|  | ;; | 
|  | ld8.s w[0]=[src],8	// speculatively load next to next | 
|  | cmp.eq.and p6,p0=8,val1	// p6 = p6 and val1==8 | 
|  | cmp.eq.and p6,p0=8,val2	// p6 = p6 and mask==8 | 
|  | (p6)	br.wtop.dptk.few 1b	// loop until p6 == 0 | 
|  | ;; | 
|  | // | 
|  | // We must return try the recovery code iff | 
|  | // val1_is_nat || (val1==8 && val2_is_nat) | 
|  | // | 
|  | // XXX Fixme | 
|  | //	- there must be a better way of doing the test | 
|  | // | 
|  | cmp.eq  p8,p9=8,val1	// p6 = val1 had zero (disambiguate) | 
|  | tnat.nz p6,p7=val1	// test NaT on val1 | 
|  | (p6)	br.cond.spnt .recover	// jump to recovery if val1 is NaT | 
|  | ;; | 
|  | // | 
|  | // if we come here p7 is true, i.e., initialized for // cmp | 
|  | // | 
|  | cmp.eq.and  p7,p0=8,val1// val1==8? | 
|  | tnat.nz.and p7,p0=val2	// test NaT if val2 | 
|  | (p7)	br.cond.spnt .recover	// jump to recovery if val2 is NaT | 
|  | ;; | 
|  | (p8)	mov val1=val2		// val2 contains the value | 
|  | (p8)	adds src=-16,src	// correct position when 3 ahead | 
|  | (p9)	adds src=-24,src	// correct position when 4 ahead | 
|  | ;; | 
|  | sub ret0=src,orig	// distance from origin | 
|  | sub tmp=7,val1		// 7=8-1 because this strlen returns strlen+1 | 
|  | mov pr=saved_pr,0xffffffffffff0000 | 
|  | ;; | 
|  | sub ret0=ret0,tmp	// length=now - back -1 | 
|  | mov ar.pfs=saved_pfs	// because of ar.ec, restore no matter what | 
|  | br.ret.sptk.many rp	// end of normal execution | 
|  |  | 
|  | // | 
|  | // Outlined recovery code when speculation failed | 
|  | // | 
|  | // This time we don't use speculation and rely on the normal exception | 
|  | // mechanism. that's why the loop is not as good as the previous one | 
|  | // because read ahead is not possible | 
|  | // | 
|  | // XXX Fixme | 
|  | //	- today we restart from the beginning of the string instead | 
|  | //	  of trying to continue where we left off. | 
|  | // | 
|  | .recover: | 
|  | EX(.Lexit1, ld8 val=[base],8)	// load the initial bytes | 
|  | ;; | 
|  | or val=val,mask			// remask first bytes | 
|  | cmp.eq p0,p6=r0,r0		// nullify first ld8 in loop | 
|  | ;; | 
|  | // | 
|  | // ar.ec is still zero here | 
|  | // | 
|  | 2: | 
|  | EX(.Lexit1, (p6) ld8 val=[base],8) | 
|  | ;; | 
|  | czx1.r val1=val		// search 0 byte from right | 
|  | ;; | 
|  | cmp.eq p6,p0=8,val1	// val1==8 ? | 
|  | (p6)	br.wtop.dptk.few 2b	// loop until p6 == 0 | 
|  | ;; | 
|  | sub ret0=base,orig	// distance from base | 
|  | sub tmp=7,val1		// 7=8-1 because this strlen returns strlen+1 | 
|  | mov pr=saved_pr,0xffffffffffff0000 | 
|  | ;; | 
|  | sub ret0=ret0,tmp	// length=now - back -1 | 
|  | mov ar.pfs=saved_pfs	// because of ar.ec, restore no matter what | 
|  | br.ret.sptk.many rp	// end of successful recovery code | 
|  |  | 
|  | // | 
|  | // We failed even on the normal load (called from exception handler) | 
|  | // | 
|  | .Lexit1: | 
|  | mov ret0=0 | 
|  | mov pr=saved_pr,0xffffffffffff0000 | 
|  | mov ar.pfs=saved_pfs	// because of ar.ec, restore no matter what | 
|  | br.ret.sptk.many rp | 
|  | END(__strlen_user) |