|  | /* | 
|  |  | 
|  | fp_arith.c: floating-point math routines for the Linux-m68k | 
|  | floating point emulator. | 
|  |  | 
|  | Copyright (c) 1998-1999 David Huggins-Daines. | 
|  |  | 
|  | Somewhat based on the AlphaLinux floating point emulator, by David | 
|  | Mosberger-Tang. | 
|  |  | 
|  | You may copy, modify, and redistribute this file under the terms of | 
|  | the GNU General Public License, version 2, or any later version, at | 
|  | your convenience. | 
|  | */ | 
|  |  | 
|  | #include "fp_emu.h" | 
|  | #include "multi_arith.h" | 
|  | #include "fp_arith.h" | 
|  |  | 
|  | const struct fp_ext fp_QNaN = | 
|  | { | 
|  | .exp = 0x7fff, | 
|  | .mant = { .m64 = ~0 } | 
|  | }; | 
|  |  | 
|  | const struct fp_ext fp_Inf = | 
|  | { | 
|  | .exp = 0x7fff, | 
|  | }; | 
|  |  | 
|  | /* let's start with the easy ones */ | 
|  |  | 
|  | struct fp_ext * | 
|  | fp_fabs(struct fp_ext *dest, struct fp_ext *src) | 
|  | { | 
|  | dprint(PINSTR, "fabs\n"); | 
|  |  | 
|  | fp_monadic_check(dest, src); | 
|  |  | 
|  | dest->sign = 0; | 
|  |  | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | struct fp_ext * | 
|  | fp_fneg(struct fp_ext *dest, struct fp_ext *src) | 
|  | { | 
|  | dprint(PINSTR, "fneg\n"); | 
|  |  | 
|  | fp_monadic_check(dest, src); | 
|  |  | 
|  | dest->sign = !dest->sign; | 
|  |  | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | /* Now, the slightly harder ones */ | 
|  |  | 
|  | /* fp_fadd: Implements the kernel of the FADD, FSADD, FDADD, FSUB, | 
|  | FDSUB, and FCMP instructions. */ | 
|  |  | 
|  | struct fp_ext * | 
|  | fp_fadd(struct fp_ext *dest, struct fp_ext *src) | 
|  | { | 
|  | int diff; | 
|  |  | 
|  | dprint(PINSTR, "fadd\n"); | 
|  |  | 
|  | fp_dyadic_check(dest, src); | 
|  |  | 
|  | if (IS_INF(dest)) { | 
|  | /* infinity - infinity == NaN */ | 
|  | if (IS_INF(src) && (src->sign != dest->sign)) | 
|  | fp_set_nan(dest); | 
|  | return dest; | 
|  | } | 
|  | if (IS_INF(src)) { | 
|  | fp_copy_ext(dest, src); | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | if (IS_ZERO(dest)) { | 
|  | if (IS_ZERO(src)) { | 
|  | if (src->sign != dest->sign) { | 
|  | if (FPDATA->rnd == FPCR_ROUND_RM) | 
|  | dest->sign = 1; | 
|  | else | 
|  | dest->sign = 0; | 
|  | } | 
|  | } else | 
|  | fp_copy_ext(dest, src); | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | dest->lowmant = src->lowmant = 0; | 
|  |  | 
|  | if ((diff = dest->exp - src->exp) > 0) | 
|  | fp_denormalize(src, diff); | 
|  | else if ((diff = -diff) > 0) | 
|  | fp_denormalize(dest, diff); | 
|  |  | 
|  | if (dest->sign == src->sign) { | 
|  | if (fp_addmant(dest, src)) | 
|  | if (!fp_addcarry(dest)) | 
|  | return dest; | 
|  | } else { | 
|  | if (dest->mant.m64 < src->mant.m64) { | 
|  | fp_submant(dest, src, dest); | 
|  | dest->sign = !dest->sign; | 
|  | } else | 
|  | fp_submant(dest, dest, src); | 
|  | } | 
|  |  | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | /* fp_fsub: Implements the kernel of the FSUB, FSSUB, and FDSUB | 
|  | instructions. | 
|  |  | 
|  | Remember that the arguments are in assembler-syntax order! */ | 
|  |  | 
|  | struct fp_ext * | 
|  | fp_fsub(struct fp_ext *dest, struct fp_ext *src) | 
|  | { | 
|  | dprint(PINSTR, "fsub "); | 
|  |  | 
|  | src->sign = !src->sign; | 
|  | return fp_fadd(dest, src); | 
|  | } | 
|  |  | 
|  |  | 
|  | struct fp_ext * | 
|  | fp_fcmp(struct fp_ext *dest, struct fp_ext *src) | 
|  | { | 
|  | dprint(PINSTR, "fcmp "); | 
|  |  | 
|  | FPDATA->temp[1] = *dest; | 
|  | src->sign = !src->sign; | 
|  | return fp_fadd(&FPDATA->temp[1], src); | 
|  | } | 
|  |  | 
|  | struct fp_ext * | 
|  | fp_ftst(struct fp_ext *dest, struct fp_ext *src) | 
|  | { | 
|  | dprint(PINSTR, "ftst\n"); | 
|  |  | 
|  | (void)dest; | 
|  |  | 
|  | return src; | 
|  | } | 
|  |  | 
|  | struct fp_ext * | 
|  | fp_fmul(struct fp_ext *dest, struct fp_ext *src) | 
|  | { | 
|  | union fp_mant128 temp; | 
|  | int exp; | 
|  |  | 
|  | dprint(PINSTR, "fmul\n"); | 
|  |  | 
|  | fp_dyadic_check(dest, src); | 
|  |  | 
|  | /* calculate the correct sign now, as it's necessary for infinities */ | 
|  | dest->sign = src->sign ^ dest->sign; | 
|  |  | 
|  | /* Handle infinities */ | 
|  | if (IS_INF(dest)) { | 
|  | if (IS_ZERO(src)) | 
|  | fp_set_nan(dest); | 
|  | return dest; | 
|  | } | 
|  | if (IS_INF(src)) { | 
|  | if (IS_ZERO(dest)) | 
|  | fp_set_nan(dest); | 
|  | else | 
|  | fp_copy_ext(dest, src); | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | /* Of course, as we all know, zero * anything = zero.  You may | 
|  | not have known that it might be a positive or negative | 
|  | zero... */ | 
|  | if (IS_ZERO(dest) || IS_ZERO(src)) { | 
|  | dest->exp = 0; | 
|  | dest->mant.m64 = 0; | 
|  | dest->lowmant = 0; | 
|  |  | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | exp = dest->exp + src->exp - 0x3ffe; | 
|  |  | 
|  | /* shift up the mantissa for denormalized numbers, | 
|  | so that the highest bit is set, this makes the | 
|  | shift of the result below easier */ | 
|  | if ((long)dest->mant.m32[0] >= 0) | 
|  | exp -= fp_overnormalize(dest); | 
|  | if ((long)src->mant.m32[0] >= 0) | 
|  | exp -= fp_overnormalize(src); | 
|  |  | 
|  | /* now, do a 64-bit multiply with expansion */ | 
|  | fp_multiplymant(&temp, dest, src); | 
|  |  | 
|  | /* normalize it back to 64 bits and stuff it back into the | 
|  | destination struct */ | 
|  | if ((long)temp.m32[0] > 0) { | 
|  | exp--; | 
|  | fp_putmant128(dest, &temp, 1); | 
|  | } else | 
|  | fp_putmant128(dest, &temp, 0); | 
|  |  | 
|  | if (exp >= 0x7fff) { | 
|  | fp_set_ovrflw(dest); | 
|  | return dest; | 
|  | } | 
|  | dest->exp = exp; | 
|  | if (exp < 0) { | 
|  | fp_set_sr(FPSR_EXC_UNFL); | 
|  | fp_denormalize(dest, -exp); | 
|  | } | 
|  |  | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | /* fp_fdiv: Implements the "kernel" of the FDIV, FSDIV, FDDIV and | 
|  | FSGLDIV instructions. | 
|  |  | 
|  | Note that the order of the operands is counter-intuitive: instead | 
|  | of src / dest, the result is actually dest / src. */ | 
|  |  | 
|  | struct fp_ext * | 
|  | fp_fdiv(struct fp_ext *dest, struct fp_ext *src) | 
|  | { | 
|  | union fp_mant128 temp; | 
|  | int exp; | 
|  |  | 
|  | dprint(PINSTR, "fdiv\n"); | 
|  |  | 
|  | fp_dyadic_check(dest, src); | 
|  |  | 
|  | /* calculate the correct sign now, as it's necessary for infinities */ | 
|  | dest->sign = src->sign ^ dest->sign; | 
|  |  | 
|  | /* Handle infinities */ | 
|  | if (IS_INF(dest)) { | 
|  | /* infinity / infinity = NaN (quiet, as always) */ | 
|  | if (IS_INF(src)) | 
|  | fp_set_nan(dest); | 
|  | /* infinity / anything else = infinity (with approprate sign) */ | 
|  | return dest; | 
|  | } | 
|  | if (IS_INF(src)) { | 
|  | /* anything / infinity = zero (with appropriate sign) */ | 
|  | dest->exp = 0; | 
|  | dest->mant.m64 = 0; | 
|  | dest->lowmant = 0; | 
|  |  | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | /* zeroes */ | 
|  | if (IS_ZERO(dest)) { | 
|  | /* zero / zero = NaN */ | 
|  | if (IS_ZERO(src)) | 
|  | fp_set_nan(dest); | 
|  | /* zero / anything else = zero */ | 
|  | return dest; | 
|  | } | 
|  | if (IS_ZERO(src)) { | 
|  | /* anything / zero = infinity (with appropriate sign) */ | 
|  | fp_set_sr(FPSR_EXC_DZ); | 
|  | dest->exp = 0x7fff; | 
|  | dest->mant.m64 = 0; | 
|  |  | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | exp = dest->exp - src->exp + 0x3fff; | 
|  |  | 
|  | /* shift up the mantissa for denormalized numbers, | 
|  | so that the highest bit is set, this makes lots | 
|  | of things below easier */ | 
|  | if ((long)dest->mant.m32[0] >= 0) | 
|  | exp -= fp_overnormalize(dest); | 
|  | if ((long)src->mant.m32[0] >= 0) | 
|  | exp -= fp_overnormalize(src); | 
|  |  | 
|  | /* now, do the 64-bit divide */ | 
|  | fp_dividemant(&temp, dest, src); | 
|  |  | 
|  | /* normalize it back to 64 bits and stuff it back into the | 
|  | destination struct */ | 
|  | if (!temp.m32[0]) { | 
|  | exp--; | 
|  | fp_putmant128(dest, &temp, 32); | 
|  | } else | 
|  | fp_putmant128(dest, &temp, 31); | 
|  |  | 
|  | if (exp >= 0x7fff) { | 
|  | fp_set_ovrflw(dest); | 
|  | return dest; | 
|  | } | 
|  | dest->exp = exp; | 
|  | if (exp < 0) { | 
|  | fp_set_sr(FPSR_EXC_UNFL); | 
|  | fp_denormalize(dest, -exp); | 
|  | } | 
|  |  | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | struct fp_ext * | 
|  | fp_fsglmul(struct fp_ext *dest, struct fp_ext *src) | 
|  | { | 
|  | int exp; | 
|  |  | 
|  | dprint(PINSTR, "fsglmul\n"); | 
|  |  | 
|  | fp_dyadic_check(dest, src); | 
|  |  | 
|  | /* calculate the correct sign now, as it's necessary for infinities */ | 
|  | dest->sign = src->sign ^ dest->sign; | 
|  |  | 
|  | /* Handle infinities */ | 
|  | if (IS_INF(dest)) { | 
|  | if (IS_ZERO(src)) | 
|  | fp_set_nan(dest); | 
|  | return dest; | 
|  | } | 
|  | if (IS_INF(src)) { | 
|  | if (IS_ZERO(dest)) | 
|  | fp_set_nan(dest); | 
|  | else | 
|  | fp_copy_ext(dest, src); | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | /* Of course, as we all know, zero * anything = zero.  You may | 
|  | not have known that it might be a positive or negative | 
|  | zero... */ | 
|  | if (IS_ZERO(dest) || IS_ZERO(src)) { | 
|  | dest->exp = 0; | 
|  | dest->mant.m64 = 0; | 
|  | dest->lowmant = 0; | 
|  |  | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | exp = dest->exp + src->exp - 0x3ffe; | 
|  |  | 
|  | /* do a 32-bit multiply */ | 
|  | fp_mul64(dest->mant.m32[0], dest->mant.m32[1], | 
|  | dest->mant.m32[0] & 0xffffff00, | 
|  | src->mant.m32[0] & 0xffffff00); | 
|  |  | 
|  | if (exp >= 0x7fff) { | 
|  | fp_set_ovrflw(dest); | 
|  | return dest; | 
|  | } | 
|  | dest->exp = exp; | 
|  | if (exp < 0) { | 
|  | fp_set_sr(FPSR_EXC_UNFL); | 
|  | fp_denormalize(dest, -exp); | 
|  | } | 
|  |  | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | struct fp_ext * | 
|  | fp_fsgldiv(struct fp_ext *dest, struct fp_ext *src) | 
|  | { | 
|  | int exp; | 
|  | unsigned long quot, rem; | 
|  |  | 
|  | dprint(PINSTR, "fsgldiv\n"); | 
|  |  | 
|  | fp_dyadic_check(dest, src); | 
|  |  | 
|  | /* calculate the correct sign now, as it's necessary for infinities */ | 
|  | dest->sign = src->sign ^ dest->sign; | 
|  |  | 
|  | /* Handle infinities */ | 
|  | if (IS_INF(dest)) { | 
|  | /* infinity / infinity = NaN (quiet, as always) */ | 
|  | if (IS_INF(src)) | 
|  | fp_set_nan(dest); | 
|  | /* infinity / anything else = infinity (with approprate sign) */ | 
|  | return dest; | 
|  | } | 
|  | if (IS_INF(src)) { | 
|  | /* anything / infinity = zero (with appropriate sign) */ | 
|  | dest->exp = 0; | 
|  | dest->mant.m64 = 0; | 
|  | dest->lowmant = 0; | 
|  |  | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | /* zeroes */ | 
|  | if (IS_ZERO(dest)) { | 
|  | /* zero / zero = NaN */ | 
|  | if (IS_ZERO(src)) | 
|  | fp_set_nan(dest); | 
|  | /* zero / anything else = zero */ | 
|  | return dest; | 
|  | } | 
|  | if (IS_ZERO(src)) { | 
|  | /* anything / zero = infinity (with appropriate sign) */ | 
|  | fp_set_sr(FPSR_EXC_DZ); | 
|  | dest->exp = 0x7fff; | 
|  | dest->mant.m64 = 0; | 
|  |  | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | exp = dest->exp - src->exp + 0x3fff; | 
|  |  | 
|  | dest->mant.m32[0] &= 0xffffff00; | 
|  | src->mant.m32[0] &= 0xffffff00; | 
|  |  | 
|  | /* do the 32-bit divide */ | 
|  | if (dest->mant.m32[0] >= src->mant.m32[0]) { | 
|  | fp_sub64(dest->mant, src->mant); | 
|  | fp_div64(quot, rem, dest->mant.m32[0], 0, src->mant.m32[0]); | 
|  | dest->mant.m32[0] = 0x80000000 | (quot >> 1); | 
|  | dest->mant.m32[1] = (quot & 1) | rem;	/* only for rounding */ | 
|  | } else { | 
|  | fp_div64(quot, rem, dest->mant.m32[0], 0, src->mant.m32[0]); | 
|  | dest->mant.m32[0] = quot; | 
|  | dest->mant.m32[1] = rem;		/* only for rounding */ | 
|  | exp--; | 
|  | } | 
|  |  | 
|  | if (exp >= 0x7fff) { | 
|  | fp_set_ovrflw(dest); | 
|  | return dest; | 
|  | } | 
|  | dest->exp = exp; | 
|  | if (exp < 0) { | 
|  | fp_set_sr(FPSR_EXC_UNFL); | 
|  | fp_denormalize(dest, -exp); | 
|  | } | 
|  |  | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | /* fp_roundint: Internal rounding function for use by several of these | 
|  | emulated instructions. | 
|  |  | 
|  | This one rounds off the fractional part using the rounding mode | 
|  | specified. */ | 
|  |  | 
|  | static void fp_roundint(struct fp_ext *dest, int mode) | 
|  | { | 
|  | union fp_mant64 oldmant; | 
|  | unsigned long mask; | 
|  |  | 
|  | if (!fp_normalize_ext(dest)) | 
|  | return; | 
|  |  | 
|  | /* infinities and zeroes */ | 
|  | if (IS_INF(dest) || IS_ZERO(dest)) | 
|  | return; | 
|  |  | 
|  | /* first truncate the lower bits */ | 
|  | oldmant = dest->mant; | 
|  | switch (dest->exp) { | 
|  | case 0 ... 0x3ffe: | 
|  | dest->mant.m64 = 0; | 
|  | break; | 
|  | case 0x3fff ... 0x401e: | 
|  | dest->mant.m32[0] &= 0xffffffffU << (0x401e - dest->exp); | 
|  | dest->mant.m32[1] = 0; | 
|  | if (oldmant.m64 == dest->mant.m64) | 
|  | return; | 
|  | break; | 
|  | case 0x401f ... 0x403e: | 
|  | dest->mant.m32[1] &= 0xffffffffU << (0x403e - dest->exp); | 
|  | if (oldmant.m32[1] == dest->mant.m32[1]) | 
|  | return; | 
|  | break; | 
|  | default: | 
|  | return; | 
|  | } | 
|  | fp_set_sr(FPSR_EXC_INEX2); | 
|  |  | 
|  | /* We might want to normalize upwards here... however, since | 
|  | we know that this is only called on the output of fp_fdiv, | 
|  | or with the input to fp_fint or fp_fintrz, and the inputs | 
|  | to all these functions are either normal or denormalized | 
|  | (no subnormals allowed!), there's really no need. | 
|  |  | 
|  | In the case of fp_fdiv, observe that 0x80000000 / 0xffff = | 
|  | 0xffff8000, and the same holds for 128-bit / 64-bit. (i.e. the | 
|  | smallest possible normal dividend and the largest possible normal | 
|  | divisor will still produce a normal quotient, therefore, (normal | 
|  | << 64) / normal is normal in all cases) */ | 
|  |  | 
|  | switch (mode) { | 
|  | case FPCR_ROUND_RN: | 
|  | switch (dest->exp) { | 
|  | case 0 ... 0x3ffd: | 
|  | return; | 
|  | case 0x3ffe: | 
|  | /* As noted above, the input is always normal, so the | 
|  | guard bit (bit 63) is always set.  therefore, the | 
|  | only case in which we will NOT round to 1.0 is when | 
|  | the input is exactly 0.5. */ | 
|  | if (oldmant.m64 == (1ULL << 63)) | 
|  | return; | 
|  | break; | 
|  | case 0x3fff ... 0x401d: | 
|  | mask = 1 << (0x401d - dest->exp); | 
|  | if (!(oldmant.m32[0] & mask)) | 
|  | return; | 
|  | if (oldmant.m32[0] & (mask << 1)) | 
|  | break; | 
|  | if (!(oldmant.m32[0] << (dest->exp - 0x3ffd)) && | 
|  | !oldmant.m32[1]) | 
|  | return; | 
|  | break; | 
|  | case 0x401e: | 
|  | if (!(oldmant.m32[1] >= 0)) | 
|  | return; | 
|  | if (oldmant.m32[0] & 1) | 
|  | break; | 
|  | if (!(oldmant.m32[1] << 1)) | 
|  | return; | 
|  | break; | 
|  | case 0x401f ... 0x403d: | 
|  | mask = 1 << (0x403d - dest->exp); | 
|  | if (!(oldmant.m32[1] & mask)) | 
|  | return; | 
|  | if (oldmant.m32[1] & (mask << 1)) | 
|  | break; | 
|  | if (!(oldmant.m32[1] << (dest->exp - 0x401d))) | 
|  | return; | 
|  | break; | 
|  | default: | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case FPCR_ROUND_RZ: | 
|  | return; | 
|  | default: | 
|  | if (dest->sign ^ (mode - FPCR_ROUND_RM)) | 
|  | break; | 
|  | return; | 
|  | } | 
|  |  | 
|  | switch (dest->exp) { | 
|  | case 0 ... 0x3ffe: | 
|  | dest->exp = 0x3fff; | 
|  | dest->mant.m64 = 1ULL << 63; | 
|  | break; | 
|  | case 0x3fff ... 0x401e: | 
|  | mask = 1 << (0x401e - dest->exp); | 
|  | if (dest->mant.m32[0] += mask) | 
|  | break; | 
|  | dest->mant.m32[0] = 0x80000000; | 
|  | dest->exp++; | 
|  | break; | 
|  | case 0x401f ... 0x403e: | 
|  | mask = 1 << (0x403e - dest->exp); | 
|  | if (dest->mant.m32[1] += mask) | 
|  | break; | 
|  | if (dest->mant.m32[0] += 1) | 
|  | break; | 
|  | dest->mant.m32[0] = 0x80000000; | 
|  | dest->exp++; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* modrem_kernel: Implementation of the FREM and FMOD instructions | 
|  | (which are exactly the same, except for the rounding used on the | 
|  | intermediate value) */ | 
|  |  | 
|  | static struct fp_ext * | 
|  | modrem_kernel(struct fp_ext *dest, struct fp_ext *src, int mode) | 
|  | { | 
|  | struct fp_ext tmp; | 
|  |  | 
|  | fp_dyadic_check(dest, src); | 
|  |  | 
|  | /* Infinities and zeros */ | 
|  | if (IS_INF(dest) || IS_ZERO(src)) { | 
|  | fp_set_nan(dest); | 
|  | return dest; | 
|  | } | 
|  | if (IS_ZERO(dest) || IS_INF(src)) | 
|  | return dest; | 
|  |  | 
|  | /* FIXME: there is almost certainly a smarter way to do this */ | 
|  | fp_copy_ext(&tmp, dest); | 
|  | fp_fdiv(&tmp, src);		/* NOTE: src might be modified */ | 
|  | fp_roundint(&tmp, mode); | 
|  | fp_fmul(&tmp, src); | 
|  | fp_fsub(dest, &tmp); | 
|  |  | 
|  | /* set the quotient byte */ | 
|  | fp_set_quotient((dest->mant.m64 & 0x7f) | (dest->sign << 7)); | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | /* fp_fmod: Implements the kernel of the FMOD instruction. | 
|  |  | 
|  | Again, the argument order is backwards.  The result, as defined in | 
|  | the Motorola manuals, is: | 
|  |  | 
|  | fmod(src,dest) = (dest - (src * floor(dest / src))) */ | 
|  |  | 
|  | struct fp_ext * | 
|  | fp_fmod(struct fp_ext *dest, struct fp_ext *src) | 
|  | { | 
|  | dprint(PINSTR, "fmod\n"); | 
|  | return modrem_kernel(dest, src, FPCR_ROUND_RZ); | 
|  | } | 
|  |  | 
|  | /* fp_frem: Implements the kernel of the FREM instruction. | 
|  |  | 
|  | frem(src,dest) = (dest - (src * round(dest / src))) | 
|  | */ | 
|  |  | 
|  | struct fp_ext * | 
|  | fp_frem(struct fp_ext *dest, struct fp_ext *src) | 
|  | { | 
|  | dprint(PINSTR, "frem\n"); | 
|  | return modrem_kernel(dest, src, FPCR_ROUND_RN); | 
|  | } | 
|  |  | 
|  | struct fp_ext * | 
|  | fp_fint(struct fp_ext *dest, struct fp_ext *src) | 
|  | { | 
|  | dprint(PINSTR, "fint\n"); | 
|  |  | 
|  | fp_copy_ext(dest, src); | 
|  |  | 
|  | fp_roundint(dest, FPDATA->rnd); | 
|  |  | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | struct fp_ext * | 
|  | fp_fintrz(struct fp_ext *dest, struct fp_ext *src) | 
|  | { | 
|  | dprint(PINSTR, "fintrz\n"); | 
|  |  | 
|  | fp_copy_ext(dest, src); | 
|  |  | 
|  | fp_roundint(dest, FPCR_ROUND_RZ); | 
|  |  | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | struct fp_ext * | 
|  | fp_fscale(struct fp_ext *dest, struct fp_ext *src) | 
|  | { | 
|  | int scale, oldround; | 
|  |  | 
|  | dprint(PINSTR, "fscale\n"); | 
|  |  | 
|  | fp_dyadic_check(dest, src); | 
|  |  | 
|  | /* Infinities */ | 
|  | if (IS_INF(src)) { | 
|  | fp_set_nan(dest); | 
|  | return dest; | 
|  | } | 
|  | if (IS_INF(dest)) | 
|  | return dest; | 
|  |  | 
|  | /* zeroes */ | 
|  | if (IS_ZERO(src) || IS_ZERO(dest)) | 
|  | return dest; | 
|  |  | 
|  | /* Source exponent out of range */ | 
|  | if (src->exp >= 0x400c) { | 
|  | fp_set_ovrflw(dest); | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | /* src must be rounded with round to zero. */ | 
|  | oldround = FPDATA->rnd; | 
|  | FPDATA->rnd = FPCR_ROUND_RZ; | 
|  | scale = fp_conv_ext2long(src); | 
|  | FPDATA->rnd = oldround; | 
|  |  | 
|  | /* new exponent */ | 
|  | scale += dest->exp; | 
|  |  | 
|  | if (scale >= 0x7fff) { | 
|  | fp_set_ovrflw(dest); | 
|  | } else if (scale <= 0) { | 
|  | fp_set_sr(FPSR_EXC_UNFL); | 
|  | fp_denormalize(dest, -scale); | 
|  | } else | 
|  | dest->exp = scale; | 
|  |  | 
|  | return dest; | 
|  | } | 
|  |  |