|  | /* | 
|  | * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) | 
|  | * Copyright 2003 PathScale, Inc. | 
|  | * Licensed under the GPL | 
|  | */ | 
|  |  | 
|  | #include <linux/stddef.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/hardirq.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/personality.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/tick.h> | 
|  | #include <linux/threads.h> | 
|  | #include <asm/current.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include "as-layout.h" | 
|  | #include "kern_util.h" | 
|  | #include "os.h" | 
|  | #include "skas.h" | 
|  | #include "tlb.h" | 
|  |  | 
|  | /* | 
|  | * This is a per-cpu array.  A processor only modifies its entry and it only | 
|  | * cares about its entry, so it's OK if another processor is modifying its | 
|  | * entry. | 
|  | */ | 
|  | struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } }; | 
|  |  | 
|  | static inline int external_pid(void) | 
|  | { | 
|  | /* FIXME: Need to look up userspace_pid by cpu */ | 
|  | return userspace_pid[0]; | 
|  | } | 
|  |  | 
|  | int pid_to_processor_id(int pid) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ncpus; i++) { | 
|  | if (cpu_tasks[i].pid == pid) | 
|  | return i; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | void free_stack(unsigned long stack, int order) | 
|  | { | 
|  | free_pages(stack, order); | 
|  | } | 
|  |  | 
|  | unsigned long alloc_stack(int order, int atomic) | 
|  | { | 
|  | unsigned long page; | 
|  | gfp_t flags = GFP_KERNEL; | 
|  |  | 
|  | if (atomic) | 
|  | flags = GFP_ATOMIC; | 
|  | page = __get_free_pages(flags, order); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) | 
|  | { | 
|  | int pid; | 
|  |  | 
|  | current->thread.request.u.thread.proc = fn; | 
|  | current->thread.request.u.thread.arg = arg; | 
|  | pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0, | 
|  | ¤t->thread.regs, 0, NULL, NULL); | 
|  | return pid; | 
|  | } | 
|  |  | 
|  | static inline void set_current(struct task_struct *task) | 
|  | { | 
|  | cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task) | 
|  | { external_pid(), task }); | 
|  | } | 
|  |  | 
|  | extern void arch_switch_to(struct task_struct *to); | 
|  |  | 
|  | void *_switch_to(void *prev, void *next, void *last) | 
|  | { | 
|  | struct task_struct *from = prev; | 
|  | struct task_struct *to = next; | 
|  |  | 
|  | to->thread.prev_sched = from; | 
|  | set_current(to); | 
|  |  | 
|  | do { | 
|  | current->thread.saved_task = NULL; | 
|  |  | 
|  | switch_threads(&from->thread.switch_buf, | 
|  | &to->thread.switch_buf); | 
|  |  | 
|  | arch_switch_to(current); | 
|  |  | 
|  | if (current->thread.saved_task) | 
|  | show_regs(&(current->thread.regs)); | 
|  | to = current->thread.saved_task; | 
|  | from = current; | 
|  | } while (current->thread.saved_task); | 
|  |  | 
|  | return current->thread.prev_sched; | 
|  |  | 
|  | } | 
|  |  | 
|  | void interrupt_end(void) | 
|  | { | 
|  | if (need_resched()) | 
|  | schedule(); | 
|  | if (test_tsk_thread_flag(current, TIF_SIGPENDING)) | 
|  | do_signal(); | 
|  | } | 
|  |  | 
|  | void exit_thread(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | void *get_current(void) | 
|  | { | 
|  | return current; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called magically, by its address being stuffed in a jmp_buf | 
|  | * and being longjmp-d to. | 
|  | */ | 
|  | void new_thread_handler(void) | 
|  | { | 
|  | int (*fn)(void *), n; | 
|  | void *arg; | 
|  |  | 
|  | if (current->thread.prev_sched != NULL) | 
|  | schedule_tail(current->thread.prev_sched); | 
|  | current->thread.prev_sched = NULL; | 
|  |  | 
|  | fn = current->thread.request.u.thread.proc; | 
|  | arg = current->thread.request.u.thread.arg; | 
|  |  | 
|  | /* | 
|  | * The return value is 1 if the kernel thread execs a process, | 
|  | * 0 if it just exits | 
|  | */ | 
|  | n = run_kernel_thread(fn, arg, ¤t->thread.exec_buf); | 
|  | if (n == 1) { | 
|  | /* Handle any immediate reschedules or signals */ | 
|  | interrupt_end(); | 
|  | userspace(¤t->thread.regs.regs); | 
|  | } | 
|  | else do_exit(0); | 
|  | } | 
|  |  | 
|  | /* Called magically, see new_thread_handler above */ | 
|  | void fork_handler(void) | 
|  | { | 
|  | force_flush_all(); | 
|  |  | 
|  | schedule_tail(current->thread.prev_sched); | 
|  |  | 
|  | /* | 
|  | * XXX: if interrupt_end() calls schedule, this call to | 
|  | * arch_switch_to isn't needed. We could want to apply this to | 
|  | * improve performance. -bb | 
|  | */ | 
|  | arch_switch_to(current); | 
|  |  | 
|  | current->thread.prev_sched = NULL; | 
|  |  | 
|  | /* Handle any immediate reschedules or signals */ | 
|  | interrupt_end(); | 
|  |  | 
|  | userspace(¤t->thread.regs.regs); | 
|  | } | 
|  |  | 
|  | int copy_thread(unsigned long clone_flags, unsigned long sp, | 
|  | unsigned long stack_top, struct task_struct * p, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | void (*handler)(void); | 
|  | int ret = 0; | 
|  |  | 
|  | p->thread = (struct thread_struct) INIT_THREAD; | 
|  |  | 
|  | if (current->thread.forking) { | 
|  | memcpy(&p->thread.regs.regs, ®s->regs, | 
|  | sizeof(p->thread.regs.regs)); | 
|  | REGS_SET_SYSCALL_RETURN(p->thread.regs.regs.gp, 0); | 
|  | if (sp != 0) | 
|  | REGS_SP(p->thread.regs.regs.gp) = sp; | 
|  |  | 
|  | handler = fork_handler; | 
|  |  | 
|  | arch_copy_thread(¤t->thread.arch, &p->thread.arch); | 
|  | } | 
|  | else { | 
|  | get_safe_registers(p->thread.regs.regs.gp); | 
|  | p->thread.request.u.thread = current->thread.request.u.thread; | 
|  | handler = new_thread_handler; | 
|  | } | 
|  |  | 
|  | new_thread(task_stack_page(p), &p->thread.switch_buf, handler); | 
|  |  | 
|  | if (current->thread.forking) { | 
|  | clear_flushed_tls(p); | 
|  |  | 
|  | /* | 
|  | * Set a new TLS for the child thread? | 
|  | */ | 
|  | if (clone_flags & CLONE_SETTLS) | 
|  | ret = arch_copy_tls(p); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void initial_thread_cb(void (*proc)(void *), void *arg) | 
|  | { | 
|  | int save_kmalloc_ok = kmalloc_ok; | 
|  |  | 
|  | kmalloc_ok = 0; | 
|  | initial_thread_cb_skas(proc, arg); | 
|  | kmalloc_ok = save_kmalloc_ok; | 
|  | } | 
|  |  | 
|  | void default_idle(void) | 
|  | { | 
|  | unsigned long long nsecs; | 
|  |  | 
|  | while (1) { | 
|  | /* endless idle loop with no priority at all */ | 
|  |  | 
|  | /* | 
|  | * although we are an idle CPU, we do not want to | 
|  | * get into the scheduler unnecessarily. | 
|  | */ | 
|  | if (need_resched()) | 
|  | schedule(); | 
|  |  | 
|  | tick_nohz_stop_sched_tick(1); | 
|  | nsecs = disable_timer(); | 
|  | idle_sleep(nsecs); | 
|  | tick_nohz_restart_sched_tick(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void cpu_idle(void) | 
|  | { | 
|  | cpu_tasks[current_thread_info()->cpu].pid = os_getpid(); | 
|  | default_idle(); | 
|  | } | 
|  |  | 
|  | int __cant_sleep(void) { | 
|  | return in_atomic() || irqs_disabled() || in_interrupt(); | 
|  | /* Is in_interrupt() really needed? */ | 
|  | } | 
|  |  | 
|  | int user_context(unsigned long sp) | 
|  | { | 
|  | unsigned long stack; | 
|  |  | 
|  | stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER); | 
|  | return stack != (unsigned long) current_thread_info(); | 
|  | } | 
|  |  | 
|  | extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end; | 
|  |  | 
|  | void do_uml_exitcalls(void) | 
|  | { | 
|  | exitcall_t *call; | 
|  |  | 
|  | call = &__uml_exitcall_end; | 
|  | while (--call >= &__uml_exitcall_begin) | 
|  | (*call)(); | 
|  | } | 
|  |  | 
|  | char *uml_strdup(const char *string) | 
|  | { | 
|  | return kstrdup(string, GFP_KERNEL); | 
|  | } | 
|  |  | 
|  | int copy_to_user_proc(void __user *to, void *from, int size) | 
|  | { | 
|  | return copy_to_user(to, from, size); | 
|  | } | 
|  |  | 
|  | int copy_from_user_proc(void *to, void __user *from, int size) | 
|  | { | 
|  | return copy_from_user(to, from, size); | 
|  | } | 
|  |  | 
|  | int clear_user_proc(void __user *buf, int size) | 
|  | { | 
|  | return clear_user(buf, size); | 
|  | } | 
|  |  | 
|  | int strlen_user_proc(char __user *str) | 
|  | { | 
|  | return strlen_user(str); | 
|  | } | 
|  |  | 
|  | int smp_sigio_handler(void) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | int cpu = current_thread_info()->cpu; | 
|  | IPI_handler(cpu); | 
|  | if (cpu != 0) | 
|  | return 1; | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int cpu(void) | 
|  | { | 
|  | return current_thread_info()->cpu; | 
|  | } | 
|  |  | 
|  | static atomic_t using_sysemu = ATOMIC_INIT(0); | 
|  | int sysemu_supported; | 
|  |  | 
|  | void set_using_sysemu(int value) | 
|  | { | 
|  | if (value > sysemu_supported) | 
|  | return; | 
|  | atomic_set(&using_sysemu, value); | 
|  | } | 
|  |  | 
|  | int get_using_sysemu(void) | 
|  | { | 
|  | return atomic_read(&using_sysemu); | 
|  | } | 
|  |  | 
|  | static int sysemu_proc_show(struct seq_file *m, void *v) | 
|  | { | 
|  | seq_printf(m, "%d\n", get_using_sysemu()); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sysemu_proc_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return single_open(file, sysemu_proc_show, NULL); | 
|  | } | 
|  |  | 
|  | static ssize_t sysemu_proc_write(struct file *file, const char __user *buf, | 
|  | size_t count, loff_t *pos) | 
|  | { | 
|  | char tmp[2]; | 
|  |  | 
|  | if (copy_from_user(tmp, buf, 1)) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (tmp[0] >= '0' && tmp[0] <= '2') | 
|  | set_using_sysemu(tmp[0] - '0'); | 
|  | /* We use the first char, but pretend to write everything */ | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static const struct file_operations sysemu_proc_fops = { | 
|  | .owner		= THIS_MODULE, | 
|  | .open		= sysemu_proc_open, | 
|  | .read		= seq_read, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= single_release, | 
|  | .write		= sysemu_proc_write, | 
|  | }; | 
|  |  | 
|  | int __init make_proc_sysemu(void) | 
|  | { | 
|  | struct proc_dir_entry *ent; | 
|  | if (!sysemu_supported) | 
|  | return 0; | 
|  |  | 
|  | ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops); | 
|  |  | 
|  | if (ent == NULL) | 
|  | { | 
|  | printk(KERN_WARNING "Failed to register /proc/sysemu\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | late_initcall(make_proc_sysemu); | 
|  |  | 
|  | int singlestepping(void * t) | 
|  | { | 
|  | struct task_struct *task = t ? t : current; | 
|  |  | 
|  | if (!(task->ptrace & PT_DTRACE)) | 
|  | return 0; | 
|  |  | 
|  | if (task->thread.singlestep_syscall) | 
|  | return 1; | 
|  |  | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Only x86 and x86_64 have an arch_align_stack(). | 
|  | * All other arches have "#define arch_align_stack(x) (x)" | 
|  | * in their asm/system.h | 
|  | * As this is included in UML from asm-um/system-generic.h, | 
|  | * we can use it to behave as the subarch does. | 
|  | */ | 
|  | #ifndef arch_align_stack | 
|  | unsigned long arch_align_stack(unsigned long sp) | 
|  | { | 
|  | if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) | 
|  | sp -= get_random_int() % 8192; | 
|  | return sp & ~0xf; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | unsigned long get_wchan(struct task_struct *p) | 
|  | { | 
|  | unsigned long stack_page, sp, ip; | 
|  | bool seen_sched = 0; | 
|  |  | 
|  | if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING)) | 
|  | return 0; | 
|  |  | 
|  | stack_page = (unsigned long) task_stack_page(p); | 
|  | /* Bail if the process has no kernel stack for some reason */ | 
|  | if (stack_page == 0) | 
|  | return 0; | 
|  |  | 
|  | sp = p->thread.switch_buf->JB_SP; | 
|  | /* | 
|  | * Bail if the stack pointer is below the bottom of the kernel | 
|  | * stack for some reason | 
|  | */ | 
|  | if (sp < stack_page) | 
|  | return 0; | 
|  |  | 
|  | while (sp < stack_page + THREAD_SIZE) { | 
|  | ip = *((unsigned long *) sp); | 
|  | if (in_sched_functions(ip)) | 
|  | /* Ignore everything until we're above the scheduler */ | 
|  | seen_sched = 1; | 
|  | else if (kernel_text_address(ip) && seen_sched) | 
|  | return ip; | 
|  |  | 
|  | sp += sizeof(unsigned long); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu) | 
|  | { | 
|  | int cpu = current_thread_info()->cpu; | 
|  |  | 
|  | return save_fp_registers(userspace_pid[cpu], (unsigned long *) fpu); | 
|  | } | 
|  |  |