|  | /* | 
|  | * Copyright (C) ST-Ericsson SA 2007-2010 | 
|  | * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson | 
|  | * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson | 
|  | * License terms: GNU General Public License (GPL) version 2 | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/dmaengine.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/clk.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/err.h> | 
|  |  | 
|  | #include <plat/ste_dma40.h> | 
|  |  | 
|  | #include "ste_dma40_ll.h" | 
|  |  | 
|  | #define D40_NAME "dma40" | 
|  |  | 
|  | #define D40_PHY_CHAN -1 | 
|  |  | 
|  | /* For masking out/in 2 bit channel positions */ | 
|  | #define D40_CHAN_POS(chan)  (2 * (chan / 2)) | 
|  | #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan)) | 
|  |  | 
|  | /* Maximum iterations taken before giving up suspending a channel */ | 
|  | #define D40_SUSPEND_MAX_IT 500 | 
|  |  | 
|  | /* Hardware requirement on LCLA alignment */ | 
|  | #define LCLA_ALIGNMENT 0x40000 | 
|  |  | 
|  | /* Max number of links per event group */ | 
|  | #define D40_LCLA_LINK_PER_EVENT_GRP 128 | 
|  | #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP | 
|  |  | 
|  | /* Attempts before giving up to trying to get pages that are aligned */ | 
|  | #define MAX_LCLA_ALLOC_ATTEMPTS 256 | 
|  |  | 
|  | /* Bit markings for allocation map */ | 
|  | #define D40_ALLOC_FREE		(1 << 31) | 
|  | #define D40_ALLOC_PHY		(1 << 30) | 
|  | #define D40_ALLOC_LOG_FREE	0 | 
|  |  | 
|  | /* Hardware designer of the block */ | 
|  | #define D40_HW_DESIGNER 0x8 | 
|  |  | 
|  | /** | 
|  | * enum 40_command - The different commands and/or statuses. | 
|  | * | 
|  | * @D40_DMA_STOP: DMA channel command STOP or status STOPPED, | 
|  | * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN. | 
|  | * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible. | 
|  | * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED. | 
|  | */ | 
|  | enum d40_command { | 
|  | D40_DMA_STOP		= 0, | 
|  | D40_DMA_RUN		= 1, | 
|  | D40_DMA_SUSPEND_REQ	= 2, | 
|  | D40_DMA_SUSPENDED	= 3 | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct d40_lli_pool - Structure for keeping LLIs in memory | 
|  | * | 
|  | * @base: Pointer to memory area when the pre_alloc_lli's are not large | 
|  | * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if | 
|  | * pre_alloc_lli is used. | 
|  | * @size: The size in bytes of the memory at base or the size of pre_alloc_lli. | 
|  | * @pre_alloc_lli: Pre allocated area for the most common case of transfers, | 
|  | * one buffer to one buffer. | 
|  | */ | 
|  | struct d40_lli_pool { | 
|  | void	*base; | 
|  | int	 size; | 
|  | /* Space for dst and src, plus an extra for padding */ | 
|  | u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)]; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct d40_desc - A descriptor is one DMA job. | 
|  | * | 
|  | * @lli_phy: LLI settings for physical channel. Both src and dst= | 
|  | * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if | 
|  | * lli_len equals one. | 
|  | * @lli_log: Same as above but for logical channels. | 
|  | * @lli_pool: The pool with two entries pre-allocated. | 
|  | * @lli_len: Number of llis of current descriptor. | 
|  | * @lli_current: Number of transfered llis. | 
|  | * @lcla_alloc: Number of LCLA entries allocated. | 
|  | * @txd: DMA engine struct. Used for among other things for communication | 
|  | * during a transfer. | 
|  | * @node: List entry. | 
|  | * @is_in_client_list: true if the client owns this descriptor. | 
|  | * @is_hw_linked: true if this job will automatically be continued for | 
|  | * the previous one. | 
|  | * | 
|  | * This descriptor is used for both logical and physical transfers. | 
|  | */ | 
|  | struct d40_desc { | 
|  | /* LLI physical */ | 
|  | struct d40_phy_lli_bidir	 lli_phy; | 
|  | /* LLI logical */ | 
|  | struct d40_log_lli_bidir	 lli_log; | 
|  |  | 
|  | struct d40_lli_pool		 lli_pool; | 
|  | int				 lli_len; | 
|  | int				 lli_current; | 
|  | int				 lcla_alloc; | 
|  |  | 
|  | struct dma_async_tx_descriptor	 txd; | 
|  | struct list_head		 node; | 
|  |  | 
|  | bool				 is_in_client_list; | 
|  | bool				 is_hw_linked; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct d40_lcla_pool - LCLA pool settings and data. | 
|  | * | 
|  | * @base: The virtual address of LCLA. 18 bit aligned. | 
|  | * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used. | 
|  | * This pointer is only there for clean-up on error. | 
|  | * @pages: The number of pages needed for all physical channels. | 
|  | * Only used later for clean-up on error | 
|  | * @lock: Lock to protect the content in this struct. | 
|  | * @alloc_map: big map over which LCLA entry is own by which job. | 
|  | */ | 
|  | struct d40_lcla_pool { | 
|  | void		*base; | 
|  | void		*base_unaligned; | 
|  | int		 pages; | 
|  | spinlock_t	 lock; | 
|  | struct d40_desc	**alloc_map; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct d40_phy_res - struct for handling eventlines mapped to physical | 
|  | * channels. | 
|  | * | 
|  | * @lock: A lock protection this entity. | 
|  | * @num: The physical channel number of this entity. | 
|  | * @allocated_src: Bit mapped to show which src event line's are mapped to | 
|  | * this physical channel. Can also be free or physically allocated. | 
|  | * @allocated_dst: Same as for src but is dst. | 
|  | * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as | 
|  | * event line number. | 
|  | */ | 
|  | struct d40_phy_res { | 
|  | spinlock_t lock; | 
|  | int	   num; | 
|  | u32	   allocated_src; | 
|  | u32	   allocated_dst; | 
|  | }; | 
|  |  | 
|  | struct d40_base; | 
|  |  | 
|  | /** | 
|  | * struct d40_chan - Struct that describes a channel. | 
|  | * | 
|  | * @lock: A spinlock to protect this struct. | 
|  | * @log_num: The logical number, if any of this channel. | 
|  | * @completed: Starts with 1, after first interrupt it is set to dma engine's | 
|  | * current cookie. | 
|  | * @pending_tx: The number of pending transfers. Used between interrupt handler | 
|  | * and tasklet. | 
|  | * @busy: Set to true when transfer is ongoing on this channel. | 
|  | * @phy_chan: Pointer to physical channel which this instance runs on. If this | 
|  | * point is NULL, then the channel is not allocated. | 
|  | * @chan: DMA engine handle. | 
|  | * @tasklet: Tasklet that gets scheduled from interrupt context to complete a | 
|  | * transfer and call client callback. | 
|  | * @client: Cliented owned descriptor list. | 
|  | * @active: Active descriptor. | 
|  | * @queue: Queued jobs. | 
|  | * @dma_cfg: The client configuration of this dma channel. | 
|  | * @configured: whether the dma_cfg configuration is valid | 
|  | * @base: Pointer to the device instance struct. | 
|  | * @src_def_cfg: Default cfg register setting for src. | 
|  | * @dst_def_cfg: Default cfg register setting for dst. | 
|  | * @log_def: Default logical channel settings. | 
|  | * @lcla: Space for one dst src pair for logical channel transfers. | 
|  | * @lcpa: Pointer to dst and src lcpa settings. | 
|  | * | 
|  | * This struct can either "be" a logical or a physical channel. | 
|  | */ | 
|  | struct d40_chan { | 
|  | spinlock_t			 lock; | 
|  | int				 log_num; | 
|  | /* ID of the most recent completed transfer */ | 
|  | int				 completed; | 
|  | int				 pending_tx; | 
|  | bool				 busy; | 
|  | struct d40_phy_res		*phy_chan; | 
|  | struct dma_chan			 chan; | 
|  | struct tasklet_struct		 tasklet; | 
|  | struct list_head		 client; | 
|  | struct list_head		 active; | 
|  | struct list_head		 queue; | 
|  | struct stedma40_chan_cfg	 dma_cfg; | 
|  | bool				 configured; | 
|  | struct d40_base			*base; | 
|  | /* Default register configurations */ | 
|  | u32				 src_def_cfg; | 
|  | u32				 dst_def_cfg; | 
|  | struct d40_def_lcsp		 log_def; | 
|  | struct d40_log_lli_full		*lcpa; | 
|  | /* Runtime reconfiguration */ | 
|  | dma_addr_t			runtime_addr; | 
|  | enum dma_data_direction		runtime_direction; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct d40_base - The big global struct, one for each probe'd instance. | 
|  | * | 
|  | * @interrupt_lock: Lock used to make sure one interrupt is handle a time. | 
|  | * @execmd_lock: Lock for execute command usage since several channels share | 
|  | * the same physical register. | 
|  | * @dev: The device structure. | 
|  | * @virtbase: The virtual base address of the DMA's register. | 
|  | * @rev: silicon revision detected. | 
|  | * @clk: Pointer to the DMA clock structure. | 
|  | * @phy_start: Physical memory start of the DMA registers. | 
|  | * @phy_size: Size of the DMA register map. | 
|  | * @irq: The IRQ number. | 
|  | * @num_phy_chans: The number of physical channels. Read from HW. This | 
|  | * is the number of available channels for this driver, not counting "Secure | 
|  | * mode" allocated physical channels. | 
|  | * @num_log_chans: The number of logical channels. Calculated from | 
|  | * num_phy_chans. | 
|  | * @dma_both: dma_device channels that can do both memcpy and slave transfers. | 
|  | * @dma_slave: dma_device channels that can do only do slave transfers. | 
|  | * @dma_memcpy: dma_device channels that can do only do memcpy transfers. | 
|  | * @log_chans: Room for all possible logical channels in system. | 
|  | * @lookup_log_chans: Used to map interrupt number to logical channel. Points | 
|  | * to log_chans entries. | 
|  | * @lookup_phy_chans: Used to map interrupt number to physical channel. Points | 
|  | * to phy_chans entries. | 
|  | * @plat_data: Pointer to provided platform_data which is the driver | 
|  | * configuration. | 
|  | * @phy_res: Vector containing all physical channels. | 
|  | * @lcla_pool: lcla pool settings and data. | 
|  | * @lcpa_base: The virtual mapped address of LCPA. | 
|  | * @phy_lcpa: The physical address of the LCPA. | 
|  | * @lcpa_size: The size of the LCPA area. | 
|  | * @desc_slab: cache for descriptors. | 
|  | */ | 
|  | struct d40_base { | 
|  | spinlock_t			 interrupt_lock; | 
|  | spinlock_t			 execmd_lock; | 
|  | struct device			 *dev; | 
|  | void __iomem			 *virtbase; | 
|  | u8				  rev:4; | 
|  | struct clk			 *clk; | 
|  | phys_addr_t			  phy_start; | 
|  | resource_size_t			  phy_size; | 
|  | int				  irq; | 
|  | int				  num_phy_chans; | 
|  | int				  num_log_chans; | 
|  | struct dma_device		  dma_both; | 
|  | struct dma_device		  dma_slave; | 
|  | struct dma_device		  dma_memcpy; | 
|  | struct d40_chan			 *phy_chans; | 
|  | struct d40_chan			 *log_chans; | 
|  | struct d40_chan			**lookup_log_chans; | 
|  | struct d40_chan			**lookup_phy_chans; | 
|  | struct stedma40_platform_data	 *plat_data; | 
|  | /* Physical half channels */ | 
|  | struct d40_phy_res		 *phy_res; | 
|  | struct d40_lcla_pool		  lcla_pool; | 
|  | void				 *lcpa_base; | 
|  | dma_addr_t			  phy_lcpa; | 
|  | resource_size_t			  lcpa_size; | 
|  | struct kmem_cache		 *desc_slab; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct d40_interrupt_lookup - lookup table for interrupt handler | 
|  | * | 
|  | * @src: Interrupt mask register. | 
|  | * @clr: Interrupt clear register. | 
|  | * @is_error: true if this is an error interrupt. | 
|  | * @offset: start delta in the lookup_log_chans in d40_base. If equals to | 
|  | * D40_PHY_CHAN, the lookup_phy_chans shall be used instead. | 
|  | */ | 
|  | struct d40_interrupt_lookup { | 
|  | u32 src; | 
|  | u32 clr; | 
|  | bool is_error; | 
|  | int offset; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct d40_reg_val - simple lookup struct | 
|  | * | 
|  | * @reg: The register. | 
|  | * @val: The value that belongs to the register in reg. | 
|  | */ | 
|  | struct d40_reg_val { | 
|  | unsigned int reg; | 
|  | unsigned int val; | 
|  | }; | 
|  |  | 
|  | static int d40_pool_lli_alloc(struct d40_desc *d40d, | 
|  | int lli_len, bool is_log) | 
|  | { | 
|  | u32 align; | 
|  | void *base; | 
|  |  | 
|  | if (is_log) | 
|  | align = sizeof(struct d40_log_lli); | 
|  | else | 
|  | align = sizeof(struct d40_phy_lli); | 
|  |  | 
|  | if (lli_len == 1) { | 
|  | base = d40d->lli_pool.pre_alloc_lli; | 
|  | d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli); | 
|  | d40d->lli_pool.base = NULL; | 
|  | } else { | 
|  | d40d->lli_pool.size = ALIGN(lli_len * 2 * align, align); | 
|  |  | 
|  | base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT); | 
|  | d40d->lli_pool.base = base; | 
|  |  | 
|  | if (d40d->lli_pool.base == NULL) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | if (is_log) { | 
|  | d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base, | 
|  | align); | 
|  | d40d->lli_log.dst = PTR_ALIGN(d40d->lli_log.src + lli_len, | 
|  | align); | 
|  | } else { | 
|  | d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base, | 
|  | align); | 
|  | d40d->lli_phy.dst = PTR_ALIGN(d40d->lli_phy.src + lli_len, | 
|  | align); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void d40_pool_lli_free(struct d40_desc *d40d) | 
|  | { | 
|  | kfree(d40d->lli_pool.base); | 
|  | d40d->lli_pool.base = NULL; | 
|  | d40d->lli_pool.size = 0; | 
|  | d40d->lli_log.src = NULL; | 
|  | d40d->lli_log.dst = NULL; | 
|  | d40d->lli_phy.src = NULL; | 
|  | d40d->lli_phy.dst = NULL; | 
|  | } | 
|  |  | 
|  | static int d40_lcla_alloc_one(struct d40_chan *d40c, | 
|  | struct d40_desc *d40d) | 
|  | { | 
|  | unsigned long flags; | 
|  | int i; | 
|  | int ret = -EINVAL; | 
|  | int p; | 
|  |  | 
|  | spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags); | 
|  |  | 
|  | p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP; | 
|  |  | 
|  | /* | 
|  | * Allocate both src and dst at the same time, therefore the half | 
|  | * start on 1 since 0 can't be used since zero is used as end marker. | 
|  | */ | 
|  | for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) { | 
|  | if (!d40c->base->lcla_pool.alloc_map[p + i]) { | 
|  | d40c->base->lcla_pool.alloc_map[p + i] = d40d; | 
|  | d40d->lcla_alloc++; | 
|  | ret = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int d40_lcla_free_all(struct d40_chan *d40c, | 
|  | struct d40_desc *d40d) | 
|  | { | 
|  | unsigned long flags; | 
|  | int i; | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | if (d40c->log_num == D40_PHY_CHAN) | 
|  | return 0; | 
|  |  | 
|  | spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags); | 
|  |  | 
|  | for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) { | 
|  | if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num * | 
|  | D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) { | 
|  | d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num * | 
|  | D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL; | 
|  | d40d->lcla_alloc--; | 
|  | if (d40d->lcla_alloc == 0) { | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags); | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | } | 
|  |  | 
|  | static void d40_desc_remove(struct d40_desc *d40d) | 
|  | { | 
|  | list_del(&d40d->node); | 
|  | } | 
|  |  | 
|  | static struct d40_desc *d40_desc_get(struct d40_chan *d40c) | 
|  | { | 
|  | struct d40_desc *desc = NULL; | 
|  |  | 
|  | if (!list_empty(&d40c->client)) { | 
|  | struct d40_desc *d; | 
|  | struct d40_desc *_d; | 
|  |  | 
|  | list_for_each_entry_safe(d, _d, &d40c->client, node) | 
|  | if (async_tx_test_ack(&d->txd)) { | 
|  | d40_pool_lli_free(d); | 
|  | d40_desc_remove(d); | 
|  | desc = d; | 
|  | memset(desc, 0, sizeof(*desc)); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!desc) | 
|  | desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT); | 
|  |  | 
|  | if (desc) | 
|  | INIT_LIST_HEAD(&desc->node); | 
|  |  | 
|  | return desc; | 
|  | } | 
|  |  | 
|  | static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d) | 
|  | { | 
|  |  | 
|  | d40_lcla_free_all(d40c, d40d); | 
|  | kmem_cache_free(d40c->base->desc_slab, d40d); | 
|  | } | 
|  |  | 
|  | static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc) | 
|  | { | 
|  | list_add_tail(&desc->node, &d40c->active); | 
|  | } | 
|  |  | 
|  | static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d) | 
|  | { | 
|  | int curr_lcla = -EINVAL, next_lcla; | 
|  |  | 
|  | if (d40c->log_num == D40_PHY_CHAN) { | 
|  | d40_phy_lli_write(d40c->base->virtbase, | 
|  | d40c->phy_chan->num, | 
|  | d40d->lli_phy.dst, | 
|  | d40d->lli_phy.src); | 
|  | d40d->lli_current = d40d->lli_len; | 
|  | } else { | 
|  |  | 
|  | if ((d40d->lli_len - d40d->lli_current) > 1) | 
|  | curr_lcla = d40_lcla_alloc_one(d40c, d40d); | 
|  |  | 
|  | d40_log_lli_lcpa_write(d40c->lcpa, | 
|  | &d40d->lli_log.dst[d40d->lli_current], | 
|  | &d40d->lli_log.src[d40d->lli_current], | 
|  | curr_lcla); | 
|  |  | 
|  | d40d->lli_current++; | 
|  | for (; d40d->lli_current < d40d->lli_len; d40d->lli_current++) { | 
|  | struct d40_log_lli *lcla; | 
|  |  | 
|  | if (d40d->lli_current + 1 < d40d->lli_len) | 
|  | next_lcla = d40_lcla_alloc_one(d40c, d40d); | 
|  | else | 
|  | next_lcla = -EINVAL; | 
|  |  | 
|  | lcla = d40c->base->lcla_pool.base + | 
|  | d40c->phy_chan->num * 1024 + | 
|  | 8 * curr_lcla * 2; | 
|  |  | 
|  | d40_log_lli_lcla_write(lcla, | 
|  | &d40d->lli_log.dst[d40d->lli_current], | 
|  | &d40d->lli_log.src[d40d->lli_current], | 
|  | next_lcla); | 
|  |  | 
|  | (void) dma_map_single(d40c->base->dev, lcla, | 
|  | 2 * sizeof(struct d40_log_lli), | 
|  | DMA_TO_DEVICE); | 
|  |  | 
|  | curr_lcla = next_lcla; | 
|  |  | 
|  | if (curr_lcla == -EINVAL) { | 
|  | d40d->lli_current++; | 
|  | break; | 
|  | } | 
|  |  | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct d40_desc *d40_first_active_get(struct d40_chan *d40c) | 
|  | { | 
|  | struct d40_desc *d; | 
|  |  | 
|  | if (list_empty(&d40c->active)) | 
|  | return NULL; | 
|  |  | 
|  | d = list_first_entry(&d40c->active, | 
|  | struct d40_desc, | 
|  | node); | 
|  | return d; | 
|  | } | 
|  |  | 
|  | static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc) | 
|  | { | 
|  | list_add_tail(&desc->node, &d40c->queue); | 
|  | } | 
|  |  | 
|  | static struct d40_desc *d40_first_queued(struct d40_chan *d40c) | 
|  | { | 
|  | struct d40_desc *d; | 
|  |  | 
|  | if (list_empty(&d40c->queue)) | 
|  | return NULL; | 
|  |  | 
|  | d = list_first_entry(&d40c->queue, | 
|  | struct d40_desc, | 
|  | node); | 
|  | return d; | 
|  | } | 
|  |  | 
|  | static struct d40_desc *d40_last_queued(struct d40_chan *d40c) | 
|  | { | 
|  | struct d40_desc *d; | 
|  |  | 
|  | if (list_empty(&d40c->queue)) | 
|  | return NULL; | 
|  | list_for_each_entry(d, &d40c->queue, node) | 
|  | if (list_is_last(&d->node, &d40c->queue)) | 
|  | break; | 
|  | return d; | 
|  | } | 
|  |  | 
|  | /* Support functions for logical channels */ | 
|  |  | 
|  |  | 
|  | static int d40_channel_execute_command(struct d40_chan *d40c, | 
|  | enum d40_command command) | 
|  | { | 
|  | u32 status; | 
|  | int i; | 
|  | void __iomem *active_reg; | 
|  | int ret = 0; | 
|  | unsigned long flags; | 
|  | u32 wmask; | 
|  |  | 
|  | spin_lock_irqsave(&d40c->base->execmd_lock, flags); | 
|  |  | 
|  | if (d40c->phy_chan->num % 2 == 0) | 
|  | active_reg = d40c->base->virtbase + D40_DREG_ACTIVE; | 
|  | else | 
|  | active_reg = d40c->base->virtbase + D40_DREG_ACTIVO; | 
|  |  | 
|  | if (command == D40_DMA_SUSPEND_REQ) { | 
|  | status = (readl(active_reg) & | 
|  | D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> | 
|  | D40_CHAN_POS(d40c->phy_chan->num); | 
|  |  | 
|  | if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP) | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num)); | 
|  | writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)), | 
|  | active_reg); | 
|  |  | 
|  | if (command == D40_DMA_SUSPEND_REQ) { | 
|  |  | 
|  | for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) { | 
|  | status = (readl(active_reg) & | 
|  | D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> | 
|  | D40_CHAN_POS(d40c->phy_chan->num); | 
|  |  | 
|  | cpu_relax(); | 
|  | /* | 
|  | * Reduce the number of bus accesses while | 
|  | * waiting for the DMA to suspend. | 
|  | */ | 
|  | udelay(3); | 
|  |  | 
|  | if (status == D40_DMA_STOP || | 
|  | status == D40_DMA_SUSPENDED) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (i == D40_SUSPEND_MAX_IT) { | 
|  | dev_err(&d40c->chan.dev->device, | 
|  | "[%s]: unable to suspend the chl %d (log: %d) status %x\n", | 
|  | __func__, d40c->phy_chan->num, d40c->log_num, | 
|  | status); | 
|  | dump_stack(); | 
|  | ret = -EBUSY; | 
|  | } | 
|  |  | 
|  | } | 
|  | done: | 
|  | spin_unlock_irqrestore(&d40c->base->execmd_lock, flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void d40_term_all(struct d40_chan *d40c) | 
|  | { | 
|  | struct d40_desc *d40d; | 
|  |  | 
|  | /* Release active descriptors */ | 
|  | while ((d40d = d40_first_active_get(d40c))) { | 
|  | d40_desc_remove(d40d); | 
|  | d40_desc_free(d40c, d40d); | 
|  | } | 
|  |  | 
|  | /* Release queued descriptors waiting for transfer */ | 
|  | while ((d40d = d40_first_queued(d40c))) { | 
|  | d40_desc_remove(d40d); | 
|  | d40_desc_free(d40c, d40d); | 
|  | } | 
|  |  | 
|  |  | 
|  | d40c->pending_tx = 0; | 
|  | d40c->busy = false; | 
|  | } | 
|  |  | 
|  | static void d40_config_set_event(struct d40_chan *d40c, bool do_enable) | 
|  | { | 
|  | u32 val; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* Notice, that disable requires the physical channel to be stopped */ | 
|  | if (do_enable) | 
|  | val = D40_ACTIVATE_EVENTLINE; | 
|  | else | 
|  | val = D40_DEACTIVATE_EVENTLINE; | 
|  |  | 
|  | spin_lock_irqsave(&d40c->phy_chan->lock, flags); | 
|  |  | 
|  | /* Enable event line connected to device (or memcpy) */ | 
|  | if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) || | 
|  | (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) { | 
|  | u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type); | 
|  |  | 
|  | writel((val << D40_EVENTLINE_POS(event)) | | 
|  | ~D40_EVENTLINE_MASK(event), | 
|  | d40c->base->virtbase + D40_DREG_PCBASE + | 
|  | d40c->phy_chan->num * D40_DREG_PCDELTA + | 
|  | D40_CHAN_REG_SSLNK); | 
|  | } | 
|  | if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) { | 
|  | u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type); | 
|  |  | 
|  | writel((val << D40_EVENTLINE_POS(event)) | | 
|  | ~D40_EVENTLINE_MASK(event), | 
|  | d40c->base->virtbase + D40_DREG_PCBASE + | 
|  | d40c->phy_chan->num * D40_DREG_PCDELTA + | 
|  | D40_CHAN_REG_SDLNK); | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&d40c->phy_chan->lock, flags); | 
|  | } | 
|  |  | 
|  | static u32 d40_chan_has_events(struct d40_chan *d40c) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | val = readl(d40c->base->virtbase + D40_DREG_PCBASE + | 
|  | d40c->phy_chan->num * D40_DREG_PCDELTA + | 
|  | D40_CHAN_REG_SSLNK); | 
|  |  | 
|  | val |= readl(d40c->base->virtbase + D40_DREG_PCBASE + | 
|  | d40c->phy_chan->num * D40_DREG_PCDELTA + | 
|  | D40_CHAN_REG_SDLNK); | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static u32 d40_get_prmo(struct d40_chan *d40c) | 
|  | { | 
|  | static const unsigned int phy_map[] = { | 
|  | [STEDMA40_PCHAN_BASIC_MODE] | 
|  | = D40_DREG_PRMO_PCHAN_BASIC, | 
|  | [STEDMA40_PCHAN_MODULO_MODE] | 
|  | = D40_DREG_PRMO_PCHAN_MODULO, | 
|  | [STEDMA40_PCHAN_DOUBLE_DST_MODE] | 
|  | = D40_DREG_PRMO_PCHAN_DOUBLE_DST, | 
|  | }; | 
|  | static const unsigned int log_map[] = { | 
|  | [STEDMA40_LCHAN_SRC_PHY_DST_LOG] | 
|  | = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG, | 
|  | [STEDMA40_LCHAN_SRC_LOG_DST_PHY] | 
|  | = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY, | 
|  | [STEDMA40_LCHAN_SRC_LOG_DST_LOG] | 
|  | = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG, | 
|  | }; | 
|  |  | 
|  | if (d40c->log_num == D40_PHY_CHAN) | 
|  | return phy_map[d40c->dma_cfg.mode_opt]; | 
|  | else | 
|  | return log_map[d40c->dma_cfg.mode_opt]; | 
|  | } | 
|  |  | 
|  | static void d40_config_write(struct d40_chan *d40c) | 
|  | { | 
|  | u32 addr_base; | 
|  | u32 var; | 
|  |  | 
|  | /* Odd addresses are even addresses + 4 */ | 
|  | addr_base = (d40c->phy_chan->num % 2) * 4; | 
|  | /* Setup channel mode to logical or physical */ | 
|  | var = ((u32)(d40c->log_num != D40_PHY_CHAN) + 1) << | 
|  | D40_CHAN_POS(d40c->phy_chan->num); | 
|  | writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base); | 
|  |  | 
|  | /* Setup operational mode option register */ | 
|  | var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num); | 
|  |  | 
|  | writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base); | 
|  |  | 
|  | if (d40c->log_num != D40_PHY_CHAN) { | 
|  | /* Set default config for CFG reg */ | 
|  | writel(d40c->src_def_cfg, | 
|  | d40c->base->virtbase + D40_DREG_PCBASE + | 
|  | d40c->phy_chan->num * D40_DREG_PCDELTA + | 
|  | D40_CHAN_REG_SSCFG); | 
|  | writel(d40c->dst_def_cfg, | 
|  | d40c->base->virtbase + D40_DREG_PCBASE + | 
|  | d40c->phy_chan->num * D40_DREG_PCDELTA + | 
|  | D40_CHAN_REG_SDCFG); | 
|  |  | 
|  | /* Set LIDX for lcla */ | 
|  | writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) & | 
|  | D40_SREG_ELEM_LOG_LIDX_MASK, | 
|  | d40c->base->virtbase + D40_DREG_PCBASE + | 
|  | d40c->phy_chan->num * D40_DREG_PCDELTA + | 
|  | D40_CHAN_REG_SDELT); | 
|  |  | 
|  | writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) & | 
|  | D40_SREG_ELEM_LOG_LIDX_MASK, | 
|  | d40c->base->virtbase + D40_DREG_PCBASE + | 
|  | d40c->phy_chan->num * D40_DREG_PCDELTA + | 
|  | D40_CHAN_REG_SSELT); | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | static u32 d40_residue(struct d40_chan *d40c) | 
|  | { | 
|  | u32 num_elt; | 
|  |  | 
|  | if (d40c->log_num != D40_PHY_CHAN) | 
|  | num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK) | 
|  | >> D40_MEM_LCSP2_ECNT_POS; | 
|  | else | 
|  | num_elt = (readl(d40c->base->virtbase + D40_DREG_PCBASE + | 
|  | d40c->phy_chan->num * D40_DREG_PCDELTA + | 
|  | D40_CHAN_REG_SDELT) & | 
|  | D40_SREG_ELEM_PHY_ECNT_MASK) >> | 
|  | D40_SREG_ELEM_PHY_ECNT_POS; | 
|  | return num_elt * (1 << d40c->dma_cfg.dst_info.data_width); | 
|  | } | 
|  |  | 
|  | static bool d40_tx_is_linked(struct d40_chan *d40c) | 
|  | { | 
|  | bool is_link; | 
|  |  | 
|  | if (d40c->log_num != D40_PHY_CHAN) | 
|  | is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK; | 
|  | else | 
|  | is_link = readl(d40c->base->virtbase + D40_DREG_PCBASE + | 
|  | d40c->phy_chan->num * D40_DREG_PCDELTA + | 
|  | D40_CHAN_REG_SDLNK) & | 
|  | D40_SREG_LNK_PHYS_LNK_MASK; | 
|  | return is_link; | 
|  | } | 
|  |  | 
|  | static int d40_pause(struct dma_chan *chan) | 
|  | { | 
|  | struct d40_chan *d40c = | 
|  | container_of(chan, struct d40_chan, chan); | 
|  | int res = 0; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!d40c->busy) | 
|  | return 0; | 
|  |  | 
|  | spin_lock_irqsave(&d40c->lock, flags); | 
|  |  | 
|  | res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ); | 
|  | if (res == 0) { | 
|  | if (d40c->log_num != D40_PHY_CHAN) { | 
|  | d40_config_set_event(d40c, false); | 
|  | /* Resume the other logical channels if any */ | 
|  | if (d40_chan_has_events(d40c)) | 
|  | res = d40_channel_execute_command(d40c, | 
|  | D40_DMA_RUN); | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&d40c->lock, flags); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static int d40_resume(struct dma_chan *chan) | 
|  | { | 
|  | struct d40_chan *d40c = | 
|  | container_of(chan, struct d40_chan, chan); | 
|  | int res = 0; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!d40c->busy) | 
|  | return 0; | 
|  |  | 
|  | spin_lock_irqsave(&d40c->lock, flags); | 
|  |  | 
|  | if (d40c->base->rev == 0) | 
|  | if (d40c->log_num != D40_PHY_CHAN) { | 
|  | res = d40_channel_execute_command(d40c, | 
|  | D40_DMA_SUSPEND_REQ); | 
|  | goto no_suspend; | 
|  | } | 
|  |  | 
|  | /* If bytes left to transfer or linked tx resume job */ | 
|  | if (d40_residue(d40c) || d40_tx_is_linked(d40c)) { | 
|  |  | 
|  | if (d40c->log_num != D40_PHY_CHAN) | 
|  | d40_config_set_event(d40c, true); | 
|  |  | 
|  | res = d40_channel_execute_command(d40c, D40_DMA_RUN); | 
|  | } | 
|  |  | 
|  | no_suspend: | 
|  | spin_unlock_irqrestore(&d40c->lock, flags); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static void d40_tx_submit_log(struct d40_chan *d40c, struct d40_desc *d40d) | 
|  | { | 
|  | /* TODO: Write */ | 
|  | } | 
|  |  | 
|  | static void d40_tx_submit_phy(struct d40_chan *d40c, struct d40_desc *d40d) | 
|  | { | 
|  | struct d40_desc *d40d_prev = NULL; | 
|  | int i; | 
|  | u32 val; | 
|  |  | 
|  | if (!list_empty(&d40c->queue)) | 
|  | d40d_prev = d40_last_queued(d40c); | 
|  | else if (!list_empty(&d40c->active)) | 
|  | d40d_prev = d40_first_active_get(d40c); | 
|  |  | 
|  | if (!d40d_prev) | 
|  | return; | 
|  |  | 
|  | /* Here we try to join this job with previous jobs */ | 
|  | val = readl(d40c->base->virtbase + D40_DREG_PCBASE + | 
|  | d40c->phy_chan->num * D40_DREG_PCDELTA + | 
|  | D40_CHAN_REG_SSLNK); | 
|  |  | 
|  | /* Figure out which link we're currently transmitting */ | 
|  | for (i = 0; i < d40d_prev->lli_len; i++) | 
|  | if (val == d40d_prev->lli_phy.src[i].reg_lnk) | 
|  | break; | 
|  |  | 
|  | val = readl(d40c->base->virtbase + D40_DREG_PCBASE + | 
|  | d40c->phy_chan->num * D40_DREG_PCDELTA + | 
|  | D40_CHAN_REG_SSELT) >> D40_SREG_ELEM_LOG_ECNT_POS; | 
|  |  | 
|  | if (i == (d40d_prev->lli_len - 1) && val > 0) { | 
|  | /* Change the current one */ | 
|  | writel(virt_to_phys(d40d->lli_phy.src), | 
|  | d40c->base->virtbase + D40_DREG_PCBASE + | 
|  | d40c->phy_chan->num * D40_DREG_PCDELTA + | 
|  | D40_CHAN_REG_SSLNK); | 
|  | writel(virt_to_phys(d40d->lli_phy.dst), | 
|  | d40c->base->virtbase + D40_DREG_PCBASE + | 
|  | d40c->phy_chan->num * D40_DREG_PCDELTA + | 
|  | D40_CHAN_REG_SDLNK); | 
|  |  | 
|  | d40d->is_hw_linked = true; | 
|  |  | 
|  | } else if (i < d40d_prev->lli_len) { | 
|  | (void) dma_unmap_single(d40c->base->dev, | 
|  | virt_to_phys(d40d_prev->lli_phy.src), | 
|  | d40d_prev->lli_pool.size, | 
|  | DMA_TO_DEVICE); | 
|  |  | 
|  | /* Keep the settings */ | 
|  | val = d40d_prev->lli_phy.src[d40d_prev->lli_len - 1].reg_lnk & | 
|  | ~D40_SREG_LNK_PHYS_LNK_MASK; | 
|  | d40d_prev->lli_phy.src[d40d_prev->lli_len - 1].reg_lnk = | 
|  | val | virt_to_phys(d40d->lli_phy.src); | 
|  |  | 
|  | val = d40d_prev->lli_phy.dst[d40d_prev->lli_len - 1].reg_lnk & | 
|  | ~D40_SREG_LNK_PHYS_LNK_MASK; | 
|  | d40d_prev->lli_phy.dst[d40d_prev->lli_len - 1].reg_lnk = | 
|  | val | virt_to_phys(d40d->lli_phy.dst); | 
|  |  | 
|  | (void) dma_map_single(d40c->base->dev, | 
|  | d40d_prev->lli_phy.src, | 
|  | d40d_prev->lli_pool.size, | 
|  | DMA_TO_DEVICE); | 
|  | d40d->is_hw_linked = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx) | 
|  | { | 
|  | struct d40_chan *d40c = container_of(tx->chan, | 
|  | struct d40_chan, | 
|  | chan); | 
|  | struct d40_desc *d40d = container_of(tx, struct d40_desc, txd); | 
|  | unsigned long flags; | 
|  |  | 
|  | (void) d40_pause(&d40c->chan); | 
|  |  | 
|  | spin_lock_irqsave(&d40c->lock, flags); | 
|  |  | 
|  | d40c->chan.cookie++; | 
|  |  | 
|  | if (d40c->chan.cookie < 0) | 
|  | d40c->chan.cookie = 1; | 
|  |  | 
|  | d40d->txd.cookie = d40c->chan.cookie; | 
|  |  | 
|  | if (d40c->log_num == D40_PHY_CHAN) | 
|  | d40_tx_submit_phy(d40c, d40d); | 
|  | else | 
|  | d40_tx_submit_log(d40c, d40d); | 
|  |  | 
|  | d40_desc_queue(d40c, d40d); | 
|  |  | 
|  | spin_unlock_irqrestore(&d40c->lock, flags); | 
|  |  | 
|  | (void) d40_resume(&d40c->chan); | 
|  |  | 
|  | return tx->cookie; | 
|  | } | 
|  |  | 
|  | static int d40_start(struct d40_chan *d40c) | 
|  | { | 
|  | if (d40c->base->rev == 0) { | 
|  | int err; | 
|  |  | 
|  | if (d40c->log_num != D40_PHY_CHAN) { | 
|  | err = d40_channel_execute_command(d40c, | 
|  | D40_DMA_SUSPEND_REQ); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (d40c->log_num != D40_PHY_CHAN) | 
|  | d40_config_set_event(d40c, true); | 
|  |  | 
|  | return d40_channel_execute_command(d40c, D40_DMA_RUN); | 
|  | } | 
|  |  | 
|  | static struct d40_desc *d40_queue_start(struct d40_chan *d40c) | 
|  | { | 
|  | struct d40_desc *d40d; | 
|  | int err; | 
|  |  | 
|  | /* Start queued jobs, if any */ | 
|  | d40d = d40_first_queued(d40c); | 
|  |  | 
|  | if (d40d != NULL) { | 
|  | d40c->busy = true; | 
|  |  | 
|  | /* Remove from queue */ | 
|  | d40_desc_remove(d40d); | 
|  |  | 
|  | /* Add to active queue */ | 
|  | d40_desc_submit(d40c, d40d); | 
|  |  | 
|  | /* | 
|  | * If this job is already linked in hw, | 
|  | * do not submit it. | 
|  | */ | 
|  |  | 
|  | if (!d40d->is_hw_linked) { | 
|  | /* Initiate DMA job */ | 
|  | d40_desc_load(d40c, d40d); | 
|  |  | 
|  | /* Start dma job */ | 
|  | err = d40_start(d40c); | 
|  |  | 
|  | if (err) | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | return d40d; | 
|  | } | 
|  |  | 
|  | /* called from interrupt context */ | 
|  | static void dma_tc_handle(struct d40_chan *d40c) | 
|  | { | 
|  | struct d40_desc *d40d; | 
|  |  | 
|  | /* Get first active entry from list */ | 
|  | d40d = d40_first_active_get(d40c); | 
|  |  | 
|  | if (d40d == NULL) | 
|  | return; | 
|  |  | 
|  | d40_lcla_free_all(d40c, d40d); | 
|  |  | 
|  | if (d40d->lli_current < d40d->lli_len) { | 
|  | d40_desc_load(d40c, d40d); | 
|  | /* Start dma job */ | 
|  | (void) d40_start(d40c); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (d40_queue_start(d40c) == NULL) | 
|  | d40c->busy = false; | 
|  |  | 
|  | d40c->pending_tx++; | 
|  | tasklet_schedule(&d40c->tasklet); | 
|  |  | 
|  | } | 
|  |  | 
|  | static void dma_tasklet(unsigned long data) | 
|  | { | 
|  | struct d40_chan *d40c = (struct d40_chan *) data; | 
|  | struct d40_desc *d40d; | 
|  | unsigned long flags; | 
|  | dma_async_tx_callback callback; | 
|  | void *callback_param; | 
|  |  | 
|  | spin_lock_irqsave(&d40c->lock, flags); | 
|  |  | 
|  | /* Get first active entry from list */ | 
|  | d40d = d40_first_active_get(d40c); | 
|  |  | 
|  | if (d40d == NULL) | 
|  | goto err; | 
|  |  | 
|  | d40c->completed = d40d->txd.cookie; | 
|  |  | 
|  | /* | 
|  | * If terminating a channel pending_tx is set to zero. | 
|  | * This prevents any finished active jobs to return to the client. | 
|  | */ | 
|  | if (d40c->pending_tx == 0) { | 
|  | spin_unlock_irqrestore(&d40c->lock, flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Callback to client */ | 
|  | callback = d40d->txd.callback; | 
|  | callback_param = d40d->txd.callback_param; | 
|  |  | 
|  | if (async_tx_test_ack(&d40d->txd)) { | 
|  | d40_pool_lli_free(d40d); | 
|  | d40_desc_remove(d40d); | 
|  | d40_desc_free(d40c, d40d); | 
|  | } else { | 
|  | if (!d40d->is_in_client_list) { | 
|  | d40_desc_remove(d40d); | 
|  | d40_lcla_free_all(d40c, d40d); | 
|  | list_add_tail(&d40d->node, &d40c->client); | 
|  | d40d->is_in_client_list = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | d40c->pending_tx--; | 
|  |  | 
|  | if (d40c->pending_tx) | 
|  | tasklet_schedule(&d40c->tasklet); | 
|  |  | 
|  | spin_unlock_irqrestore(&d40c->lock, flags); | 
|  |  | 
|  | if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT)) | 
|  | callback(callback_param); | 
|  |  | 
|  | return; | 
|  |  | 
|  | err: | 
|  | /* Rescue manouver if receiving double interrupts */ | 
|  | if (d40c->pending_tx > 0) | 
|  | d40c->pending_tx--; | 
|  | spin_unlock_irqrestore(&d40c->lock, flags); | 
|  | } | 
|  |  | 
|  | static irqreturn_t d40_handle_interrupt(int irq, void *data) | 
|  | { | 
|  | static const struct d40_interrupt_lookup il[] = { | 
|  | {D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0}, | 
|  | {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32}, | 
|  | {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64}, | 
|  | {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96}, | 
|  | {D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0}, | 
|  | {D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32}, | 
|  | {D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64}, | 
|  | {D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96}, | 
|  | {D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN}, | 
|  | {D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN}, | 
|  | }; | 
|  |  | 
|  | int i; | 
|  | u32 regs[ARRAY_SIZE(il)]; | 
|  | u32 idx; | 
|  | u32 row; | 
|  | long chan = -1; | 
|  | struct d40_chan *d40c; | 
|  | unsigned long flags; | 
|  | struct d40_base *base = data; | 
|  |  | 
|  | spin_lock_irqsave(&base->interrupt_lock, flags); | 
|  |  | 
|  | /* Read interrupt status of both logical and physical channels */ | 
|  | for (i = 0; i < ARRAY_SIZE(il); i++) | 
|  | regs[i] = readl(base->virtbase + il[i].src); | 
|  |  | 
|  | for (;;) { | 
|  |  | 
|  | chan = find_next_bit((unsigned long *)regs, | 
|  | BITS_PER_LONG * ARRAY_SIZE(il), chan + 1); | 
|  |  | 
|  | /* No more set bits found? */ | 
|  | if (chan == BITS_PER_LONG * ARRAY_SIZE(il)) | 
|  | break; | 
|  |  | 
|  | row = chan / BITS_PER_LONG; | 
|  | idx = chan & (BITS_PER_LONG - 1); | 
|  |  | 
|  | /* ACK interrupt */ | 
|  | writel(1 << idx, base->virtbase + il[row].clr); | 
|  |  | 
|  | if (il[row].offset == D40_PHY_CHAN) | 
|  | d40c = base->lookup_phy_chans[idx]; | 
|  | else | 
|  | d40c = base->lookup_log_chans[il[row].offset + idx]; | 
|  | spin_lock(&d40c->lock); | 
|  |  | 
|  | if (!il[row].is_error) | 
|  | dma_tc_handle(d40c); | 
|  | else | 
|  | dev_err(base->dev, | 
|  | "[%s] IRQ chan: %ld offset %d idx %d\n", | 
|  | __func__, chan, il[row].offset, idx); | 
|  |  | 
|  | spin_unlock(&d40c->lock); | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&base->interrupt_lock, flags); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static int d40_validate_conf(struct d40_chan *d40c, | 
|  | struct stedma40_chan_cfg *conf) | 
|  | { | 
|  | int res = 0; | 
|  | u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type); | 
|  | u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type); | 
|  | bool is_log = conf->mode == STEDMA40_MODE_LOGICAL; | 
|  |  | 
|  | if (!conf->dir) { | 
|  | dev_err(&d40c->chan.dev->device, "[%s] Invalid direction.\n", | 
|  | __func__); | 
|  | res = -EINVAL; | 
|  | } | 
|  |  | 
|  | if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY && | 
|  | d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 && | 
|  | d40c->runtime_addr == 0) { | 
|  |  | 
|  | dev_err(&d40c->chan.dev->device, | 
|  | "[%s] Invalid TX channel address (%d)\n", | 
|  | __func__, conf->dst_dev_type); | 
|  | res = -EINVAL; | 
|  | } | 
|  |  | 
|  | if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY && | 
|  | d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 && | 
|  | d40c->runtime_addr == 0) { | 
|  | dev_err(&d40c->chan.dev->device, | 
|  | "[%s] Invalid RX channel address (%d)\n", | 
|  | __func__, conf->src_dev_type); | 
|  | res = -EINVAL; | 
|  | } | 
|  |  | 
|  | if (conf->dir == STEDMA40_MEM_TO_PERIPH && | 
|  | dst_event_group == STEDMA40_DEV_DST_MEMORY) { | 
|  | dev_err(&d40c->chan.dev->device, "[%s] Invalid dst\n", | 
|  | __func__); | 
|  | res = -EINVAL; | 
|  | } | 
|  |  | 
|  | if (conf->dir == STEDMA40_PERIPH_TO_MEM && | 
|  | src_event_group == STEDMA40_DEV_SRC_MEMORY) { | 
|  | dev_err(&d40c->chan.dev->device, "[%s] Invalid src\n", | 
|  | __func__); | 
|  | res = -EINVAL; | 
|  | } | 
|  |  | 
|  | if (src_event_group == STEDMA40_DEV_SRC_MEMORY && | 
|  | dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) { | 
|  | dev_err(&d40c->chan.dev->device, | 
|  | "[%s] No event line\n", __func__); | 
|  | res = -EINVAL; | 
|  | } | 
|  |  | 
|  | if (conf->dir == STEDMA40_PERIPH_TO_PERIPH && | 
|  | (src_event_group != dst_event_group)) { | 
|  | dev_err(&d40c->chan.dev->device, | 
|  | "[%s] Invalid event group\n", __func__); | 
|  | res = -EINVAL; | 
|  | } | 
|  |  | 
|  | if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) { | 
|  | /* | 
|  | * DMAC HW supports it. Will be added to this driver, | 
|  | * in case any dma client requires it. | 
|  | */ | 
|  | dev_err(&d40c->chan.dev->device, | 
|  | "[%s] periph to periph not supported\n", | 
|  | __func__); | 
|  | res = -EINVAL; | 
|  | } | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src, | 
|  | int log_event_line, bool is_log) | 
|  | { | 
|  | unsigned long flags; | 
|  | spin_lock_irqsave(&phy->lock, flags); | 
|  | if (!is_log) { | 
|  | /* Physical interrupts are masked per physical full channel */ | 
|  | if (phy->allocated_src == D40_ALLOC_FREE && | 
|  | phy->allocated_dst == D40_ALLOC_FREE) { | 
|  | phy->allocated_dst = D40_ALLOC_PHY; | 
|  | phy->allocated_src = D40_ALLOC_PHY; | 
|  | goto found; | 
|  | } else | 
|  | goto not_found; | 
|  | } | 
|  |  | 
|  | /* Logical channel */ | 
|  | if (is_src) { | 
|  | if (phy->allocated_src == D40_ALLOC_PHY) | 
|  | goto not_found; | 
|  |  | 
|  | if (phy->allocated_src == D40_ALLOC_FREE) | 
|  | phy->allocated_src = D40_ALLOC_LOG_FREE; | 
|  |  | 
|  | if (!(phy->allocated_src & (1 << log_event_line))) { | 
|  | phy->allocated_src |= 1 << log_event_line; | 
|  | goto found; | 
|  | } else | 
|  | goto not_found; | 
|  | } else { | 
|  | if (phy->allocated_dst == D40_ALLOC_PHY) | 
|  | goto not_found; | 
|  |  | 
|  | if (phy->allocated_dst == D40_ALLOC_FREE) | 
|  | phy->allocated_dst = D40_ALLOC_LOG_FREE; | 
|  |  | 
|  | if (!(phy->allocated_dst & (1 << log_event_line))) { | 
|  | phy->allocated_dst |= 1 << log_event_line; | 
|  | goto found; | 
|  | } else | 
|  | goto not_found; | 
|  | } | 
|  |  | 
|  | not_found: | 
|  | spin_unlock_irqrestore(&phy->lock, flags); | 
|  | return false; | 
|  | found: | 
|  | spin_unlock_irqrestore(&phy->lock, flags); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src, | 
|  | int log_event_line) | 
|  | { | 
|  | unsigned long flags; | 
|  | bool is_free = false; | 
|  |  | 
|  | spin_lock_irqsave(&phy->lock, flags); | 
|  | if (!log_event_line) { | 
|  | phy->allocated_dst = D40_ALLOC_FREE; | 
|  | phy->allocated_src = D40_ALLOC_FREE; | 
|  | is_free = true; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Logical channel */ | 
|  | if (is_src) { | 
|  | phy->allocated_src &= ~(1 << log_event_line); | 
|  | if (phy->allocated_src == D40_ALLOC_LOG_FREE) | 
|  | phy->allocated_src = D40_ALLOC_FREE; | 
|  | } else { | 
|  | phy->allocated_dst &= ~(1 << log_event_line); | 
|  | if (phy->allocated_dst == D40_ALLOC_LOG_FREE) | 
|  | phy->allocated_dst = D40_ALLOC_FREE; | 
|  | } | 
|  |  | 
|  | is_free = ((phy->allocated_src | phy->allocated_dst) == | 
|  | D40_ALLOC_FREE); | 
|  |  | 
|  | out: | 
|  | spin_unlock_irqrestore(&phy->lock, flags); | 
|  |  | 
|  | return is_free; | 
|  | } | 
|  |  | 
|  | static int d40_allocate_channel(struct d40_chan *d40c) | 
|  | { | 
|  | int dev_type; | 
|  | int event_group; | 
|  | int event_line; | 
|  | struct d40_phy_res *phys; | 
|  | int i; | 
|  | int j; | 
|  | int log_num; | 
|  | bool is_src; | 
|  | bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL; | 
|  |  | 
|  | phys = d40c->base->phy_res; | 
|  |  | 
|  | if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) { | 
|  | dev_type = d40c->dma_cfg.src_dev_type; | 
|  | log_num = 2 * dev_type; | 
|  | is_src = true; | 
|  | } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH || | 
|  | d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) { | 
|  | /* dst event lines are used for logical memcpy */ | 
|  | dev_type = d40c->dma_cfg.dst_dev_type; | 
|  | log_num = 2 * dev_type + 1; | 
|  | is_src = false; | 
|  | } else | 
|  | return -EINVAL; | 
|  |  | 
|  | event_group = D40_TYPE_TO_GROUP(dev_type); | 
|  | event_line = D40_TYPE_TO_EVENT(dev_type); | 
|  |  | 
|  | if (!is_log) { | 
|  | if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) { | 
|  | /* Find physical half channel */ | 
|  | for (i = 0; i < d40c->base->num_phy_chans; i++) { | 
|  |  | 
|  | if (d40_alloc_mask_set(&phys[i], is_src, | 
|  | 0, is_log)) | 
|  | goto found_phy; | 
|  | } | 
|  | } else | 
|  | for (j = 0; j < d40c->base->num_phy_chans; j += 8) { | 
|  | int phy_num = j  + event_group * 2; | 
|  | for (i = phy_num; i < phy_num + 2; i++) { | 
|  | if (d40_alloc_mask_set(&phys[i], | 
|  | is_src, | 
|  | 0, | 
|  | is_log)) | 
|  | goto found_phy; | 
|  | } | 
|  | } | 
|  | return -EINVAL; | 
|  | found_phy: | 
|  | d40c->phy_chan = &phys[i]; | 
|  | d40c->log_num = D40_PHY_CHAN; | 
|  | goto out; | 
|  | } | 
|  | if (dev_type == -1) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Find logical channel */ | 
|  | for (j = 0; j < d40c->base->num_phy_chans; j += 8) { | 
|  | int phy_num = j + event_group * 2; | 
|  | /* | 
|  | * Spread logical channels across all available physical rather | 
|  | * than pack every logical channel at the first available phy | 
|  | * channels. | 
|  | */ | 
|  | if (is_src) { | 
|  | for (i = phy_num; i < phy_num + 2; i++) { | 
|  | if (d40_alloc_mask_set(&phys[i], is_src, | 
|  | event_line, is_log)) | 
|  | goto found_log; | 
|  | } | 
|  | } else { | 
|  | for (i = phy_num + 1; i >= phy_num; i--) { | 
|  | if (d40_alloc_mask_set(&phys[i], is_src, | 
|  | event_line, is_log)) | 
|  | goto found_log; | 
|  | } | 
|  | } | 
|  | } | 
|  | return -EINVAL; | 
|  |  | 
|  | found_log: | 
|  | d40c->phy_chan = &phys[i]; | 
|  | d40c->log_num = log_num; | 
|  | out: | 
|  |  | 
|  | if (is_log) | 
|  | d40c->base->lookup_log_chans[d40c->log_num] = d40c; | 
|  | else | 
|  | d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | } | 
|  |  | 
|  | static int d40_config_memcpy(struct d40_chan *d40c) | 
|  | { | 
|  | dma_cap_mask_t cap = d40c->chan.device->cap_mask; | 
|  |  | 
|  | if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) { | 
|  | d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log; | 
|  | d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY; | 
|  | d40c->dma_cfg.dst_dev_type = d40c->base->plat_data-> | 
|  | memcpy[d40c->chan.chan_id]; | 
|  |  | 
|  | } else if (dma_has_cap(DMA_MEMCPY, cap) && | 
|  | dma_has_cap(DMA_SLAVE, cap)) { | 
|  | d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy; | 
|  | } else { | 
|  | dev_err(&d40c->chan.dev->device, "[%s] No memcpy\n", | 
|  | __func__); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int d40_free_dma(struct d40_chan *d40c) | 
|  | { | 
|  |  | 
|  | int res = 0; | 
|  | u32 event; | 
|  | struct d40_phy_res *phy = d40c->phy_chan; | 
|  | bool is_src; | 
|  | struct d40_desc *d; | 
|  | struct d40_desc *_d; | 
|  |  | 
|  |  | 
|  | /* Terminate all queued and active transfers */ | 
|  | d40_term_all(d40c); | 
|  |  | 
|  | /* Release client owned descriptors */ | 
|  | if (!list_empty(&d40c->client)) | 
|  | list_for_each_entry_safe(d, _d, &d40c->client, node) { | 
|  | d40_pool_lli_free(d); | 
|  | d40_desc_remove(d); | 
|  | d40_desc_free(d40c, d); | 
|  | } | 
|  |  | 
|  | if (phy == NULL) { | 
|  | dev_err(&d40c->chan.dev->device, "[%s] phy == null\n", | 
|  | __func__); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (phy->allocated_src == D40_ALLOC_FREE && | 
|  | phy->allocated_dst == D40_ALLOC_FREE) { | 
|  | dev_err(&d40c->chan.dev->device, "[%s] channel already free\n", | 
|  | __func__); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH || | 
|  | d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) { | 
|  | event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type); | 
|  | is_src = false; | 
|  | } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) { | 
|  | event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type); | 
|  | is_src = true; | 
|  | } else { | 
|  | dev_err(&d40c->chan.dev->device, | 
|  | "[%s] Unknown direction\n", __func__); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ); | 
|  | if (res) { | 
|  | dev_err(&d40c->chan.dev->device, "[%s] suspend failed\n", | 
|  | __func__); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | if (d40c->log_num != D40_PHY_CHAN) { | 
|  | /* Release logical channel, deactivate the event line */ | 
|  |  | 
|  | d40_config_set_event(d40c, false); | 
|  | d40c->base->lookup_log_chans[d40c->log_num] = NULL; | 
|  |  | 
|  | /* | 
|  | * Check if there are more logical allocation | 
|  | * on this phy channel. | 
|  | */ | 
|  | if (!d40_alloc_mask_free(phy, is_src, event)) { | 
|  | /* Resume the other logical channels if any */ | 
|  | if (d40_chan_has_events(d40c)) { | 
|  | res = d40_channel_execute_command(d40c, | 
|  | D40_DMA_RUN); | 
|  | if (res) { | 
|  | dev_err(&d40c->chan.dev->device, | 
|  | "[%s] Executing RUN command\n", | 
|  | __func__); | 
|  | return res; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | } else { | 
|  | (void) d40_alloc_mask_free(phy, is_src, 0); | 
|  | } | 
|  |  | 
|  | /* Release physical channel */ | 
|  | res = d40_channel_execute_command(d40c, D40_DMA_STOP); | 
|  | if (res) { | 
|  | dev_err(&d40c->chan.dev->device, | 
|  | "[%s] Failed to stop channel\n", __func__); | 
|  | return res; | 
|  | } | 
|  | d40c->phy_chan = NULL; | 
|  | d40c->configured = false; | 
|  | d40c->base->lookup_phy_chans[phy->num] = NULL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool d40_is_paused(struct d40_chan *d40c) | 
|  | { | 
|  | bool is_paused = false; | 
|  | unsigned long flags; | 
|  | void __iomem *active_reg; | 
|  | u32 status; | 
|  | u32 event; | 
|  |  | 
|  | spin_lock_irqsave(&d40c->lock, flags); | 
|  |  | 
|  | if (d40c->log_num == D40_PHY_CHAN) { | 
|  | if (d40c->phy_chan->num % 2 == 0) | 
|  | active_reg = d40c->base->virtbase + D40_DREG_ACTIVE; | 
|  | else | 
|  | active_reg = d40c->base->virtbase + D40_DREG_ACTIVO; | 
|  |  | 
|  | status = (readl(active_reg) & | 
|  | D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> | 
|  | D40_CHAN_POS(d40c->phy_chan->num); | 
|  | if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP) | 
|  | is_paused = true; | 
|  |  | 
|  | goto _exit; | 
|  | } | 
|  |  | 
|  | if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH || | 
|  | d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) { | 
|  | event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type); | 
|  | status = readl(d40c->base->virtbase + D40_DREG_PCBASE + | 
|  | d40c->phy_chan->num * D40_DREG_PCDELTA + | 
|  | D40_CHAN_REG_SDLNK); | 
|  | } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) { | 
|  | event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type); | 
|  | status = readl(d40c->base->virtbase + D40_DREG_PCBASE + | 
|  | d40c->phy_chan->num * D40_DREG_PCDELTA + | 
|  | D40_CHAN_REG_SSLNK); | 
|  | } else { | 
|  | dev_err(&d40c->chan.dev->device, | 
|  | "[%s] Unknown direction\n", __func__); | 
|  | goto _exit; | 
|  | } | 
|  |  | 
|  | status = (status & D40_EVENTLINE_MASK(event)) >> | 
|  | D40_EVENTLINE_POS(event); | 
|  |  | 
|  | if (status != D40_DMA_RUN) | 
|  | is_paused = true; | 
|  | _exit: | 
|  | spin_unlock_irqrestore(&d40c->lock, flags); | 
|  | return is_paused; | 
|  |  | 
|  | } | 
|  |  | 
|  |  | 
|  | static u32 stedma40_residue(struct dma_chan *chan) | 
|  | { | 
|  | struct d40_chan *d40c = | 
|  | container_of(chan, struct d40_chan, chan); | 
|  | u32 bytes_left; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&d40c->lock, flags); | 
|  | bytes_left = d40_residue(d40c); | 
|  | spin_unlock_irqrestore(&d40c->lock, flags); | 
|  |  | 
|  | return bytes_left; | 
|  | } | 
|  |  | 
|  | struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan, | 
|  | struct scatterlist *sgl_dst, | 
|  | struct scatterlist *sgl_src, | 
|  | unsigned int sgl_len, | 
|  | unsigned long dma_flags) | 
|  | { | 
|  | int res; | 
|  | struct d40_desc *d40d; | 
|  | struct d40_chan *d40c = container_of(chan, struct d40_chan, | 
|  | chan); | 
|  | unsigned long flags; | 
|  |  | 
|  | if (d40c->phy_chan == NULL) { | 
|  | dev_err(&d40c->chan.dev->device, | 
|  | "[%s] Unallocated channel.\n", __func__); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&d40c->lock, flags); | 
|  | d40d = d40_desc_get(d40c); | 
|  |  | 
|  | if (d40d == NULL) | 
|  | goto err; | 
|  |  | 
|  | d40d->lli_len = sgl_len; | 
|  | d40d->lli_current = 0; | 
|  | d40d->txd.flags = dma_flags; | 
|  |  | 
|  | if (d40c->log_num != D40_PHY_CHAN) { | 
|  |  | 
|  | if (d40_pool_lli_alloc(d40d, sgl_len, true) < 0) { | 
|  | dev_err(&d40c->chan.dev->device, | 
|  | "[%s] Out of memory\n", __func__); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | (void) d40_log_sg_to_lli(sgl_src, | 
|  | sgl_len, | 
|  | d40d->lli_log.src, | 
|  | d40c->log_def.lcsp1, | 
|  | d40c->dma_cfg.src_info.data_width); | 
|  |  | 
|  | (void) d40_log_sg_to_lli(sgl_dst, | 
|  | sgl_len, | 
|  | d40d->lli_log.dst, | 
|  | d40c->log_def.lcsp3, | 
|  | d40c->dma_cfg.dst_info.data_width); | 
|  | } else { | 
|  | if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) { | 
|  | dev_err(&d40c->chan.dev->device, | 
|  | "[%s] Out of memory\n", __func__); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | res = d40_phy_sg_to_lli(sgl_src, | 
|  | sgl_len, | 
|  | 0, | 
|  | d40d->lli_phy.src, | 
|  | virt_to_phys(d40d->lli_phy.src), | 
|  | d40c->src_def_cfg, | 
|  | d40c->dma_cfg.src_info.data_width, | 
|  | d40c->dma_cfg.src_info.psize); | 
|  |  | 
|  | if (res < 0) | 
|  | goto err; | 
|  |  | 
|  | res = d40_phy_sg_to_lli(sgl_dst, | 
|  | sgl_len, | 
|  | 0, | 
|  | d40d->lli_phy.dst, | 
|  | virt_to_phys(d40d->lli_phy.dst), | 
|  | d40c->dst_def_cfg, | 
|  | d40c->dma_cfg.dst_info.data_width, | 
|  | d40c->dma_cfg.dst_info.psize); | 
|  |  | 
|  | if (res < 0) | 
|  | goto err; | 
|  |  | 
|  | (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src, | 
|  | d40d->lli_pool.size, DMA_TO_DEVICE); | 
|  | } | 
|  |  | 
|  | dma_async_tx_descriptor_init(&d40d->txd, chan); | 
|  |  | 
|  | d40d->txd.tx_submit = d40_tx_submit; | 
|  |  | 
|  | spin_unlock_irqrestore(&d40c->lock, flags); | 
|  |  | 
|  | return &d40d->txd; | 
|  | err: | 
|  | if (d40d) | 
|  | d40_desc_free(d40c, d40d); | 
|  | spin_unlock_irqrestore(&d40c->lock, flags); | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(stedma40_memcpy_sg); | 
|  |  | 
|  | bool stedma40_filter(struct dma_chan *chan, void *data) | 
|  | { | 
|  | struct stedma40_chan_cfg *info = data; | 
|  | struct d40_chan *d40c = | 
|  | container_of(chan, struct d40_chan, chan); | 
|  | int err; | 
|  |  | 
|  | if (data) { | 
|  | err = d40_validate_conf(d40c, info); | 
|  | if (!err) | 
|  | d40c->dma_cfg = *info; | 
|  | } else | 
|  | err = d40_config_memcpy(d40c); | 
|  |  | 
|  | if (!err) | 
|  | d40c->configured = true; | 
|  |  | 
|  | return err == 0; | 
|  | } | 
|  | EXPORT_SYMBOL(stedma40_filter); | 
|  |  | 
|  | /* DMA ENGINE functions */ | 
|  | static int d40_alloc_chan_resources(struct dma_chan *chan) | 
|  | { | 
|  | int err; | 
|  | unsigned long flags; | 
|  | struct d40_chan *d40c = | 
|  | container_of(chan, struct d40_chan, chan); | 
|  | bool is_free_phy; | 
|  | spin_lock_irqsave(&d40c->lock, flags); | 
|  |  | 
|  | d40c->completed = chan->cookie = 1; | 
|  |  | 
|  | /* If no dma configuration is set use default configuration (memcpy) */ | 
|  | if (!d40c->configured) { | 
|  | err = d40_config_memcpy(d40c); | 
|  | if (err) { | 
|  | dev_err(&d40c->chan.dev->device, | 
|  | "[%s] Failed to configure memcpy channel\n", | 
|  | __func__); | 
|  | goto fail; | 
|  | } | 
|  | } | 
|  | is_free_phy = (d40c->phy_chan == NULL); | 
|  |  | 
|  | err = d40_allocate_channel(d40c); | 
|  | if (err) { | 
|  | dev_err(&d40c->chan.dev->device, | 
|  | "[%s] Failed to allocate channel\n", __func__); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* Fill in basic CFG register values */ | 
|  | d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg, | 
|  | &d40c->dst_def_cfg, d40c->log_num != D40_PHY_CHAN); | 
|  |  | 
|  | if (d40c->log_num != D40_PHY_CHAN) { | 
|  | d40_log_cfg(&d40c->dma_cfg, | 
|  | &d40c->log_def.lcsp1, &d40c->log_def.lcsp3); | 
|  |  | 
|  | if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) | 
|  | d40c->lcpa = d40c->base->lcpa_base + | 
|  | d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE; | 
|  | else | 
|  | d40c->lcpa = d40c->base->lcpa_base + | 
|  | d40c->dma_cfg.dst_dev_type * | 
|  | D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Only write channel configuration to the DMA if the physical | 
|  | * resource is free. In case of multiple logical channels | 
|  | * on the same physical resource, only the first write is necessary. | 
|  | */ | 
|  | if (is_free_phy) | 
|  | d40_config_write(d40c); | 
|  | fail: | 
|  | spin_unlock_irqrestore(&d40c->lock, flags); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void d40_free_chan_resources(struct dma_chan *chan) | 
|  | { | 
|  | struct d40_chan *d40c = | 
|  | container_of(chan, struct d40_chan, chan); | 
|  | int err; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (d40c->phy_chan == NULL) { | 
|  | dev_err(&d40c->chan.dev->device, | 
|  | "[%s] Cannot free unallocated channel\n", __func__); | 
|  | return; | 
|  | } | 
|  |  | 
|  |  | 
|  | spin_lock_irqsave(&d40c->lock, flags); | 
|  |  | 
|  | err = d40_free_dma(d40c); | 
|  |  | 
|  | if (err) | 
|  | dev_err(&d40c->chan.dev->device, | 
|  | "[%s] Failed to free channel\n", __func__); | 
|  | spin_unlock_irqrestore(&d40c->lock, flags); | 
|  | } | 
|  |  | 
|  | static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan, | 
|  | dma_addr_t dst, | 
|  | dma_addr_t src, | 
|  | size_t size, | 
|  | unsigned long dma_flags) | 
|  | { | 
|  | struct d40_desc *d40d; | 
|  | struct d40_chan *d40c = container_of(chan, struct d40_chan, | 
|  | chan); | 
|  | unsigned long flags; | 
|  | int err = 0; | 
|  |  | 
|  | if (d40c->phy_chan == NULL) { | 
|  | dev_err(&d40c->chan.dev->device, | 
|  | "[%s] Channel is not allocated.\n", __func__); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&d40c->lock, flags); | 
|  | d40d = d40_desc_get(d40c); | 
|  |  | 
|  | if (d40d == NULL) { | 
|  | dev_err(&d40c->chan.dev->device, | 
|  | "[%s] Descriptor is NULL\n", __func__); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | d40d->txd.flags = dma_flags; | 
|  |  | 
|  | dma_async_tx_descriptor_init(&d40d->txd, chan); | 
|  |  | 
|  | d40d->txd.tx_submit = d40_tx_submit; | 
|  |  | 
|  | if (d40c->log_num != D40_PHY_CHAN) { | 
|  |  | 
|  | if (d40_pool_lli_alloc(d40d, 1, true) < 0) { | 
|  | dev_err(&d40c->chan.dev->device, | 
|  | "[%s] Out of memory\n", __func__); | 
|  | goto err; | 
|  | } | 
|  | d40d->lli_len = 1; | 
|  | d40d->lli_current = 0; | 
|  |  | 
|  | d40_log_fill_lli(d40d->lli_log.src, | 
|  | src, | 
|  | size, | 
|  | d40c->log_def.lcsp1, | 
|  | d40c->dma_cfg.src_info.data_width, | 
|  | true); | 
|  |  | 
|  | d40_log_fill_lli(d40d->lli_log.dst, | 
|  | dst, | 
|  | size, | 
|  | d40c->log_def.lcsp3, | 
|  | d40c->dma_cfg.dst_info.data_width, | 
|  | true); | 
|  |  | 
|  | } else { | 
|  |  | 
|  | if (d40_pool_lli_alloc(d40d, 1, false) < 0) { | 
|  | dev_err(&d40c->chan.dev->device, | 
|  | "[%s] Out of memory\n", __func__); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | err = d40_phy_fill_lli(d40d->lli_phy.src, | 
|  | src, | 
|  | size, | 
|  | d40c->dma_cfg.src_info.psize, | 
|  | 0, | 
|  | d40c->src_def_cfg, | 
|  | true, | 
|  | d40c->dma_cfg.src_info.data_width, | 
|  | false); | 
|  | if (err) | 
|  | goto err_fill_lli; | 
|  |  | 
|  | err = d40_phy_fill_lli(d40d->lli_phy.dst, | 
|  | dst, | 
|  | size, | 
|  | d40c->dma_cfg.dst_info.psize, | 
|  | 0, | 
|  | d40c->dst_def_cfg, | 
|  | true, | 
|  | d40c->dma_cfg.dst_info.data_width, | 
|  | false); | 
|  |  | 
|  | if (err) | 
|  | goto err_fill_lli; | 
|  |  | 
|  | (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src, | 
|  | d40d->lli_pool.size, DMA_TO_DEVICE); | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&d40c->lock, flags); | 
|  | return &d40d->txd; | 
|  |  | 
|  | err_fill_lli: | 
|  | dev_err(&d40c->chan.dev->device, | 
|  | "[%s] Failed filling in PHY LLI\n", __func__); | 
|  | err: | 
|  | if (d40d) | 
|  | d40_desc_free(d40c, d40d); | 
|  | spin_unlock_irqrestore(&d40c->lock, flags); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct dma_async_tx_descriptor * | 
|  | d40_prep_sg(struct dma_chan *chan, | 
|  | struct scatterlist *dst_sg, unsigned int dst_nents, | 
|  | struct scatterlist *src_sg, unsigned int src_nents, | 
|  | unsigned long dma_flags) | 
|  | { | 
|  | if (dst_nents != src_nents) | 
|  | return NULL; | 
|  |  | 
|  | return stedma40_memcpy_sg(chan, dst_sg, src_sg, dst_nents, dma_flags); | 
|  | } | 
|  |  | 
|  | static int d40_prep_slave_sg_log(struct d40_desc *d40d, | 
|  | struct d40_chan *d40c, | 
|  | struct scatterlist *sgl, | 
|  | unsigned int sg_len, | 
|  | enum dma_data_direction direction, | 
|  | unsigned long dma_flags) | 
|  | { | 
|  | dma_addr_t dev_addr = 0; | 
|  | int total_size; | 
|  |  | 
|  | if (d40_pool_lli_alloc(d40d, sg_len, true) < 0) { | 
|  | dev_err(&d40c->chan.dev->device, | 
|  | "[%s] Out of memory\n", __func__); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | d40d->lli_len = sg_len; | 
|  | d40d->lli_current = 0; | 
|  |  | 
|  | if (direction == DMA_FROM_DEVICE) | 
|  | if (d40c->runtime_addr) | 
|  | dev_addr = d40c->runtime_addr; | 
|  | else | 
|  | dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type]; | 
|  | else if (direction == DMA_TO_DEVICE) | 
|  | if (d40c->runtime_addr) | 
|  | dev_addr = d40c->runtime_addr; | 
|  | else | 
|  | dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type]; | 
|  |  | 
|  | else | 
|  | return -EINVAL; | 
|  |  | 
|  | total_size = d40_log_sg_to_dev(sgl, sg_len, | 
|  | &d40d->lli_log, | 
|  | &d40c->log_def, | 
|  | d40c->dma_cfg.src_info.data_width, | 
|  | d40c->dma_cfg.dst_info.data_width, | 
|  | direction, | 
|  | dev_addr); | 
|  |  | 
|  | if (total_size < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int d40_prep_slave_sg_phy(struct d40_desc *d40d, | 
|  | struct d40_chan *d40c, | 
|  | struct scatterlist *sgl, | 
|  | unsigned int sgl_len, | 
|  | enum dma_data_direction direction, | 
|  | unsigned long dma_flags) | 
|  | { | 
|  | dma_addr_t src_dev_addr; | 
|  | dma_addr_t dst_dev_addr; | 
|  | int res; | 
|  |  | 
|  | if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) { | 
|  | dev_err(&d40c->chan.dev->device, | 
|  | "[%s] Out of memory\n", __func__); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | d40d->lli_len = sgl_len; | 
|  | d40d->lli_current = 0; | 
|  |  | 
|  | if (direction == DMA_FROM_DEVICE) { | 
|  | dst_dev_addr = 0; | 
|  | if (d40c->runtime_addr) | 
|  | src_dev_addr = d40c->runtime_addr; | 
|  | else | 
|  | src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type]; | 
|  | } else if (direction == DMA_TO_DEVICE) { | 
|  | if (d40c->runtime_addr) | 
|  | dst_dev_addr = d40c->runtime_addr; | 
|  | else | 
|  | dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type]; | 
|  | src_dev_addr = 0; | 
|  | } else | 
|  | return -EINVAL; | 
|  |  | 
|  | res = d40_phy_sg_to_lli(sgl, | 
|  | sgl_len, | 
|  | src_dev_addr, | 
|  | d40d->lli_phy.src, | 
|  | virt_to_phys(d40d->lli_phy.src), | 
|  | d40c->src_def_cfg, | 
|  | d40c->dma_cfg.src_info.data_width, | 
|  | d40c->dma_cfg.src_info.psize); | 
|  | if (res < 0) | 
|  | return res; | 
|  |  | 
|  | res = d40_phy_sg_to_lli(sgl, | 
|  | sgl_len, | 
|  | dst_dev_addr, | 
|  | d40d->lli_phy.dst, | 
|  | virt_to_phys(d40d->lli_phy.dst), | 
|  | d40c->dst_def_cfg, | 
|  | d40c->dma_cfg.dst_info.data_width, | 
|  | d40c->dma_cfg.dst_info.psize); | 
|  | if (res < 0) | 
|  | return res; | 
|  |  | 
|  | (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src, | 
|  | d40d->lli_pool.size, DMA_TO_DEVICE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan, | 
|  | struct scatterlist *sgl, | 
|  | unsigned int sg_len, | 
|  | enum dma_data_direction direction, | 
|  | unsigned long dma_flags) | 
|  | { | 
|  | struct d40_desc *d40d; | 
|  | struct d40_chan *d40c = container_of(chan, struct d40_chan, | 
|  | chan); | 
|  | unsigned long flags; | 
|  | int err; | 
|  |  | 
|  | if (d40c->phy_chan == NULL) { | 
|  | dev_err(&d40c->chan.dev->device, | 
|  | "[%s] Cannot prepare unallocated channel\n", __func__); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&d40c->lock, flags); | 
|  | d40d = d40_desc_get(d40c); | 
|  |  | 
|  | if (d40d == NULL) | 
|  | goto err; | 
|  |  | 
|  | if (d40c->log_num != D40_PHY_CHAN) | 
|  | err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len, | 
|  | direction, dma_flags); | 
|  | else | 
|  | err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len, | 
|  | direction, dma_flags); | 
|  | if (err) { | 
|  | dev_err(&d40c->chan.dev->device, | 
|  | "[%s] Failed to prepare %s slave sg job: %d\n", | 
|  | __func__, | 
|  | d40c->log_num != D40_PHY_CHAN ? "log" : "phy", err); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | d40d->txd.flags = dma_flags; | 
|  |  | 
|  | dma_async_tx_descriptor_init(&d40d->txd, chan); | 
|  |  | 
|  | d40d->txd.tx_submit = d40_tx_submit; | 
|  |  | 
|  | spin_unlock_irqrestore(&d40c->lock, flags); | 
|  | return &d40d->txd; | 
|  |  | 
|  | err: | 
|  | if (d40d) | 
|  | d40_desc_free(d40c, d40d); | 
|  | spin_unlock_irqrestore(&d40c->lock, flags); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static enum dma_status d40_tx_status(struct dma_chan *chan, | 
|  | dma_cookie_t cookie, | 
|  | struct dma_tx_state *txstate) | 
|  | { | 
|  | struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); | 
|  | dma_cookie_t last_used; | 
|  | dma_cookie_t last_complete; | 
|  | int ret; | 
|  |  | 
|  | if (d40c->phy_chan == NULL) { | 
|  | dev_err(&d40c->chan.dev->device, | 
|  | "[%s] Cannot read status of unallocated channel\n", | 
|  | __func__); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | last_complete = d40c->completed; | 
|  | last_used = chan->cookie; | 
|  |  | 
|  | if (d40_is_paused(d40c)) | 
|  | ret = DMA_PAUSED; | 
|  | else | 
|  | ret = dma_async_is_complete(cookie, last_complete, last_used); | 
|  |  | 
|  | dma_set_tx_state(txstate, last_complete, last_used, | 
|  | stedma40_residue(chan)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void d40_issue_pending(struct dma_chan *chan) | 
|  | { | 
|  | struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); | 
|  | unsigned long flags; | 
|  |  | 
|  | if (d40c->phy_chan == NULL) { | 
|  | dev_err(&d40c->chan.dev->device, | 
|  | "[%s] Channel is not allocated!\n", __func__); | 
|  | return; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&d40c->lock, flags); | 
|  |  | 
|  | /* Busy means that pending jobs are already being processed */ | 
|  | if (!d40c->busy) | 
|  | (void) d40_queue_start(d40c); | 
|  |  | 
|  | spin_unlock_irqrestore(&d40c->lock, flags); | 
|  | } | 
|  |  | 
|  | /* Runtime reconfiguration extension */ | 
|  | static void d40_set_runtime_config(struct dma_chan *chan, | 
|  | struct dma_slave_config *config) | 
|  | { | 
|  | struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); | 
|  | struct stedma40_chan_cfg *cfg = &d40c->dma_cfg; | 
|  | enum dma_slave_buswidth config_addr_width; | 
|  | dma_addr_t config_addr; | 
|  | u32 config_maxburst; | 
|  | enum stedma40_periph_data_width addr_width; | 
|  | int psize; | 
|  |  | 
|  | if (config->direction == DMA_FROM_DEVICE) { | 
|  | dma_addr_t dev_addr_rx = | 
|  | d40c->base->plat_data->dev_rx[cfg->src_dev_type]; | 
|  |  | 
|  | config_addr = config->src_addr; | 
|  | if (dev_addr_rx) | 
|  | dev_dbg(d40c->base->dev, | 
|  | "channel has a pre-wired RX address %08x " | 
|  | "overriding with %08x\n", | 
|  | dev_addr_rx, config_addr); | 
|  | if (cfg->dir != STEDMA40_PERIPH_TO_MEM) | 
|  | dev_dbg(d40c->base->dev, | 
|  | "channel was not configured for peripheral " | 
|  | "to memory transfer (%d) overriding\n", | 
|  | cfg->dir); | 
|  | cfg->dir = STEDMA40_PERIPH_TO_MEM; | 
|  |  | 
|  | config_addr_width = config->src_addr_width; | 
|  | config_maxburst = config->src_maxburst; | 
|  |  | 
|  | } else if (config->direction == DMA_TO_DEVICE) { | 
|  | dma_addr_t dev_addr_tx = | 
|  | d40c->base->plat_data->dev_tx[cfg->dst_dev_type]; | 
|  |  | 
|  | config_addr = config->dst_addr; | 
|  | if (dev_addr_tx) | 
|  | dev_dbg(d40c->base->dev, | 
|  | "channel has a pre-wired TX address %08x " | 
|  | "overriding with %08x\n", | 
|  | dev_addr_tx, config_addr); | 
|  | if (cfg->dir != STEDMA40_MEM_TO_PERIPH) | 
|  | dev_dbg(d40c->base->dev, | 
|  | "channel was not configured for memory " | 
|  | "to peripheral transfer (%d) overriding\n", | 
|  | cfg->dir); | 
|  | cfg->dir = STEDMA40_MEM_TO_PERIPH; | 
|  |  | 
|  | config_addr_width = config->dst_addr_width; | 
|  | config_maxburst = config->dst_maxburst; | 
|  |  | 
|  | } else { | 
|  | dev_err(d40c->base->dev, | 
|  | "unrecognized channel direction %d\n", | 
|  | config->direction); | 
|  | return; | 
|  | } | 
|  |  | 
|  | switch (config_addr_width) { | 
|  | case DMA_SLAVE_BUSWIDTH_1_BYTE: | 
|  | addr_width = STEDMA40_BYTE_WIDTH; | 
|  | break; | 
|  | case DMA_SLAVE_BUSWIDTH_2_BYTES: | 
|  | addr_width = STEDMA40_HALFWORD_WIDTH; | 
|  | break; | 
|  | case DMA_SLAVE_BUSWIDTH_4_BYTES: | 
|  | addr_width = STEDMA40_WORD_WIDTH; | 
|  | break; | 
|  | case DMA_SLAVE_BUSWIDTH_8_BYTES: | 
|  | addr_width = STEDMA40_DOUBLEWORD_WIDTH; | 
|  | break; | 
|  | default: | 
|  | dev_err(d40c->base->dev, | 
|  | "illegal peripheral address width " | 
|  | "requested (%d)\n", | 
|  | config->src_addr_width); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (d40c->log_num != D40_PHY_CHAN) { | 
|  | if (config_maxburst >= 16) | 
|  | psize = STEDMA40_PSIZE_LOG_16; | 
|  | else if (config_maxburst >= 8) | 
|  | psize = STEDMA40_PSIZE_LOG_8; | 
|  | else if (config_maxburst >= 4) | 
|  | psize = STEDMA40_PSIZE_LOG_4; | 
|  | else | 
|  | psize = STEDMA40_PSIZE_LOG_1; | 
|  | } else { | 
|  | if (config_maxburst >= 16) | 
|  | psize = STEDMA40_PSIZE_PHY_16; | 
|  | else if (config_maxburst >= 8) | 
|  | psize = STEDMA40_PSIZE_PHY_8; | 
|  | else if (config_maxburst >= 4) | 
|  | psize = STEDMA40_PSIZE_PHY_4; | 
|  | else | 
|  | psize = STEDMA40_PSIZE_PHY_1; | 
|  | } | 
|  |  | 
|  | /* Set up all the endpoint configs */ | 
|  | cfg->src_info.data_width = addr_width; | 
|  | cfg->src_info.psize = psize; | 
|  | cfg->src_info.big_endian = false; | 
|  | cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL; | 
|  | cfg->dst_info.data_width = addr_width; | 
|  | cfg->dst_info.psize = psize; | 
|  | cfg->dst_info.big_endian = false; | 
|  | cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL; | 
|  |  | 
|  | /* Fill in register values */ | 
|  | if (d40c->log_num != D40_PHY_CHAN) | 
|  | d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3); | 
|  | else | 
|  | d40_phy_cfg(cfg, &d40c->src_def_cfg, | 
|  | &d40c->dst_def_cfg, false); | 
|  |  | 
|  | /* These settings will take precedence later */ | 
|  | d40c->runtime_addr = config_addr; | 
|  | d40c->runtime_direction = config->direction; | 
|  | dev_dbg(d40c->base->dev, | 
|  | "configured channel %s for %s, data width %d, " | 
|  | "maxburst %d bytes, LE, no flow control\n", | 
|  | dma_chan_name(chan), | 
|  | (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX", | 
|  | config_addr_width, | 
|  | config_maxburst); | 
|  | } | 
|  |  | 
|  | static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, | 
|  | unsigned long arg) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); | 
|  |  | 
|  | if (d40c->phy_chan == NULL) { | 
|  | dev_err(&d40c->chan.dev->device, | 
|  | "[%s] Channel is not allocated!\n", __func__); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | switch (cmd) { | 
|  | case DMA_TERMINATE_ALL: | 
|  | spin_lock_irqsave(&d40c->lock, flags); | 
|  | d40_term_all(d40c); | 
|  | spin_unlock_irqrestore(&d40c->lock, flags); | 
|  | return 0; | 
|  | case DMA_PAUSE: | 
|  | return d40_pause(chan); | 
|  | case DMA_RESUME: | 
|  | return d40_resume(chan); | 
|  | case DMA_SLAVE_CONFIG: | 
|  | d40_set_runtime_config(chan, | 
|  | (struct dma_slave_config *) arg); | 
|  | return 0; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Other commands are unimplemented */ | 
|  | return -ENXIO; | 
|  | } | 
|  |  | 
|  | /* Initialization functions */ | 
|  |  | 
|  | static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma, | 
|  | struct d40_chan *chans, int offset, | 
|  | int num_chans) | 
|  | { | 
|  | int i = 0; | 
|  | struct d40_chan *d40c; | 
|  |  | 
|  | INIT_LIST_HEAD(&dma->channels); | 
|  |  | 
|  | for (i = offset; i < offset + num_chans; i++) { | 
|  | d40c = &chans[i]; | 
|  | d40c->base = base; | 
|  | d40c->chan.device = dma; | 
|  |  | 
|  | spin_lock_init(&d40c->lock); | 
|  |  | 
|  | d40c->log_num = D40_PHY_CHAN; | 
|  |  | 
|  | INIT_LIST_HEAD(&d40c->active); | 
|  | INIT_LIST_HEAD(&d40c->queue); | 
|  | INIT_LIST_HEAD(&d40c->client); | 
|  |  | 
|  | tasklet_init(&d40c->tasklet, dma_tasklet, | 
|  | (unsigned long) d40c); | 
|  |  | 
|  | list_add_tail(&d40c->chan.device_node, | 
|  | &dma->channels); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __init d40_dmaengine_init(struct d40_base *base, | 
|  | int num_reserved_chans) | 
|  | { | 
|  | int err ; | 
|  |  | 
|  | d40_chan_init(base, &base->dma_slave, base->log_chans, | 
|  | 0, base->num_log_chans); | 
|  |  | 
|  | dma_cap_zero(base->dma_slave.cap_mask); | 
|  | dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask); | 
|  |  | 
|  | base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources; | 
|  | base->dma_slave.device_free_chan_resources = d40_free_chan_resources; | 
|  | base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy; | 
|  | base->dma_slave.device_prep_dma_sg = d40_prep_sg; | 
|  | base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg; | 
|  | base->dma_slave.device_tx_status = d40_tx_status; | 
|  | base->dma_slave.device_issue_pending = d40_issue_pending; | 
|  | base->dma_slave.device_control = d40_control; | 
|  | base->dma_slave.dev = base->dev; | 
|  |  | 
|  | err = dma_async_device_register(&base->dma_slave); | 
|  |  | 
|  | if (err) { | 
|  | dev_err(base->dev, | 
|  | "[%s] Failed to register slave channels\n", | 
|  | __func__); | 
|  | goto failure1; | 
|  | } | 
|  |  | 
|  | d40_chan_init(base, &base->dma_memcpy, base->log_chans, | 
|  | base->num_log_chans, base->plat_data->memcpy_len); | 
|  |  | 
|  | dma_cap_zero(base->dma_memcpy.cap_mask); | 
|  | dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask); | 
|  | dma_cap_set(DMA_SG, base->dma_slave.cap_mask); | 
|  |  | 
|  | base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources; | 
|  | base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources; | 
|  | base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy; | 
|  | base->dma_slave.device_prep_dma_sg = d40_prep_sg; | 
|  | base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg; | 
|  | base->dma_memcpy.device_tx_status = d40_tx_status; | 
|  | base->dma_memcpy.device_issue_pending = d40_issue_pending; | 
|  | base->dma_memcpy.device_control = d40_control; | 
|  | base->dma_memcpy.dev = base->dev; | 
|  | /* | 
|  | * This controller can only access address at even | 
|  | * 32bit boundaries, i.e. 2^2 | 
|  | */ | 
|  | base->dma_memcpy.copy_align = 2; | 
|  |  | 
|  | err = dma_async_device_register(&base->dma_memcpy); | 
|  |  | 
|  | if (err) { | 
|  | dev_err(base->dev, | 
|  | "[%s] Failed to regsiter memcpy only channels\n", | 
|  | __func__); | 
|  | goto failure2; | 
|  | } | 
|  |  | 
|  | d40_chan_init(base, &base->dma_both, base->phy_chans, | 
|  | 0, num_reserved_chans); | 
|  |  | 
|  | dma_cap_zero(base->dma_both.cap_mask); | 
|  | dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask); | 
|  | dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask); | 
|  | dma_cap_set(DMA_SG, base->dma_slave.cap_mask); | 
|  |  | 
|  | base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources; | 
|  | base->dma_both.device_free_chan_resources = d40_free_chan_resources; | 
|  | base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy; | 
|  | base->dma_slave.device_prep_dma_sg = d40_prep_sg; | 
|  | base->dma_both.device_prep_slave_sg = d40_prep_slave_sg; | 
|  | base->dma_both.device_tx_status = d40_tx_status; | 
|  | base->dma_both.device_issue_pending = d40_issue_pending; | 
|  | base->dma_both.device_control = d40_control; | 
|  | base->dma_both.dev = base->dev; | 
|  | base->dma_both.copy_align = 2; | 
|  | err = dma_async_device_register(&base->dma_both); | 
|  |  | 
|  | if (err) { | 
|  | dev_err(base->dev, | 
|  | "[%s] Failed to register logical and physical capable channels\n", | 
|  | __func__); | 
|  | goto failure3; | 
|  | } | 
|  | return 0; | 
|  | failure3: | 
|  | dma_async_device_unregister(&base->dma_memcpy); | 
|  | failure2: | 
|  | dma_async_device_unregister(&base->dma_slave); | 
|  | failure1: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* Initialization functions. */ | 
|  |  | 
|  | static int __init d40_phy_res_init(struct d40_base *base) | 
|  | { | 
|  | int i; | 
|  | int num_phy_chans_avail = 0; | 
|  | u32 val[2]; | 
|  | int odd_even_bit = -2; | 
|  |  | 
|  | val[0] = readl(base->virtbase + D40_DREG_PRSME); | 
|  | val[1] = readl(base->virtbase + D40_DREG_PRSMO); | 
|  |  | 
|  | for (i = 0; i < base->num_phy_chans; i++) { | 
|  | base->phy_res[i].num = i; | 
|  | odd_even_bit += 2 * ((i % 2) == 0); | 
|  | if (((val[i % 2] >> odd_even_bit) & 3) == 1) { | 
|  | /* Mark security only channels as occupied */ | 
|  | base->phy_res[i].allocated_src = D40_ALLOC_PHY; | 
|  | base->phy_res[i].allocated_dst = D40_ALLOC_PHY; | 
|  | } else { | 
|  | base->phy_res[i].allocated_src = D40_ALLOC_FREE; | 
|  | base->phy_res[i].allocated_dst = D40_ALLOC_FREE; | 
|  | num_phy_chans_avail++; | 
|  | } | 
|  | spin_lock_init(&base->phy_res[i].lock); | 
|  | } | 
|  |  | 
|  | /* Mark disabled channels as occupied */ | 
|  | for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) { | 
|  | int chan = base->plat_data->disabled_channels[i]; | 
|  |  | 
|  | base->phy_res[chan].allocated_src = D40_ALLOC_PHY; | 
|  | base->phy_res[chan].allocated_dst = D40_ALLOC_PHY; | 
|  | num_phy_chans_avail--; | 
|  | } | 
|  |  | 
|  | dev_info(base->dev, "%d of %d physical DMA channels available\n", | 
|  | num_phy_chans_avail, base->num_phy_chans); | 
|  |  | 
|  | /* Verify settings extended vs standard */ | 
|  | val[0] = readl(base->virtbase + D40_DREG_PRTYP); | 
|  |  | 
|  | for (i = 0; i < base->num_phy_chans; i++) { | 
|  |  | 
|  | if (base->phy_res[i].allocated_src == D40_ALLOC_FREE && | 
|  | (val[0] & 0x3) != 1) | 
|  | dev_info(base->dev, | 
|  | "[%s] INFO: channel %d is misconfigured (%d)\n", | 
|  | __func__, i, val[0] & 0x3); | 
|  |  | 
|  | val[0] = val[0] >> 2; | 
|  | } | 
|  |  | 
|  | return num_phy_chans_avail; | 
|  | } | 
|  |  | 
|  | static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev) | 
|  | { | 
|  | static const struct d40_reg_val dma_id_regs[] = { | 
|  | /* Peripheral Id */ | 
|  | { .reg = D40_DREG_PERIPHID0, .val = 0x0040}, | 
|  | { .reg = D40_DREG_PERIPHID1, .val = 0x0000}, | 
|  | /* | 
|  | * D40_DREG_PERIPHID2 Depends on HW revision: | 
|  | *  MOP500/HREF ED has 0x0008, | 
|  | *  ? has 0x0018, | 
|  | *  HREF V1 has 0x0028 | 
|  | */ | 
|  | { .reg = D40_DREG_PERIPHID3, .val = 0x0000}, | 
|  |  | 
|  | /* PCell Id */ | 
|  | { .reg = D40_DREG_CELLID0, .val = 0x000d}, | 
|  | { .reg = D40_DREG_CELLID1, .val = 0x00f0}, | 
|  | { .reg = D40_DREG_CELLID2, .val = 0x0005}, | 
|  | { .reg = D40_DREG_CELLID3, .val = 0x00b1} | 
|  | }; | 
|  | struct stedma40_platform_data *plat_data; | 
|  | struct clk *clk = NULL; | 
|  | void __iomem *virtbase = NULL; | 
|  | struct resource *res = NULL; | 
|  | struct d40_base *base = NULL; | 
|  | int num_log_chans = 0; | 
|  | int num_phy_chans; | 
|  | int i; | 
|  | u32 val; | 
|  | u32 rev; | 
|  |  | 
|  | clk = clk_get(&pdev->dev, NULL); | 
|  |  | 
|  | if (IS_ERR(clk)) { | 
|  | dev_err(&pdev->dev, "[%s] No matching clock found\n", | 
|  | __func__); | 
|  | goto failure; | 
|  | } | 
|  |  | 
|  | clk_enable(clk); | 
|  |  | 
|  | /* Get IO for DMAC base address */ | 
|  | res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base"); | 
|  | if (!res) | 
|  | goto failure; | 
|  |  | 
|  | if (request_mem_region(res->start, resource_size(res), | 
|  | D40_NAME " I/O base") == NULL) | 
|  | goto failure; | 
|  |  | 
|  | virtbase = ioremap(res->start, resource_size(res)); | 
|  | if (!virtbase) | 
|  | goto failure; | 
|  |  | 
|  | /* HW version check */ | 
|  | for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) { | 
|  | if (dma_id_regs[i].val != | 
|  | readl(virtbase + dma_id_regs[i].reg)) { | 
|  | dev_err(&pdev->dev, | 
|  | "[%s] Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n", | 
|  | __func__, | 
|  | dma_id_regs[i].val, | 
|  | dma_id_regs[i].reg, | 
|  | readl(virtbase + dma_id_regs[i].reg)); | 
|  | goto failure; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Get silicon revision and designer */ | 
|  | val = readl(virtbase + D40_DREG_PERIPHID2); | 
|  |  | 
|  | if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) != | 
|  | D40_HW_DESIGNER) { | 
|  | dev_err(&pdev->dev, | 
|  | "[%s] Unknown designer! Got %x wanted %x\n", | 
|  | __func__, val & D40_DREG_PERIPHID2_DESIGNER_MASK, | 
|  | D40_HW_DESIGNER); | 
|  | goto failure; | 
|  | } | 
|  |  | 
|  | rev = (val & D40_DREG_PERIPHID2_REV_MASK) >> | 
|  | D40_DREG_PERIPHID2_REV_POS; | 
|  |  | 
|  | /* The number of physical channels on this HW */ | 
|  | num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4; | 
|  |  | 
|  | dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n", | 
|  | rev, res->start); | 
|  |  | 
|  | plat_data = pdev->dev.platform_data; | 
|  |  | 
|  | /* Count the number of logical channels in use */ | 
|  | for (i = 0; i < plat_data->dev_len; i++) | 
|  | if (plat_data->dev_rx[i] != 0) | 
|  | num_log_chans++; | 
|  |  | 
|  | for (i = 0; i < plat_data->dev_len; i++) | 
|  | if (plat_data->dev_tx[i] != 0) | 
|  | num_log_chans++; | 
|  |  | 
|  | base = kzalloc(ALIGN(sizeof(struct d40_base), 4) + | 
|  | (num_phy_chans + num_log_chans + plat_data->memcpy_len) * | 
|  | sizeof(struct d40_chan), GFP_KERNEL); | 
|  |  | 
|  | if (base == NULL) { | 
|  | dev_err(&pdev->dev, "[%s] Out of memory\n", __func__); | 
|  | goto failure; | 
|  | } | 
|  |  | 
|  | base->rev = rev; | 
|  | base->clk = clk; | 
|  | base->num_phy_chans = num_phy_chans; | 
|  | base->num_log_chans = num_log_chans; | 
|  | base->phy_start = res->start; | 
|  | base->phy_size = resource_size(res); | 
|  | base->virtbase = virtbase; | 
|  | base->plat_data = plat_data; | 
|  | base->dev = &pdev->dev; | 
|  | base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4); | 
|  | base->log_chans = &base->phy_chans[num_phy_chans]; | 
|  |  | 
|  | base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res), | 
|  | GFP_KERNEL); | 
|  | if (!base->phy_res) | 
|  | goto failure; | 
|  |  | 
|  | base->lookup_phy_chans = kzalloc(num_phy_chans * | 
|  | sizeof(struct d40_chan *), | 
|  | GFP_KERNEL); | 
|  | if (!base->lookup_phy_chans) | 
|  | goto failure; | 
|  |  | 
|  | if (num_log_chans + plat_data->memcpy_len) { | 
|  | /* | 
|  | * The max number of logical channels are event lines for all | 
|  | * src devices and dst devices | 
|  | */ | 
|  | base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 * | 
|  | sizeof(struct d40_chan *), | 
|  | GFP_KERNEL); | 
|  | if (!base->lookup_log_chans) | 
|  | goto failure; | 
|  | } | 
|  |  | 
|  | base->lcla_pool.alloc_map = kzalloc(num_phy_chans * | 
|  | sizeof(struct d40_desc *) * | 
|  | D40_LCLA_LINK_PER_EVENT_GRP, | 
|  | GFP_KERNEL); | 
|  | if (!base->lcla_pool.alloc_map) | 
|  | goto failure; | 
|  |  | 
|  | base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc), | 
|  | 0, SLAB_HWCACHE_ALIGN, | 
|  | NULL); | 
|  | if (base->desc_slab == NULL) | 
|  | goto failure; | 
|  |  | 
|  | return base; | 
|  |  | 
|  | failure: | 
|  | if (!IS_ERR(clk)) { | 
|  | clk_disable(clk); | 
|  | clk_put(clk); | 
|  | } | 
|  | if (virtbase) | 
|  | iounmap(virtbase); | 
|  | if (res) | 
|  | release_mem_region(res->start, | 
|  | resource_size(res)); | 
|  | if (virtbase) | 
|  | iounmap(virtbase); | 
|  |  | 
|  | if (base) { | 
|  | kfree(base->lcla_pool.alloc_map); | 
|  | kfree(base->lookup_log_chans); | 
|  | kfree(base->lookup_phy_chans); | 
|  | kfree(base->phy_res); | 
|  | kfree(base); | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void __init d40_hw_init(struct d40_base *base) | 
|  | { | 
|  |  | 
|  | static const struct d40_reg_val dma_init_reg[] = { | 
|  | /* Clock every part of the DMA block from start */ | 
|  | { .reg = D40_DREG_GCC,    .val = 0x0000ff01}, | 
|  |  | 
|  | /* Interrupts on all logical channels */ | 
|  | { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF} | 
|  | }; | 
|  | int i; | 
|  | u32 prmseo[2] = {0, 0}; | 
|  | u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF}; | 
|  | u32 pcmis = 0; | 
|  | u32 pcicr = 0; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++) | 
|  | writel(dma_init_reg[i].val, | 
|  | base->virtbase + dma_init_reg[i].reg); | 
|  |  | 
|  | /* Configure all our dma channels to default settings */ | 
|  | for (i = 0; i < base->num_phy_chans; i++) { | 
|  |  | 
|  | activeo[i % 2] = activeo[i % 2] << 2; | 
|  |  | 
|  | if (base->phy_res[base->num_phy_chans - i - 1].allocated_src | 
|  | == D40_ALLOC_PHY) { | 
|  | activeo[i % 2] |= 3; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Enable interrupt # */ | 
|  | pcmis = (pcmis << 1) | 1; | 
|  |  | 
|  | /* Clear interrupt # */ | 
|  | pcicr = (pcicr << 1) | 1; | 
|  |  | 
|  | /* Set channel to physical mode */ | 
|  | prmseo[i % 2] = prmseo[i % 2] << 2; | 
|  | prmseo[i % 2] |= 1; | 
|  |  | 
|  | } | 
|  |  | 
|  | writel(prmseo[1], base->virtbase + D40_DREG_PRMSE); | 
|  | writel(prmseo[0], base->virtbase + D40_DREG_PRMSO); | 
|  | writel(activeo[1], base->virtbase + D40_DREG_ACTIVE); | 
|  | writel(activeo[0], base->virtbase + D40_DREG_ACTIVO); | 
|  |  | 
|  | /* Write which interrupt to enable */ | 
|  | writel(pcmis, base->virtbase + D40_DREG_PCMIS); | 
|  |  | 
|  | /* Write which interrupt to clear */ | 
|  | writel(pcicr, base->virtbase + D40_DREG_PCICR); | 
|  |  | 
|  | } | 
|  |  | 
|  | static int __init d40_lcla_allocate(struct d40_base *base) | 
|  | { | 
|  | unsigned long *page_list; | 
|  | int i, j; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned, | 
|  | * To full fill this hardware requirement without wasting 256 kb | 
|  | * we allocate pages until we get an aligned one. | 
|  | */ | 
|  | page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS, | 
|  | GFP_KERNEL); | 
|  |  | 
|  | if (!page_list) { | 
|  | ret = -ENOMEM; | 
|  | goto failure; | 
|  | } | 
|  |  | 
|  | /* Calculating how many pages that are required */ | 
|  | base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE; | 
|  |  | 
|  | for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) { | 
|  | page_list[i] = __get_free_pages(GFP_KERNEL, | 
|  | base->lcla_pool.pages); | 
|  | if (!page_list[i]) { | 
|  |  | 
|  | dev_err(base->dev, | 
|  | "[%s] Failed to allocate %d pages.\n", | 
|  | __func__, base->lcla_pool.pages); | 
|  |  | 
|  | for (j = 0; j < i; j++) | 
|  | free_pages(page_list[j], base->lcla_pool.pages); | 
|  | goto failure; | 
|  | } | 
|  |  | 
|  | if ((virt_to_phys((void *)page_list[i]) & | 
|  | (LCLA_ALIGNMENT - 1)) == 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | for (j = 0; j < i; j++) | 
|  | free_pages(page_list[j], base->lcla_pool.pages); | 
|  |  | 
|  | if (i < MAX_LCLA_ALLOC_ATTEMPTS) { | 
|  | base->lcla_pool.base = (void *)page_list[i]; | 
|  | } else { | 
|  | /* | 
|  | * After many attempts and no succees with finding the correct | 
|  | * alignment, try with allocating a big buffer. | 
|  | */ | 
|  | dev_warn(base->dev, | 
|  | "[%s] Failed to get %d pages @ 18 bit align.\n", | 
|  | __func__, base->lcla_pool.pages); | 
|  | base->lcla_pool.base_unaligned = kmalloc(SZ_1K * | 
|  | base->num_phy_chans + | 
|  | LCLA_ALIGNMENT, | 
|  | GFP_KERNEL); | 
|  | if (!base->lcla_pool.base_unaligned) { | 
|  | ret = -ENOMEM; | 
|  | goto failure; | 
|  | } | 
|  |  | 
|  | base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned, | 
|  | LCLA_ALIGNMENT); | 
|  | } | 
|  |  | 
|  | writel(virt_to_phys(base->lcla_pool.base), | 
|  | base->virtbase + D40_DREG_LCLA); | 
|  | failure: | 
|  | kfree(page_list); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __init d40_probe(struct platform_device *pdev) | 
|  | { | 
|  | int err; | 
|  | int ret = -ENOENT; | 
|  | struct d40_base *base; | 
|  | struct resource *res = NULL; | 
|  | int num_reserved_chans; | 
|  | u32 val; | 
|  |  | 
|  | base = d40_hw_detect_init(pdev); | 
|  |  | 
|  | if (!base) | 
|  | goto failure; | 
|  |  | 
|  | num_reserved_chans = d40_phy_res_init(base); | 
|  |  | 
|  | platform_set_drvdata(pdev, base); | 
|  |  | 
|  | spin_lock_init(&base->interrupt_lock); | 
|  | spin_lock_init(&base->execmd_lock); | 
|  |  | 
|  | /* Get IO for logical channel parameter address */ | 
|  | res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa"); | 
|  | if (!res) { | 
|  | ret = -ENOENT; | 
|  | dev_err(&pdev->dev, | 
|  | "[%s] No \"lcpa\" memory resource\n", | 
|  | __func__); | 
|  | goto failure; | 
|  | } | 
|  | base->lcpa_size = resource_size(res); | 
|  | base->phy_lcpa = res->start; | 
|  |  | 
|  | if (request_mem_region(res->start, resource_size(res), | 
|  | D40_NAME " I/O lcpa") == NULL) { | 
|  | ret = -EBUSY; | 
|  | dev_err(&pdev->dev, | 
|  | "[%s] Failed to request LCPA region 0x%x-0x%x\n", | 
|  | __func__, res->start, res->end); | 
|  | goto failure; | 
|  | } | 
|  |  | 
|  | /* We make use of ESRAM memory for this. */ | 
|  | val = readl(base->virtbase + D40_DREG_LCPA); | 
|  | if (res->start != val && val != 0) { | 
|  | dev_warn(&pdev->dev, | 
|  | "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n", | 
|  | __func__, val, res->start); | 
|  | } else | 
|  | writel(res->start, base->virtbase + D40_DREG_LCPA); | 
|  |  | 
|  | base->lcpa_base = ioremap(res->start, resource_size(res)); | 
|  | if (!base->lcpa_base) { | 
|  | ret = -ENOMEM; | 
|  | dev_err(&pdev->dev, | 
|  | "[%s] Failed to ioremap LCPA region\n", | 
|  | __func__); | 
|  | goto failure; | 
|  | } | 
|  |  | 
|  | ret = d40_lcla_allocate(base); | 
|  | if (ret) { | 
|  | dev_err(&pdev->dev, "[%s] Failed to allocate LCLA area\n", | 
|  | __func__); | 
|  | goto failure; | 
|  | } | 
|  |  | 
|  | spin_lock_init(&base->lcla_pool.lock); | 
|  |  | 
|  | base->irq = platform_get_irq(pdev, 0); | 
|  |  | 
|  | ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base); | 
|  |  | 
|  | if (ret) { | 
|  | dev_err(&pdev->dev, "[%s] No IRQ defined\n", __func__); | 
|  | goto failure; | 
|  | } | 
|  |  | 
|  | err = d40_dmaengine_init(base, num_reserved_chans); | 
|  | if (err) | 
|  | goto failure; | 
|  |  | 
|  | d40_hw_init(base); | 
|  |  | 
|  | dev_info(base->dev, "initialized\n"); | 
|  | return 0; | 
|  |  | 
|  | failure: | 
|  | if (base) { | 
|  | if (base->desc_slab) | 
|  | kmem_cache_destroy(base->desc_slab); | 
|  | if (base->virtbase) | 
|  | iounmap(base->virtbase); | 
|  | if (!base->lcla_pool.base_unaligned && base->lcla_pool.base) | 
|  | free_pages((unsigned long)base->lcla_pool.base, | 
|  | base->lcla_pool.pages); | 
|  |  | 
|  | kfree(base->lcla_pool.base_unaligned); | 
|  |  | 
|  | if (base->phy_lcpa) | 
|  | release_mem_region(base->phy_lcpa, | 
|  | base->lcpa_size); | 
|  | if (base->phy_start) | 
|  | release_mem_region(base->phy_start, | 
|  | base->phy_size); | 
|  | if (base->clk) { | 
|  | clk_disable(base->clk); | 
|  | clk_put(base->clk); | 
|  | } | 
|  |  | 
|  | kfree(base->lcla_pool.alloc_map); | 
|  | kfree(base->lookup_log_chans); | 
|  | kfree(base->lookup_phy_chans); | 
|  | kfree(base->phy_res); | 
|  | kfree(base); | 
|  | } | 
|  |  | 
|  | dev_err(&pdev->dev, "[%s] probe failed\n", __func__); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct platform_driver d40_driver = { | 
|  | .driver = { | 
|  | .owner = THIS_MODULE, | 
|  | .name  = D40_NAME, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | int __init stedma40_init(void) | 
|  | { | 
|  | return platform_driver_probe(&d40_driver, d40_probe); | 
|  | } | 
|  | arch_initcall(stedma40_init); |