|  | /* | 
|  | *  linux/arch/arm/mm/mmu.c | 
|  | * | 
|  | *  Copyright (C) 1995-2005 Russell King | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/nodemask.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/sort.h> | 
|  |  | 
|  | #include <asm/cputype.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/cachetype.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/sizes.h> | 
|  | #include <asm/smp_plat.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/highmem.h> | 
|  |  | 
|  | #include <asm/mach/arch.h> | 
|  | #include <asm/mach/map.h> | 
|  |  | 
|  | #include "mm.h" | 
|  |  | 
|  | DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); | 
|  |  | 
|  | /* | 
|  | * empty_zero_page is a special page that is used for | 
|  | * zero-initialized data and COW. | 
|  | */ | 
|  | struct page *empty_zero_page; | 
|  | EXPORT_SYMBOL(empty_zero_page); | 
|  |  | 
|  | /* | 
|  | * The pmd table for the upper-most set of pages. | 
|  | */ | 
|  | pmd_t *top_pmd; | 
|  |  | 
|  | #define CPOLICY_UNCACHED	0 | 
|  | #define CPOLICY_BUFFERED	1 | 
|  | #define CPOLICY_WRITETHROUGH	2 | 
|  | #define CPOLICY_WRITEBACK	3 | 
|  | #define CPOLICY_WRITEALLOC	4 | 
|  |  | 
|  | static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK; | 
|  | static unsigned int ecc_mask __initdata = 0; | 
|  | pgprot_t pgprot_user; | 
|  | pgprot_t pgprot_kernel; | 
|  |  | 
|  | EXPORT_SYMBOL(pgprot_user); | 
|  | EXPORT_SYMBOL(pgprot_kernel); | 
|  |  | 
|  | struct cachepolicy { | 
|  | const char	policy[16]; | 
|  | unsigned int	cr_mask; | 
|  | unsigned int	pmd; | 
|  | unsigned int	pte; | 
|  | }; | 
|  |  | 
|  | static struct cachepolicy cache_policies[] __initdata = { | 
|  | { | 
|  | .policy		= "uncached", | 
|  | .cr_mask	= CR_W|CR_C, | 
|  | .pmd		= PMD_SECT_UNCACHED, | 
|  | .pte		= L_PTE_MT_UNCACHED, | 
|  | }, { | 
|  | .policy		= "buffered", | 
|  | .cr_mask	= CR_C, | 
|  | .pmd		= PMD_SECT_BUFFERED, | 
|  | .pte		= L_PTE_MT_BUFFERABLE, | 
|  | }, { | 
|  | .policy		= "writethrough", | 
|  | .cr_mask	= 0, | 
|  | .pmd		= PMD_SECT_WT, | 
|  | .pte		= L_PTE_MT_WRITETHROUGH, | 
|  | }, { | 
|  | .policy		= "writeback", | 
|  | .cr_mask	= 0, | 
|  | .pmd		= PMD_SECT_WB, | 
|  | .pte		= L_PTE_MT_WRITEBACK, | 
|  | }, { | 
|  | .policy		= "writealloc", | 
|  | .cr_mask	= 0, | 
|  | .pmd		= PMD_SECT_WBWA, | 
|  | .pte		= L_PTE_MT_WRITEALLOC, | 
|  | } | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * These are useful for identifying cache coherency | 
|  | * problems by allowing the cache or the cache and | 
|  | * writebuffer to be turned off.  (Note: the write | 
|  | * buffer should not be on and the cache off). | 
|  | */ | 
|  | static int __init early_cachepolicy(char *p) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(cache_policies); i++) { | 
|  | int len = strlen(cache_policies[i].policy); | 
|  |  | 
|  | if (memcmp(p, cache_policies[i].policy, len) == 0) { | 
|  | cachepolicy = i; | 
|  | cr_alignment &= ~cache_policies[i].cr_mask; | 
|  | cr_no_alignment &= ~cache_policies[i].cr_mask; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (i == ARRAY_SIZE(cache_policies)) | 
|  | printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n"); | 
|  | /* | 
|  | * This restriction is partly to do with the way we boot; it is | 
|  | * unpredictable to have memory mapped using two different sets of | 
|  | * memory attributes (shared, type, and cache attribs).  We can not | 
|  | * change these attributes once the initial assembly has setup the | 
|  | * page tables. | 
|  | */ | 
|  | if (cpu_architecture() >= CPU_ARCH_ARMv6) { | 
|  | printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n"); | 
|  | cachepolicy = CPOLICY_WRITEBACK; | 
|  | } | 
|  | flush_cache_all(); | 
|  | set_cr(cr_alignment); | 
|  | return 0; | 
|  | } | 
|  | early_param("cachepolicy", early_cachepolicy); | 
|  |  | 
|  | static int __init early_nocache(char *__unused) | 
|  | { | 
|  | char *p = "buffered"; | 
|  | printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p); | 
|  | early_cachepolicy(p); | 
|  | return 0; | 
|  | } | 
|  | early_param("nocache", early_nocache); | 
|  |  | 
|  | static int __init early_nowrite(char *__unused) | 
|  | { | 
|  | char *p = "uncached"; | 
|  | printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p); | 
|  | early_cachepolicy(p); | 
|  | return 0; | 
|  | } | 
|  | early_param("nowb", early_nowrite); | 
|  |  | 
|  | static int __init early_ecc(char *p) | 
|  | { | 
|  | if (memcmp(p, "on", 2) == 0) | 
|  | ecc_mask = PMD_PROTECTION; | 
|  | else if (memcmp(p, "off", 3) == 0) | 
|  | ecc_mask = 0; | 
|  | return 0; | 
|  | } | 
|  | early_param("ecc", early_ecc); | 
|  |  | 
|  | static int __init noalign_setup(char *__unused) | 
|  | { | 
|  | cr_alignment &= ~CR_A; | 
|  | cr_no_alignment &= ~CR_A; | 
|  | set_cr(cr_alignment); | 
|  | return 1; | 
|  | } | 
|  | __setup("noalign", noalign_setup); | 
|  |  | 
|  | #ifndef CONFIG_SMP | 
|  | void adjust_cr(unsigned long mask, unsigned long set) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | mask &= ~CR_A; | 
|  |  | 
|  | set &= mask; | 
|  |  | 
|  | local_irq_save(flags); | 
|  |  | 
|  | cr_no_alignment = (cr_no_alignment & ~mask) | set; | 
|  | cr_alignment = (cr_alignment & ~mask) | set; | 
|  |  | 
|  | set_cr((get_cr() & ~mask) | set); | 
|  |  | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE | 
|  | #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE | 
|  |  | 
|  | static struct mem_type mem_types[] = { | 
|  | [MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */ | 
|  | .prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED | | 
|  | L_PTE_SHARED, | 
|  | .prot_l1	= PMD_TYPE_TABLE, | 
|  | .prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S, | 
|  | .domain		= DOMAIN_IO, | 
|  | }, | 
|  | [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */ | 
|  | .prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED, | 
|  | .prot_l1	= PMD_TYPE_TABLE, | 
|  | .prot_sect	= PROT_SECT_DEVICE, | 
|  | .domain		= DOMAIN_IO, | 
|  | }, | 
|  | [MT_DEVICE_CACHED] = {	  /* ioremap_cached */ | 
|  | .prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED, | 
|  | .prot_l1	= PMD_TYPE_TABLE, | 
|  | .prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB, | 
|  | .domain		= DOMAIN_IO, | 
|  | }, | 
|  | [MT_DEVICE_WC] = {	/* ioremap_wc */ | 
|  | .prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC, | 
|  | .prot_l1	= PMD_TYPE_TABLE, | 
|  | .prot_sect	= PROT_SECT_DEVICE, | 
|  | .domain		= DOMAIN_IO, | 
|  | }, | 
|  | [MT_UNCACHED] = { | 
|  | .prot_pte	= PROT_PTE_DEVICE, | 
|  | .prot_l1	= PMD_TYPE_TABLE, | 
|  | .prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN, | 
|  | .domain		= DOMAIN_IO, | 
|  | }, | 
|  | [MT_CACHECLEAN] = { | 
|  | .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, | 
|  | .domain    = DOMAIN_KERNEL, | 
|  | }, | 
|  | [MT_MINICLEAN] = { | 
|  | .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE, | 
|  | .domain    = DOMAIN_KERNEL, | 
|  | }, | 
|  | [MT_LOW_VECTORS] = { | 
|  | .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | | 
|  | L_PTE_EXEC, | 
|  | .prot_l1   = PMD_TYPE_TABLE, | 
|  | .domain    = DOMAIN_USER, | 
|  | }, | 
|  | [MT_HIGH_VECTORS] = { | 
|  | .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | | 
|  | L_PTE_USER | L_PTE_EXEC, | 
|  | .prot_l1   = PMD_TYPE_TABLE, | 
|  | .domain    = DOMAIN_USER, | 
|  | }, | 
|  | [MT_MEMORY] = { | 
|  | .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, | 
|  | .domain    = DOMAIN_KERNEL, | 
|  | }, | 
|  | [MT_ROM] = { | 
|  | .prot_sect = PMD_TYPE_SECT, | 
|  | .domain    = DOMAIN_KERNEL, | 
|  | }, | 
|  | [MT_MEMORY_NONCACHED] = { | 
|  | .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, | 
|  | .domain    = DOMAIN_KERNEL, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | const struct mem_type *get_mem_type(unsigned int type) | 
|  | { | 
|  | return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(get_mem_type); | 
|  |  | 
|  | /* | 
|  | * Adjust the PMD section entries according to the CPU in use. | 
|  | */ | 
|  | static void __init build_mem_type_table(void) | 
|  | { | 
|  | struct cachepolicy *cp; | 
|  | unsigned int cr = get_cr(); | 
|  | unsigned int user_pgprot, kern_pgprot, vecs_pgprot; | 
|  | int cpu_arch = cpu_architecture(); | 
|  | int i; | 
|  |  | 
|  | if (cpu_arch < CPU_ARCH_ARMv6) { | 
|  | #if defined(CONFIG_CPU_DCACHE_DISABLE) | 
|  | if (cachepolicy > CPOLICY_BUFFERED) | 
|  | cachepolicy = CPOLICY_BUFFERED; | 
|  | #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH) | 
|  | if (cachepolicy > CPOLICY_WRITETHROUGH) | 
|  | cachepolicy = CPOLICY_WRITETHROUGH; | 
|  | #endif | 
|  | } | 
|  | if (cpu_arch < CPU_ARCH_ARMv5) { | 
|  | if (cachepolicy >= CPOLICY_WRITEALLOC) | 
|  | cachepolicy = CPOLICY_WRITEBACK; | 
|  | ecc_mask = 0; | 
|  | } | 
|  | #ifdef CONFIG_SMP | 
|  | cachepolicy = CPOLICY_WRITEALLOC; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Strip out features not present on earlier architectures. | 
|  | * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those | 
|  | * without extended page tables don't have the 'Shared' bit. | 
|  | */ | 
|  | if (cpu_arch < CPU_ARCH_ARMv5) | 
|  | for (i = 0; i < ARRAY_SIZE(mem_types); i++) | 
|  | mem_types[i].prot_sect &= ~PMD_SECT_TEX(7); | 
|  | if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3()) | 
|  | for (i = 0; i < ARRAY_SIZE(mem_types); i++) | 
|  | mem_types[i].prot_sect &= ~PMD_SECT_S; | 
|  |  | 
|  | /* | 
|  | * ARMv5 and lower, bit 4 must be set for page tables (was: cache | 
|  | * "update-able on write" bit on ARM610).  However, Xscale and | 
|  | * Xscale3 require this bit to be cleared. | 
|  | */ | 
|  | if (cpu_is_xscale() || cpu_is_xsc3()) { | 
|  | for (i = 0; i < ARRAY_SIZE(mem_types); i++) { | 
|  | mem_types[i].prot_sect &= ~PMD_BIT4; | 
|  | mem_types[i].prot_l1 &= ~PMD_BIT4; | 
|  | } | 
|  | } else if (cpu_arch < CPU_ARCH_ARMv6) { | 
|  | for (i = 0; i < ARRAY_SIZE(mem_types); i++) { | 
|  | if (mem_types[i].prot_l1) | 
|  | mem_types[i].prot_l1 |= PMD_BIT4; | 
|  | if (mem_types[i].prot_sect) | 
|  | mem_types[i].prot_sect |= PMD_BIT4; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mark the device areas according to the CPU/architecture. | 
|  | */ | 
|  | if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) { | 
|  | if (!cpu_is_xsc3()) { | 
|  | /* | 
|  | * Mark device regions on ARMv6+ as execute-never | 
|  | * to prevent speculative instruction fetches. | 
|  | */ | 
|  | mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN; | 
|  | mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN; | 
|  | mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN; | 
|  | mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN; | 
|  | } | 
|  | if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { | 
|  | /* | 
|  | * For ARMv7 with TEX remapping, | 
|  | * - shared device is SXCB=1100 | 
|  | * - nonshared device is SXCB=0100 | 
|  | * - write combine device mem is SXCB=0001 | 
|  | * (Uncached Normal memory) | 
|  | */ | 
|  | mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1); | 
|  | mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1); | 
|  | mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; | 
|  | } else if (cpu_is_xsc3()) { | 
|  | /* | 
|  | * For Xscale3, | 
|  | * - shared device is TEXCB=00101 | 
|  | * - nonshared device is TEXCB=01000 | 
|  | * - write combine device mem is TEXCB=00100 | 
|  | * (Inner/Outer Uncacheable in xsc3 parlance) | 
|  | */ | 
|  | mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED; | 
|  | mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); | 
|  | mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); | 
|  | } else { | 
|  | /* | 
|  | * For ARMv6 and ARMv7 without TEX remapping, | 
|  | * - shared device is TEXCB=00001 | 
|  | * - nonshared device is TEXCB=01000 | 
|  | * - write combine device mem is TEXCB=00100 | 
|  | * (Uncached Normal in ARMv6 parlance). | 
|  | */ | 
|  | mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED; | 
|  | mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); | 
|  | mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * On others, write combining is "Uncached/Buffered" | 
|  | */ | 
|  | mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now deal with the memory-type mappings | 
|  | */ | 
|  | cp = &cache_policies[cachepolicy]; | 
|  | vecs_pgprot = kern_pgprot = user_pgprot = cp->pte; | 
|  |  | 
|  | #ifndef CONFIG_SMP | 
|  | /* | 
|  | * Only use write-through for non-SMP systems | 
|  | */ | 
|  | if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH) | 
|  | vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Enable CPU-specific coherency if supported. | 
|  | * (Only available on XSC3 at the moment.) | 
|  | */ | 
|  | if (arch_is_coherent() && cpu_is_xsc3()) | 
|  | mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S; | 
|  |  | 
|  | /* | 
|  | * ARMv6 and above have extended page tables. | 
|  | */ | 
|  | if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) { | 
|  | /* | 
|  | * Mark cache clean areas and XIP ROM read only | 
|  | * from SVC mode and no access from userspace. | 
|  | */ | 
|  | mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; | 
|  | mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; | 
|  | mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * Mark memory with the "shared" attribute for SMP systems | 
|  | */ | 
|  | user_pgprot |= L_PTE_SHARED; | 
|  | kern_pgprot |= L_PTE_SHARED; | 
|  | vecs_pgprot |= L_PTE_SHARED; | 
|  | mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S; | 
|  | mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED; | 
|  | mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S; | 
|  | mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED; | 
|  | mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S; | 
|  | mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Non-cacheable Normal - intended for memory areas that must | 
|  | * not cause dirty cache line writebacks when used | 
|  | */ | 
|  | if (cpu_arch >= CPU_ARCH_ARMv6) { | 
|  | if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { | 
|  | /* Non-cacheable Normal is XCB = 001 */ | 
|  | mem_types[MT_MEMORY_NONCACHED].prot_sect |= | 
|  | PMD_SECT_BUFFERED; | 
|  | } else { | 
|  | /* For both ARMv6 and non-TEX-remapping ARMv7 */ | 
|  | mem_types[MT_MEMORY_NONCACHED].prot_sect |= | 
|  | PMD_SECT_TEX(1); | 
|  | } | 
|  | } else { | 
|  | mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 16; i++) { | 
|  | unsigned long v = pgprot_val(protection_map[i]); | 
|  | protection_map[i] = __pgprot(v | user_pgprot); | 
|  | } | 
|  |  | 
|  | mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot; | 
|  | mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot; | 
|  |  | 
|  | pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot); | 
|  | pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | | 
|  | L_PTE_DIRTY | L_PTE_WRITE | kern_pgprot); | 
|  |  | 
|  | mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask; | 
|  | mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask; | 
|  | mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd; | 
|  | mem_types[MT_ROM].prot_sect |= cp->pmd; | 
|  |  | 
|  | switch (cp->pmd) { | 
|  | case PMD_SECT_WT: | 
|  | mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT; | 
|  | break; | 
|  | case PMD_SECT_WB: | 
|  | case PMD_SECT_WBWA: | 
|  | mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB; | 
|  | break; | 
|  | } | 
|  | printk("Memory policy: ECC %sabled, Data cache %s\n", | 
|  | ecc_mask ? "en" : "dis", cp->policy); | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(mem_types); i++) { | 
|  | struct mem_type *t = &mem_types[i]; | 
|  | if (t->prot_l1) | 
|  | t->prot_l1 |= PMD_DOMAIN(t->domain); | 
|  | if (t->prot_sect) | 
|  | t->prot_sect |= PMD_DOMAIN(t->domain); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define vectors_base()	(vectors_high() ? 0xffff0000 : 0) | 
|  |  | 
|  | static void __init *early_alloc(unsigned long sz) | 
|  | { | 
|  | void *ptr = __va(memblock_alloc(sz, sz)); | 
|  | memset(ptr, 0, sz); | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  | static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot) | 
|  | { | 
|  | if (pmd_none(*pmd)) { | 
|  | pte_t *pte = early_alloc(2 * PTRS_PER_PTE * sizeof(pte_t)); | 
|  | __pmd_populate(pmd, __pa(pte) | prot); | 
|  | } | 
|  | BUG_ON(pmd_bad(*pmd)); | 
|  | return pte_offset_kernel(pmd, addr); | 
|  | } | 
|  |  | 
|  | static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr, | 
|  | unsigned long end, unsigned long pfn, | 
|  | const struct mem_type *type) | 
|  | { | 
|  | pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1); | 
|  | do { | 
|  | set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0); | 
|  | pfn++; | 
|  | } while (pte++, addr += PAGE_SIZE, addr != end); | 
|  | } | 
|  |  | 
|  | static void __init alloc_init_section(pgd_t *pgd, unsigned long addr, | 
|  | unsigned long end, unsigned long phys, | 
|  | const struct mem_type *type) | 
|  | { | 
|  | pmd_t *pmd = pmd_offset(pgd, addr); | 
|  |  | 
|  | /* | 
|  | * Try a section mapping - end, addr and phys must all be aligned | 
|  | * to a section boundary.  Note that PMDs refer to the individual | 
|  | * L1 entries, whereas PGDs refer to a group of L1 entries making | 
|  | * up one logical pointer to an L2 table. | 
|  | */ | 
|  | if (((addr | end | phys) & ~SECTION_MASK) == 0) { | 
|  | pmd_t *p = pmd; | 
|  |  | 
|  | if (addr & SECTION_SIZE) | 
|  | pmd++; | 
|  |  | 
|  | do { | 
|  | *pmd = __pmd(phys | type->prot_sect); | 
|  | phys += SECTION_SIZE; | 
|  | } while (pmd++, addr += SECTION_SIZE, addr != end); | 
|  |  | 
|  | flush_pmd_entry(p); | 
|  | } else { | 
|  | /* | 
|  | * No need to loop; pte's aren't interested in the | 
|  | * individual L1 entries. | 
|  | */ | 
|  | alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __init create_36bit_mapping(struct map_desc *md, | 
|  | const struct mem_type *type) | 
|  | { | 
|  | unsigned long phys, addr, length, end; | 
|  | pgd_t *pgd; | 
|  |  | 
|  | addr = md->virtual; | 
|  | phys = (unsigned long)__pfn_to_phys(md->pfn); | 
|  | length = PAGE_ALIGN(md->length); | 
|  |  | 
|  | if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) { | 
|  | printk(KERN_ERR "MM: CPU does not support supersection " | 
|  | "mapping for 0x%08llx at 0x%08lx\n", | 
|  | __pfn_to_phys((u64)md->pfn), addr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* N.B.	ARMv6 supersections are only defined to work with domain 0. | 
|  | *	Since domain assignments can in fact be arbitrary, the | 
|  | *	'domain == 0' check below is required to insure that ARMv6 | 
|  | *	supersections are only allocated for domain 0 regardless | 
|  | *	of the actual domain assignments in use. | 
|  | */ | 
|  | if (type->domain) { | 
|  | printk(KERN_ERR "MM: invalid domain in supersection " | 
|  | "mapping for 0x%08llx at 0x%08lx\n", | 
|  | __pfn_to_phys((u64)md->pfn), addr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) { | 
|  | printk(KERN_ERR "MM: cannot create mapping for " | 
|  | "0x%08llx at 0x%08lx invalid alignment\n", | 
|  | __pfn_to_phys((u64)md->pfn), addr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Shift bits [35:32] of address into bits [23:20] of PMD | 
|  | * (See ARMv6 spec). | 
|  | */ | 
|  | phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20); | 
|  |  | 
|  | pgd = pgd_offset_k(addr); | 
|  | end = addr + length; | 
|  | do { | 
|  | pmd_t *pmd = pmd_offset(pgd, addr); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 16; i++) | 
|  | *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER); | 
|  |  | 
|  | addr += SUPERSECTION_SIZE; | 
|  | phys += SUPERSECTION_SIZE; | 
|  | pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT; | 
|  | } while (addr != end); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create the page directory entries and any necessary | 
|  | * page tables for the mapping specified by `md'.  We | 
|  | * are able to cope here with varying sizes and address | 
|  | * offsets, and we take full advantage of sections and | 
|  | * supersections. | 
|  | */ | 
|  | static void __init create_mapping(struct map_desc *md) | 
|  | { | 
|  | unsigned long phys, addr, length, end; | 
|  | const struct mem_type *type; | 
|  | pgd_t *pgd; | 
|  |  | 
|  | if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) { | 
|  | printk(KERN_WARNING "BUG: not creating mapping for " | 
|  | "0x%08llx at 0x%08lx in user region\n", | 
|  | __pfn_to_phys((u64)md->pfn), md->virtual); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if ((md->type == MT_DEVICE || md->type == MT_ROM) && | 
|  | md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) { | 
|  | printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx " | 
|  | "overlaps vmalloc space\n", | 
|  | __pfn_to_phys((u64)md->pfn), md->virtual); | 
|  | } | 
|  |  | 
|  | type = &mem_types[md->type]; | 
|  |  | 
|  | /* | 
|  | * Catch 36-bit addresses | 
|  | */ | 
|  | if (md->pfn >= 0x100000) { | 
|  | create_36bit_mapping(md, type); | 
|  | return; | 
|  | } | 
|  |  | 
|  | addr = md->virtual & PAGE_MASK; | 
|  | phys = (unsigned long)__pfn_to_phys(md->pfn); | 
|  | length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); | 
|  |  | 
|  | if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) { | 
|  | printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not " | 
|  | "be mapped using pages, ignoring.\n", | 
|  | __pfn_to_phys(md->pfn), addr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | pgd = pgd_offset_k(addr); | 
|  | end = addr + length; | 
|  | do { | 
|  | unsigned long next = pgd_addr_end(addr, end); | 
|  |  | 
|  | alloc_init_section(pgd, addr, next, phys, type); | 
|  |  | 
|  | phys += next - addr; | 
|  | addr = next; | 
|  | } while (pgd++, addr != end); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create the architecture specific mappings | 
|  | */ | 
|  | void __init iotable_init(struct map_desc *io_desc, int nr) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < nr; i++) | 
|  | create_mapping(io_desc + i); | 
|  | } | 
|  |  | 
|  | static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M); | 
|  |  | 
|  | /* | 
|  | * vmalloc=size forces the vmalloc area to be exactly 'size' | 
|  | * bytes. This can be used to increase (or decrease) the vmalloc | 
|  | * area - the default is 128m. | 
|  | */ | 
|  | static int __init early_vmalloc(char *arg) | 
|  | { | 
|  | unsigned long vmalloc_reserve = memparse(arg, NULL); | 
|  |  | 
|  | if (vmalloc_reserve < SZ_16M) { | 
|  | vmalloc_reserve = SZ_16M; | 
|  | printk(KERN_WARNING | 
|  | "vmalloc area too small, limiting to %luMB\n", | 
|  | vmalloc_reserve >> 20); | 
|  | } | 
|  |  | 
|  | if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) { | 
|  | vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M); | 
|  | printk(KERN_WARNING | 
|  | "vmalloc area is too big, limiting to %luMB\n", | 
|  | vmalloc_reserve >> 20); | 
|  | } | 
|  |  | 
|  | vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve); | 
|  | return 0; | 
|  | } | 
|  | early_param("vmalloc", early_vmalloc); | 
|  |  | 
|  | phys_addr_t lowmem_end_addr; | 
|  |  | 
|  | static void __init sanity_check_meminfo(void) | 
|  | { | 
|  | int i, j, highmem = 0; | 
|  |  | 
|  | lowmem_end_addr = __pa(vmalloc_min - 1) + 1; | 
|  |  | 
|  | for (i = 0, j = 0; i < meminfo.nr_banks; i++) { | 
|  | struct membank *bank = &meminfo.bank[j]; | 
|  | *bank = meminfo.bank[i]; | 
|  |  | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | if (__va(bank->start) > vmalloc_min || | 
|  | __va(bank->start) < (void *)PAGE_OFFSET) | 
|  | highmem = 1; | 
|  |  | 
|  | bank->highmem = highmem; | 
|  |  | 
|  | /* | 
|  | * Split those memory banks which are partially overlapping | 
|  | * the vmalloc area greatly simplifying things later. | 
|  | */ | 
|  | if (__va(bank->start) < vmalloc_min && | 
|  | bank->size > vmalloc_min - __va(bank->start)) { | 
|  | if (meminfo.nr_banks >= NR_BANKS) { | 
|  | printk(KERN_CRIT "NR_BANKS too low, " | 
|  | "ignoring high memory\n"); | 
|  | } else { | 
|  | memmove(bank + 1, bank, | 
|  | (meminfo.nr_banks - i) * sizeof(*bank)); | 
|  | meminfo.nr_banks++; | 
|  | i++; | 
|  | bank[1].size -= vmalloc_min - __va(bank->start); | 
|  | bank[1].start = __pa(vmalloc_min - 1) + 1; | 
|  | bank[1].highmem = highmem = 1; | 
|  | j++; | 
|  | } | 
|  | bank->size = vmalloc_min - __va(bank->start); | 
|  | } | 
|  | #else | 
|  | bank->highmem = highmem; | 
|  |  | 
|  | /* | 
|  | * Check whether this memory bank would entirely overlap | 
|  | * the vmalloc area. | 
|  | */ | 
|  | if (__va(bank->start) >= vmalloc_min || | 
|  | __va(bank->start) < (void *)PAGE_OFFSET) { | 
|  | printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx " | 
|  | "(vmalloc region overlap).\n", | 
|  | bank->start, bank->start + bank->size - 1); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether this memory bank would partially overlap | 
|  | * the vmalloc area. | 
|  | */ | 
|  | if (__va(bank->start + bank->size) > vmalloc_min || | 
|  | __va(bank->start + bank->size) < __va(bank->start)) { | 
|  | unsigned long newsize = vmalloc_min - __va(bank->start); | 
|  | printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx " | 
|  | "to -%.8lx (vmalloc region overlap).\n", | 
|  | bank->start, bank->start + bank->size - 1, | 
|  | bank->start + newsize - 1); | 
|  | bank->size = newsize; | 
|  | } | 
|  | #endif | 
|  | j++; | 
|  | } | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | if (highmem) { | 
|  | const char *reason = NULL; | 
|  |  | 
|  | if (cache_is_vipt_aliasing()) { | 
|  | /* | 
|  | * Interactions between kmap and other mappings | 
|  | * make highmem support with aliasing VIPT caches | 
|  | * rather difficult. | 
|  | */ | 
|  | reason = "with VIPT aliasing cache"; | 
|  | #ifdef CONFIG_SMP | 
|  | } else if (tlb_ops_need_broadcast()) { | 
|  | /* | 
|  | * kmap_high needs to occasionally flush TLB entries, | 
|  | * however, if the TLB entries need to be broadcast | 
|  | * we may deadlock: | 
|  | *  kmap_high(irqs off)->flush_all_zero_pkmaps-> | 
|  | *  flush_tlb_kernel_range->smp_call_function_many | 
|  | *   (must not be called with irqs off) | 
|  | */ | 
|  | reason = "without hardware TLB ops broadcasting"; | 
|  | #endif | 
|  | } | 
|  | if (reason) { | 
|  | printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n", | 
|  | reason); | 
|  | while (j > 0 && meminfo.bank[j - 1].highmem) | 
|  | j--; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | meminfo.nr_banks = j; | 
|  | } | 
|  |  | 
|  | static inline void prepare_page_table(void) | 
|  | { | 
|  | unsigned long addr; | 
|  |  | 
|  | /* | 
|  | * Clear out all the mappings below the kernel image. | 
|  | */ | 
|  | for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE) | 
|  | pmd_clear(pmd_off_k(addr)); | 
|  |  | 
|  | #ifdef CONFIG_XIP_KERNEL | 
|  | /* The XIP kernel is mapped in the module area -- skip over it */ | 
|  | addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK; | 
|  | #endif | 
|  | for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE) | 
|  | pmd_clear(pmd_off_k(addr)); | 
|  |  | 
|  | /* | 
|  | * Clear out all the kernel space mappings, except for the first | 
|  | * memory bank, up to the end of the vmalloc region. | 
|  | */ | 
|  | for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0])); | 
|  | addr < VMALLOC_END; addr += PGDIR_SIZE) | 
|  | pmd_clear(pmd_off_k(addr)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reserve the special regions of memory | 
|  | */ | 
|  | void __init arm_mm_memblock_reserve(void) | 
|  | { | 
|  | /* | 
|  | * Reserve the page tables.  These are already in use, | 
|  | * and can only be in node 0. | 
|  | */ | 
|  | memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t)); | 
|  |  | 
|  | #ifdef CONFIG_SA1111 | 
|  | /* | 
|  | * Because of the SA1111 DMA bug, we want to preserve our | 
|  | * precious DMA-able memory... | 
|  | */ | 
|  | memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set up device the mappings.  Since we clear out the page tables for all | 
|  | * mappings above VMALLOC_END, we will remove any debug device mappings. | 
|  | * This means you have to be careful how you debug this function, or any | 
|  | * called function.  This means you can't use any function or debugging | 
|  | * method which may touch any device, otherwise the kernel _will_ crash. | 
|  | */ | 
|  | static void __init devicemaps_init(struct machine_desc *mdesc) | 
|  | { | 
|  | struct map_desc map; | 
|  | unsigned long addr; | 
|  | void *vectors; | 
|  |  | 
|  | /* | 
|  | * Allocate the vector page early. | 
|  | */ | 
|  | vectors = early_alloc(PAGE_SIZE); | 
|  |  | 
|  | for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE) | 
|  | pmd_clear(pmd_off_k(addr)); | 
|  |  | 
|  | /* | 
|  | * Map the kernel if it is XIP. | 
|  | * It is always first in the modulearea. | 
|  | */ | 
|  | #ifdef CONFIG_XIP_KERNEL | 
|  | map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK); | 
|  | map.virtual = MODULES_VADDR; | 
|  | map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK; | 
|  | map.type = MT_ROM; | 
|  | create_mapping(&map); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Map the cache flushing regions. | 
|  | */ | 
|  | #ifdef FLUSH_BASE | 
|  | map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS); | 
|  | map.virtual = FLUSH_BASE; | 
|  | map.length = SZ_1M; | 
|  | map.type = MT_CACHECLEAN; | 
|  | create_mapping(&map); | 
|  | #endif | 
|  | #ifdef FLUSH_BASE_MINICACHE | 
|  | map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M); | 
|  | map.virtual = FLUSH_BASE_MINICACHE; | 
|  | map.length = SZ_1M; | 
|  | map.type = MT_MINICLEAN; | 
|  | create_mapping(&map); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Create a mapping for the machine vectors at the high-vectors | 
|  | * location (0xffff0000).  If we aren't using high-vectors, also | 
|  | * create a mapping at the low-vectors virtual address. | 
|  | */ | 
|  | map.pfn = __phys_to_pfn(virt_to_phys(vectors)); | 
|  | map.virtual = 0xffff0000; | 
|  | map.length = PAGE_SIZE; | 
|  | map.type = MT_HIGH_VECTORS; | 
|  | create_mapping(&map); | 
|  |  | 
|  | if (!vectors_high()) { | 
|  | map.virtual = 0; | 
|  | map.type = MT_LOW_VECTORS; | 
|  | create_mapping(&map); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ask the machine support to map in the statically mapped devices. | 
|  | */ | 
|  | if (mdesc->map_io) | 
|  | mdesc->map_io(); | 
|  |  | 
|  | /* | 
|  | * Finally flush the caches and tlb to ensure that we're in a | 
|  | * consistent state wrt the writebuffer.  This also ensures that | 
|  | * any write-allocated cache lines in the vector page are written | 
|  | * back.  After this point, we can start to touch devices again. | 
|  | */ | 
|  | local_flush_tlb_all(); | 
|  | flush_cache_all(); | 
|  | } | 
|  |  | 
|  | static void __init kmap_init(void) | 
|  | { | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE), | 
|  | PKMAP_BASE, _PAGE_KERNEL_TABLE); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void map_memory_bank(struct membank *bank) | 
|  | { | 
|  | struct map_desc map; | 
|  |  | 
|  | map.pfn = bank_pfn_start(bank); | 
|  | map.virtual = __phys_to_virt(bank_phys_start(bank)); | 
|  | map.length = bank_phys_size(bank); | 
|  | map.type = MT_MEMORY; | 
|  |  | 
|  | create_mapping(&map); | 
|  | } | 
|  |  | 
|  | static void __init map_lowmem(void) | 
|  | { | 
|  | struct meminfo *mi = &meminfo; | 
|  | int i; | 
|  |  | 
|  | /* Map all the lowmem memory banks. */ | 
|  | for (i = 0; i < mi->nr_banks; i++) { | 
|  | struct membank *bank = &mi->bank[i]; | 
|  |  | 
|  | if (!bank->highmem) | 
|  | map_memory_bank(bank); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __init meminfo_cmp(const void *_a, const void *_b) | 
|  | { | 
|  | const struct membank *a = _a, *b = _b; | 
|  | long cmp = bank_pfn_start(a) - bank_pfn_start(b); | 
|  | return cmp < 0 ? -1 : cmp > 0 ? 1 : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * paging_init() sets up the page tables, initialises the zone memory | 
|  | * maps, and sets up the zero page, bad page and bad page tables. | 
|  | */ | 
|  | void __init paging_init(struct machine_desc *mdesc) | 
|  | { | 
|  | void *zero_page; | 
|  |  | 
|  | sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL); | 
|  |  | 
|  | build_mem_type_table(); | 
|  | sanity_check_meminfo(); | 
|  | prepare_page_table(); | 
|  | map_lowmem(); | 
|  | devicemaps_init(mdesc); | 
|  | kmap_init(); | 
|  |  | 
|  | top_pmd = pmd_off_k(0xffff0000); | 
|  |  | 
|  | /* allocate the zero page. */ | 
|  | zero_page = early_alloc(PAGE_SIZE); | 
|  |  | 
|  | bootmem_init(); | 
|  |  | 
|  | empty_zero_page = virt_to_page(zero_page); | 
|  | __flush_dcache_page(NULL, empty_zero_page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In order to soft-boot, we need to insert a 1:1 mapping in place of | 
|  | * the user-mode pages.  This will then ensure that we have predictable | 
|  | * results when turning the mmu off | 
|  | */ | 
|  | void setup_mm_for_reboot(char mode) | 
|  | { | 
|  | unsigned long base_pmdval; | 
|  | pgd_t *pgd; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * We need to access to user-mode page tables here. For kernel threads | 
|  | * we don't have any user-mode mappings so we use the context that we | 
|  | * "borrowed". | 
|  | */ | 
|  | pgd = current->active_mm->pgd; | 
|  |  | 
|  | base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT; | 
|  | if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale()) | 
|  | base_pmdval |= PMD_BIT4; | 
|  |  | 
|  | for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) { | 
|  | unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval; | 
|  | pmd_t *pmd; | 
|  |  | 
|  | pmd = pmd_off(pgd, i << PGDIR_SHIFT); | 
|  | pmd[0] = __pmd(pmdval); | 
|  | pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1))); | 
|  | flush_pmd_entry(pmd); | 
|  | } | 
|  |  | 
|  | local_flush_tlb_all(); | 
|  | } |