|  | /* | 
|  | * fp_util.S | 
|  | * | 
|  | * Copyright Roman Zippel, 1997.  All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, and the entire permission notice in its entirety, | 
|  | *    including the disclaimer of warranties. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * 3. The name of the author may not be used to endorse or promote | 
|  | *    products derived from this software without specific prior | 
|  | *    written permission. | 
|  | * | 
|  | * ALTERNATIVELY, this product may be distributed under the terms of | 
|  | * the GNU General Public License, in which case the provisions of the GPL are | 
|  | * required INSTEAD OF the above restrictions.  (This clause is | 
|  | * necessary due to a potential bad interaction between the GPL and | 
|  | * the restrictions contained in a BSD-style copyright.) | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED | 
|  | * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES | 
|  | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | 
|  | * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, | 
|  | * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | 
|  | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | 
|  | * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
|  | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
|  | * OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | */ | 
|  |  | 
|  | #include "fp_emu.h" | 
|  |  | 
|  | /* | 
|  | * Here are lots of conversion and normalization functions mainly | 
|  | * used by fp_scan.S | 
|  | * Note that these functions are optimized for "normal" numbers, | 
|  | * these are handled first and exit as fast as possible, this is | 
|  | * especially important for fp_normalize_ext/fp_conv_ext2ext, as | 
|  | * it's called very often. | 
|  | * The register usage is optimized for fp_scan.S and which register | 
|  | * is currently at that time unused, be careful if you want change | 
|  | * something here. %d0 and %d1 is always usable, sometimes %d2 (or | 
|  | * only the lower half) most function have to return the %a0 | 
|  | * unmodified, so that the caller can immediately reuse it. | 
|  | */ | 
|  |  | 
|  | .globl	fp_ill, fp_end | 
|  |  | 
|  | | exits from fp_scan: | 
|  | | illegal instruction | 
|  | fp_ill: | 
|  | printf	,"fp_illegal\n" | 
|  | rts | 
|  | | completed instruction | 
|  | fp_end: | 
|  | tst.l	(TASK_MM-8,%a2) | 
|  | jmi	1f | 
|  | tst.l	(TASK_MM-4,%a2) | 
|  | jmi	1f | 
|  | tst.l	(TASK_MM,%a2) | 
|  | jpl	2f | 
|  | 1:	printf	,"oops:%p,%p,%p\n",3,%a2@(TASK_MM-8),%a2@(TASK_MM-4),%a2@(TASK_MM) | 
|  | 2:	clr.l	%d0 | 
|  | rts | 
|  |  | 
|  | .globl	fp_conv_long2ext, fp_conv_single2ext | 
|  | .globl	fp_conv_double2ext, fp_conv_ext2ext | 
|  | .globl	fp_normalize_ext, fp_normalize_double | 
|  | .globl	fp_normalize_single, fp_normalize_single_fast | 
|  | .globl	fp_conv_ext2double, fp_conv_ext2single | 
|  | .globl	fp_conv_ext2long, fp_conv_ext2short | 
|  | .globl	fp_conv_ext2byte | 
|  | .globl	fp_finalrounding_single, fp_finalrounding_single_fast | 
|  | .globl	fp_finalrounding_double | 
|  | .globl	fp_finalrounding, fp_finaltest, fp_final | 
|  |  | 
|  | /* | 
|  | * First several conversion functions from a source operand | 
|  | * into the extended format. Note, that only fp_conv_ext2ext | 
|  | * normalizes the number and is always called after the other | 
|  | * conversion functions, which only move the information into | 
|  | * fp_ext structure. | 
|  | */ | 
|  |  | 
|  | | fp_conv_long2ext: | 
|  | | | 
|  | | args:	%d0 = source (32-bit long) | 
|  | |	%a0 = destination (ptr to struct fp_ext) | 
|  |  | 
|  | fp_conv_long2ext: | 
|  | printf	PCONV,"l2e: %p -> %p(",2,%d0,%a0 | 
|  | clr.l	%d1			| sign defaults to zero | 
|  | tst.l	%d0 | 
|  | jeq	fp_l2e_zero		| is source zero? | 
|  | jpl	1f			| positive? | 
|  | moveq	#1,%d1 | 
|  | neg.l	%d0 | 
|  | 1:	swap	%d1 | 
|  | move.w	#0x3fff+31,%d1 | 
|  | move.l	%d1,(%a0)+		| set sign / exp | 
|  | move.l	%d0,(%a0)+		| set mantissa | 
|  | clr.l	(%a0) | 
|  | subq.l	#8,%a0			| restore %a0 | 
|  | printx	PCONV,%a0@ | 
|  | printf	PCONV,")\n" | 
|  | rts | 
|  | | source is zero | 
|  | fp_l2e_zero: | 
|  | clr.l	(%a0)+ | 
|  | clr.l	(%a0)+ | 
|  | clr.l	(%a0) | 
|  | subq.l	#8,%a0 | 
|  | printx	PCONV,%a0@ | 
|  | printf	PCONV,")\n" | 
|  | rts | 
|  |  | 
|  | | fp_conv_single2ext | 
|  | | args:	%d0 = source (single-precision fp value) | 
|  | |	%a0 = dest (struct fp_ext *) | 
|  |  | 
|  | fp_conv_single2ext: | 
|  | printf	PCONV,"s2e: %p -> %p(",2,%d0,%a0 | 
|  | move.l	%d0,%d1 | 
|  | lsl.l	#8,%d0			| shift mantissa | 
|  | lsr.l	#8,%d1			| exponent / sign | 
|  | lsr.l	#7,%d1 | 
|  | lsr.w	#8,%d1 | 
|  | jeq	fp_s2e_small		| zero / denormal? | 
|  | cmp.w	#0xff,%d1		| NaN / Inf? | 
|  | jeq	fp_s2e_large | 
|  | bset	#31,%d0			| set explizit bit | 
|  | add.w	#0x3fff-0x7f,%d1	| re-bias the exponent. | 
|  | 9:	move.l	%d1,(%a0)+		| fp_ext.sign, fp_ext.exp | 
|  | move.l	%d0,(%a0)+		| high lword of fp_ext.mant | 
|  | clr.l	(%a0)			| low lword = 0 | 
|  | subq.l	#8,%a0 | 
|  | printx	PCONV,%a0@ | 
|  | printf	PCONV,")\n" | 
|  | rts | 
|  | | zeros and denormalized | 
|  | fp_s2e_small: | 
|  | | exponent is zero, so explizit bit is already zero too | 
|  | tst.l	%d0 | 
|  | jeq	9b | 
|  | move.w	#0x4000-0x7f,%d1 | 
|  | jra	9b | 
|  | | infinities and NAN | 
|  | fp_s2e_large: | 
|  | bclr	#31,%d0			| clear explizit bit | 
|  | move.w	#0x7fff,%d1 | 
|  | jra	9b | 
|  |  | 
|  | fp_conv_double2ext: | 
|  | #ifdef FPU_EMU_DEBUG | 
|  | getuser.l %a1@(0),%d0,fp_err_ua2,%a1 | 
|  | getuser.l %a1@(4),%d1,fp_err_ua2,%a1 | 
|  | printf	PCONV,"d2e: %p%p -> %p(",3,%d0,%d1,%a0 | 
|  | #endif | 
|  | getuser.l (%a1)+,%d0,fp_err_ua2,%a1 | 
|  | move.l	%d0,%d1 | 
|  | lsl.l	#8,%d0			| shift high mantissa | 
|  | lsl.l	#3,%d0 | 
|  | lsr.l	#8,%d1			| exponent / sign | 
|  | lsr.l	#7,%d1 | 
|  | lsr.w	#5,%d1 | 
|  | jeq	fp_d2e_small		| zero / denormal? | 
|  | cmp.w	#0x7ff,%d1		| NaN / Inf? | 
|  | jeq	fp_d2e_large | 
|  | bset	#31,%d0			| set explizit bit | 
|  | add.w	#0x3fff-0x3ff,%d1	| re-bias the exponent. | 
|  | 9:	move.l	%d1,(%a0)+		| fp_ext.sign, fp_ext.exp | 
|  | move.l	%d0,(%a0)+ | 
|  | getuser.l (%a1)+,%d0,fp_err_ua2,%a1 | 
|  | move.l	%d0,%d1 | 
|  | lsl.l	#8,%d0 | 
|  | lsl.l	#3,%d0 | 
|  | move.l	%d0,(%a0) | 
|  | moveq	#21,%d0 | 
|  | lsr.l	%d0,%d1 | 
|  | or.l	%d1,-(%a0) | 
|  | subq.l	#4,%a0 | 
|  | printx	PCONV,%a0@ | 
|  | printf	PCONV,")\n" | 
|  | rts | 
|  | | zeros and denormalized | 
|  | fp_d2e_small: | 
|  | | exponent is zero, so explizit bit is already zero too | 
|  | tst.l	%d0 | 
|  | jeq	9b | 
|  | move.w	#0x4000-0x3ff,%d1 | 
|  | jra	9b | 
|  | | infinities and NAN | 
|  | fp_d2e_large: | 
|  | bclr	#31,%d0			| clear explizit bit | 
|  | move.w	#0x7fff,%d1 | 
|  | jra	9b | 
|  |  | 
|  | | fp_conv_ext2ext: | 
|  | | originally used to get longdouble from userspace, now it's | 
|  | | called before arithmetic operations to make sure the number | 
|  | | is normalized [maybe rename it?]. | 
|  | | args:	%a0 = dest (struct fp_ext *) | 
|  | | returns 0 in %d0 for a NaN, otherwise 1 | 
|  |  | 
|  | fp_conv_ext2ext: | 
|  | printf	PCONV,"e2e: %p(",1,%a0 | 
|  | printx	PCONV,%a0@ | 
|  | printf	PCONV,"), " | 
|  | move.l	(%a0)+,%d0 | 
|  | cmp.w	#0x7fff,%d0		| Inf / NaN? | 
|  | jeq	fp_e2e_large | 
|  | move.l	(%a0),%d0 | 
|  | jpl	fp_e2e_small		| zero / denorm? | 
|  | | The high bit is set, so normalization is irrelevant. | 
|  | fp_e2e_checkround: | 
|  | subq.l	#4,%a0 | 
|  | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | 
|  | move.b	(%a0),%d0 | 
|  | jne	fp_e2e_round | 
|  | #endif | 
|  | printf	PCONV,"%p(",1,%a0 | 
|  | printx	PCONV,%a0@ | 
|  | printf	PCONV,")\n" | 
|  | moveq	#1,%d0 | 
|  | rts | 
|  | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | 
|  | fp_e2e_round: | 
|  | fp_set_sr FPSR_EXC_INEX2 | 
|  | clr.b	(%a0) | 
|  | move.w	(FPD_RND,FPDATA),%d2 | 
|  | jne	fp_e2e_roundother	| %d2 == 0, round to nearest | 
|  | tst.b	%d0			| test guard bit | 
|  | jpl	9f			| zero is closer | 
|  | btst	#0,(11,%a0)		| test lsb bit | 
|  | jne	fp_e2e_doroundup	| round to infinity | 
|  | lsl.b	#1,%d0			| check low bits | 
|  | jeq	9f			| round to zero | 
|  | fp_e2e_doroundup: | 
|  | addq.l	#1,(8,%a0) | 
|  | jcc	9f | 
|  | addq.l	#1,(4,%a0) | 
|  | jcc	9f | 
|  | move.w	#0x8000,(4,%a0) | 
|  | addq.w	#1,(2,%a0) | 
|  | 9:	printf	PNORM,"%p(",1,%a0 | 
|  | printx	PNORM,%a0@ | 
|  | printf	PNORM,")\n" | 
|  | rts | 
|  | fp_e2e_roundother: | 
|  | subq.w	#2,%d2 | 
|  | jcs	9b			| %d2 < 2, round to zero | 
|  | jhi	1f			| %d2 > 2, round to +infinity | 
|  | tst.b	(1,%a0)			| to -inf | 
|  | jne	fp_e2e_doroundup	| negative, round to infinity | 
|  | jra	9b			| positive, round to zero | 
|  | 1:	tst.b	(1,%a0)			| to +inf | 
|  | jeq	fp_e2e_doroundup	| positive, round to infinity | 
|  | jra	9b			| negative, round to zero | 
|  | #endif | 
|  | | zeros and subnormals: | 
|  | | try to normalize these anyway. | 
|  | fp_e2e_small: | 
|  | jne	fp_e2e_small1		| high lword zero? | 
|  | move.l	(4,%a0),%d0 | 
|  | jne	fp_e2e_small2 | 
|  | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | 
|  | clr.l	%d0 | 
|  | move.b	(-4,%a0),%d0 | 
|  | jne	fp_e2e_small3 | 
|  | #endif | 
|  | | Genuine zero. | 
|  | clr.w	-(%a0) | 
|  | subq.l	#2,%a0 | 
|  | printf	PNORM,"%p(",1,%a0 | 
|  | printx	PNORM,%a0@ | 
|  | printf	PNORM,")\n" | 
|  | moveq	#1,%d0 | 
|  | rts | 
|  | | definitely subnormal, need to shift all 64 bits | 
|  | fp_e2e_small1: | 
|  | bfffo	%d0{#0,#32},%d1 | 
|  | move.w	-(%a0),%d2 | 
|  | sub.w	%d1,%d2 | 
|  | jcc	1f | 
|  | | Pathologically small, denormalize. | 
|  | add.w	%d2,%d1 | 
|  | clr.w	%d2 | 
|  | 1:	move.w	%d2,(%a0)+ | 
|  | move.w	%d1,%d2 | 
|  | jeq	fp_e2e_checkround | 
|  | | fancy 64-bit double-shift begins here | 
|  | lsl.l	%d2,%d0 | 
|  | move.l	%d0,(%a0)+ | 
|  | move.l	(%a0),%d0 | 
|  | move.l	%d0,%d1 | 
|  | lsl.l	%d2,%d0 | 
|  | move.l	%d0,(%a0) | 
|  | neg.w	%d2 | 
|  | and.w	#0x1f,%d2 | 
|  | lsr.l	%d2,%d1 | 
|  | or.l	%d1,-(%a0) | 
|  | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | 
|  | fp_e2e_extra1: | 
|  | clr.l	%d0 | 
|  | move.b	(-4,%a0),%d0 | 
|  | neg.w	%d2 | 
|  | add.w	#24,%d2 | 
|  | jcc	1f | 
|  | clr.b	(-4,%a0) | 
|  | lsl.l	%d2,%d0 | 
|  | or.l	%d0,(4,%a0) | 
|  | jra	fp_e2e_checkround | 
|  | 1:	addq.w	#8,%d2 | 
|  | lsl.l	%d2,%d0 | 
|  | move.b	%d0,(-4,%a0) | 
|  | lsr.l	#8,%d0 | 
|  | or.l	%d0,(4,%a0) | 
|  | #endif | 
|  | jra	fp_e2e_checkround | 
|  | | pathologically small subnormal | 
|  | fp_e2e_small2: | 
|  | bfffo	%d0{#0,#32},%d1 | 
|  | add.w	#32,%d1 | 
|  | move.w	-(%a0),%d2 | 
|  | sub.w	%d1,%d2 | 
|  | jcc	1f | 
|  | | Beyond pathologically small, denormalize. | 
|  | add.w	%d2,%d1 | 
|  | clr.w	%d2 | 
|  | 1:	move.w	%d2,(%a0)+ | 
|  | ext.l	%d1 | 
|  | jeq	fp_e2e_checkround | 
|  | clr.l	(4,%a0) | 
|  | sub.w	#32,%d2 | 
|  | jcs	1f | 
|  | lsl.l	%d1,%d0			| lower lword needs only to be shifted | 
|  | move.l	%d0,(%a0)		| into the higher lword | 
|  | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | 
|  | clr.l	%d0 | 
|  | move.b	(-4,%a0),%d0 | 
|  | clr.b	(-4,%a0) | 
|  | neg.w	%d1 | 
|  | add.w	#32,%d1 | 
|  | bfins	%d0,(%a0){%d1,#8} | 
|  | #endif | 
|  | jra	fp_e2e_checkround | 
|  | 1:	neg.w	%d1			| lower lword is splitted between | 
|  | bfins	%d0,(%a0){%d1,#32}	| higher and lower lword | 
|  | #ifndef CONFIG_M68KFPU_EMU_EXTRAPREC | 
|  | jra	fp_e2e_checkround | 
|  | #else | 
|  | move.w	%d1,%d2 | 
|  | jra	fp_e2e_extra1 | 
|  | | These are extremely small numbers, that will mostly end up as zero | 
|  | | anyway, so this is only important for correct rounding. | 
|  | fp_e2e_small3: | 
|  | bfffo	%d0{#24,#8},%d1 | 
|  | add.w	#40,%d1 | 
|  | move.w	-(%a0),%d2 | 
|  | sub.w	%d1,%d2 | 
|  | jcc	1f | 
|  | | Pathologically small, denormalize. | 
|  | add.w	%d2,%d1 | 
|  | clr.w	%d2 | 
|  | 1:	move.w	%d2,(%a0)+ | 
|  | ext.l	%d1 | 
|  | jeq	fp_e2e_checkround | 
|  | cmp.w	#8,%d1 | 
|  | jcs	2f | 
|  | 1:	clr.b	(-4,%a0) | 
|  | sub.w	#64,%d1 | 
|  | jcs	1f | 
|  | add.w	#24,%d1 | 
|  | lsl.l	%d1,%d0 | 
|  | move.l	%d0,(%a0) | 
|  | jra	fp_e2e_checkround | 
|  | 1:	neg.w	%d1 | 
|  | bfins	%d0,(%a0){%d1,#8} | 
|  | jra	fp_e2e_checkround | 
|  | 2:	lsl.l	%d1,%d0 | 
|  | move.b	%d0,(-4,%a0) | 
|  | lsr.l	#8,%d0 | 
|  | move.b	%d0,(7,%a0) | 
|  | jra	fp_e2e_checkround | 
|  | #endif | 
|  | 1:	move.l	%d0,%d1			| lower lword is splitted between | 
|  | lsl.l	%d2,%d0			| higher and lower lword | 
|  | move.l	%d0,(%a0) | 
|  | move.l	%d1,%d0 | 
|  | neg.w	%d2 | 
|  | add.w	#32,%d2 | 
|  | lsr.l	%d2,%d0 | 
|  | move.l	%d0,-(%a0) | 
|  | jra	fp_e2e_checkround | 
|  | | Infinities and NaNs | 
|  | fp_e2e_large: | 
|  | move.l	(%a0)+,%d0 | 
|  | jne	3f | 
|  | 1:	tst.l	(%a0) | 
|  | jne	4f | 
|  | moveq	#1,%d0 | 
|  | 2:	subq.l	#8,%a0 | 
|  | printf	PCONV,"%p(",1,%a0 | 
|  | printx	PCONV,%a0@ | 
|  | printf	PCONV,")\n" | 
|  | rts | 
|  | | we have maybe a NaN, shift off the highest bit | 
|  | 3:	lsl.l	#1,%d0 | 
|  | jeq	1b | 
|  | | we have a NaN, clear the return value | 
|  | 4:	clrl	%d0 | 
|  | jra	2b | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Normalization functions.  Call these on the output of general | 
|  | * FP operators, and before any conversion into the destination | 
|  | * formats. fp_normalize_ext has always to be called first, the | 
|  | * following conversion functions expect an already normalized | 
|  | * number. | 
|  | */ | 
|  |  | 
|  | | fp_normalize_ext: | 
|  | | normalize an extended in extended (unpacked) format, basically | 
|  | | it does the same as fp_conv_ext2ext, additionally it also does | 
|  | | the necessary postprocessing checks. | 
|  | | args:	%a0 (struct fp_ext *) | 
|  | | NOTE: it does _not_ modify %a0/%a1 and the upper word of %d2 | 
|  |  | 
|  | fp_normalize_ext: | 
|  | printf	PNORM,"ne: %p(",1,%a0 | 
|  | printx	PNORM,%a0@ | 
|  | printf	PNORM,"), " | 
|  | move.l	(%a0)+,%d0 | 
|  | cmp.w	#0x7fff,%d0		| Inf / NaN? | 
|  | jeq	fp_ne_large | 
|  | move.l	(%a0),%d0 | 
|  | jpl	fp_ne_small		| zero / denorm? | 
|  | | The high bit is set, so normalization is irrelevant. | 
|  | fp_ne_checkround: | 
|  | subq.l	#4,%a0 | 
|  | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | 
|  | move.b	(%a0),%d0 | 
|  | jne	fp_ne_round | 
|  | #endif | 
|  | printf	PNORM,"%p(",1,%a0 | 
|  | printx	PNORM,%a0@ | 
|  | printf	PNORM,")\n" | 
|  | rts | 
|  | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | 
|  | fp_ne_round: | 
|  | fp_set_sr FPSR_EXC_INEX2 | 
|  | clr.b	(%a0) | 
|  | move.w	(FPD_RND,FPDATA),%d2 | 
|  | jne	fp_ne_roundother	| %d2 == 0, round to nearest | 
|  | tst.b	%d0			| test guard bit | 
|  | jpl	9f			| zero is closer | 
|  | btst	#0,(11,%a0)		| test lsb bit | 
|  | jne	fp_ne_doroundup		| round to infinity | 
|  | lsl.b	#1,%d0			| check low bits | 
|  | jeq	9f			| round to zero | 
|  | fp_ne_doroundup: | 
|  | addq.l	#1,(8,%a0) | 
|  | jcc	9f | 
|  | addq.l	#1,(4,%a0) | 
|  | jcc	9f | 
|  | addq.w	#1,(2,%a0) | 
|  | move.w	#0x8000,(4,%a0) | 
|  | 9:	printf	PNORM,"%p(",1,%a0 | 
|  | printx	PNORM,%a0@ | 
|  | printf	PNORM,")\n" | 
|  | rts | 
|  | fp_ne_roundother: | 
|  | subq.w	#2,%d2 | 
|  | jcs	9b			| %d2 < 2, round to zero | 
|  | jhi	1f			| %d2 > 2, round to +infinity | 
|  | tst.b	(1,%a0)			| to -inf | 
|  | jne	fp_ne_doroundup		| negative, round to infinity | 
|  | jra	9b			| positive, round to zero | 
|  | 1:	tst.b	(1,%a0)			| to +inf | 
|  | jeq	fp_ne_doroundup		| positive, round to infinity | 
|  | jra	9b			| negative, round to zero | 
|  | #endif | 
|  | | Zeros and subnormal numbers | 
|  | | These are probably merely subnormal, rather than "denormalized" | 
|  | |  numbers, so we will try to make them normal again. | 
|  | fp_ne_small: | 
|  | jne	fp_ne_small1		| high lword zero? | 
|  | move.l	(4,%a0),%d0 | 
|  | jne	fp_ne_small2 | 
|  | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | 
|  | clr.l	%d0 | 
|  | move.b	(-4,%a0),%d0 | 
|  | jne	fp_ne_small3 | 
|  | #endif | 
|  | | Genuine zero. | 
|  | clr.w	-(%a0) | 
|  | subq.l	#2,%a0 | 
|  | printf	PNORM,"%p(",1,%a0 | 
|  | printx	PNORM,%a0@ | 
|  | printf	PNORM,")\n" | 
|  | rts | 
|  | | Subnormal. | 
|  | fp_ne_small1: | 
|  | bfffo	%d0{#0,#32},%d1 | 
|  | move.w	-(%a0),%d2 | 
|  | sub.w	%d1,%d2 | 
|  | jcc	1f | 
|  | | Pathologically small, denormalize. | 
|  | add.w	%d2,%d1 | 
|  | clr.w	%d2 | 
|  | fp_set_sr FPSR_EXC_UNFL | 
|  | 1:	move.w	%d2,(%a0)+ | 
|  | move.w	%d1,%d2 | 
|  | jeq	fp_ne_checkround | 
|  | | This is exactly the same 64-bit double shift as seen above. | 
|  | lsl.l	%d2,%d0 | 
|  | move.l	%d0,(%a0)+ | 
|  | move.l	(%a0),%d0 | 
|  | move.l	%d0,%d1 | 
|  | lsl.l	%d2,%d0 | 
|  | move.l	%d0,(%a0) | 
|  | neg.w	%d2 | 
|  | and.w	#0x1f,%d2 | 
|  | lsr.l	%d2,%d1 | 
|  | or.l	%d1,-(%a0) | 
|  | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | 
|  | fp_ne_extra1: | 
|  | clr.l	%d0 | 
|  | move.b	(-4,%a0),%d0 | 
|  | neg.w	%d2 | 
|  | add.w	#24,%d2 | 
|  | jcc	1f | 
|  | clr.b	(-4,%a0) | 
|  | lsl.l	%d2,%d0 | 
|  | or.l	%d0,(4,%a0) | 
|  | jra	fp_ne_checkround | 
|  | 1:	addq.w	#8,%d2 | 
|  | lsl.l	%d2,%d0 | 
|  | move.b	%d0,(-4,%a0) | 
|  | lsr.l	#8,%d0 | 
|  | or.l	%d0,(4,%a0) | 
|  | #endif | 
|  | jra	fp_ne_checkround | 
|  | | May or may not be subnormal, if so, only 32 bits to shift. | 
|  | fp_ne_small2: | 
|  | bfffo	%d0{#0,#32},%d1 | 
|  | add.w	#32,%d1 | 
|  | move.w	-(%a0),%d2 | 
|  | sub.w	%d1,%d2 | 
|  | jcc	1f | 
|  | | Beyond pathologically small, denormalize. | 
|  | add.w	%d2,%d1 | 
|  | clr.w	%d2 | 
|  | fp_set_sr FPSR_EXC_UNFL | 
|  | 1:	move.w	%d2,(%a0)+ | 
|  | ext.l	%d1 | 
|  | jeq	fp_ne_checkround | 
|  | clr.l	(4,%a0) | 
|  | sub.w	#32,%d1 | 
|  | jcs	1f | 
|  | lsl.l	%d1,%d0			| lower lword needs only to be shifted | 
|  | move.l	%d0,(%a0)		| into the higher lword | 
|  | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | 
|  | clr.l	%d0 | 
|  | move.b	(-4,%a0),%d0 | 
|  | clr.b	(-4,%a0) | 
|  | neg.w	%d1 | 
|  | add.w	#32,%d1 | 
|  | bfins	%d0,(%a0){%d1,#8} | 
|  | #endif | 
|  | jra	fp_ne_checkround | 
|  | 1:	neg.w	%d1			| lower lword is splitted between | 
|  | bfins	%d0,(%a0){%d1,#32}	| higher and lower lword | 
|  | #ifndef CONFIG_M68KFPU_EMU_EXTRAPREC | 
|  | jra	fp_ne_checkround | 
|  | #else | 
|  | move.w	%d1,%d2 | 
|  | jra	fp_ne_extra1 | 
|  | | These are extremely small numbers, that will mostly end up as zero | 
|  | | anyway, so this is only important for correct rounding. | 
|  | fp_ne_small3: | 
|  | bfffo	%d0{#24,#8},%d1 | 
|  | add.w	#40,%d1 | 
|  | move.w	-(%a0),%d2 | 
|  | sub.w	%d1,%d2 | 
|  | jcc	1f | 
|  | | Pathologically small, denormalize. | 
|  | add.w	%d2,%d1 | 
|  | clr.w	%d2 | 
|  | 1:	move.w	%d2,(%a0)+ | 
|  | ext.l	%d1 | 
|  | jeq	fp_ne_checkround | 
|  | cmp.w	#8,%d1 | 
|  | jcs	2f | 
|  | 1:	clr.b	(-4,%a0) | 
|  | sub.w	#64,%d1 | 
|  | jcs	1f | 
|  | add.w	#24,%d1 | 
|  | lsl.l	%d1,%d0 | 
|  | move.l	%d0,(%a0) | 
|  | jra	fp_ne_checkround | 
|  | 1:	neg.w	%d1 | 
|  | bfins	%d0,(%a0){%d1,#8} | 
|  | jra	fp_ne_checkround | 
|  | 2:	lsl.l	%d1,%d0 | 
|  | move.b	%d0,(-4,%a0) | 
|  | lsr.l	#8,%d0 | 
|  | move.b	%d0,(7,%a0) | 
|  | jra	fp_ne_checkround | 
|  | #endif | 
|  | | Infinities and NaNs, again, same as above. | 
|  | fp_ne_large: | 
|  | move.l	(%a0)+,%d0 | 
|  | jne	3f | 
|  | 1:	tst.l	(%a0) | 
|  | jne	4f | 
|  | 2:	subq.l	#8,%a0 | 
|  | printf	PNORM,"%p(",1,%a0 | 
|  | printx	PNORM,%a0@ | 
|  | printf	PNORM,")\n" | 
|  | rts | 
|  | | we have maybe a NaN, shift off the highest bit | 
|  | 3:	move.l	%d0,%d1 | 
|  | lsl.l	#1,%d1 | 
|  | jne	4f | 
|  | clr.l	(-4,%a0) | 
|  | jra	1b | 
|  | | we have a NaN, test if it is signaling | 
|  | 4:	bset	#30,%d0 | 
|  | jne	2b | 
|  | fp_set_sr FPSR_EXC_SNAN | 
|  | move.l	%d0,(-4,%a0) | 
|  | jra	2b | 
|  |  | 
|  | | these next two do rounding as per the IEEE standard. | 
|  | | values for the rounding modes appear to be: | 
|  | | 0:	Round to nearest | 
|  | | 1:	Round to zero | 
|  | | 2:	Round to -Infinity | 
|  | | 3:	Round to +Infinity | 
|  | | both functions expect that fp_normalize was already | 
|  | | called (and extended argument is already normalized | 
|  | | as far as possible), these are used if there is different | 
|  | | rounding precision is selected and before converting | 
|  | | into single/double | 
|  |  | 
|  | | fp_normalize_double: | 
|  | | normalize an extended with double (52-bit) precision | 
|  | | args:	 %a0 (struct fp_ext *) | 
|  |  | 
|  | fp_normalize_double: | 
|  | printf	PNORM,"nd: %p(",1,%a0 | 
|  | printx	PNORM,%a0@ | 
|  | printf	PNORM,"), " | 
|  | move.l	(%a0)+,%d2 | 
|  | tst.w	%d2 | 
|  | jeq	fp_nd_zero		| zero / denormalized | 
|  | cmp.w	#0x7fff,%d2 | 
|  | jeq	fp_nd_huge		| NaN / infinitive. | 
|  | sub.w	#0x4000-0x3ff,%d2	| will the exponent fit? | 
|  | jcs	fp_nd_small		| too small. | 
|  | cmp.w	#0x7fe,%d2 | 
|  | jcc	fp_nd_large		| too big. | 
|  | addq.l	#4,%a0 | 
|  | move.l	(%a0),%d0		| low lword of mantissa | 
|  | | now, round off the low 11 bits. | 
|  | fp_nd_round: | 
|  | moveq	#21,%d1 | 
|  | lsl.l	%d1,%d0			| keep 11 low bits. | 
|  | jne	fp_nd_checkround	| Are they non-zero? | 
|  | | nothing to do here | 
|  | 9:	subq.l	#8,%a0 | 
|  | printf	PNORM,"%p(",1,%a0 | 
|  | printx	PNORM,%a0@ | 
|  | printf	PNORM,")\n" | 
|  | rts | 
|  | | Be careful with the X bit! It contains the lsb | 
|  | | from the shift above, it is needed for round to nearest. | 
|  | fp_nd_checkround: | 
|  | fp_set_sr FPSR_EXC_INEX2	| INEX2 bit | 
|  | and.w	#0xf800,(2,%a0)		| clear bits 0-10 | 
|  | move.w	(FPD_RND,FPDATA),%d2	| rounding mode | 
|  | jne	2f			| %d2 == 0, round to nearest | 
|  | tst.l	%d0			| test guard bit | 
|  | jpl	9b			| zero is closer | 
|  | | here we test the X bit by adding it to %d2 | 
|  | clr.w	%d2			| first set z bit, addx only clears it | 
|  | addx.w	%d2,%d2			| test lsb bit | 
|  | | IEEE754-specified "round to even" behaviour.  If the guard | 
|  | | bit is set, then the number is odd, so rounding works like | 
|  | | in grade-school arithmetic (i.e. 1.5 rounds to 2.0) | 
|  | | Otherwise, an equal distance rounds towards zero, so as not | 
|  | | to produce an odd number.  This is strange, but it is what | 
|  | | the standard says. | 
|  | jne	fp_nd_doroundup		| round to infinity | 
|  | lsl.l	#1,%d0			| check low bits | 
|  | jeq	9b			| round to zero | 
|  | fp_nd_doroundup: | 
|  | | round (the mantissa, that is) towards infinity | 
|  | add.l	#0x800,(%a0) | 
|  | jcc	9b			| no overflow, good. | 
|  | addq.l	#1,-(%a0)		| extend to high lword | 
|  | jcc	1f			| no overflow, good. | 
|  | | Yow! we have managed to overflow the mantissa.  Since this | 
|  | | only happens when %d1 was 0xfffff800, it is now zero, so | 
|  | | reset the high bit, and increment the exponent. | 
|  | move.w	#0x8000,(%a0) | 
|  | addq.w	#1,-(%a0) | 
|  | cmp.w	#0x43ff,(%a0)+		| exponent now overflown? | 
|  | jeq	fp_nd_large		| yes, so make it infinity. | 
|  | 1:	subq.l	#4,%a0 | 
|  | printf	PNORM,"%p(",1,%a0 | 
|  | printx	PNORM,%a0@ | 
|  | printf	PNORM,")\n" | 
|  | rts | 
|  | 2:	subq.w	#2,%d2 | 
|  | jcs	9b			| %d2 < 2, round to zero | 
|  | jhi	3f			| %d2 > 2, round to +infinity | 
|  | | Round to +Inf or -Inf.  High word of %d2 contains the | 
|  | | sign of the number, by the way. | 
|  | swap	%d2			| to -inf | 
|  | tst.b	%d2 | 
|  | jne	fp_nd_doroundup		| negative, round to infinity | 
|  | jra	9b			| positive, round to zero | 
|  | 3:	swap	%d2			| to +inf | 
|  | tst.b	%d2 | 
|  | jeq	fp_nd_doroundup		| positive, round to infinity | 
|  | jra	9b			| negative, round to zero | 
|  | | Exponent underflow.  Try to make a denormal, and set it to | 
|  | | the smallest possible fraction if this fails. | 
|  | fp_nd_small: | 
|  | fp_set_sr FPSR_EXC_UNFL		| set UNFL bit | 
|  | move.w	#0x3c01,(-2,%a0)	| 2**-1022 | 
|  | neg.w	%d2			| degree of underflow | 
|  | cmp.w	#32,%d2			| single or double shift? | 
|  | jcc	1f | 
|  | | Again, another 64-bit double shift. | 
|  | move.l	(%a0),%d0 | 
|  | move.l	%d0,%d1 | 
|  | lsr.l	%d2,%d0 | 
|  | move.l	%d0,(%a0)+ | 
|  | move.l	(%a0),%d0 | 
|  | lsr.l	%d2,%d0 | 
|  | neg.w	%d2 | 
|  | add.w	#32,%d2 | 
|  | lsl.l	%d2,%d1 | 
|  | or.l	%d1,%d0 | 
|  | move.l	(%a0),%d1 | 
|  | move.l	%d0,(%a0) | 
|  | | Check to see if we shifted off any significant bits | 
|  | lsl.l	%d2,%d1 | 
|  | jeq	fp_nd_round		| Nope, round. | 
|  | bset	#0,%d0			| Yes, so set the "sticky bit". | 
|  | jra	fp_nd_round		| Now, round. | 
|  | | Another 64-bit single shift and store | 
|  | 1:	sub.w	#32,%d2 | 
|  | cmp.w	#32,%d2			| Do we really need to shift? | 
|  | jcc	2f			| No, the number is too small. | 
|  | move.l	(%a0),%d0 | 
|  | clr.l	(%a0)+ | 
|  | move.l	%d0,%d1 | 
|  | lsr.l	%d2,%d0 | 
|  | neg.w	%d2 | 
|  | add.w	#32,%d2 | 
|  | | Again, check to see if we shifted off any significant bits. | 
|  | tst.l	(%a0) | 
|  | jeq	1f | 
|  | bset	#0,%d0			| Sticky bit. | 
|  | 1:	move.l	%d0,(%a0) | 
|  | lsl.l	%d2,%d1 | 
|  | jeq	fp_nd_round | 
|  | bset	#0,%d0 | 
|  | jra	fp_nd_round | 
|  | | Sorry, the number is just too small. | 
|  | 2:	clr.l	(%a0)+ | 
|  | clr.l	(%a0) | 
|  | moveq	#1,%d0			| Smallest possible fraction, | 
|  | jra	fp_nd_round		| round as desired. | 
|  | | zero and denormalized | 
|  | fp_nd_zero: | 
|  | tst.l	(%a0)+ | 
|  | jne	1f | 
|  | tst.l	(%a0) | 
|  | jne	1f | 
|  | subq.l	#8,%a0 | 
|  | printf	PNORM,"%p(",1,%a0 | 
|  | printx	PNORM,%a0@ | 
|  | printf	PNORM,")\n" | 
|  | rts				| zero.  nothing to do. | 
|  | | These are not merely subnormal numbers, but true denormals, | 
|  | | i.e. pathologically small (exponent is 2**-16383) numbers. | 
|  | | It is clearly impossible for even a normal extended number | 
|  | | with that exponent to fit into double precision, so just | 
|  | | write these ones off as "too darn small". | 
|  | 1:	fp_set_sr FPSR_EXC_UNFL		| Set UNFL bit | 
|  | clr.l	(%a0) | 
|  | clr.l	-(%a0) | 
|  | move.w	#0x3c01,-(%a0)		| i.e. 2**-1022 | 
|  | addq.l	#6,%a0 | 
|  | moveq	#1,%d0 | 
|  | jra	fp_nd_round		| round. | 
|  | | Exponent overflow.  Just call it infinity. | 
|  | fp_nd_large: | 
|  | move.w	#0x7ff,%d0 | 
|  | and.w	(6,%a0),%d0 | 
|  | jeq	1f | 
|  | fp_set_sr FPSR_EXC_INEX2 | 
|  | 1:	fp_set_sr FPSR_EXC_OVFL | 
|  | move.w	(FPD_RND,FPDATA),%d2 | 
|  | jne	3f			| %d2 = 0 round to nearest | 
|  | 1:	move.w	#0x7fff,(-2,%a0) | 
|  | clr.l	(%a0)+ | 
|  | clr.l	(%a0) | 
|  | 2:	subq.l	#8,%a0 | 
|  | printf	PNORM,"%p(",1,%a0 | 
|  | printx	PNORM,%a0@ | 
|  | printf	PNORM,")\n" | 
|  | rts | 
|  | 3:	subq.w	#2,%d2 | 
|  | jcs	5f			| %d2 < 2, round to zero | 
|  | jhi	4f			| %d2 > 2, round to +infinity | 
|  | tst.b	(-3,%a0)		| to -inf | 
|  | jne	1b | 
|  | jra	5f | 
|  | 4:	tst.b	(-3,%a0)		| to +inf | 
|  | jeq	1b | 
|  | 5:	move.w	#0x43fe,(-2,%a0) | 
|  | moveq	#-1,%d0 | 
|  | move.l	%d0,(%a0)+ | 
|  | move.w	#0xf800,%d0 | 
|  | move.l	%d0,(%a0) | 
|  | jra	2b | 
|  | | Infinities or NaNs | 
|  | fp_nd_huge: | 
|  | subq.l	#4,%a0 | 
|  | printf	PNORM,"%p(",1,%a0 | 
|  | printx	PNORM,%a0@ | 
|  | printf	PNORM,")\n" | 
|  | rts | 
|  |  | 
|  | | fp_normalize_single: | 
|  | | normalize an extended with single (23-bit) precision | 
|  | | args:	 %a0 (struct fp_ext *) | 
|  |  | 
|  | fp_normalize_single: | 
|  | printf	PNORM,"ns: %p(",1,%a0 | 
|  | printx	PNORM,%a0@ | 
|  | printf	PNORM,") " | 
|  | addq.l	#2,%a0 | 
|  | move.w	(%a0)+,%d2 | 
|  | jeq	fp_ns_zero		| zero / denormalized | 
|  | cmp.w	#0x7fff,%d2 | 
|  | jeq	fp_ns_huge		| NaN / infinitive. | 
|  | sub.w	#0x4000-0x7f,%d2	| will the exponent fit? | 
|  | jcs	fp_ns_small		| too small. | 
|  | cmp.w	#0xfe,%d2 | 
|  | jcc	fp_ns_large		| too big. | 
|  | move.l	(%a0)+,%d0		| get high lword of mantissa | 
|  | fp_ns_round: | 
|  | tst.l	(%a0)			| check the low lword | 
|  | jeq	1f | 
|  | | Set a sticky bit if it is non-zero.  This should only | 
|  | | affect the rounding in what would otherwise be equal- | 
|  | | distance situations, which is what we want it to do. | 
|  | bset	#0,%d0 | 
|  | 1:	clr.l	(%a0)			| zap it from memory. | 
|  | | now, round off the low 8 bits of the hi lword. | 
|  | tst.b	%d0			| 8 low bits. | 
|  | jne	fp_ns_checkround	| Are they non-zero? | 
|  | | nothing to do here | 
|  | subq.l	#8,%a0 | 
|  | printf	PNORM,"%p(",1,%a0 | 
|  | printx	PNORM,%a0@ | 
|  | printf	PNORM,")\n" | 
|  | rts | 
|  | fp_ns_checkround: | 
|  | fp_set_sr FPSR_EXC_INEX2	| INEX2 bit | 
|  | clr.b	-(%a0)			| clear low byte of high lword | 
|  | subq.l	#3,%a0 | 
|  | move.w	(FPD_RND,FPDATA),%d2	| rounding mode | 
|  | jne	2f			| %d2 == 0, round to nearest | 
|  | tst.b	%d0			| test guard bit | 
|  | jpl	9f			| zero is closer | 
|  | btst	#8,%d0			| test lsb bit | 
|  | | round to even behaviour, see above. | 
|  | jne	fp_ns_doroundup		| round to infinity | 
|  | lsl.b	#1,%d0			| check low bits | 
|  | jeq	9f			| round to zero | 
|  | fp_ns_doroundup: | 
|  | | round (the mantissa, that is) towards infinity | 
|  | add.l	#0x100,(%a0) | 
|  | jcc	9f			| no overflow, good. | 
|  | | Overflow.  This means that the %d1 was 0xffffff00, so it | 
|  | | is now zero.  We will set the mantissa to reflect this, and | 
|  | | increment the exponent (checking for overflow there too) | 
|  | move.w	#0x8000,(%a0) | 
|  | addq.w	#1,-(%a0) | 
|  | cmp.w	#0x407f,(%a0)+		| exponent now overflown? | 
|  | jeq	fp_ns_large		| yes, so make it infinity. | 
|  | 9:	subq.l	#4,%a0 | 
|  | printf	PNORM,"%p(",1,%a0 | 
|  | printx	PNORM,%a0@ | 
|  | printf	PNORM,")\n" | 
|  | rts | 
|  | | check nondefault rounding modes | 
|  | 2:	subq.w	#2,%d2 | 
|  | jcs	9b			| %d2 < 2, round to zero | 
|  | jhi	3f			| %d2 > 2, round to +infinity | 
|  | tst.b	(-3,%a0)		| to -inf | 
|  | jne	fp_ns_doroundup		| negative, round to infinity | 
|  | jra	9b			| positive, round to zero | 
|  | 3:	tst.b	(-3,%a0)		| to +inf | 
|  | jeq	fp_ns_doroundup		| positive, round to infinity | 
|  | jra	9b			| negative, round to zero | 
|  | | Exponent underflow.  Try to make a denormal, and set it to | 
|  | | the smallest possible fraction if this fails. | 
|  | fp_ns_small: | 
|  | fp_set_sr FPSR_EXC_UNFL		| set UNFL bit | 
|  | move.w	#0x3f81,(-2,%a0)	| 2**-126 | 
|  | neg.w	%d2			| degree of underflow | 
|  | cmp.w	#32,%d2			| single or double shift? | 
|  | jcc	2f | 
|  | | a 32-bit shift. | 
|  | move.l	(%a0),%d0 | 
|  | move.l	%d0,%d1 | 
|  | lsr.l	%d2,%d0 | 
|  | move.l	%d0,(%a0)+ | 
|  | | Check to see if we shifted off any significant bits. | 
|  | neg.w	%d2 | 
|  | add.w	#32,%d2 | 
|  | lsl.l	%d2,%d1 | 
|  | jeq	1f | 
|  | bset	#0,%d0			| Sticky bit. | 
|  | | Check the lower lword | 
|  | 1:	tst.l	(%a0) | 
|  | jeq	fp_ns_round | 
|  | clr	(%a0) | 
|  | bset	#0,%d0			| Sticky bit. | 
|  | jra	fp_ns_round | 
|  | | Sorry, the number is just too small. | 
|  | 2:	clr.l	(%a0)+ | 
|  | clr.l	(%a0) | 
|  | moveq	#1,%d0			| Smallest possible fraction, | 
|  | jra	fp_ns_round		| round as desired. | 
|  | | Exponent overflow.  Just call it infinity. | 
|  | fp_ns_large: | 
|  | tst.b	(3,%a0) | 
|  | jeq	1f | 
|  | fp_set_sr FPSR_EXC_INEX2 | 
|  | 1:	fp_set_sr FPSR_EXC_OVFL | 
|  | move.w	(FPD_RND,FPDATA),%d2 | 
|  | jne	3f			| %d2 = 0 round to nearest | 
|  | 1:	move.w	#0x7fff,(-2,%a0) | 
|  | clr.l	(%a0)+ | 
|  | clr.l	(%a0) | 
|  | 2:	subq.l	#8,%a0 | 
|  | printf	PNORM,"%p(",1,%a0 | 
|  | printx	PNORM,%a0@ | 
|  | printf	PNORM,")\n" | 
|  | rts | 
|  | 3:	subq.w	#2,%d2 | 
|  | jcs	5f			| %d2 < 2, round to zero | 
|  | jhi	4f			| %d2 > 2, round to +infinity | 
|  | tst.b	(-3,%a0)		| to -inf | 
|  | jne	1b | 
|  | jra	5f | 
|  | 4:	tst.b	(-3,%a0)		| to +inf | 
|  | jeq	1b | 
|  | 5:	move.w	#0x407e,(-2,%a0) | 
|  | move.l	#0xffffff00,(%a0)+ | 
|  | clr.l	(%a0) | 
|  | jra	2b | 
|  | | zero and denormalized | 
|  | fp_ns_zero: | 
|  | tst.l	(%a0)+ | 
|  | jne	1f | 
|  | tst.l	(%a0) | 
|  | jne	1f | 
|  | subq.l	#8,%a0 | 
|  | printf	PNORM,"%p(",1,%a0 | 
|  | printx	PNORM,%a0@ | 
|  | printf	PNORM,")\n" | 
|  | rts				| zero.  nothing to do. | 
|  | | These are not merely subnormal numbers, but true denormals, | 
|  | | i.e. pathologically small (exponent is 2**-16383) numbers. | 
|  | | It is clearly impossible for even a normal extended number | 
|  | | with that exponent to fit into single precision, so just | 
|  | | write these ones off as "too darn small". | 
|  | 1:	fp_set_sr FPSR_EXC_UNFL		| Set UNFL bit | 
|  | clr.l	(%a0) | 
|  | clr.l	-(%a0) | 
|  | move.w	#0x3f81,-(%a0)		| i.e. 2**-126 | 
|  | addq.l	#6,%a0 | 
|  | moveq	#1,%d0 | 
|  | jra	fp_ns_round		| round. | 
|  | | Infinities or NaNs | 
|  | fp_ns_huge: | 
|  | subq.l	#4,%a0 | 
|  | printf	PNORM,"%p(",1,%a0 | 
|  | printx	PNORM,%a0@ | 
|  | printf	PNORM,")\n" | 
|  | rts | 
|  |  | 
|  | | fp_normalize_single_fast: | 
|  | | normalize an extended with single (23-bit) precision | 
|  | | this is only used by fsgldiv/fsgdlmul, where the | 
|  | | operand is not completly normalized. | 
|  | | args:	 %a0 (struct fp_ext *) | 
|  |  | 
|  | fp_normalize_single_fast: | 
|  | printf	PNORM,"nsf: %p(",1,%a0 | 
|  | printx	PNORM,%a0@ | 
|  | printf	PNORM,") " | 
|  | addq.l	#2,%a0 | 
|  | move.w	(%a0)+,%d2 | 
|  | cmp.w	#0x7fff,%d2 | 
|  | jeq	fp_nsf_huge		| NaN / infinitive. | 
|  | move.l	(%a0)+,%d0		| get high lword of mantissa | 
|  | fp_nsf_round: | 
|  | tst.l	(%a0)			| check the low lword | 
|  | jeq	1f | 
|  | | Set a sticky bit if it is non-zero.  This should only | 
|  | | affect the rounding in what would otherwise be equal- | 
|  | | distance situations, which is what we want it to do. | 
|  | bset	#0,%d0 | 
|  | 1:	clr.l	(%a0)			| zap it from memory. | 
|  | | now, round off the low 8 bits of the hi lword. | 
|  | tst.b	%d0			| 8 low bits. | 
|  | jne	fp_nsf_checkround	| Are they non-zero? | 
|  | | nothing to do here | 
|  | subq.l	#8,%a0 | 
|  | printf	PNORM,"%p(",1,%a0 | 
|  | printx	PNORM,%a0@ | 
|  | printf	PNORM,")\n" | 
|  | rts | 
|  | fp_nsf_checkround: | 
|  | fp_set_sr FPSR_EXC_INEX2	| INEX2 bit | 
|  | clr.b	-(%a0)			| clear low byte of high lword | 
|  | subq.l	#3,%a0 | 
|  | move.w	(FPD_RND,FPDATA),%d2	| rounding mode | 
|  | jne	2f			| %d2 == 0, round to nearest | 
|  | tst.b	%d0			| test guard bit | 
|  | jpl	9f			| zero is closer | 
|  | btst	#8,%d0			| test lsb bit | 
|  | | round to even behaviour, see above. | 
|  | jne	fp_nsf_doroundup		| round to infinity | 
|  | lsl.b	#1,%d0			| check low bits | 
|  | jeq	9f			| round to zero | 
|  | fp_nsf_doroundup: | 
|  | | round (the mantissa, that is) towards infinity | 
|  | add.l	#0x100,(%a0) | 
|  | jcc	9f			| no overflow, good. | 
|  | | Overflow.  This means that the %d1 was 0xffffff00, so it | 
|  | | is now zero.  We will set the mantissa to reflect this, and | 
|  | | increment the exponent (checking for overflow there too) | 
|  | move.w	#0x8000,(%a0) | 
|  | addq.w	#1,-(%a0) | 
|  | cmp.w	#0x407f,(%a0)+		| exponent now overflown? | 
|  | jeq	fp_nsf_large		| yes, so make it infinity. | 
|  | 9:	subq.l	#4,%a0 | 
|  | printf	PNORM,"%p(",1,%a0 | 
|  | printx	PNORM,%a0@ | 
|  | printf	PNORM,")\n" | 
|  | rts | 
|  | | check nondefault rounding modes | 
|  | 2:	subq.w	#2,%d2 | 
|  | jcs	9b			| %d2 < 2, round to zero | 
|  | jhi	3f			| %d2 > 2, round to +infinity | 
|  | tst.b	(-3,%a0)		| to -inf | 
|  | jne	fp_nsf_doroundup	| negative, round to infinity | 
|  | jra	9b			| positive, round to zero | 
|  | 3:	tst.b	(-3,%a0)		| to +inf | 
|  | jeq	fp_nsf_doroundup		| positive, round to infinity | 
|  | jra	9b			| negative, round to zero | 
|  | | Exponent overflow.  Just call it infinity. | 
|  | fp_nsf_large: | 
|  | tst.b	(3,%a0) | 
|  | jeq	1f | 
|  | fp_set_sr FPSR_EXC_INEX2 | 
|  | 1:	fp_set_sr FPSR_EXC_OVFL | 
|  | move.w	(FPD_RND,FPDATA),%d2 | 
|  | jne	3f			| %d2 = 0 round to nearest | 
|  | 1:	move.w	#0x7fff,(-2,%a0) | 
|  | clr.l	(%a0)+ | 
|  | clr.l	(%a0) | 
|  | 2:	subq.l	#8,%a0 | 
|  | printf	PNORM,"%p(",1,%a0 | 
|  | printx	PNORM,%a0@ | 
|  | printf	PNORM,")\n" | 
|  | rts | 
|  | 3:	subq.w	#2,%d2 | 
|  | jcs	5f			| %d2 < 2, round to zero | 
|  | jhi	4f			| %d2 > 2, round to +infinity | 
|  | tst.b	(-3,%a0)		| to -inf | 
|  | jne	1b | 
|  | jra	5f | 
|  | 4:	tst.b	(-3,%a0)		| to +inf | 
|  | jeq	1b | 
|  | 5:	move.w	#0x407e,(-2,%a0) | 
|  | move.l	#0xffffff00,(%a0)+ | 
|  | clr.l	(%a0) | 
|  | jra	2b | 
|  | | Infinities or NaNs | 
|  | fp_nsf_huge: | 
|  | subq.l	#4,%a0 | 
|  | printf	PNORM,"%p(",1,%a0 | 
|  | printx	PNORM,%a0@ | 
|  | printf	PNORM,")\n" | 
|  | rts | 
|  |  | 
|  | | conv_ext2int (macro): | 
|  | | Generates a subroutine that converts an extended value to an | 
|  | | integer of a given size, again, with the appropriate type of | 
|  | | rounding. | 
|  |  | 
|  | | Macro arguments: | 
|  | | s:	size, as given in an assembly instruction. | 
|  | | b:	number of bits in that size. | 
|  |  | 
|  | | Subroutine arguments: | 
|  | | %a0:	source (struct fp_ext *) | 
|  |  | 
|  | | Returns the integer in %d0 (like it should) | 
|  |  | 
|  | .macro conv_ext2int s,b | 
|  | .set	inf,(1<<(\b-1))-1	| i.e. MAXINT | 
|  | printf	PCONV,"e2i%d: %p(",2,#\b,%a0 | 
|  | printx	PCONV,%a0@ | 
|  | printf	PCONV,") " | 
|  | addq.l	#2,%a0 | 
|  | move.w	(%a0)+,%d2		| exponent | 
|  | jeq	fp_e2i_zero\b		| zero / denorm (== 0, here) | 
|  | cmp.w	#0x7fff,%d2 | 
|  | jeq	fp_e2i_huge\b		| Inf / NaN | 
|  | sub.w	#0x3ffe,%d2 | 
|  | jcs	fp_e2i_small\b | 
|  | cmp.w	#\b,%d2 | 
|  | jhi	fp_e2i_large\b | 
|  | move.l	(%a0),%d0 | 
|  | move.l	%d0,%d1 | 
|  | lsl.l	%d2,%d1 | 
|  | jne	fp_e2i_round\b | 
|  | tst.l	(4,%a0) | 
|  | jne	fp_e2i_round\b | 
|  | neg.w	%d2 | 
|  | add.w	#32,%d2 | 
|  | lsr.l	%d2,%d0 | 
|  | 9:	tst.w	(-4,%a0) | 
|  | jne	1f | 
|  | tst.\s	%d0 | 
|  | jmi	fp_e2i_large\b | 
|  | printf	PCONV,"-> %p\n",1,%d0 | 
|  | rts | 
|  | 1:	neg.\s	%d0 | 
|  | jeq	1f | 
|  | jpl	fp_e2i_large\b | 
|  | 1:	printf	PCONV,"-> %p\n",1,%d0 | 
|  | rts | 
|  | fp_e2i_round\b: | 
|  | fp_set_sr FPSR_EXC_INEX2	| INEX2 bit | 
|  | neg.w	%d2 | 
|  | add.w	#32,%d2 | 
|  | .if	\b>16 | 
|  | jeq	5f | 
|  | .endif | 
|  | lsr.l	%d2,%d0 | 
|  | move.w	(FPD_RND,FPDATA),%d2	| rounding mode | 
|  | jne	2f			| %d2 == 0, round to nearest | 
|  | tst.l	%d1			| test guard bit | 
|  | jpl	9b			| zero is closer | 
|  | btst	%d2,%d0			| test lsb bit (%d2 still 0) | 
|  | jne	fp_e2i_doroundup\b | 
|  | lsl.l	#1,%d1			| check low bits | 
|  | jne	fp_e2i_doroundup\b | 
|  | tst.l	(4,%a0) | 
|  | jeq	9b | 
|  | fp_e2i_doroundup\b: | 
|  | addq.l	#1,%d0 | 
|  | jra	9b | 
|  | | check nondefault rounding modes | 
|  | 2:	subq.w	#2,%d2 | 
|  | jcs	9b			| %d2 < 2, round to zero | 
|  | jhi	3f			| %d2 > 2, round to +infinity | 
|  | tst.w	(-4,%a0)		| to -inf | 
|  | jne	fp_e2i_doroundup\b	| negative, round to infinity | 
|  | jra	9b			| positive, round to zero | 
|  | 3:	tst.w	(-4,%a0)		| to +inf | 
|  | jeq	fp_e2i_doroundup\b	| positive, round to infinity | 
|  | jra	9b	| negative, round to zero | 
|  | | we are only want -2**127 get correctly rounded here, | 
|  | | since the guard bit is in the lower lword. | 
|  | | everything else ends up anyway as overflow. | 
|  | .if	\b>16 | 
|  | 5:	move.w	(FPD_RND,FPDATA),%d2	| rounding mode | 
|  | jne	2b			| %d2 == 0, round to nearest | 
|  | move.l	(4,%a0),%d1		| test guard bit | 
|  | jpl	9b			| zero is closer | 
|  | lsl.l	#1,%d1			| check low bits | 
|  | jne	fp_e2i_doroundup\b | 
|  | jra	9b | 
|  | .endif | 
|  | fp_e2i_zero\b: | 
|  | clr.l	%d0 | 
|  | tst.l	(%a0)+ | 
|  | jne	1f | 
|  | tst.l	(%a0) | 
|  | jeq	3f | 
|  | 1:	subq.l	#4,%a0 | 
|  | fp_clr_sr FPSR_EXC_UNFL		| fp_normalize_ext has set this bit | 
|  | fp_e2i_small\b: | 
|  | fp_set_sr FPSR_EXC_INEX2 | 
|  | clr.l	%d0 | 
|  | move.w	(FPD_RND,FPDATA),%d2	| rounding mode | 
|  | subq.w	#2,%d2 | 
|  | jcs	3f			| %d2 < 2, round to nearest/zero | 
|  | jhi	2f			| %d2 > 2, round to +infinity | 
|  | tst.w	(-4,%a0)		| to -inf | 
|  | jeq	3f | 
|  | subq.\s	#1,%d0 | 
|  | jra	3f | 
|  | 2:	tst.w	(-4,%a0)		| to +inf | 
|  | jne	3f | 
|  | addq.\s	#1,%d0 | 
|  | 3:	printf	PCONV,"-> %p\n",1,%d0 | 
|  | rts | 
|  | fp_e2i_large\b: | 
|  | fp_set_sr FPSR_EXC_OPERR | 
|  | move.\s	#inf,%d0 | 
|  | tst.w	(-4,%a0) | 
|  | jeq	1f | 
|  | addq.\s	#1,%d0 | 
|  | 1:	printf	PCONV,"-> %p\n",1,%d0 | 
|  | rts | 
|  | fp_e2i_huge\b: | 
|  | move.\s	(%a0),%d0 | 
|  | tst.l	(%a0) | 
|  | jne	1f | 
|  | tst.l	(%a0) | 
|  | jeq	fp_e2i_large\b | 
|  | | fp_normalize_ext has set this bit already | 
|  | | and made the number nonsignaling | 
|  | 1:	fp_tst_sr FPSR_EXC_SNAN | 
|  | jne	1f | 
|  | fp_set_sr FPSR_EXC_OPERR | 
|  | 1:	printf	PCONV,"-> %p\n",1,%d0 | 
|  | rts | 
|  | .endm | 
|  |  | 
|  | fp_conv_ext2long: | 
|  | conv_ext2int l,32 | 
|  |  | 
|  | fp_conv_ext2short: | 
|  | conv_ext2int w,16 | 
|  |  | 
|  | fp_conv_ext2byte: | 
|  | conv_ext2int b,8 | 
|  |  | 
|  | fp_conv_ext2double: | 
|  | jsr	fp_normalize_double | 
|  | printf	PCONV,"e2d: %p(",1,%a0 | 
|  | printx	PCONV,%a0@ | 
|  | printf	PCONV,"), " | 
|  | move.l	(%a0)+,%d2 | 
|  | cmp.w	#0x7fff,%d2 | 
|  | jne	1f | 
|  | move.w	#0x7ff,%d2 | 
|  | move.l	(%a0)+,%d0 | 
|  | jra	2f | 
|  | 1:	sub.w	#0x3fff-0x3ff,%d2 | 
|  | move.l	(%a0)+,%d0 | 
|  | jmi	2f | 
|  | clr.w	%d2 | 
|  | 2:	lsl.w	#5,%d2 | 
|  | lsl.l	#7,%d2 | 
|  | lsl.l	#8,%d2 | 
|  | move.l	%d0,%d1 | 
|  | lsl.l	#1,%d0 | 
|  | lsr.l	#4,%d0 | 
|  | lsr.l	#8,%d0 | 
|  | or.l	%d2,%d0 | 
|  | putuser.l %d0,(%a1)+,fp_err_ua2,%a1 | 
|  | moveq	#21,%d0 | 
|  | lsl.l	%d0,%d1 | 
|  | move.l	(%a0),%d0 | 
|  | lsr.l	#4,%d0 | 
|  | lsr.l	#7,%d0 | 
|  | or.l	%d1,%d0 | 
|  | putuser.l %d0,(%a1),fp_err_ua2,%a1 | 
|  | #ifdef FPU_EMU_DEBUG | 
|  | getuser.l %a1@(-4),%d0,fp_err_ua2,%a1 | 
|  | getuser.l %a1@(0),%d1,fp_err_ua2,%a1 | 
|  | printf	PCONV,"%p(%08x%08x)\n",3,%a1,%d0,%d1 | 
|  | #endif | 
|  | rts | 
|  |  | 
|  | fp_conv_ext2single: | 
|  | jsr	fp_normalize_single | 
|  | printf	PCONV,"e2s: %p(",1,%a0 | 
|  | printx	PCONV,%a0@ | 
|  | printf	PCONV,"), " | 
|  | move.l	(%a0)+,%d1 | 
|  | cmp.w	#0x7fff,%d1 | 
|  | jne	1f | 
|  | move.w	#0xff,%d1 | 
|  | move.l	(%a0)+,%d0 | 
|  | jra	2f | 
|  | 1:	sub.w	#0x3fff-0x7f,%d1 | 
|  | move.l	(%a0)+,%d0 | 
|  | jmi	2f | 
|  | clr.w	%d1 | 
|  | 2:	lsl.w	#8,%d1 | 
|  | lsl.l	#7,%d1 | 
|  | lsl.l	#8,%d1 | 
|  | bclr	#31,%d0 | 
|  | lsr.l	#8,%d0 | 
|  | or.l	%d1,%d0 | 
|  | printf	PCONV,"%08x\n",1,%d0 | 
|  | rts | 
|  |  | 
|  | | special return addresses for instr that | 
|  | | encode the rounding precision in the opcode | 
|  | | (e.g. fsmove,fdmove) | 
|  |  | 
|  | fp_finalrounding_single: | 
|  | addq.l	#8,%sp | 
|  | jsr	fp_normalize_ext | 
|  | jsr	fp_normalize_single | 
|  | jra	fp_finaltest | 
|  |  | 
|  | fp_finalrounding_single_fast: | 
|  | addq.l	#8,%sp | 
|  | jsr	fp_normalize_ext | 
|  | jsr	fp_normalize_single_fast | 
|  | jra	fp_finaltest | 
|  |  | 
|  | fp_finalrounding_double: | 
|  | addq.l	#8,%sp | 
|  | jsr	fp_normalize_ext | 
|  | jsr	fp_normalize_double | 
|  | jra	fp_finaltest | 
|  |  | 
|  | | fp_finaltest: | 
|  | | set the emulated status register based on the outcome of an | 
|  | | emulated instruction. | 
|  |  | 
|  | fp_finalrounding: | 
|  | addq.l	#8,%sp | 
|  | |	printf	,"f: %p\n",1,%a0 | 
|  | jsr	fp_normalize_ext | 
|  | move.w	(FPD_PREC,FPDATA),%d0 | 
|  | subq.w	#1,%d0 | 
|  | jcs	fp_finaltest | 
|  | jne	1f | 
|  | jsr	fp_normalize_single | 
|  | jra	2f | 
|  | 1:	jsr	fp_normalize_double | 
|  | 2:|	printf	,"f: %p\n",1,%a0 | 
|  | fp_finaltest: | 
|  | | First, we do some of the obvious tests for the exception | 
|  | | status byte and condition code bytes of fp_sr here, so that | 
|  | | they do not have to be handled individually by every | 
|  | | emulated instruction. | 
|  | clr.l	%d0 | 
|  | addq.l	#1,%a0 | 
|  | tst.b	(%a0)+			| sign | 
|  | jeq	1f | 
|  | bset	#FPSR_CC_NEG-24,%d0	| N bit | 
|  | 1:	cmp.w	#0x7fff,(%a0)+		| exponent | 
|  | jeq	2f | 
|  | | test for zero | 
|  | moveq	#FPSR_CC_Z-24,%d1 | 
|  | tst.l	(%a0)+ | 
|  | jne	9f | 
|  | tst.l	(%a0) | 
|  | jne	9f | 
|  | jra	8f | 
|  | | infinitiv and NAN | 
|  | 2:	moveq	#FPSR_CC_NAN-24,%d1 | 
|  | move.l	(%a0)+,%d2 | 
|  | lsl.l	#1,%d2			| ignore high bit | 
|  | jne	8f | 
|  | tst.l	(%a0) | 
|  | jne	8f | 
|  | moveq	#FPSR_CC_INF-24,%d1 | 
|  | 8:	bset	%d1,%d0 | 
|  | 9:	move.b	%d0,(FPD_FPSR+0,FPDATA)	| set condition test result | 
|  | | move instructions enter here | 
|  | | Here, we test things in the exception status byte, and set | 
|  | | other things in the accrued exception byte accordingly. | 
|  | | Emulated instructions can set various things in the former, | 
|  | | as defined in fp_emu.h. | 
|  | fp_final: | 
|  | move.l	(FPD_FPSR,FPDATA),%d0 | 
|  | #if 0 | 
|  | btst	#FPSR_EXC_SNAN,%d0	| EXC_SNAN | 
|  | jne	1f | 
|  | btst	#FPSR_EXC_OPERR,%d0	| EXC_OPERR | 
|  | jeq	2f | 
|  | 1:	bset	#FPSR_AEXC_IOP,%d0	| set IOP bit | 
|  | 2:	btst	#FPSR_EXC_OVFL,%d0	| EXC_OVFL | 
|  | jeq	1f | 
|  | bset	#FPSR_AEXC_OVFL,%d0	| set OVFL bit | 
|  | 1:	btst	#FPSR_EXC_UNFL,%d0	| EXC_UNFL | 
|  | jeq	1f | 
|  | btst	#FPSR_EXC_INEX2,%d0	| EXC_INEX2 | 
|  | jeq	1f | 
|  | bset	#FPSR_AEXC_UNFL,%d0	| set UNFL bit | 
|  | 1:	btst	#FPSR_EXC_DZ,%d0	| EXC_INEX1 | 
|  | jeq	1f | 
|  | bset	#FPSR_AEXC_DZ,%d0	| set DZ bit | 
|  | 1:	btst	#FPSR_EXC_OVFL,%d0	| EXC_OVFL | 
|  | jne	1f | 
|  | btst	#FPSR_EXC_INEX2,%d0	| EXC_INEX2 | 
|  | jne	1f | 
|  | btst	#FPSR_EXC_INEX1,%d0	| EXC_INEX1 | 
|  | jeq	2f | 
|  | 1:	bset	#FPSR_AEXC_INEX,%d0	| set INEX bit | 
|  | 2:	move.l	%d0,(FPD_FPSR,FPDATA) | 
|  | #else | 
|  | | same as above, greatly optimized, but untested (yet) | 
|  | move.l	%d0,%d2 | 
|  | lsr.l	#5,%d0 | 
|  | move.l	%d0,%d1 | 
|  | lsr.l	#4,%d1 | 
|  | or.l	%d0,%d1 | 
|  | and.b	#0x08,%d1 | 
|  | move.l	%d2,%d0 | 
|  | lsr.l	#6,%d0 | 
|  | or.l	%d1,%d0 | 
|  | move.l	%d2,%d1 | 
|  | lsr.l	#4,%d1 | 
|  | or.b	#0xdf,%d1 | 
|  | and.b	%d1,%d0 | 
|  | move.l	%d2,%d1 | 
|  | lsr.l	#7,%d1 | 
|  | and.b	#0x80,%d1 | 
|  | or.b	%d1,%d0 | 
|  | and.b	#0xf8,%d0 | 
|  | or.b	%d0,%d2 | 
|  | move.l	%d2,(FPD_FPSR,FPDATA) | 
|  | #endif | 
|  | move.b	(FPD_FPSR+2,FPDATA),%d0 | 
|  | and.b	(FPD_FPCR+2,FPDATA),%d0 | 
|  | jeq	1f | 
|  | printf	,"send signal!!!\n" | 
|  | 1:	jra	fp_end |