|  | /* | 
|  | * Kernel-based Virtual Machine driver for Linux | 
|  | * | 
|  | * AMD SVM support | 
|  | * | 
|  | * Copyright (C) 2006 Qumranet, Inc. | 
|  | * | 
|  | * Authors: | 
|  | *   Yaniv Kamay  <yaniv@qumranet.com> | 
|  | *   Avi Kivity   <avi@qumranet.com> | 
|  | * | 
|  | * This work is licensed under the terms of the GNU GPL, version 2.  See | 
|  | * the COPYING file in the top-level directory. | 
|  | * | 
|  | */ | 
|  | #include <linux/kvm_host.h> | 
|  |  | 
|  | #include "irq.h" | 
|  | #include "mmu.h" | 
|  | #include "kvm_cache_regs.h" | 
|  | #include "x86.h" | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/ftrace_event.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/desc.h> | 
|  |  | 
|  | #include <asm/virtext.h> | 
|  | #include "trace.h" | 
|  |  | 
|  | #define __ex(x) __kvm_handle_fault_on_reboot(x) | 
|  |  | 
|  | MODULE_AUTHOR("Qumranet"); | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  | #define IOPM_ALLOC_ORDER 2 | 
|  | #define MSRPM_ALLOC_ORDER 1 | 
|  |  | 
|  | #define SEG_TYPE_LDT 2 | 
|  | #define SEG_TYPE_BUSY_TSS16 3 | 
|  |  | 
|  | #define SVM_FEATURE_NPT            (1 <<  0) | 
|  | #define SVM_FEATURE_LBRV           (1 <<  1) | 
|  | #define SVM_FEATURE_SVML           (1 <<  2) | 
|  | #define SVM_FEATURE_NRIP           (1 <<  3) | 
|  | #define SVM_FEATURE_PAUSE_FILTER   (1 << 10) | 
|  |  | 
|  | #define NESTED_EXIT_HOST	0	/* Exit handled on host level */ | 
|  | #define NESTED_EXIT_DONE	1	/* Exit caused nested vmexit  */ | 
|  | #define NESTED_EXIT_CONTINUE	2	/* Further checks needed      */ | 
|  |  | 
|  | #define DEBUGCTL_RESERVED_BITS (~(0x3fULL)) | 
|  |  | 
|  | static bool erratum_383_found __read_mostly; | 
|  |  | 
|  | static const u32 host_save_user_msrs[] = { | 
|  | #ifdef CONFIG_X86_64 | 
|  | MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE, | 
|  | MSR_FS_BASE, | 
|  | #endif | 
|  | MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, | 
|  | }; | 
|  |  | 
|  | #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs) | 
|  |  | 
|  | struct kvm_vcpu; | 
|  |  | 
|  | struct nested_state { | 
|  | struct vmcb *hsave; | 
|  | u64 hsave_msr; | 
|  | u64 vm_cr_msr; | 
|  | u64 vmcb; | 
|  |  | 
|  | /* These are the merged vectors */ | 
|  | u32 *msrpm; | 
|  |  | 
|  | /* gpa pointers to the real vectors */ | 
|  | u64 vmcb_msrpm; | 
|  | u64 vmcb_iopm; | 
|  |  | 
|  | /* A VMEXIT is required but not yet emulated */ | 
|  | bool exit_required; | 
|  |  | 
|  | /* cache for intercepts of the guest */ | 
|  | u16 intercept_cr_read; | 
|  | u16 intercept_cr_write; | 
|  | u16 intercept_dr_read; | 
|  | u16 intercept_dr_write; | 
|  | u32 intercept_exceptions; | 
|  | u64 intercept; | 
|  |  | 
|  | }; | 
|  |  | 
|  | #define MSRPM_OFFSETS	16 | 
|  | static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; | 
|  |  | 
|  | struct vcpu_svm { | 
|  | struct kvm_vcpu vcpu; | 
|  | struct vmcb *vmcb; | 
|  | unsigned long vmcb_pa; | 
|  | struct svm_cpu_data *svm_data; | 
|  | uint64_t asid_generation; | 
|  | uint64_t sysenter_esp; | 
|  | uint64_t sysenter_eip; | 
|  |  | 
|  | u64 next_rip; | 
|  |  | 
|  | u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS]; | 
|  | u64 host_gs_base; | 
|  |  | 
|  | u32 *msrpm; | 
|  |  | 
|  | struct nested_state nested; | 
|  |  | 
|  | bool nmi_singlestep; | 
|  |  | 
|  | unsigned int3_injected; | 
|  | unsigned long int3_rip; | 
|  | }; | 
|  |  | 
|  | #define MSR_INVALID			0xffffffffU | 
|  |  | 
|  | static struct svm_direct_access_msrs { | 
|  | u32 index;   /* Index of the MSR */ | 
|  | bool always; /* True if intercept is always on */ | 
|  | } direct_access_msrs[] = { | 
|  | { .index = MSR_K6_STAR,				.always = true  }, | 
|  | { .index = MSR_IA32_SYSENTER_CS,		.always = true  }, | 
|  | #ifdef CONFIG_X86_64 | 
|  | { .index = MSR_GS_BASE,				.always = true  }, | 
|  | { .index = MSR_FS_BASE,				.always = true  }, | 
|  | { .index = MSR_KERNEL_GS_BASE,			.always = true  }, | 
|  | { .index = MSR_LSTAR,				.always = true  }, | 
|  | { .index = MSR_CSTAR,				.always = true  }, | 
|  | { .index = MSR_SYSCALL_MASK,			.always = true  }, | 
|  | #endif | 
|  | { .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false }, | 
|  | { .index = MSR_IA32_LASTBRANCHTOIP,		.always = false }, | 
|  | { .index = MSR_IA32_LASTINTFROMIP,		.always = false }, | 
|  | { .index = MSR_IA32_LASTINTTOIP,		.always = false }, | 
|  | { .index = MSR_INVALID,				.always = false }, | 
|  | }; | 
|  |  | 
|  | /* enable NPT for AMD64 and X86 with PAE */ | 
|  | #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) | 
|  | static bool npt_enabled = true; | 
|  | #else | 
|  | static bool npt_enabled; | 
|  | #endif | 
|  | static int npt = 1; | 
|  |  | 
|  | module_param(npt, int, S_IRUGO); | 
|  |  | 
|  | static int nested = 1; | 
|  | module_param(nested, int, S_IRUGO); | 
|  |  | 
|  | static void svm_flush_tlb(struct kvm_vcpu *vcpu); | 
|  | static void svm_complete_interrupts(struct vcpu_svm *svm); | 
|  |  | 
|  | static int nested_svm_exit_handled(struct vcpu_svm *svm); | 
|  | static int nested_svm_intercept(struct vcpu_svm *svm); | 
|  | static int nested_svm_vmexit(struct vcpu_svm *svm); | 
|  | static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr, | 
|  | bool has_error_code, u32 error_code); | 
|  |  | 
|  | static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return container_of(vcpu, struct vcpu_svm, vcpu); | 
|  | } | 
|  |  | 
|  | static inline bool is_nested(struct vcpu_svm *svm) | 
|  | { | 
|  | return svm->nested.vmcb; | 
|  | } | 
|  |  | 
|  | static inline void enable_gif(struct vcpu_svm *svm) | 
|  | { | 
|  | svm->vcpu.arch.hflags |= HF_GIF_MASK; | 
|  | } | 
|  |  | 
|  | static inline void disable_gif(struct vcpu_svm *svm) | 
|  | { | 
|  | svm->vcpu.arch.hflags &= ~HF_GIF_MASK; | 
|  | } | 
|  |  | 
|  | static inline bool gif_set(struct vcpu_svm *svm) | 
|  | { | 
|  | return !!(svm->vcpu.arch.hflags & HF_GIF_MASK); | 
|  | } | 
|  |  | 
|  | static unsigned long iopm_base; | 
|  |  | 
|  | struct kvm_ldttss_desc { | 
|  | u16 limit0; | 
|  | u16 base0; | 
|  | unsigned base1:8, type:5, dpl:2, p:1; | 
|  | unsigned limit1:4, zero0:3, g:1, base2:8; | 
|  | u32 base3; | 
|  | u32 zero1; | 
|  | } __attribute__((packed)); | 
|  |  | 
|  | struct svm_cpu_data { | 
|  | int cpu; | 
|  |  | 
|  | u64 asid_generation; | 
|  | u32 max_asid; | 
|  | u32 next_asid; | 
|  | struct kvm_ldttss_desc *tss_desc; | 
|  |  | 
|  | struct page *save_area; | 
|  | }; | 
|  |  | 
|  | static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data); | 
|  | static uint32_t svm_features; | 
|  |  | 
|  | struct svm_init_data { | 
|  | int cpu; | 
|  | int r; | 
|  | }; | 
|  |  | 
|  | static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; | 
|  |  | 
|  | #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) | 
|  | #define MSRS_RANGE_SIZE 2048 | 
|  | #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) | 
|  |  | 
|  | static u32 svm_msrpm_offset(u32 msr) | 
|  | { | 
|  | u32 offset; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < NUM_MSR_MAPS; i++) { | 
|  | if (msr < msrpm_ranges[i] || | 
|  | msr >= msrpm_ranges[i] + MSRS_IN_RANGE) | 
|  | continue; | 
|  |  | 
|  | offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ | 
|  | offset += (i * MSRS_RANGE_SIZE);       /* add range offset */ | 
|  |  | 
|  | /* Now we have the u8 offset - but need the u32 offset */ | 
|  | return offset / 4; | 
|  | } | 
|  |  | 
|  | /* MSR not in any range */ | 
|  | return MSR_INVALID; | 
|  | } | 
|  |  | 
|  | #define MAX_INST_SIZE 15 | 
|  |  | 
|  | static inline u32 svm_has(u32 feat) | 
|  | { | 
|  | return svm_features & feat; | 
|  | } | 
|  |  | 
|  | static inline void clgi(void) | 
|  | { | 
|  | asm volatile (__ex(SVM_CLGI)); | 
|  | } | 
|  |  | 
|  | static inline void stgi(void) | 
|  | { | 
|  | asm volatile (__ex(SVM_STGI)); | 
|  | } | 
|  |  | 
|  | static inline void invlpga(unsigned long addr, u32 asid) | 
|  | { | 
|  | asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid)); | 
|  | } | 
|  |  | 
|  | static inline void force_new_asid(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | to_svm(vcpu)->asid_generation--; | 
|  | } | 
|  |  | 
|  | static inline void flush_guest_tlb(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | force_new_asid(vcpu); | 
|  | } | 
|  |  | 
|  | static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) | 
|  | { | 
|  | if (!npt_enabled && !(efer & EFER_LMA)) | 
|  | efer &= ~EFER_LME; | 
|  |  | 
|  | to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME; | 
|  | vcpu->arch.efer = efer; | 
|  | } | 
|  |  | 
|  | static int is_external_interrupt(u32 info) | 
|  | { | 
|  | info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID; | 
|  | return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR); | 
|  | } | 
|  |  | 
|  | static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | u32 ret = 0; | 
|  |  | 
|  | if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) | 
|  | ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; | 
|  | return ret & mask; | 
|  | } | 
|  |  | 
|  | static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | if (mask == 0) | 
|  | svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; | 
|  | else | 
|  | svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; | 
|  |  | 
|  | } | 
|  |  | 
|  | static void skip_emulated_instruction(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | if (svm->vmcb->control.next_rip != 0) | 
|  | svm->next_rip = svm->vmcb->control.next_rip; | 
|  |  | 
|  | if (!svm->next_rip) { | 
|  | if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) != | 
|  | EMULATE_DONE) | 
|  | printk(KERN_DEBUG "%s: NOP\n", __func__); | 
|  | return; | 
|  | } | 
|  | if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE) | 
|  | printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n", | 
|  | __func__, kvm_rip_read(vcpu), svm->next_rip); | 
|  |  | 
|  | kvm_rip_write(vcpu, svm->next_rip); | 
|  | svm_set_interrupt_shadow(vcpu, 0); | 
|  | } | 
|  |  | 
|  | static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr, | 
|  | bool has_error_code, u32 error_code, | 
|  | bool reinject) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | /* | 
|  | * If we are within a nested VM we'd better #VMEXIT and let the guest | 
|  | * handle the exception | 
|  | */ | 
|  | if (!reinject && | 
|  | nested_svm_check_exception(svm, nr, has_error_code, error_code)) | 
|  | return; | 
|  |  | 
|  | if (nr == BP_VECTOR && !svm_has(SVM_FEATURE_NRIP)) { | 
|  | unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu); | 
|  |  | 
|  | /* | 
|  | * For guest debugging where we have to reinject #BP if some | 
|  | * INT3 is guest-owned: | 
|  | * Emulate nRIP by moving RIP forward. Will fail if injection | 
|  | * raises a fault that is not intercepted. Still better than | 
|  | * failing in all cases. | 
|  | */ | 
|  | skip_emulated_instruction(&svm->vcpu); | 
|  | rip = kvm_rip_read(&svm->vcpu); | 
|  | svm->int3_rip = rip + svm->vmcb->save.cs.base; | 
|  | svm->int3_injected = rip - old_rip; | 
|  | } | 
|  |  | 
|  | svm->vmcb->control.event_inj = nr | 
|  | | SVM_EVTINJ_VALID | 
|  | | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0) | 
|  | | SVM_EVTINJ_TYPE_EXEPT; | 
|  | svm->vmcb->control.event_inj_err = error_code; | 
|  | } | 
|  |  | 
|  | static void svm_init_erratum_383(void) | 
|  | { | 
|  | u32 low, high; | 
|  | int err; | 
|  | u64 val; | 
|  |  | 
|  | /* Only Fam10h is affected */ | 
|  | if (boot_cpu_data.x86 != 0x10) | 
|  | return; | 
|  |  | 
|  | /* Use _safe variants to not break nested virtualization */ | 
|  | val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); | 
|  | if (err) | 
|  | return; | 
|  |  | 
|  | val |= (1ULL << 47); | 
|  |  | 
|  | low  = lower_32_bits(val); | 
|  | high = upper_32_bits(val); | 
|  |  | 
|  | native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); | 
|  |  | 
|  | erratum_383_found = true; | 
|  | } | 
|  |  | 
|  | static int has_svm(void) | 
|  | { | 
|  | const char *msg; | 
|  |  | 
|  | if (!cpu_has_svm(&msg)) { | 
|  | printk(KERN_INFO "has_svm: %s\n", msg); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void svm_hardware_disable(void *garbage) | 
|  | { | 
|  | cpu_svm_disable(); | 
|  | } | 
|  |  | 
|  | static int svm_hardware_enable(void *garbage) | 
|  | { | 
|  |  | 
|  | struct svm_cpu_data *sd; | 
|  | uint64_t efer; | 
|  | struct desc_ptr gdt_descr; | 
|  | struct desc_struct *gdt; | 
|  | int me = raw_smp_processor_id(); | 
|  |  | 
|  | rdmsrl(MSR_EFER, efer); | 
|  | if (efer & EFER_SVME) | 
|  | return -EBUSY; | 
|  |  | 
|  | if (!has_svm()) { | 
|  | printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n", | 
|  | me); | 
|  | return -EINVAL; | 
|  | } | 
|  | sd = per_cpu(svm_data, me); | 
|  |  | 
|  | if (!sd) { | 
|  | printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n", | 
|  | me); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | sd->asid_generation = 1; | 
|  | sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; | 
|  | sd->next_asid = sd->max_asid + 1; | 
|  |  | 
|  | native_store_gdt(&gdt_descr); | 
|  | gdt = (struct desc_struct *)gdt_descr.address; | 
|  | sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); | 
|  |  | 
|  | wrmsrl(MSR_EFER, efer | EFER_SVME); | 
|  |  | 
|  | wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT); | 
|  |  | 
|  | svm_init_erratum_383(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void svm_cpu_uninit(int cpu) | 
|  | { | 
|  | struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id()); | 
|  |  | 
|  | if (!sd) | 
|  | return; | 
|  |  | 
|  | per_cpu(svm_data, raw_smp_processor_id()) = NULL; | 
|  | __free_page(sd->save_area); | 
|  | kfree(sd); | 
|  | } | 
|  |  | 
|  | static int svm_cpu_init(int cpu) | 
|  | { | 
|  | struct svm_cpu_data *sd; | 
|  | int r; | 
|  |  | 
|  | sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL); | 
|  | if (!sd) | 
|  | return -ENOMEM; | 
|  | sd->cpu = cpu; | 
|  | sd->save_area = alloc_page(GFP_KERNEL); | 
|  | r = -ENOMEM; | 
|  | if (!sd->save_area) | 
|  | goto err_1; | 
|  |  | 
|  | per_cpu(svm_data, cpu) = sd; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_1: | 
|  | kfree(sd); | 
|  | return r; | 
|  |  | 
|  | } | 
|  |  | 
|  | static bool valid_msr_intercept(u32 index) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) | 
|  | if (direct_access_msrs[i].index == index) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void set_msr_interception(u32 *msrpm, unsigned msr, | 
|  | int read, int write) | 
|  | { | 
|  | u8 bit_read, bit_write; | 
|  | unsigned long tmp; | 
|  | u32 offset; | 
|  |  | 
|  | /* | 
|  | * If this warning triggers extend the direct_access_msrs list at the | 
|  | * beginning of the file | 
|  | */ | 
|  | WARN_ON(!valid_msr_intercept(msr)); | 
|  |  | 
|  | offset    = svm_msrpm_offset(msr); | 
|  | bit_read  = 2 * (msr & 0x0f); | 
|  | bit_write = 2 * (msr & 0x0f) + 1; | 
|  | tmp       = msrpm[offset]; | 
|  |  | 
|  | BUG_ON(offset == MSR_INVALID); | 
|  |  | 
|  | read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp); | 
|  | write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); | 
|  |  | 
|  | msrpm[offset] = tmp; | 
|  | } | 
|  |  | 
|  | static void svm_vcpu_init_msrpm(u32 *msrpm) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER)); | 
|  |  | 
|  | for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { | 
|  | if (!direct_access_msrs[i].always) | 
|  | continue; | 
|  |  | 
|  | set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void add_msr_offset(u32 offset) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < MSRPM_OFFSETS; ++i) { | 
|  |  | 
|  | /* Offset already in list? */ | 
|  | if (msrpm_offsets[i] == offset) | 
|  | return; | 
|  |  | 
|  | /* Slot used by another offset? */ | 
|  | if (msrpm_offsets[i] != MSR_INVALID) | 
|  | continue; | 
|  |  | 
|  | /* Add offset to list */ | 
|  | msrpm_offsets[i] = offset; | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this BUG triggers the msrpm_offsets table has an overflow. Just | 
|  | * increase MSRPM_OFFSETS in this case. | 
|  | */ | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | static void init_msrpm_offsets(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); | 
|  |  | 
|  | for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { | 
|  | u32 offset; | 
|  |  | 
|  | offset = svm_msrpm_offset(direct_access_msrs[i].index); | 
|  | BUG_ON(offset == MSR_INVALID); | 
|  |  | 
|  | add_msr_offset(offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void svm_enable_lbrv(struct vcpu_svm *svm) | 
|  | { | 
|  | u32 *msrpm = svm->msrpm; | 
|  |  | 
|  | svm->vmcb->control.lbr_ctl = 1; | 
|  | set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); | 
|  | set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); | 
|  | set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); | 
|  | set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1); | 
|  | } | 
|  |  | 
|  | static void svm_disable_lbrv(struct vcpu_svm *svm) | 
|  | { | 
|  | u32 *msrpm = svm->msrpm; | 
|  |  | 
|  | svm->vmcb->control.lbr_ctl = 0; | 
|  | set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); | 
|  | set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); | 
|  | set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); | 
|  | set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0); | 
|  | } | 
|  |  | 
|  | static __init int svm_hardware_setup(void) | 
|  | { | 
|  | int cpu; | 
|  | struct page *iopm_pages; | 
|  | void *iopm_va; | 
|  | int r; | 
|  |  | 
|  | iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER); | 
|  |  | 
|  | if (!iopm_pages) | 
|  | return -ENOMEM; | 
|  |  | 
|  | iopm_va = page_address(iopm_pages); | 
|  | memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER)); | 
|  | iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; | 
|  |  | 
|  | init_msrpm_offsets(); | 
|  |  | 
|  | if (boot_cpu_has(X86_FEATURE_NX)) | 
|  | kvm_enable_efer_bits(EFER_NX); | 
|  |  | 
|  | if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) | 
|  | kvm_enable_efer_bits(EFER_FFXSR); | 
|  |  | 
|  | if (nested) { | 
|  | printk(KERN_INFO "kvm: Nested Virtualization enabled\n"); | 
|  | kvm_enable_efer_bits(EFER_SVME); | 
|  | } | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | r = svm_cpu_init(cpu); | 
|  | if (r) | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | svm_features = cpuid_edx(SVM_CPUID_FUNC); | 
|  |  | 
|  | if (!svm_has(SVM_FEATURE_NPT)) | 
|  | npt_enabled = false; | 
|  |  | 
|  | if (npt_enabled && !npt) { | 
|  | printk(KERN_INFO "kvm: Nested Paging disabled\n"); | 
|  | npt_enabled = false; | 
|  | } | 
|  |  | 
|  | if (npt_enabled) { | 
|  | printk(KERN_INFO "kvm: Nested Paging enabled\n"); | 
|  | kvm_enable_tdp(); | 
|  | } else | 
|  | kvm_disable_tdp(); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err: | 
|  | __free_pages(iopm_pages, IOPM_ALLOC_ORDER); | 
|  | iopm_base = 0; | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static __exit void svm_hardware_unsetup(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) | 
|  | svm_cpu_uninit(cpu); | 
|  |  | 
|  | __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER); | 
|  | iopm_base = 0; | 
|  | } | 
|  |  | 
|  | static void init_seg(struct vmcb_seg *seg) | 
|  | { | 
|  | seg->selector = 0; | 
|  | seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | | 
|  | SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ | 
|  | seg->limit = 0xffff; | 
|  | seg->base = 0; | 
|  | } | 
|  |  | 
|  | static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) | 
|  | { | 
|  | seg->selector = 0; | 
|  | seg->attrib = SVM_SELECTOR_P_MASK | type; | 
|  | seg->limit = 0xffff; | 
|  | seg->base = 0; | 
|  | } | 
|  |  | 
|  | static void init_vmcb(struct vcpu_svm *svm) | 
|  | { | 
|  | struct vmcb_control_area *control = &svm->vmcb->control; | 
|  | struct vmcb_save_area *save = &svm->vmcb->save; | 
|  |  | 
|  | svm->vcpu.fpu_active = 1; | 
|  |  | 
|  | control->intercept_cr_read =	INTERCEPT_CR0_MASK | | 
|  | INTERCEPT_CR3_MASK | | 
|  | INTERCEPT_CR4_MASK; | 
|  |  | 
|  | control->intercept_cr_write =	INTERCEPT_CR0_MASK | | 
|  | INTERCEPT_CR3_MASK | | 
|  | INTERCEPT_CR4_MASK | | 
|  | INTERCEPT_CR8_MASK; | 
|  |  | 
|  | control->intercept_dr_read =	INTERCEPT_DR0_MASK | | 
|  | INTERCEPT_DR1_MASK | | 
|  | INTERCEPT_DR2_MASK | | 
|  | INTERCEPT_DR3_MASK | | 
|  | INTERCEPT_DR4_MASK | | 
|  | INTERCEPT_DR5_MASK | | 
|  | INTERCEPT_DR6_MASK | | 
|  | INTERCEPT_DR7_MASK; | 
|  |  | 
|  | control->intercept_dr_write =	INTERCEPT_DR0_MASK | | 
|  | INTERCEPT_DR1_MASK | | 
|  | INTERCEPT_DR2_MASK | | 
|  | INTERCEPT_DR3_MASK | | 
|  | INTERCEPT_DR4_MASK | | 
|  | INTERCEPT_DR5_MASK | | 
|  | INTERCEPT_DR6_MASK | | 
|  | INTERCEPT_DR7_MASK; | 
|  |  | 
|  | control->intercept_exceptions = (1 << PF_VECTOR) | | 
|  | (1 << UD_VECTOR) | | 
|  | (1 << MC_VECTOR); | 
|  |  | 
|  |  | 
|  | control->intercept =	(1ULL << INTERCEPT_INTR) | | 
|  | (1ULL << INTERCEPT_NMI) | | 
|  | (1ULL << INTERCEPT_SMI) | | 
|  | (1ULL << INTERCEPT_SELECTIVE_CR0) | | 
|  | (1ULL << INTERCEPT_CPUID) | | 
|  | (1ULL << INTERCEPT_INVD) | | 
|  | (1ULL << INTERCEPT_HLT) | | 
|  | (1ULL << INTERCEPT_INVLPG) | | 
|  | (1ULL << INTERCEPT_INVLPGA) | | 
|  | (1ULL << INTERCEPT_IOIO_PROT) | | 
|  | (1ULL << INTERCEPT_MSR_PROT) | | 
|  | (1ULL << INTERCEPT_TASK_SWITCH) | | 
|  | (1ULL << INTERCEPT_SHUTDOWN) | | 
|  | (1ULL << INTERCEPT_VMRUN) | | 
|  | (1ULL << INTERCEPT_VMMCALL) | | 
|  | (1ULL << INTERCEPT_VMLOAD) | | 
|  | (1ULL << INTERCEPT_VMSAVE) | | 
|  | (1ULL << INTERCEPT_STGI) | | 
|  | (1ULL << INTERCEPT_CLGI) | | 
|  | (1ULL << INTERCEPT_SKINIT) | | 
|  | (1ULL << INTERCEPT_WBINVD) | | 
|  | (1ULL << INTERCEPT_MONITOR) | | 
|  | (1ULL << INTERCEPT_MWAIT); | 
|  |  | 
|  | control->iopm_base_pa = iopm_base; | 
|  | control->msrpm_base_pa = __pa(svm->msrpm); | 
|  | control->tsc_offset = 0; | 
|  | control->int_ctl = V_INTR_MASKING_MASK; | 
|  |  | 
|  | init_seg(&save->es); | 
|  | init_seg(&save->ss); | 
|  | init_seg(&save->ds); | 
|  | init_seg(&save->fs); | 
|  | init_seg(&save->gs); | 
|  |  | 
|  | save->cs.selector = 0xf000; | 
|  | /* Executable/Readable Code Segment */ | 
|  | save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | | 
|  | SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; | 
|  | save->cs.limit = 0xffff; | 
|  | /* | 
|  | * cs.base should really be 0xffff0000, but vmx can't handle that, so | 
|  | * be consistent with it. | 
|  | * | 
|  | * Replace when we have real mode working for vmx. | 
|  | */ | 
|  | save->cs.base = 0xf0000; | 
|  |  | 
|  | save->gdtr.limit = 0xffff; | 
|  | save->idtr.limit = 0xffff; | 
|  |  | 
|  | init_sys_seg(&save->ldtr, SEG_TYPE_LDT); | 
|  | init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); | 
|  |  | 
|  | save->efer = EFER_SVME; | 
|  | save->dr6 = 0xffff0ff0; | 
|  | save->dr7 = 0x400; | 
|  | save->rflags = 2; | 
|  | save->rip = 0x0000fff0; | 
|  | svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip; | 
|  |  | 
|  | /* | 
|  | * This is the guest-visible cr0 value. | 
|  | * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0. | 
|  | */ | 
|  | svm->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET; | 
|  | kvm_set_cr0(&svm->vcpu, svm->vcpu.arch.cr0); | 
|  |  | 
|  | save->cr4 = X86_CR4_PAE; | 
|  | /* rdx = ?? */ | 
|  |  | 
|  | if (npt_enabled) { | 
|  | /* Setup VMCB for Nested Paging */ | 
|  | control->nested_ctl = 1; | 
|  | control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) | | 
|  | (1ULL << INTERCEPT_INVLPG)); | 
|  | control->intercept_exceptions &= ~(1 << PF_VECTOR); | 
|  | control->intercept_cr_read &= ~INTERCEPT_CR3_MASK; | 
|  | control->intercept_cr_write &= ~INTERCEPT_CR3_MASK; | 
|  | save->g_pat = 0x0007040600070406ULL; | 
|  | save->cr3 = 0; | 
|  | save->cr4 = 0; | 
|  | } | 
|  | force_new_asid(&svm->vcpu); | 
|  |  | 
|  | svm->nested.vmcb = 0; | 
|  | svm->vcpu.arch.hflags = 0; | 
|  |  | 
|  | if (svm_has(SVM_FEATURE_PAUSE_FILTER)) { | 
|  | control->pause_filter_count = 3000; | 
|  | control->intercept |= (1ULL << INTERCEPT_PAUSE); | 
|  | } | 
|  |  | 
|  | enable_gif(svm); | 
|  | } | 
|  |  | 
|  | static int svm_vcpu_reset(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | init_vmcb(svm); | 
|  |  | 
|  | if (!kvm_vcpu_is_bsp(vcpu)) { | 
|  | kvm_rip_write(vcpu, 0); | 
|  | svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12; | 
|  | svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8; | 
|  | } | 
|  | vcpu->arch.regs_avail = ~0; | 
|  | vcpu->arch.regs_dirty = ~0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id) | 
|  | { | 
|  | struct vcpu_svm *svm; | 
|  | struct page *page; | 
|  | struct page *msrpm_pages; | 
|  | struct page *hsave_page; | 
|  | struct page *nested_msrpm_pages; | 
|  | int err; | 
|  |  | 
|  | svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); | 
|  | if (!svm) { | 
|  | err = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | err = kvm_vcpu_init(&svm->vcpu, kvm, id); | 
|  | if (err) | 
|  | goto free_svm; | 
|  |  | 
|  | err = -ENOMEM; | 
|  | page = alloc_page(GFP_KERNEL); | 
|  | if (!page) | 
|  | goto uninit; | 
|  |  | 
|  | msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER); | 
|  | if (!msrpm_pages) | 
|  | goto free_page1; | 
|  |  | 
|  | nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER); | 
|  | if (!nested_msrpm_pages) | 
|  | goto free_page2; | 
|  |  | 
|  | hsave_page = alloc_page(GFP_KERNEL); | 
|  | if (!hsave_page) | 
|  | goto free_page3; | 
|  |  | 
|  | svm->nested.hsave = page_address(hsave_page); | 
|  |  | 
|  | svm->msrpm = page_address(msrpm_pages); | 
|  | svm_vcpu_init_msrpm(svm->msrpm); | 
|  |  | 
|  | svm->nested.msrpm = page_address(nested_msrpm_pages); | 
|  | svm_vcpu_init_msrpm(svm->nested.msrpm); | 
|  |  | 
|  | svm->vmcb = page_address(page); | 
|  | clear_page(svm->vmcb); | 
|  | svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT; | 
|  | svm->asid_generation = 0; | 
|  | init_vmcb(svm); | 
|  |  | 
|  | fx_init(&svm->vcpu); | 
|  | svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE; | 
|  | if (kvm_vcpu_is_bsp(&svm->vcpu)) | 
|  | svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP; | 
|  |  | 
|  | return &svm->vcpu; | 
|  |  | 
|  | free_page3: | 
|  | __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER); | 
|  | free_page2: | 
|  | __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER); | 
|  | free_page1: | 
|  | __free_page(page); | 
|  | uninit: | 
|  | kvm_vcpu_uninit(&svm->vcpu); | 
|  | free_svm: | 
|  | kmem_cache_free(kvm_vcpu_cache, svm); | 
|  | out: | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | static void svm_free_vcpu(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT)); | 
|  | __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER); | 
|  | __free_page(virt_to_page(svm->nested.hsave)); | 
|  | __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER); | 
|  | kvm_vcpu_uninit(vcpu); | 
|  | kmem_cache_free(kvm_vcpu_cache, svm); | 
|  | } | 
|  |  | 
|  | static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | int i; | 
|  |  | 
|  | if (unlikely(cpu != vcpu->cpu)) { | 
|  | u64 delta; | 
|  |  | 
|  | if (check_tsc_unstable()) { | 
|  | /* | 
|  | * Make sure that the guest sees a monotonically | 
|  | * increasing TSC. | 
|  | */ | 
|  | delta = vcpu->arch.host_tsc - native_read_tsc(); | 
|  | svm->vmcb->control.tsc_offset += delta; | 
|  | if (is_nested(svm)) | 
|  | svm->nested.hsave->control.tsc_offset += delta; | 
|  | } | 
|  | vcpu->cpu = cpu; | 
|  | kvm_migrate_timers(vcpu); | 
|  | svm->asid_generation = 0; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) | 
|  | rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); | 
|  | } | 
|  |  | 
|  | static void svm_vcpu_put(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | int i; | 
|  |  | 
|  | ++vcpu->stat.host_state_reload; | 
|  | for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) | 
|  | wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); | 
|  |  | 
|  | vcpu->arch.host_tsc = native_read_tsc(); | 
|  | } | 
|  |  | 
|  | static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return to_svm(vcpu)->vmcb->save.rflags; | 
|  | } | 
|  |  | 
|  | static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) | 
|  | { | 
|  | to_svm(vcpu)->vmcb->save.rflags = rflags; | 
|  | } | 
|  |  | 
|  | static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) | 
|  | { | 
|  | switch (reg) { | 
|  | case VCPU_EXREG_PDPTR: | 
|  | BUG_ON(!npt_enabled); | 
|  | load_pdptrs(vcpu, vcpu->arch.cr3); | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void svm_set_vintr(struct vcpu_svm *svm) | 
|  | { | 
|  | svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR; | 
|  | } | 
|  |  | 
|  | static void svm_clear_vintr(struct vcpu_svm *svm) | 
|  | { | 
|  | svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR); | 
|  | } | 
|  |  | 
|  | static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) | 
|  | { | 
|  | struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; | 
|  |  | 
|  | switch (seg) { | 
|  | case VCPU_SREG_CS: return &save->cs; | 
|  | case VCPU_SREG_DS: return &save->ds; | 
|  | case VCPU_SREG_ES: return &save->es; | 
|  | case VCPU_SREG_FS: return &save->fs; | 
|  | case VCPU_SREG_GS: return &save->gs; | 
|  | case VCPU_SREG_SS: return &save->ss; | 
|  | case VCPU_SREG_TR: return &save->tr; | 
|  | case VCPU_SREG_LDTR: return &save->ldtr; | 
|  | } | 
|  | BUG(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) | 
|  | { | 
|  | struct vmcb_seg *s = svm_seg(vcpu, seg); | 
|  |  | 
|  | return s->base; | 
|  | } | 
|  |  | 
|  | static void svm_get_segment(struct kvm_vcpu *vcpu, | 
|  | struct kvm_segment *var, int seg) | 
|  | { | 
|  | struct vmcb_seg *s = svm_seg(vcpu, seg); | 
|  |  | 
|  | var->base = s->base; | 
|  | var->limit = s->limit; | 
|  | var->selector = s->selector; | 
|  | var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; | 
|  | var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; | 
|  | var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; | 
|  | var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; | 
|  | var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; | 
|  | var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; | 
|  | var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; | 
|  | var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1; | 
|  |  | 
|  | /* | 
|  | * AMD's VMCB does not have an explicit unusable field, so emulate it | 
|  | * for cross vendor migration purposes by "not present" | 
|  | */ | 
|  | var->unusable = !var->present || (var->type == 0); | 
|  |  | 
|  | switch (seg) { | 
|  | case VCPU_SREG_CS: | 
|  | /* | 
|  | * SVM always stores 0 for the 'G' bit in the CS selector in | 
|  | * the VMCB on a VMEXIT. This hurts cross-vendor migration: | 
|  | * Intel's VMENTRY has a check on the 'G' bit. | 
|  | */ | 
|  | var->g = s->limit > 0xfffff; | 
|  | break; | 
|  | case VCPU_SREG_TR: | 
|  | /* | 
|  | * Work around a bug where the busy flag in the tr selector | 
|  | * isn't exposed | 
|  | */ | 
|  | var->type |= 0x2; | 
|  | break; | 
|  | case VCPU_SREG_DS: | 
|  | case VCPU_SREG_ES: | 
|  | case VCPU_SREG_FS: | 
|  | case VCPU_SREG_GS: | 
|  | /* | 
|  | * The accessed bit must always be set in the segment | 
|  | * descriptor cache, although it can be cleared in the | 
|  | * descriptor, the cached bit always remains at 1. Since | 
|  | * Intel has a check on this, set it here to support | 
|  | * cross-vendor migration. | 
|  | */ | 
|  | if (!var->unusable) | 
|  | var->type |= 0x1; | 
|  | break; | 
|  | case VCPU_SREG_SS: | 
|  | /* | 
|  | * On AMD CPUs sometimes the DB bit in the segment | 
|  | * descriptor is left as 1, although the whole segment has | 
|  | * been made unusable. Clear it here to pass an Intel VMX | 
|  | * entry check when cross vendor migrating. | 
|  | */ | 
|  | if (var->unusable) | 
|  | var->db = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int svm_get_cpl(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; | 
|  |  | 
|  | return save->cpl; | 
|  | } | 
|  |  | 
|  | static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | dt->size = svm->vmcb->save.idtr.limit; | 
|  | dt->address = svm->vmcb->save.idtr.base; | 
|  | } | 
|  |  | 
|  | static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | svm->vmcb->save.idtr.limit = dt->size; | 
|  | svm->vmcb->save.idtr.base = dt->address ; | 
|  | } | 
|  |  | 
|  | static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | dt->size = svm->vmcb->save.gdtr.limit; | 
|  | dt->address = svm->vmcb->save.gdtr.base; | 
|  | } | 
|  |  | 
|  | static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | svm->vmcb->save.gdtr.limit = dt->size; | 
|  | svm->vmcb->save.gdtr.base = dt->address ; | 
|  | } | 
|  |  | 
|  | static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void update_cr0_intercept(struct vcpu_svm *svm) | 
|  | { | 
|  | struct vmcb *vmcb = svm->vmcb; | 
|  | ulong gcr0 = svm->vcpu.arch.cr0; | 
|  | u64 *hcr0 = &svm->vmcb->save.cr0; | 
|  |  | 
|  | if (!svm->vcpu.fpu_active) | 
|  | *hcr0 |= SVM_CR0_SELECTIVE_MASK; | 
|  | else | 
|  | *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK) | 
|  | | (gcr0 & SVM_CR0_SELECTIVE_MASK); | 
|  |  | 
|  |  | 
|  | if (gcr0 == *hcr0 && svm->vcpu.fpu_active) { | 
|  | vmcb->control.intercept_cr_read &= ~INTERCEPT_CR0_MASK; | 
|  | vmcb->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK; | 
|  | if (is_nested(svm)) { | 
|  | struct vmcb *hsave = svm->nested.hsave; | 
|  |  | 
|  | hsave->control.intercept_cr_read  &= ~INTERCEPT_CR0_MASK; | 
|  | hsave->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK; | 
|  | vmcb->control.intercept_cr_read  |= svm->nested.intercept_cr_read; | 
|  | vmcb->control.intercept_cr_write |= svm->nested.intercept_cr_write; | 
|  | } | 
|  | } else { | 
|  | svm->vmcb->control.intercept_cr_read |= INTERCEPT_CR0_MASK; | 
|  | svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR0_MASK; | 
|  | if (is_nested(svm)) { | 
|  | struct vmcb *hsave = svm->nested.hsave; | 
|  |  | 
|  | hsave->control.intercept_cr_read |= INTERCEPT_CR0_MASK; | 
|  | hsave->control.intercept_cr_write |= INTERCEPT_CR0_MASK; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | if (is_nested(svm)) { | 
|  | /* | 
|  | * We are here because we run in nested mode, the host kvm | 
|  | * intercepts cr0 writes but the l1 hypervisor does not. | 
|  | * But the L1 hypervisor may intercept selective cr0 writes. | 
|  | * This needs to be checked here. | 
|  | */ | 
|  | unsigned long old, new; | 
|  |  | 
|  | /* Remove bits that would trigger a real cr0 write intercept */ | 
|  | old = vcpu->arch.cr0 & SVM_CR0_SELECTIVE_MASK; | 
|  | new = cr0 & SVM_CR0_SELECTIVE_MASK; | 
|  |  | 
|  | if (old == new) { | 
|  | /* cr0 write with ts and mp unchanged */ | 
|  | svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; | 
|  | if (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE) | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | if (vcpu->arch.efer & EFER_LME) { | 
|  | if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { | 
|  | vcpu->arch.efer |= EFER_LMA; | 
|  | svm->vmcb->save.efer |= EFER_LMA | EFER_LME; | 
|  | } | 
|  |  | 
|  | if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { | 
|  | vcpu->arch.efer &= ~EFER_LMA; | 
|  | svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | vcpu->arch.cr0 = cr0; | 
|  |  | 
|  | if (!npt_enabled) | 
|  | cr0 |= X86_CR0_PG | X86_CR0_WP; | 
|  |  | 
|  | if (!vcpu->fpu_active) | 
|  | cr0 |= X86_CR0_TS; | 
|  | /* | 
|  | * re-enable caching here because the QEMU bios | 
|  | * does not do it - this results in some delay at | 
|  | * reboot | 
|  | */ | 
|  | cr0 &= ~(X86_CR0_CD | X86_CR0_NW); | 
|  | svm->vmcb->save.cr0 = cr0; | 
|  | update_cr0_intercept(svm); | 
|  | } | 
|  |  | 
|  | static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) | 
|  | { | 
|  | unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE; | 
|  | unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4; | 
|  |  | 
|  | if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) | 
|  | force_new_asid(vcpu); | 
|  |  | 
|  | vcpu->arch.cr4 = cr4; | 
|  | if (!npt_enabled) | 
|  | cr4 |= X86_CR4_PAE; | 
|  | cr4 |= host_cr4_mce; | 
|  | to_svm(vcpu)->vmcb->save.cr4 = cr4; | 
|  | } | 
|  |  | 
|  | static void svm_set_segment(struct kvm_vcpu *vcpu, | 
|  | struct kvm_segment *var, int seg) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | struct vmcb_seg *s = svm_seg(vcpu, seg); | 
|  |  | 
|  | s->base = var->base; | 
|  | s->limit = var->limit; | 
|  | s->selector = var->selector; | 
|  | if (var->unusable) | 
|  | s->attrib = 0; | 
|  | else { | 
|  | s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); | 
|  | s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; | 
|  | s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; | 
|  | s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT; | 
|  | s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; | 
|  | s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; | 
|  | s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; | 
|  | s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; | 
|  | } | 
|  | if (seg == VCPU_SREG_CS) | 
|  | svm->vmcb->save.cpl | 
|  | = (svm->vmcb->save.cs.attrib | 
|  | >> SVM_SELECTOR_DPL_SHIFT) & 3; | 
|  |  | 
|  | } | 
|  |  | 
|  | static void update_db_intercept(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | svm->vmcb->control.intercept_exceptions &= | 
|  | ~((1 << DB_VECTOR) | (1 << BP_VECTOR)); | 
|  |  | 
|  | if (svm->nmi_singlestep) | 
|  | svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR); | 
|  |  | 
|  | if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { | 
|  | if (vcpu->guest_debug & | 
|  | (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) | 
|  | svm->vmcb->control.intercept_exceptions |= | 
|  | 1 << DB_VECTOR; | 
|  | if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) | 
|  | svm->vmcb->control.intercept_exceptions |= | 
|  | 1 << BP_VECTOR; | 
|  | } else | 
|  | vcpu->guest_debug = 0; | 
|  | } | 
|  |  | 
|  | static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) | 
|  | svm->vmcb->save.dr7 = dbg->arch.debugreg[7]; | 
|  | else | 
|  | svm->vmcb->save.dr7 = vcpu->arch.dr7; | 
|  |  | 
|  | update_db_intercept(vcpu); | 
|  | } | 
|  |  | 
|  | static void load_host_msrs(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | #ifdef CONFIG_X86_64 | 
|  | wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void save_host_msrs(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | #ifdef CONFIG_X86_64 | 
|  | rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) | 
|  | { | 
|  | if (sd->next_asid > sd->max_asid) { | 
|  | ++sd->asid_generation; | 
|  | sd->next_asid = 1; | 
|  | svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; | 
|  | } | 
|  |  | 
|  | svm->asid_generation = sd->asid_generation; | 
|  | svm->vmcb->control.asid = sd->next_asid++; | 
|  | } | 
|  |  | 
|  | static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | svm->vmcb->save.dr7 = value; | 
|  | } | 
|  |  | 
|  | static int pf_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | u64 fault_address; | 
|  | u32 error_code; | 
|  |  | 
|  | fault_address  = svm->vmcb->control.exit_info_2; | 
|  | error_code = svm->vmcb->control.exit_info_1; | 
|  |  | 
|  | trace_kvm_page_fault(fault_address, error_code); | 
|  | if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu)) | 
|  | kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address); | 
|  | return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code); | 
|  | } | 
|  |  | 
|  | static int db_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | struct kvm_run *kvm_run = svm->vcpu.run; | 
|  |  | 
|  | if (!(svm->vcpu.guest_debug & | 
|  | (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && | 
|  | !svm->nmi_singlestep) { | 
|  | kvm_queue_exception(&svm->vcpu, DB_VECTOR); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (svm->nmi_singlestep) { | 
|  | svm->nmi_singlestep = false; | 
|  | if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) | 
|  | svm->vmcb->save.rflags &= | 
|  | ~(X86_EFLAGS_TF | X86_EFLAGS_RF); | 
|  | update_db_intercept(&svm->vcpu); | 
|  | } | 
|  |  | 
|  | if (svm->vcpu.guest_debug & | 
|  | (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { | 
|  | kvm_run->exit_reason = KVM_EXIT_DEBUG; | 
|  | kvm_run->debug.arch.pc = | 
|  | svm->vmcb->save.cs.base + svm->vmcb->save.rip; | 
|  | kvm_run->debug.arch.exception = DB_VECTOR; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int bp_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | struct kvm_run *kvm_run = svm->vcpu.run; | 
|  |  | 
|  | kvm_run->exit_reason = KVM_EXIT_DEBUG; | 
|  | kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; | 
|  | kvm_run->debug.arch.exception = BP_VECTOR; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ud_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | int er; | 
|  |  | 
|  | er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD); | 
|  | if (er != EMULATE_DONE) | 
|  | kvm_queue_exception(&svm->vcpu, UD_VECTOR); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void svm_fpu_activate(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | u32 excp; | 
|  |  | 
|  | if (is_nested(svm)) { | 
|  | u32 h_excp, n_excp; | 
|  |  | 
|  | h_excp  = svm->nested.hsave->control.intercept_exceptions; | 
|  | n_excp  = svm->nested.intercept_exceptions; | 
|  | h_excp &= ~(1 << NM_VECTOR); | 
|  | excp    = h_excp | n_excp; | 
|  | } else { | 
|  | excp  = svm->vmcb->control.intercept_exceptions; | 
|  | excp &= ~(1 << NM_VECTOR); | 
|  | } | 
|  |  | 
|  | svm->vmcb->control.intercept_exceptions = excp; | 
|  |  | 
|  | svm->vcpu.fpu_active = 1; | 
|  | update_cr0_intercept(svm); | 
|  | } | 
|  |  | 
|  | static int nm_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | svm_fpu_activate(&svm->vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static bool is_erratum_383(void) | 
|  | { | 
|  | int err, i; | 
|  | u64 value; | 
|  |  | 
|  | if (!erratum_383_found) | 
|  | return false; | 
|  |  | 
|  | value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); | 
|  | if (err) | 
|  | return false; | 
|  |  | 
|  | /* Bit 62 may or may not be set for this mce */ | 
|  | value &= ~(1ULL << 62); | 
|  |  | 
|  | if (value != 0xb600000000010015ULL) | 
|  | return false; | 
|  |  | 
|  | /* Clear MCi_STATUS registers */ | 
|  | for (i = 0; i < 6; ++i) | 
|  | native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); | 
|  |  | 
|  | value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); | 
|  | if (!err) { | 
|  | u32 low, high; | 
|  |  | 
|  | value &= ~(1ULL << 2); | 
|  | low    = lower_32_bits(value); | 
|  | high   = upper_32_bits(value); | 
|  |  | 
|  | native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); | 
|  | } | 
|  |  | 
|  | /* Flush tlb to evict multi-match entries */ | 
|  | __flush_tlb_all(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void svm_handle_mce(struct vcpu_svm *svm) | 
|  | { | 
|  | if (is_erratum_383()) { | 
|  | /* | 
|  | * Erratum 383 triggered. Guest state is corrupt so kill the | 
|  | * guest. | 
|  | */ | 
|  | pr_err("KVM: Guest triggered AMD Erratum 383\n"); | 
|  |  | 
|  | set_bit(KVM_REQ_TRIPLE_FAULT, &svm->vcpu.requests); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * On an #MC intercept the MCE handler is not called automatically in | 
|  | * the host. So do it by hand here. | 
|  | */ | 
|  | asm volatile ( | 
|  | "int $0x12\n"); | 
|  | /* not sure if we ever come back to this point */ | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | static int mc_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int shutdown_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | struct kvm_run *kvm_run = svm->vcpu.run; | 
|  |  | 
|  | /* | 
|  | * VMCB is undefined after a SHUTDOWN intercept | 
|  | * so reinitialize it. | 
|  | */ | 
|  | clear_page(svm->vmcb); | 
|  | init_vmcb(svm); | 
|  |  | 
|  | kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int io_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | struct kvm_vcpu *vcpu = &svm->vcpu; | 
|  | u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ | 
|  | int size, in, string; | 
|  | unsigned port; | 
|  |  | 
|  | ++svm->vcpu.stat.io_exits; | 
|  | string = (io_info & SVM_IOIO_STR_MASK) != 0; | 
|  | in = (io_info & SVM_IOIO_TYPE_MASK) != 0; | 
|  | if (string || in) | 
|  | return !(emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DO_MMIO); | 
|  |  | 
|  | port = io_info >> 16; | 
|  | size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; | 
|  | svm->next_rip = svm->vmcb->control.exit_info_2; | 
|  | skip_emulated_instruction(&svm->vcpu); | 
|  |  | 
|  | return kvm_fast_pio_out(vcpu, size, port); | 
|  | } | 
|  |  | 
|  | static int nmi_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int intr_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | ++svm->vcpu.stat.irq_exits; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int nop_on_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int halt_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | svm->next_rip = kvm_rip_read(&svm->vcpu) + 1; | 
|  | skip_emulated_instruction(&svm->vcpu); | 
|  | return kvm_emulate_halt(&svm->vcpu); | 
|  | } | 
|  |  | 
|  | static int vmmcall_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; | 
|  | skip_emulated_instruction(&svm->vcpu); | 
|  | kvm_emulate_hypercall(&svm->vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int nested_svm_check_permissions(struct vcpu_svm *svm) | 
|  | { | 
|  | if (!(svm->vcpu.arch.efer & EFER_SVME) | 
|  | || !is_paging(&svm->vcpu)) { | 
|  | kvm_queue_exception(&svm->vcpu, UD_VECTOR); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (svm->vmcb->save.cpl) { | 
|  | kvm_inject_gp(&svm->vcpu, 0); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr, | 
|  | bool has_error_code, u32 error_code) | 
|  | { | 
|  | int vmexit; | 
|  |  | 
|  | if (!is_nested(svm)) | 
|  | return 0; | 
|  |  | 
|  | svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr; | 
|  | svm->vmcb->control.exit_code_hi = 0; | 
|  | svm->vmcb->control.exit_info_1 = error_code; | 
|  | svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2; | 
|  |  | 
|  | vmexit = nested_svm_intercept(svm); | 
|  | if (vmexit == NESTED_EXIT_DONE) | 
|  | svm->nested.exit_required = true; | 
|  |  | 
|  | return vmexit; | 
|  | } | 
|  |  | 
|  | /* This function returns true if it is save to enable the irq window */ | 
|  | static inline bool nested_svm_intr(struct vcpu_svm *svm) | 
|  | { | 
|  | if (!is_nested(svm)) | 
|  | return true; | 
|  |  | 
|  | if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK)) | 
|  | return true; | 
|  |  | 
|  | if (!(svm->vcpu.arch.hflags & HF_HIF_MASK)) | 
|  | return false; | 
|  |  | 
|  | svm->vmcb->control.exit_code   = SVM_EXIT_INTR; | 
|  | svm->vmcb->control.exit_info_1 = 0; | 
|  | svm->vmcb->control.exit_info_2 = 0; | 
|  |  | 
|  | if (svm->nested.intercept & 1ULL) { | 
|  | /* | 
|  | * The #vmexit can't be emulated here directly because this | 
|  | * code path runs with irqs and preemtion disabled. A | 
|  | * #vmexit emulation might sleep. Only signal request for | 
|  | * the #vmexit here. | 
|  | */ | 
|  | svm->nested.exit_required = true; | 
|  | trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* This function returns true if it is save to enable the nmi window */ | 
|  | static inline bool nested_svm_nmi(struct vcpu_svm *svm) | 
|  | { | 
|  | if (!is_nested(svm)) | 
|  | return true; | 
|  |  | 
|  | if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI))) | 
|  | return true; | 
|  |  | 
|  | svm->vmcb->control.exit_code = SVM_EXIT_NMI; | 
|  | svm->nested.exit_required = true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | might_sleep(); | 
|  |  | 
|  | page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT); | 
|  | if (is_error_page(page)) | 
|  | goto error; | 
|  |  | 
|  | *_page = page; | 
|  |  | 
|  | return kmap(page); | 
|  |  | 
|  | error: | 
|  | kvm_release_page_clean(page); | 
|  | kvm_inject_gp(&svm->vcpu, 0); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void nested_svm_unmap(struct page *page) | 
|  | { | 
|  | kunmap(page); | 
|  | kvm_release_page_dirty(page); | 
|  | } | 
|  |  | 
|  | static int nested_svm_intercept_ioio(struct vcpu_svm *svm) | 
|  | { | 
|  | unsigned port; | 
|  | u8 val, bit; | 
|  | u64 gpa; | 
|  |  | 
|  | if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT))) | 
|  | return NESTED_EXIT_HOST; | 
|  |  | 
|  | port = svm->vmcb->control.exit_info_1 >> 16; | 
|  | gpa  = svm->nested.vmcb_iopm + (port / 8); | 
|  | bit  = port % 8; | 
|  | val  = 0; | 
|  |  | 
|  | if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1)) | 
|  | val &= (1 << bit); | 
|  |  | 
|  | return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST; | 
|  | } | 
|  |  | 
|  | static int nested_svm_exit_handled_msr(struct vcpu_svm *svm) | 
|  | { | 
|  | u32 offset, msr, value; | 
|  | int write, mask; | 
|  |  | 
|  | if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT))) | 
|  | return NESTED_EXIT_HOST; | 
|  |  | 
|  | msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX]; | 
|  | offset = svm_msrpm_offset(msr); | 
|  | write  = svm->vmcb->control.exit_info_1 & 1; | 
|  | mask   = 1 << ((2 * (msr & 0xf)) + write); | 
|  |  | 
|  | if (offset == MSR_INVALID) | 
|  | return NESTED_EXIT_DONE; | 
|  |  | 
|  | /* Offset is in 32 bit units but need in 8 bit units */ | 
|  | offset *= 4; | 
|  |  | 
|  | if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4)) | 
|  | return NESTED_EXIT_DONE; | 
|  |  | 
|  | return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST; | 
|  | } | 
|  |  | 
|  | static int nested_svm_exit_special(struct vcpu_svm *svm) | 
|  | { | 
|  | u32 exit_code = svm->vmcb->control.exit_code; | 
|  |  | 
|  | switch (exit_code) { | 
|  | case SVM_EXIT_INTR: | 
|  | case SVM_EXIT_NMI: | 
|  | case SVM_EXIT_EXCP_BASE + MC_VECTOR: | 
|  | return NESTED_EXIT_HOST; | 
|  | case SVM_EXIT_NPF: | 
|  | /* For now we are always handling NPFs when using them */ | 
|  | if (npt_enabled) | 
|  | return NESTED_EXIT_HOST; | 
|  | break; | 
|  | case SVM_EXIT_EXCP_BASE + PF_VECTOR: | 
|  | /* When we're shadowing, trap PFs */ | 
|  | if (!npt_enabled) | 
|  | return NESTED_EXIT_HOST; | 
|  | break; | 
|  | case SVM_EXIT_EXCP_BASE + NM_VECTOR: | 
|  | nm_interception(svm); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return NESTED_EXIT_CONTINUE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this function returns true, this #vmexit was already handled | 
|  | */ | 
|  | static int nested_svm_intercept(struct vcpu_svm *svm) | 
|  | { | 
|  | u32 exit_code = svm->vmcb->control.exit_code; | 
|  | int vmexit = NESTED_EXIT_HOST; | 
|  |  | 
|  | switch (exit_code) { | 
|  | case SVM_EXIT_MSR: | 
|  | vmexit = nested_svm_exit_handled_msr(svm); | 
|  | break; | 
|  | case SVM_EXIT_IOIO: | 
|  | vmexit = nested_svm_intercept_ioio(svm); | 
|  | break; | 
|  | case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: { | 
|  | u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0); | 
|  | if (svm->nested.intercept_cr_read & cr_bits) | 
|  | vmexit = NESTED_EXIT_DONE; | 
|  | break; | 
|  | } | 
|  | case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: { | 
|  | u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0); | 
|  | if (svm->nested.intercept_cr_write & cr_bits) | 
|  | vmexit = NESTED_EXIT_DONE; | 
|  | break; | 
|  | } | 
|  | case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: { | 
|  | u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0); | 
|  | if (svm->nested.intercept_dr_read & dr_bits) | 
|  | vmexit = NESTED_EXIT_DONE; | 
|  | break; | 
|  | } | 
|  | case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: { | 
|  | u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0); | 
|  | if (svm->nested.intercept_dr_write & dr_bits) | 
|  | vmexit = NESTED_EXIT_DONE; | 
|  | break; | 
|  | } | 
|  | case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: { | 
|  | u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE); | 
|  | if (svm->nested.intercept_exceptions & excp_bits) | 
|  | vmexit = NESTED_EXIT_DONE; | 
|  | break; | 
|  | } | 
|  | case SVM_EXIT_ERR: { | 
|  | vmexit = NESTED_EXIT_DONE; | 
|  | break; | 
|  | } | 
|  | default: { | 
|  | u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR); | 
|  | if (svm->nested.intercept & exit_bits) | 
|  | vmexit = NESTED_EXIT_DONE; | 
|  | } | 
|  | } | 
|  |  | 
|  | return vmexit; | 
|  | } | 
|  |  | 
|  | static int nested_svm_exit_handled(struct vcpu_svm *svm) | 
|  | { | 
|  | int vmexit; | 
|  |  | 
|  | vmexit = nested_svm_intercept(svm); | 
|  |  | 
|  | if (vmexit == NESTED_EXIT_DONE) | 
|  | nested_svm_vmexit(svm); | 
|  |  | 
|  | return vmexit; | 
|  | } | 
|  |  | 
|  | static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb) | 
|  | { | 
|  | struct vmcb_control_area *dst  = &dst_vmcb->control; | 
|  | struct vmcb_control_area *from = &from_vmcb->control; | 
|  |  | 
|  | dst->intercept_cr_read    = from->intercept_cr_read; | 
|  | dst->intercept_cr_write   = from->intercept_cr_write; | 
|  | dst->intercept_dr_read    = from->intercept_dr_read; | 
|  | dst->intercept_dr_write   = from->intercept_dr_write; | 
|  | dst->intercept_exceptions = from->intercept_exceptions; | 
|  | dst->intercept            = from->intercept; | 
|  | dst->iopm_base_pa         = from->iopm_base_pa; | 
|  | dst->msrpm_base_pa        = from->msrpm_base_pa; | 
|  | dst->tsc_offset           = from->tsc_offset; | 
|  | dst->asid                 = from->asid; | 
|  | dst->tlb_ctl              = from->tlb_ctl; | 
|  | dst->int_ctl              = from->int_ctl; | 
|  | dst->int_vector           = from->int_vector; | 
|  | dst->int_state            = from->int_state; | 
|  | dst->exit_code            = from->exit_code; | 
|  | dst->exit_code_hi         = from->exit_code_hi; | 
|  | dst->exit_info_1          = from->exit_info_1; | 
|  | dst->exit_info_2          = from->exit_info_2; | 
|  | dst->exit_int_info        = from->exit_int_info; | 
|  | dst->exit_int_info_err    = from->exit_int_info_err; | 
|  | dst->nested_ctl           = from->nested_ctl; | 
|  | dst->event_inj            = from->event_inj; | 
|  | dst->event_inj_err        = from->event_inj_err; | 
|  | dst->nested_cr3           = from->nested_cr3; | 
|  | dst->lbr_ctl              = from->lbr_ctl; | 
|  | } | 
|  |  | 
|  | static int nested_svm_vmexit(struct vcpu_svm *svm) | 
|  | { | 
|  | struct vmcb *nested_vmcb; | 
|  | struct vmcb *hsave = svm->nested.hsave; | 
|  | struct vmcb *vmcb = svm->vmcb; | 
|  | struct page *page; | 
|  |  | 
|  | trace_kvm_nested_vmexit_inject(vmcb->control.exit_code, | 
|  | vmcb->control.exit_info_1, | 
|  | vmcb->control.exit_info_2, | 
|  | vmcb->control.exit_int_info, | 
|  | vmcb->control.exit_int_info_err); | 
|  |  | 
|  | nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page); | 
|  | if (!nested_vmcb) | 
|  | return 1; | 
|  |  | 
|  | /* Exit nested SVM mode */ | 
|  | svm->nested.vmcb = 0; | 
|  |  | 
|  | /* Give the current vmcb to the guest */ | 
|  | disable_gif(svm); | 
|  |  | 
|  | nested_vmcb->save.es     = vmcb->save.es; | 
|  | nested_vmcb->save.cs     = vmcb->save.cs; | 
|  | nested_vmcb->save.ss     = vmcb->save.ss; | 
|  | nested_vmcb->save.ds     = vmcb->save.ds; | 
|  | nested_vmcb->save.gdtr   = vmcb->save.gdtr; | 
|  | nested_vmcb->save.idtr   = vmcb->save.idtr; | 
|  | nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu); | 
|  | nested_vmcb->save.cr3    = svm->vcpu.arch.cr3; | 
|  | nested_vmcb->save.cr2    = vmcb->save.cr2; | 
|  | nested_vmcb->save.cr4    = svm->vcpu.arch.cr4; | 
|  | nested_vmcb->save.rflags = vmcb->save.rflags; | 
|  | nested_vmcb->save.rip    = vmcb->save.rip; | 
|  | nested_vmcb->save.rsp    = vmcb->save.rsp; | 
|  | nested_vmcb->save.rax    = vmcb->save.rax; | 
|  | nested_vmcb->save.dr7    = vmcb->save.dr7; | 
|  | nested_vmcb->save.dr6    = vmcb->save.dr6; | 
|  | nested_vmcb->save.cpl    = vmcb->save.cpl; | 
|  |  | 
|  | nested_vmcb->control.int_ctl           = vmcb->control.int_ctl; | 
|  | nested_vmcb->control.int_vector        = vmcb->control.int_vector; | 
|  | nested_vmcb->control.int_state         = vmcb->control.int_state; | 
|  | nested_vmcb->control.exit_code         = vmcb->control.exit_code; | 
|  | nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi; | 
|  | nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1; | 
|  | nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2; | 
|  | nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info; | 
|  | nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err; | 
|  |  | 
|  | /* | 
|  | * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have | 
|  | * to make sure that we do not lose injected events. So check event_inj | 
|  | * here and copy it to exit_int_info if it is valid. | 
|  | * Exit_int_info and event_inj can't be both valid because the case | 
|  | * below only happens on a VMRUN instruction intercept which has | 
|  | * no valid exit_int_info set. | 
|  | */ | 
|  | if (vmcb->control.event_inj & SVM_EVTINJ_VALID) { | 
|  | struct vmcb_control_area *nc = &nested_vmcb->control; | 
|  |  | 
|  | nc->exit_int_info     = vmcb->control.event_inj; | 
|  | nc->exit_int_info_err = vmcb->control.event_inj_err; | 
|  | } | 
|  |  | 
|  | nested_vmcb->control.tlb_ctl           = 0; | 
|  | nested_vmcb->control.event_inj         = 0; | 
|  | nested_vmcb->control.event_inj_err     = 0; | 
|  |  | 
|  | /* We always set V_INTR_MASKING and remember the old value in hflags */ | 
|  | if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK)) | 
|  | nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK; | 
|  |  | 
|  | /* Restore the original control entries */ | 
|  | copy_vmcb_control_area(vmcb, hsave); | 
|  |  | 
|  | kvm_clear_exception_queue(&svm->vcpu); | 
|  | kvm_clear_interrupt_queue(&svm->vcpu); | 
|  |  | 
|  | /* Restore selected save entries */ | 
|  | svm->vmcb->save.es = hsave->save.es; | 
|  | svm->vmcb->save.cs = hsave->save.cs; | 
|  | svm->vmcb->save.ss = hsave->save.ss; | 
|  | svm->vmcb->save.ds = hsave->save.ds; | 
|  | svm->vmcb->save.gdtr = hsave->save.gdtr; | 
|  | svm->vmcb->save.idtr = hsave->save.idtr; | 
|  | svm->vmcb->save.rflags = hsave->save.rflags; | 
|  | svm_set_efer(&svm->vcpu, hsave->save.efer); | 
|  | svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE); | 
|  | svm_set_cr4(&svm->vcpu, hsave->save.cr4); | 
|  | if (npt_enabled) { | 
|  | svm->vmcb->save.cr3 = hsave->save.cr3; | 
|  | svm->vcpu.arch.cr3 = hsave->save.cr3; | 
|  | } else { | 
|  | kvm_set_cr3(&svm->vcpu, hsave->save.cr3); | 
|  | } | 
|  | kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax); | 
|  | kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp); | 
|  | kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip); | 
|  | svm->vmcb->save.dr7 = 0; | 
|  | svm->vmcb->save.cpl = 0; | 
|  | svm->vmcb->control.exit_int_info = 0; | 
|  |  | 
|  | nested_svm_unmap(page); | 
|  |  | 
|  | kvm_mmu_reset_context(&svm->vcpu); | 
|  | kvm_mmu_load(&svm->vcpu); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm) | 
|  | { | 
|  | /* | 
|  | * This function merges the msr permission bitmaps of kvm and the | 
|  | * nested vmcb. It is omptimized in that it only merges the parts where | 
|  | * the kvm msr permission bitmap may contain zero bits | 
|  | */ | 
|  | int i; | 
|  |  | 
|  | if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT))) | 
|  | return true; | 
|  |  | 
|  | for (i = 0; i < MSRPM_OFFSETS; i++) { | 
|  | u32 value, p; | 
|  | u64 offset; | 
|  |  | 
|  | if (msrpm_offsets[i] == 0xffffffff) | 
|  | break; | 
|  |  | 
|  | p      = msrpm_offsets[i]; | 
|  | offset = svm->nested.vmcb_msrpm + (p * 4); | 
|  |  | 
|  | if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4)) | 
|  | return false; | 
|  |  | 
|  | svm->nested.msrpm[p] = svm->msrpm[p] | value; | 
|  | } | 
|  |  | 
|  | svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool nested_svm_vmrun(struct vcpu_svm *svm) | 
|  | { | 
|  | struct vmcb *nested_vmcb; | 
|  | struct vmcb *hsave = svm->nested.hsave; | 
|  | struct vmcb *vmcb = svm->vmcb; | 
|  | struct page *page; | 
|  | u64 vmcb_gpa; | 
|  |  | 
|  | vmcb_gpa = svm->vmcb->save.rax; | 
|  |  | 
|  | nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page); | 
|  | if (!nested_vmcb) | 
|  | return false; | 
|  |  | 
|  | trace_kvm_nested_vmrun(svm->vmcb->save.rip - 3, vmcb_gpa, | 
|  | nested_vmcb->save.rip, | 
|  | nested_vmcb->control.int_ctl, | 
|  | nested_vmcb->control.event_inj, | 
|  | nested_vmcb->control.nested_ctl); | 
|  |  | 
|  | trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr_read, | 
|  | nested_vmcb->control.intercept_cr_write, | 
|  | nested_vmcb->control.intercept_exceptions, | 
|  | nested_vmcb->control.intercept); | 
|  |  | 
|  | /* Clear internal status */ | 
|  | kvm_clear_exception_queue(&svm->vcpu); | 
|  | kvm_clear_interrupt_queue(&svm->vcpu); | 
|  |  | 
|  | /* | 
|  | * Save the old vmcb, so we don't need to pick what we save, but can | 
|  | * restore everything when a VMEXIT occurs | 
|  | */ | 
|  | hsave->save.es     = vmcb->save.es; | 
|  | hsave->save.cs     = vmcb->save.cs; | 
|  | hsave->save.ss     = vmcb->save.ss; | 
|  | hsave->save.ds     = vmcb->save.ds; | 
|  | hsave->save.gdtr   = vmcb->save.gdtr; | 
|  | hsave->save.idtr   = vmcb->save.idtr; | 
|  | hsave->save.efer   = svm->vcpu.arch.efer; | 
|  | hsave->save.cr0    = kvm_read_cr0(&svm->vcpu); | 
|  | hsave->save.cr4    = svm->vcpu.arch.cr4; | 
|  | hsave->save.rflags = vmcb->save.rflags; | 
|  | hsave->save.rip    = svm->next_rip; | 
|  | hsave->save.rsp    = vmcb->save.rsp; | 
|  | hsave->save.rax    = vmcb->save.rax; | 
|  | if (npt_enabled) | 
|  | hsave->save.cr3    = vmcb->save.cr3; | 
|  | else | 
|  | hsave->save.cr3    = svm->vcpu.arch.cr3; | 
|  |  | 
|  | copy_vmcb_control_area(hsave, vmcb); | 
|  |  | 
|  | if (svm->vmcb->save.rflags & X86_EFLAGS_IF) | 
|  | svm->vcpu.arch.hflags |= HF_HIF_MASK; | 
|  | else | 
|  | svm->vcpu.arch.hflags &= ~HF_HIF_MASK; | 
|  |  | 
|  | /* Load the nested guest state */ | 
|  | svm->vmcb->save.es = nested_vmcb->save.es; | 
|  | svm->vmcb->save.cs = nested_vmcb->save.cs; | 
|  | svm->vmcb->save.ss = nested_vmcb->save.ss; | 
|  | svm->vmcb->save.ds = nested_vmcb->save.ds; | 
|  | svm->vmcb->save.gdtr = nested_vmcb->save.gdtr; | 
|  | svm->vmcb->save.idtr = nested_vmcb->save.idtr; | 
|  | svm->vmcb->save.rflags = nested_vmcb->save.rflags; | 
|  | svm_set_efer(&svm->vcpu, nested_vmcb->save.efer); | 
|  | svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0); | 
|  | svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4); | 
|  | if (npt_enabled) { | 
|  | svm->vmcb->save.cr3 = nested_vmcb->save.cr3; | 
|  | svm->vcpu.arch.cr3 = nested_vmcb->save.cr3; | 
|  | } else | 
|  | kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3); | 
|  |  | 
|  | /* Guest paging mode is active - reset mmu */ | 
|  | kvm_mmu_reset_context(&svm->vcpu); | 
|  |  | 
|  | svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2; | 
|  | kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax); | 
|  | kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp); | 
|  | kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip); | 
|  |  | 
|  | /* In case we don't even reach vcpu_run, the fields are not updated */ | 
|  | svm->vmcb->save.rax = nested_vmcb->save.rax; | 
|  | svm->vmcb->save.rsp = nested_vmcb->save.rsp; | 
|  | svm->vmcb->save.rip = nested_vmcb->save.rip; | 
|  | svm->vmcb->save.dr7 = nested_vmcb->save.dr7; | 
|  | svm->vmcb->save.dr6 = nested_vmcb->save.dr6; | 
|  | svm->vmcb->save.cpl = nested_vmcb->save.cpl; | 
|  |  | 
|  | svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL; | 
|  | svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL; | 
|  |  | 
|  | /* cache intercepts */ | 
|  | svm->nested.intercept_cr_read    = nested_vmcb->control.intercept_cr_read; | 
|  | svm->nested.intercept_cr_write   = nested_vmcb->control.intercept_cr_write; | 
|  | svm->nested.intercept_dr_read    = nested_vmcb->control.intercept_dr_read; | 
|  | svm->nested.intercept_dr_write   = nested_vmcb->control.intercept_dr_write; | 
|  | svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions; | 
|  | svm->nested.intercept            = nested_vmcb->control.intercept; | 
|  |  | 
|  | force_new_asid(&svm->vcpu); | 
|  | svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK; | 
|  | if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK) | 
|  | svm->vcpu.arch.hflags |= HF_VINTR_MASK; | 
|  | else | 
|  | svm->vcpu.arch.hflags &= ~HF_VINTR_MASK; | 
|  |  | 
|  | if (svm->vcpu.arch.hflags & HF_VINTR_MASK) { | 
|  | /* We only want the cr8 intercept bits of the guest */ | 
|  | svm->vmcb->control.intercept_cr_read &= ~INTERCEPT_CR8_MASK; | 
|  | svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK; | 
|  | } | 
|  |  | 
|  | /* We don't want to see VMMCALLs from a nested guest */ | 
|  | svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VMMCALL); | 
|  |  | 
|  | /* | 
|  | * We don't want a nested guest to be more powerful than the guest, so | 
|  | * all intercepts are ORed | 
|  | */ | 
|  | svm->vmcb->control.intercept_cr_read |= | 
|  | nested_vmcb->control.intercept_cr_read; | 
|  | svm->vmcb->control.intercept_cr_write |= | 
|  | nested_vmcb->control.intercept_cr_write; | 
|  | svm->vmcb->control.intercept_dr_read |= | 
|  | nested_vmcb->control.intercept_dr_read; | 
|  | svm->vmcb->control.intercept_dr_write |= | 
|  | nested_vmcb->control.intercept_dr_write; | 
|  | svm->vmcb->control.intercept_exceptions |= | 
|  | nested_vmcb->control.intercept_exceptions; | 
|  |  | 
|  | svm->vmcb->control.intercept |= nested_vmcb->control.intercept; | 
|  |  | 
|  | svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl; | 
|  | svm->vmcb->control.int_vector = nested_vmcb->control.int_vector; | 
|  | svm->vmcb->control.int_state = nested_vmcb->control.int_state; | 
|  | svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset; | 
|  | svm->vmcb->control.event_inj = nested_vmcb->control.event_inj; | 
|  | svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err; | 
|  |  | 
|  | nested_svm_unmap(page); | 
|  |  | 
|  | /* nested_vmcb is our indicator if nested SVM is activated */ | 
|  | svm->nested.vmcb = vmcb_gpa; | 
|  |  | 
|  | enable_gif(svm); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb) | 
|  | { | 
|  | to_vmcb->save.fs = from_vmcb->save.fs; | 
|  | to_vmcb->save.gs = from_vmcb->save.gs; | 
|  | to_vmcb->save.tr = from_vmcb->save.tr; | 
|  | to_vmcb->save.ldtr = from_vmcb->save.ldtr; | 
|  | to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base; | 
|  | to_vmcb->save.star = from_vmcb->save.star; | 
|  | to_vmcb->save.lstar = from_vmcb->save.lstar; | 
|  | to_vmcb->save.cstar = from_vmcb->save.cstar; | 
|  | to_vmcb->save.sfmask = from_vmcb->save.sfmask; | 
|  | to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs; | 
|  | to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp; | 
|  | to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip; | 
|  | } | 
|  |  | 
|  | static int vmload_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | struct vmcb *nested_vmcb; | 
|  | struct page *page; | 
|  |  | 
|  | if (nested_svm_check_permissions(svm)) | 
|  | return 1; | 
|  |  | 
|  | svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; | 
|  | skip_emulated_instruction(&svm->vcpu); | 
|  |  | 
|  | nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page); | 
|  | if (!nested_vmcb) | 
|  | return 1; | 
|  |  | 
|  | nested_svm_vmloadsave(nested_vmcb, svm->vmcb); | 
|  | nested_svm_unmap(page); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int vmsave_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | struct vmcb *nested_vmcb; | 
|  | struct page *page; | 
|  |  | 
|  | if (nested_svm_check_permissions(svm)) | 
|  | return 1; | 
|  |  | 
|  | svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; | 
|  | skip_emulated_instruction(&svm->vcpu); | 
|  |  | 
|  | nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page); | 
|  | if (!nested_vmcb) | 
|  | return 1; | 
|  |  | 
|  | nested_svm_vmloadsave(svm->vmcb, nested_vmcb); | 
|  | nested_svm_unmap(page); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int vmrun_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | if (nested_svm_check_permissions(svm)) | 
|  | return 1; | 
|  |  | 
|  | svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; | 
|  | skip_emulated_instruction(&svm->vcpu); | 
|  |  | 
|  | if (!nested_svm_vmrun(svm)) | 
|  | return 1; | 
|  |  | 
|  | if (!nested_svm_vmrun_msrpm(svm)) | 
|  | goto failed; | 
|  |  | 
|  | return 1; | 
|  |  | 
|  | failed: | 
|  |  | 
|  | svm->vmcb->control.exit_code    = SVM_EXIT_ERR; | 
|  | svm->vmcb->control.exit_code_hi = 0; | 
|  | svm->vmcb->control.exit_info_1  = 0; | 
|  | svm->vmcb->control.exit_info_2  = 0; | 
|  |  | 
|  | nested_svm_vmexit(svm); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int stgi_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | if (nested_svm_check_permissions(svm)) | 
|  | return 1; | 
|  |  | 
|  | svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; | 
|  | skip_emulated_instruction(&svm->vcpu); | 
|  |  | 
|  | enable_gif(svm); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int clgi_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | if (nested_svm_check_permissions(svm)) | 
|  | return 1; | 
|  |  | 
|  | svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; | 
|  | skip_emulated_instruction(&svm->vcpu); | 
|  |  | 
|  | disable_gif(svm); | 
|  |  | 
|  | /* After a CLGI no interrupts should come */ | 
|  | svm_clear_vintr(svm); | 
|  | svm->vmcb->control.int_ctl &= ~V_IRQ_MASK; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int invlpga_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | struct kvm_vcpu *vcpu = &svm->vcpu; | 
|  |  | 
|  | trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX], | 
|  | vcpu->arch.regs[VCPU_REGS_RAX]); | 
|  |  | 
|  | /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ | 
|  | kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]); | 
|  |  | 
|  | svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; | 
|  | skip_emulated_instruction(&svm->vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int skinit_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]); | 
|  |  | 
|  | kvm_queue_exception(&svm->vcpu, UD_VECTOR); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int invalid_op_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | kvm_queue_exception(&svm->vcpu, UD_VECTOR); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int task_switch_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | u16 tss_selector; | 
|  | int reason; | 
|  | int int_type = svm->vmcb->control.exit_int_info & | 
|  | SVM_EXITINTINFO_TYPE_MASK; | 
|  | int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; | 
|  | uint32_t type = | 
|  | svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; | 
|  | uint32_t idt_v = | 
|  | svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; | 
|  | bool has_error_code = false; | 
|  | u32 error_code = 0; | 
|  |  | 
|  | tss_selector = (u16)svm->vmcb->control.exit_info_1; | 
|  |  | 
|  | if (svm->vmcb->control.exit_info_2 & | 
|  | (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) | 
|  | reason = TASK_SWITCH_IRET; | 
|  | else if (svm->vmcb->control.exit_info_2 & | 
|  | (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) | 
|  | reason = TASK_SWITCH_JMP; | 
|  | else if (idt_v) | 
|  | reason = TASK_SWITCH_GATE; | 
|  | else | 
|  | reason = TASK_SWITCH_CALL; | 
|  |  | 
|  | if (reason == TASK_SWITCH_GATE) { | 
|  | switch (type) { | 
|  | case SVM_EXITINTINFO_TYPE_NMI: | 
|  | svm->vcpu.arch.nmi_injected = false; | 
|  | break; | 
|  | case SVM_EXITINTINFO_TYPE_EXEPT: | 
|  | if (svm->vmcb->control.exit_info_2 & | 
|  | (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { | 
|  | has_error_code = true; | 
|  | error_code = | 
|  | (u32)svm->vmcb->control.exit_info_2; | 
|  | } | 
|  | kvm_clear_exception_queue(&svm->vcpu); | 
|  | break; | 
|  | case SVM_EXITINTINFO_TYPE_INTR: | 
|  | kvm_clear_interrupt_queue(&svm->vcpu); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (reason != TASK_SWITCH_GATE || | 
|  | int_type == SVM_EXITINTINFO_TYPE_SOFT || | 
|  | (int_type == SVM_EXITINTINFO_TYPE_EXEPT && | 
|  | (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) | 
|  | skip_emulated_instruction(&svm->vcpu); | 
|  |  | 
|  | if (kvm_task_switch(&svm->vcpu, tss_selector, reason, | 
|  | has_error_code, error_code) == EMULATE_FAIL) { | 
|  | svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
|  | svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; | 
|  | svm->vcpu.run->internal.ndata = 0; | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int cpuid_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | svm->next_rip = kvm_rip_read(&svm->vcpu) + 2; | 
|  | kvm_emulate_cpuid(&svm->vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int iret_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | ++svm->vcpu.stat.nmi_window_exits; | 
|  | svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_IRET); | 
|  | svm->vcpu.arch.hflags |= HF_IRET_MASK; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int invlpg_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE) | 
|  | pr_unimpl(&svm->vcpu, "%s: failed\n", __func__); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int emulate_on_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE) | 
|  | pr_unimpl(&svm->vcpu, "%s: failed\n", __func__); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int cr8_write_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | struct kvm_run *kvm_run = svm->vcpu.run; | 
|  |  | 
|  | u8 cr8_prev = kvm_get_cr8(&svm->vcpu); | 
|  | /* instruction emulation calls kvm_set_cr8() */ | 
|  | emulate_instruction(&svm->vcpu, 0, 0, 0); | 
|  | if (irqchip_in_kernel(svm->vcpu.kvm)) { | 
|  | svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK; | 
|  | return 1; | 
|  | } | 
|  | if (cr8_prev <= kvm_get_cr8(&svm->vcpu)) | 
|  | return 1; | 
|  | kvm_run->exit_reason = KVM_EXIT_SET_TPR; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | switch (ecx) { | 
|  | case MSR_IA32_TSC: { | 
|  | u64 tsc_offset; | 
|  |  | 
|  | if (is_nested(svm)) | 
|  | tsc_offset = svm->nested.hsave->control.tsc_offset; | 
|  | else | 
|  | tsc_offset = svm->vmcb->control.tsc_offset; | 
|  |  | 
|  | *data = tsc_offset + native_read_tsc(); | 
|  | break; | 
|  | } | 
|  | case MSR_K6_STAR: | 
|  | *data = svm->vmcb->save.star; | 
|  | break; | 
|  | #ifdef CONFIG_X86_64 | 
|  | case MSR_LSTAR: | 
|  | *data = svm->vmcb->save.lstar; | 
|  | break; | 
|  | case MSR_CSTAR: | 
|  | *data = svm->vmcb->save.cstar; | 
|  | break; | 
|  | case MSR_KERNEL_GS_BASE: | 
|  | *data = svm->vmcb->save.kernel_gs_base; | 
|  | break; | 
|  | case MSR_SYSCALL_MASK: | 
|  | *data = svm->vmcb->save.sfmask; | 
|  | break; | 
|  | #endif | 
|  | case MSR_IA32_SYSENTER_CS: | 
|  | *data = svm->vmcb->save.sysenter_cs; | 
|  | break; | 
|  | case MSR_IA32_SYSENTER_EIP: | 
|  | *data = svm->sysenter_eip; | 
|  | break; | 
|  | case MSR_IA32_SYSENTER_ESP: | 
|  | *data = svm->sysenter_esp; | 
|  | break; | 
|  | /* | 
|  | * Nobody will change the following 5 values in the VMCB so we can | 
|  | * safely return them on rdmsr. They will always be 0 until LBRV is | 
|  | * implemented. | 
|  | */ | 
|  | case MSR_IA32_DEBUGCTLMSR: | 
|  | *data = svm->vmcb->save.dbgctl; | 
|  | break; | 
|  | case MSR_IA32_LASTBRANCHFROMIP: | 
|  | *data = svm->vmcb->save.br_from; | 
|  | break; | 
|  | case MSR_IA32_LASTBRANCHTOIP: | 
|  | *data = svm->vmcb->save.br_to; | 
|  | break; | 
|  | case MSR_IA32_LASTINTFROMIP: | 
|  | *data = svm->vmcb->save.last_excp_from; | 
|  | break; | 
|  | case MSR_IA32_LASTINTTOIP: | 
|  | *data = svm->vmcb->save.last_excp_to; | 
|  | break; | 
|  | case MSR_VM_HSAVE_PA: | 
|  | *data = svm->nested.hsave_msr; | 
|  | break; | 
|  | case MSR_VM_CR: | 
|  | *data = svm->nested.vm_cr_msr; | 
|  | break; | 
|  | case MSR_IA32_UCODE_REV: | 
|  | *data = 0x01000065; | 
|  | break; | 
|  | default: | 
|  | return kvm_get_msr_common(vcpu, ecx, data); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rdmsr_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; | 
|  | u64 data; | 
|  |  | 
|  | if (svm_get_msr(&svm->vcpu, ecx, &data)) { | 
|  | trace_kvm_msr_read_ex(ecx); | 
|  | kvm_inject_gp(&svm->vcpu, 0); | 
|  | } else { | 
|  | trace_kvm_msr_read(ecx, data); | 
|  |  | 
|  | svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff; | 
|  | svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32; | 
|  | svm->next_rip = kvm_rip_read(&svm->vcpu) + 2; | 
|  | skip_emulated_instruction(&svm->vcpu); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | int svm_dis, chg_mask; | 
|  |  | 
|  | if (data & ~SVM_VM_CR_VALID_MASK) | 
|  | return 1; | 
|  |  | 
|  | chg_mask = SVM_VM_CR_VALID_MASK; | 
|  |  | 
|  | if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) | 
|  | chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); | 
|  |  | 
|  | svm->nested.vm_cr_msr &= ~chg_mask; | 
|  | svm->nested.vm_cr_msr |= (data & chg_mask); | 
|  |  | 
|  | svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; | 
|  |  | 
|  | /* check for svm_disable while efer.svme is set */ | 
|  | if (svm_dis && (vcpu->arch.efer & EFER_SVME)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | switch (ecx) { | 
|  | case MSR_IA32_TSC: { | 
|  | u64 tsc_offset = data - native_read_tsc(); | 
|  | u64 g_tsc_offset = 0; | 
|  |  | 
|  | if (is_nested(svm)) { | 
|  | g_tsc_offset = svm->vmcb->control.tsc_offset - | 
|  | svm->nested.hsave->control.tsc_offset; | 
|  | svm->nested.hsave->control.tsc_offset = tsc_offset; | 
|  | } | 
|  |  | 
|  | svm->vmcb->control.tsc_offset = tsc_offset + g_tsc_offset; | 
|  |  | 
|  | break; | 
|  | } | 
|  | case MSR_K6_STAR: | 
|  | svm->vmcb->save.star = data; | 
|  | break; | 
|  | #ifdef CONFIG_X86_64 | 
|  | case MSR_LSTAR: | 
|  | svm->vmcb->save.lstar = data; | 
|  | break; | 
|  | case MSR_CSTAR: | 
|  | svm->vmcb->save.cstar = data; | 
|  | break; | 
|  | case MSR_KERNEL_GS_BASE: | 
|  | svm->vmcb->save.kernel_gs_base = data; | 
|  | break; | 
|  | case MSR_SYSCALL_MASK: | 
|  | svm->vmcb->save.sfmask = data; | 
|  | break; | 
|  | #endif | 
|  | case MSR_IA32_SYSENTER_CS: | 
|  | svm->vmcb->save.sysenter_cs = data; | 
|  | break; | 
|  | case MSR_IA32_SYSENTER_EIP: | 
|  | svm->sysenter_eip = data; | 
|  | svm->vmcb->save.sysenter_eip = data; | 
|  | break; | 
|  | case MSR_IA32_SYSENTER_ESP: | 
|  | svm->sysenter_esp = data; | 
|  | svm->vmcb->save.sysenter_esp = data; | 
|  | break; | 
|  | case MSR_IA32_DEBUGCTLMSR: | 
|  | if (!svm_has(SVM_FEATURE_LBRV)) { | 
|  | pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n", | 
|  | __func__, data); | 
|  | break; | 
|  | } | 
|  | if (data & DEBUGCTL_RESERVED_BITS) | 
|  | return 1; | 
|  |  | 
|  | svm->vmcb->save.dbgctl = data; | 
|  | if (data & (1ULL<<0)) | 
|  | svm_enable_lbrv(svm); | 
|  | else | 
|  | svm_disable_lbrv(svm); | 
|  | break; | 
|  | case MSR_VM_HSAVE_PA: | 
|  | svm->nested.hsave_msr = data; | 
|  | break; | 
|  | case MSR_VM_CR: | 
|  | return svm_set_vm_cr(vcpu, data); | 
|  | case MSR_VM_IGNNE: | 
|  | pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data); | 
|  | break; | 
|  | default: | 
|  | return kvm_set_msr_common(vcpu, ecx, data); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int wrmsr_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; | 
|  | u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u) | 
|  | | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32); | 
|  |  | 
|  |  | 
|  | svm->next_rip = kvm_rip_read(&svm->vcpu) + 2; | 
|  | if (svm_set_msr(&svm->vcpu, ecx, data)) { | 
|  | trace_kvm_msr_write_ex(ecx, data); | 
|  | kvm_inject_gp(&svm->vcpu, 0); | 
|  | } else { | 
|  | trace_kvm_msr_write(ecx, data); | 
|  | skip_emulated_instruction(&svm->vcpu); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int msr_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | if (svm->vmcb->control.exit_info_1) | 
|  | return wrmsr_interception(svm); | 
|  | else | 
|  | return rdmsr_interception(svm); | 
|  | } | 
|  |  | 
|  | static int interrupt_window_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | struct kvm_run *kvm_run = svm->vcpu.run; | 
|  |  | 
|  | svm_clear_vintr(svm); | 
|  | svm->vmcb->control.int_ctl &= ~V_IRQ_MASK; | 
|  | /* | 
|  | * If the user space waits to inject interrupts, exit as soon as | 
|  | * possible | 
|  | */ | 
|  | if (!irqchip_in_kernel(svm->vcpu.kvm) && | 
|  | kvm_run->request_interrupt_window && | 
|  | !kvm_cpu_has_interrupt(&svm->vcpu)) { | 
|  | ++svm->vcpu.stat.irq_window_exits; | 
|  | kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int pause_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | kvm_vcpu_on_spin(&(svm->vcpu)); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = { | 
|  | [SVM_EXIT_READ_CR0]			= emulate_on_interception, | 
|  | [SVM_EXIT_READ_CR3]			= emulate_on_interception, | 
|  | [SVM_EXIT_READ_CR4]			= emulate_on_interception, | 
|  | [SVM_EXIT_READ_CR8]			= emulate_on_interception, | 
|  | [SVM_EXIT_CR0_SEL_WRITE]		= emulate_on_interception, | 
|  | [SVM_EXIT_WRITE_CR0]			= emulate_on_interception, | 
|  | [SVM_EXIT_WRITE_CR3]			= emulate_on_interception, | 
|  | [SVM_EXIT_WRITE_CR4]			= emulate_on_interception, | 
|  | [SVM_EXIT_WRITE_CR8]			= cr8_write_interception, | 
|  | [SVM_EXIT_READ_DR0]			= emulate_on_interception, | 
|  | [SVM_EXIT_READ_DR1]			= emulate_on_interception, | 
|  | [SVM_EXIT_READ_DR2]			= emulate_on_interception, | 
|  | [SVM_EXIT_READ_DR3]			= emulate_on_interception, | 
|  | [SVM_EXIT_READ_DR4]			= emulate_on_interception, | 
|  | [SVM_EXIT_READ_DR5]			= emulate_on_interception, | 
|  | [SVM_EXIT_READ_DR6]			= emulate_on_interception, | 
|  | [SVM_EXIT_READ_DR7]			= emulate_on_interception, | 
|  | [SVM_EXIT_WRITE_DR0]			= emulate_on_interception, | 
|  | [SVM_EXIT_WRITE_DR1]			= emulate_on_interception, | 
|  | [SVM_EXIT_WRITE_DR2]			= emulate_on_interception, | 
|  | [SVM_EXIT_WRITE_DR3]			= emulate_on_interception, | 
|  | [SVM_EXIT_WRITE_DR4]			= emulate_on_interception, | 
|  | [SVM_EXIT_WRITE_DR5]			= emulate_on_interception, | 
|  | [SVM_EXIT_WRITE_DR6]			= emulate_on_interception, | 
|  | [SVM_EXIT_WRITE_DR7]			= emulate_on_interception, | 
|  | [SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception, | 
|  | [SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception, | 
|  | [SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception, | 
|  | [SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception, | 
|  | [SVM_EXIT_EXCP_BASE + NM_VECTOR]	= nm_interception, | 
|  | [SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception, | 
|  | [SVM_EXIT_INTR]				= intr_interception, | 
|  | [SVM_EXIT_NMI]				= nmi_interception, | 
|  | [SVM_EXIT_SMI]				= nop_on_interception, | 
|  | [SVM_EXIT_INIT]				= nop_on_interception, | 
|  | [SVM_EXIT_VINTR]			= interrupt_window_interception, | 
|  | [SVM_EXIT_CPUID]			= cpuid_interception, | 
|  | [SVM_EXIT_IRET]                         = iret_interception, | 
|  | [SVM_EXIT_INVD]                         = emulate_on_interception, | 
|  | [SVM_EXIT_PAUSE]			= pause_interception, | 
|  | [SVM_EXIT_HLT]				= halt_interception, | 
|  | [SVM_EXIT_INVLPG]			= invlpg_interception, | 
|  | [SVM_EXIT_INVLPGA]			= invlpga_interception, | 
|  | [SVM_EXIT_IOIO]				= io_interception, | 
|  | [SVM_EXIT_MSR]				= msr_interception, | 
|  | [SVM_EXIT_TASK_SWITCH]			= task_switch_interception, | 
|  | [SVM_EXIT_SHUTDOWN]			= shutdown_interception, | 
|  | [SVM_EXIT_VMRUN]			= vmrun_interception, | 
|  | [SVM_EXIT_VMMCALL]			= vmmcall_interception, | 
|  | [SVM_EXIT_VMLOAD]			= vmload_interception, | 
|  | [SVM_EXIT_VMSAVE]			= vmsave_interception, | 
|  | [SVM_EXIT_STGI]				= stgi_interception, | 
|  | [SVM_EXIT_CLGI]				= clgi_interception, | 
|  | [SVM_EXIT_SKINIT]			= skinit_interception, | 
|  | [SVM_EXIT_WBINVD]                       = emulate_on_interception, | 
|  | [SVM_EXIT_MONITOR]			= invalid_op_interception, | 
|  | [SVM_EXIT_MWAIT]			= invalid_op_interception, | 
|  | [SVM_EXIT_NPF]				= pf_interception, | 
|  | }; | 
|  |  | 
|  | static int handle_exit(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | struct kvm_run *kvm_run = vcpu->run; | 
|  | u32 exit_code = svm->vmcb->control.exit_code; | 
|  |  | 
|  | trace_kvm_exit(exit_code, vcpu); | 
|  |  | 
|  | if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR0_MASK)) | 
|  | vcpu->arch.cr0 = svm->vmcb->save.cr0; | 
|  | if (npt_enabled) | 
|  | vcpu->arch.cr3 = svm->vmcb->save.cr3; | 
|  |  | 
|  | if (unlikely(svm->nested.exit_required)) { | 
|  | nested_svm_vmexit(svm); | 
|  | svm->nested.exit_required = false; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (is_nested(svm)) { | 
|  | int vmexit; | 
|  |  | 
|  | trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code, | 
|  | svm->vmcb->control.exit_info_1, | 
|  | svm->vmcb->control.exit_info_2, | 
|  | svm->vmcb->control.exit_int_info, | 
|  | svm->vmcb->control.exit_int_info_err); | 
|  |  | 
|  | vmexit = nested_svm_exit_special(svm); | 
|  |  | 
|  | if (vmexit == NESTED_EXIT_CONTINUE) | 
|  | vmexit = nested_svm_exit_handled(svm); | 
|  |  | 
|  | if (vmexit == NESTED_EXIT_DONE) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | svm_complete_interrupts(svm); | 
|  |  | 
|  | if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { | 
|  | kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; | 
|  | kvm_run->fail_entry.hardware_entry_failure_reason | 
|  | = svm->vmcb->control.exit_code; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (is_external_interrupt(svm->vmcb->control.exit_int_info) && | 
|  | exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR && | 
|  | exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH) | 
|  | printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x " | 
|  | "exit_code 0x%x\n", | 
|  | __func__, svm->vmcb->control.exit_int_info, | 
|  | exit_code); | 
|  |  | 
|  | if (exit_code >= ARRAY_SIZE(svm_exit_handlers) | 
|  | || !svm_exit_handlers[exit_code]) { | 
|  | kvm_run->exit_reason = KVM_EXIT_UNKNOWN; | 
|  | kvm_run->hw.hardware_exit_reason = exit_code; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return svm_exit_handlers[exit_code](svm); | 
|  | } | 
|  |  | 
|  | static void reload_tss(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int cpu = raw_smp_processor_id(); | 
|  |  | 
|  | struct svm_cpu_data *sd = per_cpu(svm_data, cpu); | 
|  | sd->tss_desc->type = 9; /* available 32/64-bit TSS */ | 
|  | load_TR_desc(); | 
|  | } | 
|  |  | 
|  | static void pre_svm_run(struct vcpu_svm *svm) | 
|  | { | 
|  | int cpu = raw_smp_processor_id(); | 
|  |  | 
|  | struct svm_cpu_data *sd = per_cpu(svm_data, cpu); | 
|  |  | 
|  | svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; | 
|  | /* FIXME: handle wraparound of asid_generation */ | 
|  | if (svm->asid_generation != sd->asid_generation) | 
|  | new_asid(svm, sd); | 
|  | } | 
|  |  | 
|  | static void svm_inject_nmi(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; | 
|  | vcpu->arch.hflags |= HF_NMI_MASK; | 
|  | svm->vmcb->control.intercept |= (1ULL << INTERCEPT_IRET); | 
|  | ++vcpu->stat.nmi_injections; | 
|  | } | 
|  |  | 
|  | static inline void svm_inject_irq(struct vcpu_svm *svm, int irq) | 
|  | { | 
|  | struct vmcb_control_area *control; | 
|  |  | 
|  | trace_kvm_inj_virq(irq); | 
|  |  | 
|  | ++svm->vcpu.stat.irq_injections; | 
|  | control = &svm->vmcb->control; | 
|  | control->int_vector = irq; | 
|  | control->int_ctl &= ~V_INTR_PRIO_MASK; | 
|  | control->int_ctl |= V_IRQ_MASK | | 
|  | ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); | 
|  | } | 
|  |  | 
|  | static void svm_set_irq(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | BUG_ON(!(gif_set(svm))); | 
|  |  | 
|  | svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | | 
|  | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR; | 
|  | } | 
|  |  | 
|  | static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK)) | 
|  | return; | 
|  |  | 
|  | if (irr == -1) | 
|  | return; | 
|  |  | 
|  | if (tpr >= irr) | 
|  | svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK; | 
|  | } | 
|  |  | 
|  | static int svm_nmi_allowed(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | struct vmcb *vmcb = svm->vmcb; | 
|  | int ret; | 
|  | ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) && | 
|  | !(svm->vcpu.arch.hflags & HF_NMI_MASK); | 
|  | ret = ret && gif_set(svm) && nested_svm_nmi(svm); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | return !!(svm->vcpu.arch.hflags & HF_NMI_MASK); | 
|  | } | 
|  |  | 
|  | static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | if (masked) { | 
|  | svm->vcpu.arch.hflags |= HF_NMI_MASK; | 
|  | svm->vmcb->control.intercept |= (1ULL << INTERCEPT_IRET); | 
|  | } else { | 
|  | svm->vcpu.arch.hflags &= ~HF_NMI_MASK; | 
|  | svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_IRET); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int svm_interrupt_allowed(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | struct vmcb *vmcb = svm->vmcb; | 
|  | int ret; | 
|  |  | 
|  | if (!gif_set(svm) || | 
|  | (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)) | 
|  | return 0; | 
|  |  | 
|  | ret = !!(vmcb->save.rflags & X86_EFLAGS_IF); | 
|  |  | 
|  | if (is_nested(svm)) | 
|  | return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void enable_irq_window(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | /* | 
|  | * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes | 
|  | * 1, because that's a separate STGI/VMRUN intercept.  The next time we | 
|  | * get that intercept, this function will be called again though and | 
|  | * we'll get the vintr intercept. | 
|  | */ | 
|  | if (gif_set(svm) && nested_svm_intr(svm)) { | 
|  | svm_set_vintr(svm); | 
|  | svm_inject_irq(svm, 0x0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void enable_nmi_window(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) | 
|  | == HF_NMI_MASK) | 
|  | return; /* IRET will cause a vm exit */ | 
|  |  | 
|  | /* | 
|  | * Something prevents NMI from been injected. Single step over possible | 
|  | * problem (IRET or exception injection or interrupt shadow) | 
|  | */ | 
|  | svm->nmi_singlestep = true; | 
|  | svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); | 
|  | update_db_intercept(vcpu); | 
|  | } | 
|  |  | 
|  | static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void svm_flush_tlb(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | force_new_asid(vcpu); | 
|  | } | 
|  |  | 
|  | static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK)) | 
|  | return; | 
|  |  | 
|  | if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) { | 
|  | int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; | 
|  | kvm_set_cr8(vcpu, cr8); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | u64 cr8; | 
|  |  | 
|  | if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK)) | 
|  | return; | 
|  |  | 
|  | cr8 = kvm_get_cr8(vcpu); | 
|  | svm->vmcb->control.int_ctl &= ~V_TPR_MASK; | 
|  | svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; | 
|  | } | 
|  |  | 
|  | static void svm_complete_interrupts(struct vcpu_svm *svm) | 
|  | { | 
|  | u8 vector; | 
|  | int type; | 
|  | u32 exitintinfo = svm->vmcb->control.exit_int_info; | 
|  | unsigned int3_injected = svm->int3_injected; | 
|  |  | 
|  | svm->int3_injected = 0; | 
|  |  | 
|  | if (svm->vcpu.arch.hflags & HF_IRET_MASK) | 
|  | svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK); | 
|  |  | 
|  | svm->vcpu.arch.nmi_injected = false; | 
|  | kvm_clear_exception_queue(&svm->vcpu); | 
|  | kvm_clear_interrupt_queue(&svm->vcpu); | 
|  |  | 
|  | if (!(exitintinfo & SVM_EXITINTINFO_VALID)) | 
|  | return; | 
|  |  | 
|  | vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; | 
|  | type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; | 
|  |  | 
|  | switch (type) { | 
|  | case SVM_EXITINTINFO_TYPE_NMI: | 
|  | svm->vcpu.arch.nmi_injected = true; | 
|  | break; | 
|  | case SVM_EXITINTINFO_TYPE_EXEPT: | 
|  | /* | 
|  | * In case of software exceptions, do not reinject the vector, | 
|  | * but re-execute the instruction instead. Rewind RIP first | 
|  | * if we emulated INT3 before. | 
|  | */ | 
|  | if (kvm_exception_is_soft(vector)) { | 
|  | if (vector == BP_VECTOR && int3_injected && | 
|  | kvm_is_linear_rip(&svm->vcpu, svm->int3_rip)) | 
|  | kvm_rip_write(&svm->vcpu, | 
|  | kvm_rip_read(&svm->vcpu) - | 
|  | int3_injected); | 
|  | break; | 
|  | } | 
|  | if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { | 
|  | u32 err = svm->vmcb->control.exit_int_info_err; | 
|  | kvm_requeue_exception_e(&svm->vcpu, vector, err); | 
|  |  | 
|  | } else | 
|  | kvm_requeue_exception(&svm->vcpu, vector); | 
|  | break; | 
|  | case SVM_EXITINTINFO_TYPE_INTR: | 
|  | kvm_queue_interrupt(&svm->vcpu, vector, false); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | #define R "r" | 
|  | #else | 
|  | #define R "e" | 
|  | #endif | 
|  |  | 
|  | static void svm_vcpu_run(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | u16 fs_selector; | 
|  | u16 gs_selector; | 
|  | u16 ldt_selector; | 
|  |  | 
|  | svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; | 
|  | svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; | 
|  | svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; | 
|  |  | 
|  | /* | 
|  | * A vmexit emulation is required before the vcpu can be executed | 
|  | * again. | 
|  | */ | 
|  | if (unlikely(svm->nested.exit_required)) | 
|  | return; | 
|  |  | 
|  | pre_svm_run(svm); | 
|  |  | 
|  | sync_lapic_to_cr8(vcpu); | 
|  |  | 
|  | save_host_msrs(vcpu); | 
|  | fs_selector = kvm_read_fs(); | 
|  | gs_selector = kvm_read_gs(); | 
|  | ldt_selector = kvm_read_ldt(); | 
|  | svm->vmcb->save.cr2 = vcpu->arch.cr2; | 
|  | /* required for live migration with NPT */ | 
|  | if (npt_enabled) | 
|  | svm->vmcb->save.cr3 = vcpu->arch.cr3; | 
|  |  | 
|  | clgi(); | 
|  |  | 
|  | local_irq_enable(); | 
|  |  | 
|  | asm volatile ( | 
|  | "push %%"R"bp; \n\t" | 
|  | "mov %c[rbx](%[svm]), %%"R"bx \n\t" | 
|  | "mov %c[rcx](%[svm]), %%"R"cx \n\t" | 
|  | "mov %c[rdx](%[svm]), %%"R"dx \n\t" | 
|  | "mov %c[rsi](%[svm]), %%"R"si \n\t" | 
|  | "mov %c[rdi](%[svm]), %%"R"di \n\t" | 
|  | "mov %c[rbp](%[svm]), %%"R"bp \n\t" | 
|  | #ifdef CONFIG_X86_64 | 
|  | "mov %c[r8](%[svm]),  %%r8  \n\t" | 
|  | "mov %c[r9](%[svm]),  %%r9  \n\t" | 
|  | "mov %c[r10](%[svm]), %%r10 \n\t" | 
|  | "mov %c[r11](%[svm]), %%r11 \n\t" | 
|  | "mov %c[r12](%[svm]), %%r12 \n\t" | 
|  | "mov %c[r13](%[svm]), %%r13 \n\t" | 
|  | "mov %c[r14](%[svm]), %%r14 \n\t" | 
|  | "mov %c[r15](%[svm]), %%r15 \n\t" | 
|  | #endif | 
|  |  | 
|  | /* Enter guest mode */ | 
|  | "push %%"R"ax \n\t" | 
|  | "mov %c[vmcb](%[svm]), %%"R"ax \n\t" | 
|  | __ex(SVM_VMLOAD) "\n\t" | 
|  | __ex(SVM_VMRUN) "\n\t" | 
|  | __ex(SVM_VMSAVE) "\n\t" | 
|  | "pop %%"R"ax \n\t" | 
|  |  | 
|  | /* Save guest registers, load host registers */ | 
|  | "mov %%"R"bx, %c[rbx](%[svm]) \n\t" | 
|  | "mov %%"R"cx, %c[rcx](%[svm]) \n\t" | 
|  | "mov %%"R"dx, %c[rdx](%[svm]) \n\t" | 
|  | "mov %%"R"si, %c[rsi](%[svm]) \n\t" | 
|  | "mov %%"R"di, %c[rdi](%[svm]) \n\t" | 
|  | "mov %%"R"bp, %c[rbp](%[svm]) \n\t" | 
|  | #ifdef CONFIG_X86_64 | 
|  | "mov %%r8,  %c[r8](%[svm]) \n\t" | 
|  | "mov %%r9,  %c[r9](%[svm]) \n\t" | 
|  | "mov %%r10, %c[r10](%[svm]) \n\t" | 
|  | "mov %%r11, %c[r11](%[svm]) \n\t" | 
|  | "mov %%r12, %c[r12](%[svm]) \n\t" | 
|  | "mov %%r13, %c[r13](%[svm]) \n\t" | 
|  | "mov %%r14, %c[r14](%[svm]) \n\t" | 
|  | "mov %%r15, %c[r15](%[svm]) \n\t" | 
|  | #endif | 
|  | "pop %%"R"bp" | 
|  | : | 
|  | : [svm]"a"(svm), | 
|  | [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)), | 
|  | [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])), | 
|  | [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])), | 
|  | [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])), | 
|  | [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])), | 
|  | [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])), | 
|  | [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP])) | 
|  | #ifdef CONFIG_X86_64 | 
|  | , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])), | 
|  | [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])), | 
|  | [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])), | 
|  | [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])), | 
|  | [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])), | 
|  | [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])), | 
|  | [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])), | 
|  | [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15])) | 
|  | #endif | 
|  | : "cc", "memory" | 
|  | , R"bx", R"cx", R"dx", R"si", R"di" | 
|  | #ifdef CONFIG_X86_64 | 
|  | , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15" | 
|  | #endif | 
|  | ); | 
|  |  | 
|  | vcpu->arch.cr2 = svm->vmcb->save.cr2; | 
|  | vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; | 
|  | vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; | 
|  | vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; | 
|  |  | 
|  | kvm_load_fs(fs_selector); | 
|  | kvm_load_gs(gs_selector); | 
|  | kvm_load_ldt(ldt_selector); | 
|  | load_host_msrs(vcpu); | 
|  |  | 
|  | reload_tss(vcpu); | 
|  |  | 
|  | local_irq_disable(); | 
|  |  | 
|  | stgi(); | 
|  |  | 
|  | sync_cr8_to_lapic(vcpu); | 
|  |  | 
|  | svm->next_rip = 0; | 
|  |  | 
|  | if (npt_enabled) { | 
|  | vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR); | 
|  | vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to handle MC intercepts here before the vcpu has a chance to | 
|  | * change the physical cpu | 
|  | */ | 
|  | if (unlikely(svm->vmcb->control.exit_code == | 
|  | SVM_EXIT_EXCP_BASE + MC_VECTOR)) | 
|  | svm_handle_mce(svm); | 
|  | } | 
|  |  | 
|  | #undef R | 
|  |  | 
|  | static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | if (npt_enabled) { | 
|  | svm->vmcb->control.nested_cr3 = root; | 
|  | force_new_asid(vcpu); | 
|  | return; | 
|  | } | 
|  |  | 
|  | svm->vmcb->save.cr3 = root; | 
|  | force_new_asid(vcpu); | 
|  | } | 
|  |  | 
|  | static int is_disabled(void) | 
|  | { | 
|  | u64 vm_cr; | 
|  |  | 
|  | rdmsrl(MSR_VM_CR, vm_cr); | 
|  | if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) | 
|  | { | 
|  | /* | 
|  | * Patch in the VMMCALL instruction: | 
|  | */ | 
|  | hypercall[0] = 0x0f; | 
|  | hypercall[1] = 0x01; | 
|  | hypercall[2] = 0xd9; | 
|  | } | 
|  |  | 
|  | static void svm_check_processor_compat(void *rtn) | 
|  | { | 
|  | *(int *)rtn = 0; | 
|  | } | 
|  |  | 
|  | static bool svm_cpu_has_accelerated_tpr(void) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int get_npt_level(void) | 
|  | { | 
|  | #ifdef CONFIG_X86_64 | 
|  | return PT64_ROOT_LEVEL; | 
|  | #else | 
|  | return PT32E_ROOT_LEVEL; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void svm_cpuid_update(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry) | 
|  | { | 
|  | switch (func) { | 
|  | case 0x8000000A: | 
|  | entry->eax = 1; /* SVM revision 1 */ | 
|  | entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper | 
|  | ASID emulation to nested SVM */ | 
|  | entry->ecx = 0; /* Reserved */ | 
|  | entry->edx = 0; /* Do not support any additional features */ | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const struct trace_print_flags svm_exit_reasons_str[] = { | 
|  | { SVM_EXIT_READ_CR0,			"read_cr0" }, | 
|  | { SVM_EXIT_READ_CR3,			"read_cr3" }, | 
|  | { SVM_EXIT_READ_CR4,			"read_cr4" }, | 
|  | { SVM_EXIT_READ_CR8,			"read_cr8" }, | 
|  | { SVM_EXIT_WRITE_CR0,			"write_cr0" }, | 
|  | { SVM_EXIT_WRITE_CR3,			"write_cr3" }, | 
|  | { SVM_EXIT_WRITE_CR4,			"write_cr4" }, | 
|  | { SVM_EXIT_WRITE_CR8,			"write_cr8" }, | 
|  | { SVM_EXIT_READ_DR0,			"read_dr0" }, | 
|  | { SVM_EXIT_READ_DR1,			"read_dr1" }, | 
|  | { SVM_EXIT_READ_DR2,			"read_dr2" }, | 
|  | { SVM_EXIT_READ_DR3,			"read_dr3" }, | 
|  | { SVM_EXIT_WRITE_DR0,			"write_dr0" }, | 
|  | { SVM_EXIT_WRITE_DR1,			"write_dr1" }, | 
|  | { SVM_EXIT_WRITE_DR2,			"write_dr2" }, | 
|  | { SVM_EXIT_WRITE_DR3,			"write_dr3" }, | 
|  | { SVM_EXIT_WRITE_DR5,			"write_dr5" }, | 
|  | { SVM_EXIT_WRITE_DR7,			"write_dr7" }, | 
|  | { SVM_EXIT_EXCP_BASE + DB_VECTOR,	"DB excp" }, | 
|  | { SVM_EXIT_EXCP_BASE + BP_VECTOR,	"BP excp" }, | 
|  | { SVM_EXIT_EXCP_BASE + UD_VECTOR,	"UD excp" }, | 
|  | { SVM_EXIT_EXCP_BASE + PF_VECTOR,	"PF excp" }, | 
|  | { SVM_EXIT_EXCP_BASE + NM_VECTOR,	"NM excp" }, | 
|  | { SVM_EXIT_EXCP_BASE + MC_VECTOR,	"MC excp" }, | 
|  | { SVM_EXIT_INTR,			"interrupt" }, | 
|  | { SVM_EXIT_NMI,				"nmi" }, | 
|  | { SVM_EXIT_SMI,				"smi" }, | 
|  | { SVM_EXIT_INIT,			"init" }, | 
|  | { SVM_EXIT_VINTR,			"vintr" }, | 
|  | { SVM_EXIT_CPUID,			"cpuid" }, | 
|  | { SVM_EXIT_INVD,			"invd" }, | 
|  | { SVM_EXIT_HLT,				"hlt" }, | 
|  | { SVM_EXIT_INVLPG,			"invlpg" }, | 
|  | { SVM_EXIT_INVLPGA,			"invlpga" }, | 
|  | { SVM_EXIT_IOIO,			"io" }, | 
|  | { SVM_EXIT_MSR,				"msr" }, | 
|  | { SVM_EXIT_TASK_SWITCH,			"task_switch" }, | 
|  | { SVM_EXIT_SHUTDOWN,			"shutdown" }, | 
|  | { SVM_EXIT_VMRUN,			"vmrun" }, | 
|  | { SVM_EXIT_VMMCALL,			"hypercall" }, | 
|  | { SVM_EXIT_VMLOAD,			"vmload" }, | 
|  | { SVM_EXIT_VMSAVE,			"vmsave" }, | 
|  | { SVM_EXIT_STGI,			"stgi" }, | 
|  | { SVM_EXIT_CLGI,			"clgi" }, | 
|  | { SVM_EXIT_SKINIT,			"skinit" }, | 
|  | { SVM_EXIT_WBINVD,			"wbinvd" }, | 
|  | { SVM_EXIT_MONITOR,			"monitor" }, | 
|  | { SVM_EXIT_MWAIT,			"mwait" }, | 
|  | { SVM_EXIT_NPF,				"npf" }, | 
|  | { -1, NULL } | 
|  | }; | 
|  |  | 
|  | static int svm_get_lpage_level(void) | 
|  | { | 
|  | return PT_PDPE_LEVEL; | 
|  | } | 
|  |  | 
|  | static bool svm_rdtscp_supported(void) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void svm_fpu_deactivate(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | svm->vmcb->control.intercept_exceptions |= 1 << NM_VECTOR; | 
|  | if (is_nested(svm)) | 
|  | svm->nested.hsave->control.intercept_exceptions |= 1 << NM_VECTOR; | 
|  | update_cr0_intercept(svm); | 
|  | } | 
|  |  | 
|  | static struct kvm_x86_ops svm_x86_ops = { | 
|  | .cpu_has_kvm_support = has_svm, | 
|  | .disabled_by_bios = is_disabled, | 
|  | .hardware_setup = svm_hardware_setup, | 
|  | .hardware_unsetup = svm_hardware_unsetup, | 
|  | .check_processor_compatibility = svm_check_processor_compat, | 
|  | .hardware_enable = svm_hardware_enable, | 
|  | .hardware_disable = svm_hardware_disable, | 
|  | .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr, | 
|  |  | 
|  | .vcpu_create = svm_create_vcpu, | 
|  | .vcpu_free = svm_free_vcpu, | 
|  | .vcpu_reset = svm_vcpu_reset, | 
|  |  | 
|  | .prepare_guest_switch = svm_prepare_guest_switch, | 
|  | .vcpu_load = svm_vcpu_load, | 
|  | .vcpu_put = svm_vcpu_put, | 
|  |  | 
|  | .set_guest_debug = svm_guest_debug, | 
|  | .get_msr = svm_get_msr, | 
|  | .set_msr = svm_set_msr, | 
|  | .get_segment_base = svm_get_segment_base, | 
|  | .get_segment = svm_get_segment, | 
|  | .set_segment = svm_set_segment, | 
|  | .get_cpl = svm_get_cpl, | 
|  | .get_cs_db_l_bits = kvm_get_cs_db_l_bits, | 
|  | .decache_cr0_guest_bits = svm_decache_cr0_guest_bits, | 
|  | .decache_cr4_guest_bits = svm_decache_cr4_guest_bits, | 
|  | .set_cr0 = svm_set_cr0, | 
|  | .set_cr3 = svm_set_cr3, | 
|  | .set_cr4 = svm_set_cr4, | 
|  | .set_efer = svm_set_efer, | 
|  | .get_idt = svm_get_idt, | 
|  | .set_idt = svm_set_idt, | 
|  | .get_gdt = svm_get_gdt, | 
|  | .set_gdt = svm_set_gdt, | 
|  | .set_dr7 = svm_set_dr7, | 
|  | .cache_reg = svm_cache_reg, | 
|  | .get_rflags = svm_get_rflags, | 
|  | .set_rflags = svm_set_rflags, | 
|  | .fpu_activate = svm_fpu_activate, | 
|  | .fpu_deactivate = svm_fpu_deactivate, | 
|  |  | 
|  | .tlb_flush = svm_flush_tlb, | 
|  |  | 
|  | .run = svm_vcpu_run, | 
|  | .handle_exit = handle_exit, | 
|  | .skip_emulated_instruction = skip_emulated_instruction, | 
|  | .set_interrupt_shadow = svm_set_interrupt_shadow, | 
|  | .get_interrupt_shadow = svm_get_interrupt_shadow, | 
|  | .patch_hypercall = svm_patch_hypercall, | 
|  | .set_irq = svm_set_irq, | 
|  | .set_nmi = svm_inject_nmi, | 
|  | .queue_exception = svm_queue_exception, | 
|  | .interrupt_allowed = svm_interrupt_allowed, | 
|  | .nmi_allowed = svm_nmi_allowed, | 
|  | .get_nmi_mask = svm_get_nmi_mask, | 
|  | .set_nmi_mask = svm_set_nmi_mask, | 
|  | .enable_nmi_window = enable_nmi_window, | 
|  | .enable_irq_window = enable_irq_window, | 
|  | .update_cr8_intercept = update_cr8_intercept, | 
|  |  | 
|  | .set_tss_addr = svm_set_tss_addr, | 
|  | .get_tdp_level = get_npt_level, | 
|  | .get_mt_mask = svm_get_mt_mask, | 
|  |  | 
|  | .exit_reasons_str = svm_exit_reasons_str, | 
|  | .get_lpage_level = svm_get_lpage_level, | 
|  |  | 
|  | .cpuid_update = svm_cpuid_update, | 
|  |  | 
|  | .rdtscp_supported = svm_rdtscp_supported, | 
|  |  | 
|  | .set_supported_cpuid = svm_set_supported_cpuid, | 
|  | }; | 
|  |  | 
|  | static int __init svm_init(void) | 
|  | { | 
|  | return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm), | 
|  | __alignof__(struct vcpu_svm), THIS_MODULE); | 
|  | } | 
|  |  | 
|  | static void __exit svm_exit(void) | 
|  | { | 
|  | kvm_exit(); | 
|  | } | 
|  |  | 
|  | module_init(svm_init) | 
|  | module_exit(svm_exit) |