|  | /* | 
|  | * This file is subject to the terms and conditions of the GNU General Public | 
|  | * License.  See the file "COPYING" in the main directory of this archive | 
|  | * for more details. | 
|  | * | 
|  | * Copyright (C) 1999,2001-2006 Silicon Graphics, Inc. All rights reserved. | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/kdev_t.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/screen_info.h> | 
|  | #include <linux/console.h> | 
|  | #include <linux/timex.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/serial.h> | 
|  | #include <linux/irq.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/mmzone.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/acpi.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/root_dev.h> | 
|  | #include <linux/nodemask.h> | 
|  | #include <linux/pm.h> | 
|  | #include <linux/efi.h> | 
|  |  | 
|  | #include <asm/io.h> | 
|  | #include <asm/sal.h> | 
|  | #include <asm/machvec.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/vga.h> | 
|  | #include <asm/sn/arch.h> | 
|  | #include <asm/sn/addrs.h> | 
|  | #include <asm/sn/pda.h> | 
|  | #include <asm/sn/nodepda.h> | 
|  | #include <asm/sn/sn_cpuid.h> | 
|  | #include <asm/sn/simulator.h> | 
|  | #include <asm/sn/leds.h> | 
|  | #include <asm/sn/bte.h> | 
|  | #include <asm/sn/shub_mmr.h> | 
|  | #include <asm/sn/clksupport.h> | 
|  | #include <asm/sn/sn_sal.h> | 
|  | #include <asm/sn/geo.h> | 
|  | #include <asm/sn/sn_feature_sets.h> | 
|  | #include "xtalk/xwidgetdev.h" | 
|  | #include "xtalk/hubdev.h" | 
|  | #include <asm/sn/klconfig.h> | 
|  |  | 
|  |  | 
|  | DEFINE_PER_CPU(struct pda_s, pda_percpu); | 
|  |  | 
|  | #define MAX_PHYS_MEMORY		(1UL << IA64_MAX_PHYS_BITS)	/* Max physical address supported */ | 
|  |  | 
|  | extern void bte_init_node(nodepda_t *, cnodeid_t); | 
|  |  | 
|  | extern void sn_timer_init(void); | 
|  | extern unsigned long last_time_offset; | 
|  | extern void (*ia64_mark_idle) (int); | 
|  | extern void snidle(int); | 
|  |  | 
|  | unsigned long sn_rtc_cycles_per_second; | 
|  | EXPORT_SYMBOL(sn_rtc_cycles_per_second); | 
|  |  | 
|  | DEFINE_PER_CPU(struct sn_hub_info_s, __sn_hub_info); | 
|  | EXPORT_PER_CPU_SYMBOL(__sn_hub_info); | 
|  |  | 
|  | DEFINE_PER_CPU(short, __sn_cnodeid_to_nasid[MAX_COMPACT_NODES]); | 
|  | EXPORT_PER_CPU_SYMBOL(__sn_cnodeid_to_nasid); | 
|  |  | 
|  | DEFINE_PER_CPU(struct nodepda_s *, __sn_nodepda); | 
|  | EXPORT_PER_CPU_SYMBOL(__sn_nodepda); | 
|  |  | 
|  | char sn_system_serial_number_string[128]; | 
|  | EXPORT_SYMBOL(sn_system_serial_number_string); | 
|  | u64 sn_partition_serial_number; | 
|  | EXPORT_SYMBOL(sn_partition_serial_number); | 
|  | u8 sn_partition_id; | 
|  | EXPORT_SYMBOL(sn_partition_id); | 
|  | u8 sn_system_size; | 
|  | EXPORT_SYMBOL(sn_system_size); | 
|  | u8 sn_sharing_domain_size; | 
|  | EXPORT_SYMBOL(sn_sharing_domain_size); | 
|  | u8 sn_coherency_id; | 
|  | EXPORT_SYMBOL(sn_coherency_id); | 
|  | u8 sn_region_size; | 
|  | EXPORT_SYMBOL(sn_region_size); | 
|  | int sn_prom_type;	/* 0=hardware, 1=medusa/realprom, 2=medusa/fakeprom */ | 
|  |  | 
|  | short physical_node_map[MAX_NUMALINK_NODES]; | 
|  | static unsigned long sn_prom_features[MAX_PROM_FEATURE_SETS]; | 
|  |  | 
|  | EXPORT_SYMBOL(physical_node_map); | 
|  |  | 
|  | int num_cnodes; | 
|  |  | 
|  | static void sn_init_pdas(char **); | 
|  | static void build_cnode_tables(void); | 
|  |  | 
|  | static nodepda_t *nodepdaindr[MAX_COMPACT_NODES]; | 
|  |  | 
|  | /* | 
|  | * The format of "screen_info" is strange, and due to early i386-setup | 
|  | * code. This is just enough to make the console code think we're on a | 
|  | * VGA color display. | 
|  | */ | 
|  | struct screen_info sn_screen_info = { | 
|  | .orig_x = 0, | 
|  | .orig_y = 0, | 
|  | .orig_video_mode = 3, | 
|  | .orig_video_cols = 80, | 
|  | .orig_video_ega_bx = 3, | 
|  | .orig_video_lines = 25, | 
|  | .orig_video_isVGA = 1, | 
|  | .orig_video_points = 16 | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * This routine can only be used during init, since | 
|  | * smp_boot_data is an init data structure. | 
|  | * We have to use smp_boot_data.cpu_phys_id to find | 
|  | * the physical id of the processor because the normal | 
|  | * cpu_physical_id() relies on data structures that | 
|  | * may not be initialized yet. | 
|  | */ | 
|  |  | 
|  | static int __init pxm_to_nasid(int pxm) | 
|  | { | 
|  | int i; | 
|  | int nid; | 
|  |  | 
|  | nid = pxm_to_node(pxm); | 
|  | for (i = 0; i < num_node_memblks; i++) { | 
|  | if (node_memblk[i].nid == nid) { | 
|  | return NASID_GET(node_memblk[i].start_paddr); | 
|  | } | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * early_sn_setup - early setup routine for SN platforms | 
|  | * | 
|  | * Sets up an initial console to aid debugging.  Intended primarily | 
|  | * for bringup.  See start_kernel() in init/main.c. | 
|  | */ | 
|  |  | 
|  | void __init early_sn_setup(void) | 
|  | { | 
|  | efi_system_table_t *efi_systab; | 
|  | efi_config_table_t *config_tables; | 
|  | struct ia64_sal_systab *sal_systab; | 
|  | struct ia64_sal_desc_entry_point *ep; | 
|  | char *p; | 
|  | int i, j; | 
|  |  | 
|  | /* | 
|  | * Parse enough of the SAL tables to locate the SAL entry point. Since, console | 
|  | * IO on SN2 is done via SAL calls, early_printk won't work without this. | 
|  | * | 
|  | * This code duplicates some of the ACPI table parsing that is in efi.c & sal.c. | 
|  | * Any changes to those file may have to be made here as well. | 
|  | */ | 
|  | efi_systab = (efi_system_table_t *) __va(ia64_boot_param->efi_systab); | 
|  | config_tables = __va(efi_systab->tables); | 
|  | for (i = 0; i < efi_systab->nr_tables; i++) { | 
|  | if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == | 
|  | 0) { | 
|  | sal_systab = __va(config_tables[i].table); | 
|  | p = (char *)(sal_systab + 1); | 
|  | for (j = 0; j < sal_systab->entry_count; j++) { | 
|  | if (*p == SAL_DESC_ENTRY_POINT) { | 
|  | ep = (struct ia64_sal_desc_entry_point | 
|  | *)p; | 
|  | ia64_sal_handler_init(__va | 
|  | (ep->sal_proc), | 
|  | __va(ep->gp)); | 
|  | return; | 
|  | } | 
|  | p += SAL_DESC_SIZE(*p); | 
|  | } | 
|  | } | 
|  | } | 
|  | /* Uh-oh, SAL not available?? */ | 
|  | printk(KERN_ERR "failed to find SAL entry point\n"); | 
|  | } | 
|  |  | 
|  | extern int platform_intr_list[]; | 
|  | static int __cpuinitdata shub_1_1_found; | 
|  |  | 
|  | /* | 
|  | * sn_check_for_wars | 
|  | * | 
|  | * Set flag for enabling shub specific wars | 
|  | */ | 
|  |  | 
|  | static inline int __cpuinit is_shub_1_1(int nasid) | 
|  | { | 
|  | unsigned long id; | 
|  | int rev; | 
|  |  | 
|  | if (is_shub2()) | 
|  | return 0; | 
|  | id = REMOTE_HUB_L(nasid, SH1_SHUB_ID); | 
|  | rev = (id & SH1_SHUB_ID_REVISION_MASK) >> SH1_SHUB_ID_REVISION_SHFT; | 
|  | return rev <= 2; | 
|  | } | 
|  |  | 
|  | static void __cpuinit sn_check_for_wars(void) | 
|  | { | 
|  | int cnode; | 
|  |  | 
|  | if (is_shub2()) { | 
|  | /* none yet */ | 
|  | } else { | 
|  | for_each_online_node(cnode) { | 
|  | if (is_shub_1_1(cnodeid_to_nasid(cnode))) | 
|  | shub_1_1_found = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scan the EFI PCDP table (if it exists) for an acceptable VGA console | 
|  | * output device.  If one exists, pick it and set sn_legacy_{io,mem} to | 
|  | * reflect the bus offsets needed to address it. | 
|  | * | 
|  | * Since pcdp support in SN is not supported in the 2.4 kernel (or at least | 
|  | * the one lbs is based on) just declare the needed structs here. | 
|  | * | 
|  | * Reference spec http://www.dig64.org/specifications/DIG64_PCDPv20.pdf | 
|  | * | 
|  | * Returns 0 if no acceptable vga is found, !0 otherwise. | 
|  | * | 
|  | * Note:  This stuff is duped here because Altix requires the PCDP to | 
|  | * locate a usable VGA device due to lack of proper ACPI support.  Structures | 
|  | * could be used from drivers/firmware/pcdp.h, but it was decided that moving | 
|  | * this file to a more public location just for Altix use was undesirable. | 
|  | */ | 
|  |  | 
|  | struct hcdp_uart_desc { | 
|  | u8	pad[45]; | 
|  | }; | 
|  |  | 
|  | struct pcdp { | 
|  | u8	signature[4];	/* should be 'HCDP' */ | 
|  | u32	length; | 
|  | u8	rev;		/* should be >=3 for pcdp, <3 for hcdp */ | 
|  | u8	sum; | 
|  | u8	oem_id[6]; | 
|  | u64	oem_tableid; | 
|  | u32	oem_rev; | 
|  | u32	creator_id; | 
|  | u32	creator_rev; | 
|  | u32	num_type0; | 
|  | struct hcdp_uart_desc uart[0];	/* num_type0 of these */ | 
|  | /* pcdp descriptors follow */ | 
|  | }  __attribute__((packed)); | 
|  |  | 
|  | struct pcdp_device_desc { | 
|  | u8	type; | 
|  | u8	primary; | 
|  | u16	length; | 
|  | u16	index; | 
|  | /* interconnect specific structure follows */ | 
|  | /* device specific structure follows that */ | 
|  | }  __attribute__((packed)); | 
|  |  | 
|  | struct pcdp_interface_pci { | 
|  | u8	type;		/* 1 == pci */ | 
|  | u8	reserved; | 
|  | u16	length; | 
|  | u8	segment; | 
|  | u8	bus; | 
|  | u8 	dev; | 
|  | u8	fun; | 
|  | u16	devid; | 
|  | u16	vendid; | 
|  | u32	acpi_interrupt; | 
|  | u64	mmio_tra; | 
|  | u64	ioport_tra; | 
|  | u8	flags; | 
|  | u8	translation; | 
|  | }  __attribute__((packed)); | 
|  |  | 
|  | struct pcdp_vga_device { | 
|  | u8	num_eas_desc; | 
|  | /* ACPI Extended Address Space Desc follows */ | 
|  | }  __attribute__((packed)); | 
|  |  | 
|  | /* from pcdp_device_desc.primary */ | 
|  | #define PCDP_PRIMARY_CONSOLE	0x01 | 
|  |  | 
|  | /* from pcdp_device_desc.type */ | 
|  | #define PCDP_CONSOLE_INOUT	0x0 | 
|  | #define PCDP_CONSOLE_DEBUG	0x1 | 
|  | #define PCDP_CONSOLE_OUT	0x2 | 
|  | #define PCDP_CONSOLE_IN		0x3 | 
|  | #define PCDP_CONSOLE_TYPE_VGA	0x8 | 
|  |  | 
|  | #define PCDP_CONSOLE_VGA	(PCDP_CONSOLE_TYPE_VGA | PCDP_CONSOLE_OUT) | 
|  |  | 
|  | /* from pcdp_interface_pci.type */ | 
|  | #define PCDP_IF_PCI		1 | 
|  |  | 
|  | /* from pcdp_interface_pci.translation */ | 
|  | #define PCDP_PCI_TRANS_IOPORT	0x02 | 
|  | #define PCDP_PCI_TRANS_MMIO	0x01 | 
|  |  | 
|  | #if defined(CONFIG_VT) && defined(CONFIG_VGA_CONSOLE) | 
|  | static void | 
|  | sn_scan_pcdp(void) | 
|  | { | 
|  | u8 *bp; | 
|  | struct pcdp *pcdp; | 
|  | struct pcdp_device_desc device; | 
|  | struct pcdp_interface_pci if_pci; | 
|  | extern struct efi efi; | 
|  |  | 
|  | if (efi.hcdp == EFI_INVALID_TABLE_ADDR) | 
|  | return;		/* no hcdp/pcdp table */ | 
|  |  | 
|  | pcdp = __va(efi.hcdp); | 
|  |  | 
|  | if (pcdp->rev < 3) | 
|  | return;		/* only support PCDP (rev >= 3) */ | 
|  |  | 
|  | for (bp = (u8 *)&pcdp->uart[pcdp->num_type0]; | 
|  | bp < (u8 *)pcdp + pcdp->length; | 
|  | bp += device.length) { | 
|  | memcpy(&device, bp, sizeof(device)); | 
|  | if (! (device.primary & PCDP_PRIMARY_CONSOLE)) | 
|  | continue;	/* not primary console */ | 
|  |  | 
|  | if (device.type != PCDP_CONSOLE_VGA) | 
|  | continue;	/* not VGA descriptor */ | 
|  |  | 
|  | memcpy(&if_pci, bp+sizeof(device), sizeof(if_pci)); | 
|  | if (if_pci.type != PCDP_IF_PCI) | 
|  | continue;	/* not PCI interconnect */ | 
|  |  | 
|  | if (if_pci.translation & PCDP_PCI_TRANS_IOPORT) | 
|  | vga_console_iobase = if_pci.ioport_tra; | 
|  |  | 
|  | if (if_pci.translation & PCDP_PCI_TRANS_MMIO) | 
|  | vga_console_membase = | 
|  | if_pci.mmio_tra | __IA64_UNCACHED_OFFSET; | 
|  |  | 
|  | break; /* once we find the primary, we're done */ | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static unsigned long sn2_rtc_initial; | 
|  |  | 
|  | /** | 
|  | * sn_setup - SN platform setup routine | 
|  | * @cmdline_p: kernel command line | 
|  | * | 
|  | * Handles platform setup for SN machines.  This includes determining | 
|  | * the RTC frequency (via a SAL call), initializing secondary CPUs, and | 
|  | * setting up per-node data areas.  The console is also initialized here. | 
|  | */ | 
|  | void __init sn_setup(char **cmdline_p) | 
|  | { | 
|  | long status, ticks_per_sec, drift; | 
|  | u32 version = sn_sal_rev(); | 
|  | extern void sn_cpu_init(void); | 
|  |  | 
|  | sn2_rtc_initial = rtc_time(); | 
|  | ia64_sn_plat_set_error_handling_features();	// obsolete | 
|  | ia64_sn_set_os_feature(OSF_MCA_SLV_TO_OS_INIT_SLV); | 
|  | ia64_sn_set_os_feature(OSF_FEAT_LOG_SBES); | 
|  | /* | 
|  | * Note: The calls to notify the PROM of ACPI and PCI Segment | 
|  | *	 support must be done prior to acpi_load_tables(), as | 
|  | *	 an ACPI capable PROM will rebuild the DSDT as result | 
|  | *	 of the call. | 
|  | */ | 
|  | ia64_sn_set_os_feature(OSF_PCISEGMENT_ENABLE); | 
|  | ia64_sn_set_os_feature(OSF_ACPI_ENABLE); | 
|  |  | 
|  | /* Load the new DSDT and SSDT tables into the global table list. */ | 
|  | acpi_table_init(); | 
|  |  | 
|  | #if defined(CONFIG_VT) && defined(CONFIG_VGA_CONSOLE) | 
|  | /* | 
|  | * Handle SN vga console. | 
|  | * | 
|  | * SN systems do not have enough ACPI table information | 
|  | * being passed from prom to identify VGA adapters and the legacy | 
|  | * addresses to access them.  Until that is done, SN systems rely | 
|  | * on the PCDP table to identify the primary VGA console if one | 
|  | * exists. | 
|  | * | 
|  | * However, kernel PCDP support is optional, and even if it is built | 
|  | * into the kernel, it will not be used if the boot cmdline contains | 
|  | * console= directives. | 
|  | * | 
|  | * So, to work around this mess, we duplicate some of the PCDP code | 
|  | * here so that the primary VGA console (as defined by PCDP) will | 
|  | * work on SN systems even if a different console (e.g. serial) is | 
|  | * selected on the boot line (or CONFIG_EFI_PCDP is off). | 
|  | */ | 
|  |  | 
|  | if (! vga_console_membase) | 
|  | sn_scan_pcdp(); | 
|  |  | 
|  | /* | 
|  | *	Setup legacy IO space. | 
|  | *	vga_console_iobase maps to PCI IO Space address 0 on the | 
|  | * 	bus containing the VGA console. | 
|  | */ | 
|  | if (vga_console_iobase) { | 
|  | io_space[0].mmio_base = | 
|  | (unsigned long) ioremap(vga_console_iobase, 0); | 
|  | io_space[0].sparse = 0; | 
|  | } | 
|  |  | 
|  | if (vga_console_membase) { | 
|  | /* usable vga ... make tty0 the preferred default console */ | 
|  | if (!strstr(*cmdline_p, "console=")) | 
|  | add_preferred_console("tty", 0, NULL); | 
|  | } else { | 
|  | printk(KERN_DEBUG "SGI: Disabling VGA console\n"); | 
|  | if (!strstr(*cmdline_p, "console=")) | 
|  | add_preferred_console("ttySG", 0, NULL); | 
|  | #ifdef CONFIG_DUMMY_CONSOLE | 
|  | conswitchp = &dummy_con; | 
|  | #else | 
|  | conswitchp = NULL; | 
|  | #endif				/* CONFIG_DUMMY_CONSOLE */ | 
|  | } | 
|  | #endif				/* def(CONFIG_VT) && def(CONFIG_VGA_CONSOLE) */ | 
|  |  | 
|  | MAX_DMA_ADDRESS = PAGE_OFFSET + MAX_PHYS_MEMORY; | 
|  |  | 
|  | /* | 
|  | * Build the tables for managing cnodes. | 
|  | */ | 
|  | build_cnode_tables(); | 
|  |  | 
|  | status = | 
|  | ia64_sal_freq_base(SAL_FREQ_BASE_REALTIME_CLOCK, &ticks_per_sec, | 
|  | &drift); | 
|  | if (status != 0 || ticks_per_sec < 100000) { | 
|  | printk(KERN_WARNING | 
|  | "unable to determine platform RTC clock frequency, guessing.\n"); | 
|  | /* PROM gives wrong value for clock freq. so guess */ | 
|  | sn_rtc_cycles_per_second = 1000000000000UL / 30000UL; | 
|  | } else | 
|  | sn_rtc_cycles_per_second = ticks_per_sec; | 
|  |  | 
|  | platform_intr_list[ACPI_INTERRUPT_CPEI] = IA64_CPE_VECTOR; | 
|  |  | 
|  | printk("SGI SAL version %x.%02x\n", version >> 8, version & 0x00FF); | 
|  |  | 
|  | /* | 
|  | * we set the default root device to /dev/hda | 
|  | * to make simulation easy | 
|  | */ | 
|  | ROOT_DEV = Root_HDA1; | 
|  |  | 
|  | /* | 
|  | * Create the PDAs and NODEPDAs for all the cpus. | 
|  | */ | 
|  | sn_init_pdas(cmdline_p); | 
|  |  | 
|  | ia64_mark_idle = &snidle; | 
|  |  | 
|  | /* | 
|  | * For the bootcpu, we do this here. All other cpus will make the | 
|  | * call as part of cpu_init in slave cpu initialization. | 
|  | */ | 
|  | sn_cpu_init(); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | init_smp_config(); | 
|  | #endif | 
|  | screen_info = sn_screen_info; | 
|  |  | 
|  | sn_timer_init(); | 
|  |  | 
|  | /* | 
|  | * set pm_power_off to a SAL call to allow | 
|  | * sn machines to power off. The SAL call can be replaced | 
|  | * by an ACPI interface call when ACPI is fully implemented | 
|  | * for sn. | 
|  | */ | 
|  | pm_power_off = ia64_sn_power_down; | 
|  | current->thread.flags |= IA64_THREAD_MIGRATION; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sn_init_pdas - setup node data areas | 
|  | * | 
|  | * One time setup for Node Data Area.  Called by sn_setup(). | 
|  | */ | 
|  | static void __init sn_init_pdas(char **cmdline_p) | 
|  | { | 
|  | cnodeid_t cnode; | 
|  |  | 
|  | /* | 
|  | * Allocate & initalize the nodepda for each node. | 
|  | */ | 
|  | for_each_online_node(cnode) { | 
|  | nodepdaindr[cnode] = | 
|  | alloc_bootmem_node(NODE_DATA(cnode), sizeof(nodepda_t)); | 
|  | memset(nodepdaindr[cnode]->phys_cpuid, -1, | 
|  | sizeof(nodepdaindr[cnode]->phys_cpuid)); | 
|  | spin_lock_init(&nodepdaindr[cnode]->ptc_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate & initialize nodepda for TIOs.  For now, put them on node 0. | 
|  | */ | 
|  | for (cnode = num_online_nodes(); cnode < num_cnodes; cnode++) | 
|  | nodepdaindr[cnode] = | 
|  | alloc_bootmem_node(NODE_DATA(0), sizeof(nodepda_t)); | 
|  |  | 
|  | /* | 
|  | * Now copy the array of nodepda pointers to each nodepda. | 
|  | */ | 
|  | for (cnode = 0; cnode < num_cnodes; cnode++) | 
|  | memcpy(nodepdaindr[cnode]->pernode_pdaindr, nodepdaindr, | 
|  | sizeof(nodepdaindr)); | 
|  |  | 
|  | /* | 
|  | * Set up IO related platform-dependent nodepda fields. | 
|  | * The following routine actually sets up the hubinfo struct | 
|  | * in nodepda. | 
|  | */ | 
|  | for_each_online_node(cnode) { | 
|  | bte_init_node(nodepdaindr[cnode], cnode); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the per node hubdev.  This includes IO Nodes and | 
|  | * headless/memless nodes. | 
|  | */ | 
|  | for (cnode = 0; cnode < num_cnodes; cnode++) { | 
|  | hubdev_init_node(nodepdaindr[cnode], cnode); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sn_cpu_init - initialize per-cpu data areas | 
|  | * @cpuid: cpuid of the caller | 
|  | * | 
|  | * Called during cpu initialization on each cpu as it starts. | 
|  | * Currently, initializes the per-cpu data area for SNIA. | 
|  | * Also sets up a few fields in the nodepda.  Also known as | 
|  | * platform_cpu_init() by the ia64 machvec code. | 
|  | */ | 
|  | void __cpuinit sn_cpu_init(void) | 
|  | { | 
|  | int cpuid; | 
|  | int cpuphyid; | 
|  | int nasid; | 
|  | int subnode; | 
|  | int slice; | 
|  | int cnode; | 
|  | int i; | 
|  | static int wars_have_been_checked, set_cpu0_number; | 
|  |  | 
|  | cpuid = smp_processor_id(); | 
|  | if (cpuid == 0 && IS_MEDUSA()) { | 
|  | if (ia64_sn_is_fake_prom()) | 
|  | sn_prom_type = 2; | 
|  | else | 
|  | sn_prom_type = 1; | 
|  | printk(KERN_INFO "Running on medusa with %s PROM\n", | 
|  | (sn_prom_type == 1) ? "real" : "fake"); | 
|  | } | 
|  |  | 
|  | memset(pda, 0, sizeof(pda)); | 
|  | if (ia64_sn_get_sn_info(0, &sn_hub_info->shub2, | 
|  | &sn_hub_info->nasid_bitmask, | 
|  | &sn_hub_info->nasid_shift, | 
|  | &sn_system_size, &sn_sharing_domain_size, | 
|  | &sn_partition_id, &sn_coherency_id, | 
|  | &sn_region_size)) | 
|  | BUG(); | 
|  | sn_hub_info->as_shift = sn_hub_info->nasid_shift - 2; | 
|  |  | 
|  | /* | 
|  | * Don't check status. The SAL call is not supported on all PROMs | 
|  | * but a failure is harmless. | 
|  | * Architechtuallly, cpu_init is always called twice on cpu 0. We | 
|  | * should set cpu_number on cpu 0 once. | 
|  | */ | 
|  | if (cpuid == 0) { | 
|  | if (!set_cpu0_number) { | 
|  | (void) ia64_sn_set_cpu_number(cpuid); | 
|  | set_cpu0_number = 1; | 
|  | } | 
|  | } else | 
|  | (void) ia64_sn_set_cpu_number(cpuid); | 
|  |  | 
|  | /* | 
|  | * The boot cpu makes this call again after platform initialization is | 
|  | * complete. | 
|  | */ | 
|  | if (nodepdaindr[0] == NULL) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < MAX_PROM_FEATURE_SETS; i++) | 
|  | if (ia64_sn_get_prom_feature_set(i, &sn_prom_features[i]) != 0) | 
|  | break; | 
|  |  | 
|  | cpuphyid = get_sapicid(); | 
|  |  | 
|  | if (ia64_sn_get_sapic_info(cpuphyid, &nasid, &subnode, &slice)) | 
|  | BUG(); | 
|  |  | 
|  | for (i=0; i < MAX_NUMNODES; i++) { | 
|  | if (nodepdaindr[i]) { | 
|  | nodepdaindr[i]->phys_cpuid[cpuid].nasid = nasid; | 
|  | nodepdaindr[i]->phys_cpuid[cpuid].slice = slice; | 
|  | nodepdaindr[i]->phys_cpuid[cpuid].subnode = subnode; | 
|  | } | 
|  | } | 
|  |  | 
|  | cnode = nasid_to_cnodeid(nasid); | 
|  |  | 
|  | sn_nodepda = nodepdaindr[cnode]; | 
|  |  | 
|  | pda->led_address = | 
|  | (typeof(pda->led_address)) (LED0 + (slice << LED_CPU_SHIFT)); | 
|  | pda->led_state = LED_ALWAYS_SET; | 
|  | pda->hb_count = HZ / 2; | 
|  | pda->hb_state = 0; | 
|  | pda->idle_flag = 0; | 
|  |  | 
|  | if (cpuid != 0) { | 
|  | /* copy cpu 0's sn_cnodeid_to_nasid table to this cpu's */ | 
|  | memcpy(sn_cnodeid_to_nasid, | 
|  | (&per_cpu(__sn_cnodeid_to_nasid, 0)), | 
|  | sizeof(__ia64_per_cpu_var(__sn_cnodeid_to_nasid))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check for WARs. | 
|  | * Only needs to be done once, on BSP. | 
|  | * Has to be done after loop above, because it uses this cpu's | 
|  | * sn_cnodeid_to_nasid table which was just initialized if this | 
|  | * isn't cpu 0. | 
|  | * Has to be done before assignment below. | 
|  | */ | 
|  | if (!wars_have_been_checked) { | 
|  | sn_check_for_wars(); | 
|  | wars_have_been_checked = 1; | 
|  | } | 
|  | sn_hub_info->shub_1_1_found = shub_1_1_found; | 
|  |  | 
|  | /* | 
|  | * Set up addresses of PIO/MEM write status registers. | 
|  | */ | 
|  | { | 
|  | u64 pio1[] = {SH1_PIO_WRITE_STATUS_0, 0, SH1_PIO_WRITE_STATUS_1, 0}; | 
|  | u64 pio2[] = {SH2_PIO_WRITE_STATUS_0, SH2_PIO_WRITE_STATUS_2, | 
|  | SH2_PIO_WRITE_STATUS_1, SH2_PIO_WRITE_STATUS_3}; | 
|  | u64 *pio; | 
|  | pio = is_shub1() ? pio1 : pio2; | 
|  | pda->pio_write_status_addr = | 
|  | (volatile unsigned long *)GLOBAL_MMR_ADDR(nasid, pio[slice]); | 
|  | pda->pio_write_status_val = is_shub1() ? SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * WAR addresses for SHUB 1.x. | 
|  | */ | 
|  | if (local_node_data->active_cpu_count++ == 0 && is_shub1()) { | 
|  | int buddy_nasid; | 
|  | buddy_nasid = | 
|  | cnodeid_to_nasid(numa_node_id() == | 
|  | num_online_nodes() - 1 ? 0 : numa_node_id() + 1); | 
|  | pda->pio_shub_war_cam_addr = | 
|  | (volatile unsigned long *)GLOBAL_MMR_ADDR(nasid, | 
|  | SH1_PI_CAM_CONTROL); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Build tables for converting between NASIDs and cnodes. | 
|  | */ | 
|  | static inline int __init board_needs_cnode(int type) | 
|  | { | 
|  | return (type == KLTYPE_SNIA || type == KLTYPE_TIO); | 
|  | } | 
|  |  | 
|  | void __init build_cnode_tables(void) | 
|  | { | 
|  | int nasid; | 
|  | int node; | 
|  | lboard_t *brd; | 
|  |  | 
|  | memset(physical_node_map, -1, sizeof(physical_node_map)); | 
|  | memset(sn_cnodeid_to_nasid, -1, | 
|  | sizeof(__ia64_per_cpu_var(__sn_cnodeid_to_nasid))); | 
|  |  | 
|  | /* | 
|  | * First populate the tables with C/M bricks. This ensures that | 
|  | * cnode == node for all C & M bricks. | 
|  | */ | 
|  | for_each_online_node(node) { | 
|  | nasid = pxm_to_nasid(node_to_pxm(node)); | 
|  | sn_cnodeid_to_nasid[node] = nasid; | 
|  | physical_node_map[nasid] = node; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * num_cnodes is total number of C/M/TIO bricks. Because of the 256 node | 
|  | * limit on the number of nodes, we can't use the generic node numbers | 
|  | * for this. Note that num_cnodes is incremented below as TIOs or | 
|  | * headless/memoryless nodes are discovered. | 
|  | */ | 
|  | num_cnodes = num_online_nodes(); | 
|  |  | 
|  | /* fakeprom does not support klgraph */ | 
|  | if (IS_RUNNING_ON_FAKE_PROM()) | 
|  | return; | 
|  |  | 
|  | /* Find TIOs & headless/memoryless nodes and add them to the tables */ | 
|  | for_each_online_node(node) { | 
|  | kl_config_hdr_t *klgraph_header; | 
|  | nasid = cnodeid_to_nasid(node); | 
|  | klgraph_header = ia64_sn_get_klconfig_addr(nasid); | 
|  | BUG_ON(klgraph_header == NULL); | 
|  | brd = NODE_OFFSET_TO_LBOARD(nasid, klgraph_header->ch_board_info); | 
|  | while (brd) { | 
|  | if (board_needs_cnode(brd->brd_type) && physical_node_map[brd->brd_nasid] < 0) { | 
|  | sn_cnodeid_to_nasid[num_cnodes] = brd->brd_nasid; | 
|  | physical_node_map[brd->brd_nasid] = num_cnodes++; | 
|  | } | 
|  | brd = find_lboard_next(brd); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int | 
|  | nasid_slice_to_cpuid(int nasid, int slice) | 
|  | { | 
|  | long cpu; | 
|  |  | 
|  | for (cpu = 0; cpu < nr_cpu_ids; cpu++) | 
|  | if (cpuid_to_nasid(cpu) == nasid && | 
|  | cpuid_to_slice(cpu) == slice) | 
|  | return cpu; | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | int sn_prom_feature_available(int id) | 
|  | { | 
|  | if (id >= BITS_PER_LONG * MAX_PROM_FEATURE_SETS) | 
|  | return 0; | 
|  | return test_bit(id, sn_prom_features); | 
|  | } | 
|  |  | 
|  | void | 
|  | sn_kernel_launch_event(void) | 
|  | { | 
|  | /* ignore status until we understand possible failure, if any*/ | 
|  | if (ia64_sn_kernel_launch_event()) | 
|  | printk(KERN_ERR "KEXEC is not supported in this PROM, Please update the PROM.\n"); | 
|  | } | 
|  | EXPORT_SYMBOL(sn_prom_feature_available); | 
|  |  |