|  | /* MN10300 Kernel probes implementation | 
|  | * | 
|  | * Copyright (C) 2005 Red Hat, Inc. All Rights Reserved. | 
|  | * Written by Mark Salter (msalter@redhat.com) | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public Licence as published by | 
|  | * the Free Software Foundation; either version 2 of the Licence, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public Licence for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public Licence | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|  | */ | 
|  | #include <linux/kprobes.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/preempt.h> | 
|  | #include <linux/kdebug.h> | 
|  | #include <asm/cacheflush.h> | 
|  |  | 
|  | struct kretprobe_blackpoint kretprobe_blacklist[] = { { NULL, NULL } }; | 
|  | const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist); | 
|  |  | 
|  | /* kprobe_status settings */ | 
|  | #define KPROBE_HIT_ACTIVE	0x00000001 | 
|  | #define KPROBE_HIT_SS		0x00000002 | 
|  |  | 
|  | static struct kprobe *cur_kprobe; | 
|  | static unsigned long cur_kprobe_orig_pc; | 
|  | static unsigned long cur_kprobe_next_pc; | 
|  | static int cur_kprobe_ss_flags; | 
|  | static unsigned long kprobe_status; | 
|  | static kprobe_opcode_t cur_kprobe_ss_buf[MAX_INSN_SIZE + 2]; | 
|  | static unsigned long cur_kprobe_bp_addr; | 
|  |  | 
|  | DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; | 
|  |  | 
|  |  | 
|  | /* singlestep flag bits */ | 
|  | #define SINGLESTEP_BRANCH 1 | 
|  | #define SINGLESTEP_PCREL  2 | 
|  |  | 
|  | #define READ_BYTE(p, valp) \ | 
|  | do { *(u8 *)(valp) = *(u8 *)(p); } while (0) | 
|  |  | 
|  | #define READ_WORD16(p, valp)					\ | 
|  | do {							\ | 
|  | READ_BYTE((p), (valp));				\ | 
|  | READ_BYTE((u8 *)(p) + 1, (u8 *)(valp) + 1);	\ | 
|  | } while (0) | 
|  |  | 
|  | #define READ_WORD32(p, valp)					\ | 
|  | do {							\ | 
|  | READ_BYTE((p), (valp));				\ | 
|  | READ_BYTE((u8 *)(p) + 1, (u8 *)(valp) + 1);	\ | 
|  | READ_BYTE((u8 *)(p) + 2, (u8 *)(valp) + 2);	\ | 
|  | READ_BYTE((u8 *)(p) + 3, (u8 *)(valp) + 3);	\ | 
|  | } while (0) | 
|  |  | 
|  |  | 
|  | static const u8 mn10300_insn_sizes[256] = | 
|  | { | 
|  | /* 1  2  3  4  5  6  7  8  9  a  b  c  d  e  f */ | 
|  | 1, 3, 3, 3, 1, 3, 3, 3, 1, 3, 3, 3, 1, 3, 3, 3,	/* 0 */ | 
|  | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 1 */ | 
|  | 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, /* 2 */ | 
|  | 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, /* 3 */ | 
|  | 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, /* 4 */ | 
|  | 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, /* 5 */ | 
|  | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6 */ | 
|  | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 7 */ | 
|  | 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* 8 */ | 
|  | 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* 9 */ | 
|  | 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* a */ | 
|  | 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* b */ | 
|  | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 2, /* c */ | 
|  | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* d */ | 
|  | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* e */ | 
|  | 0, 2, 2, 2, 2, 2, 2, 4, 0, 3, 0, 4, 0, 6, 7, 1  /* f */ | 
|  | }; | 
|  |  | 
|  | #define LT (1 << 0) | 
|  | #define GT (1 << 1) | 
|  | #define GE (1 << 2) | 
|  | #define LE (1 << 3) | 
|  | #define CS (1 << 4) | 
|  | #define HI (1 << 5) | 
|  | #define CC (1 << 6) | 
|  | #define LS (1 << 7) | 
|  | #define EQ (1 << 8) | 
|  | #define NE (1 << 9) | 
|  | #define RA (1 << 10) | 
|  | #define VC (1 << 11) | 
|  | #define VS (1 << 12) | 
|  | #define NC (1 << 13) | 
|  | #define NS (1 << 14) | 
|  |  | 
|  | static const u16 cond_table[] = { | 
|  | /*  V  C  N  Z  */ | 
|  | /*  0  0  0  0  */ (NE | NC | CC | VC | GE | GT | HI), | 
|  | /*  0  0  0  1  */ (EQ | NC | CC | VC | GE | LE | LS), | 
|  | /*  0  0  1  0  */ (NE | NS | CC | VC | LT | LE | HI), | 
|  | /*  0  0  1  1  */ (EQ | NS | CC | VC | LT | LE | LS), | 
|  | /*  0  1  0  0  */ (NE | NC | CS | VC | GE | GT | LS), | 
|  | /*  0  1  0  1  */ (EQ | NC | CS | VC | GE | LE | LS), | 
|  | /*  0  1  1  0  */ (NE | NS | CS | VC | LT | LE | LS), | 
|  | /*  0  1  1  1  */ (EQ | NS | CS | VC | LT | LE | LS), | 
|  | /*  1  0  0  0  */ (NE | NC | CC | VS | LT | LE | HI), | 
|  | /*  1  0  0  1  */ (EQ | NC | CC | VS | LT | LE | LS), | 
|  | /*  1  0  1  0  */ (NE | NS | CC | VS | GE | GT | HI), | 
|  | /*  1  0  1  1  */ (EQ | NS | CC | VS | GE | LE | LS), | 
|  | /*  1  1  0  0  */ (NE | NC | CS | VS | LT | LE | LS), | 
|  | /*  1  1  0  1  */ (EQ | NC | CS | VS | LT | LE | LS), | 
|  | /*  1  1  1  0  */ (NE | NS | CS | VS | GE | GT | LS), | 
|  | /*  1  1  1  1  */ (EQ | NS | CS | VS | GE | LE | LS), | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Calculate what the PC will be after executing next instruction | 
|  | */ | 
|  | static unsigned find_nextpc(struct pt_regs *regs, int *flags) | 
|  | { | 
|  | unsigned size; | 
|  | s8  x8; | 
|  | s16 x16; | 
|  | s32 x32; | 
|  | u8 opc, *pc, *sp, *next; | 
|  |  | 
|  | next = 0; | 
|  | *flags = SINGLESTEP_PCREL; | 
|  |  | 
|  | pc = (u8 *) regs->pc; | 
|  | sp = (u8 *) (regs + 1); | 
|  | opc = *pc; | 
|  |  | 
|  | size = mn10300_insn_sizes[opc]; | 
|  | if (size > 0) { | 
|  | next = pc + size; | 
|  | } else { | 
|  | switch (opc) { | 
|  | /* Bxx (d8,PC) */ | 
|  | case 0xc0 ... 0xca: | 
|  | x8 = 2; | 
|  | if (cond_table[regs->epsw & 0xf] & (1 << (opc & 0xf))) | 
|  | x8 = (s8)pc[1]; | 
|  | next = pc + x8; | 
|  | *flags |= SINGLESTEP_BRANCH; | 
|  | break; | 
|  |  | 
|  | /* JMP (d16,PC) or CALL (d16,PC) */ | 
|  | case 0xcc: | 
|  | case 0xcd: | 
|  | READ_WORD16(pc + 1, &x16); | 
|  | next = pc + x16; | 
|  | *flags |= SINGLESTEP_BRANCH; | 
|  | break; | 
|  |  | 
|  | /* JMP (d32,PC) or CALL (d32,PC) */ | 
|  | case 0xdc: | 
|  | case 0xdd: | 
|  | READ_WORD32(pc + 1, &x32); | 
|  | next = pc + x32; | 
|  | *flags |= SINGLESTEP_BRANCH; | 
|  | break; | 
|  |  | 
|  | /* RETF */ | 
|  | case 0xde: | 
|  | next = (u8 *)regs->mdr; | 
|  | *flags &= ~SINGLESTEP_PCREL; | 
|  | *flags |= SINGLESTEP_BRANCH; | 
|  | break; | 
|  |  | 
|  | /* RET */ | 
|  | case 0xdf: | 
|  | sp += pc[2]; | 
|  | READ_WORD32(sp, &x32); | 
|  | next = (u8 *)x32; | 
|  | *flags &= ~SINGLESTEP_PCREL; | 
|  | *flags |= SINGLESTEP_BRANCH; | 
|  | break; | 
|  |  | 
|  | case 0xf0: | 
|  | next = pc + 2; | 
|  | opc = pc[1]; | 
|  | if (opc >= 0xf0 && opc <= 0xf7) { | 
|  | /* JMP (An) / CALLS (An) */ | 
|  | switch (opc & 3) { | 
|  | case 0: | 
|  | next = (u8 *)regs->a0; | 
|  | break; | 
|  | case 1: | 
|  | next = (u8 *)regs->a1; | 
|  | break; | 
|  | case 2: | 
|  | next = (u8 *)regs->a2; | 
|  | break; | 
|  | case 3: | 
|  | next = (u8 *)regs->a3; | 
|  | break; | 
|  | } | 
|  | *flags &= ~SINGLESTEP_PCREL; | 
|  | *flags |= SINGLESTEP_BRANCH; | 
|  | } else if (opc == 0xfc) { | 
|  | /* RETS */ | 
|  | READ_WORD32(sp, &x32); | 
|  | next = (u8 *)x32; | 
|  | *flags &= ~SINGLESTEP_PCREL; | 
|  | *flags |= SINGLESTEP_BRANCH; | 
|  | } else if (opc == 0xfd) { | 
|  | /* RTI */ | 
|  | READ_WORD32(sp + 4, &x32); | 
|  | next = (u8 *)x32; | 
|  | *flags &= ~SINGLESTEP_PCREL; | 
|  | *flags |= SINGLESTEP_BRANCH; | 
|  | } | 
|  | break; | 
|  |  | 
|  | /* potential 3-byte conditional branches */ | 
|  | case 0xf8: | 
|  | next = pc + 3; | 
|  | opc = pc[1]; | 
|  | if (opc >= 0xe8 && opc <= 0xeb && | 
|  | (cond_table[regs->epsw & 0xf] & | 
|  | (1 << ((opc & 0xf) + 3))) | 
|  | ) { | 
|  | READ_BYTE(pc+2, &x8); | 
|  | next = pc + x8; | 
|  | *flags |= SINGLESTEP_BRANCH; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 0xfa: | 
|  | if (pc[1] == 0xff) { | 
|  | /* CALLS (d16,PC) */ | 
|  | READ_WORD16(pc + 2, &x16); | 
|  | next = pc + x16; | 
|  | } else | 
|  | next = pc + 4; | 
|  | *flags |= SINGLESTEP_BRANCH; | 
|  | break; | 
|  |  | 
|  | case 0xfc: | 
|  | x32 = 6; | 
|  | if (pc[1] == 0xff) { | 
|  | /* CALLS (d32,PC) */ | 
|  | READ_WORD32(pc + 2, &x32); | 
|  | } | 
|  | next = pc + x32; | 
|  | *flags |= SINGLESTEP_BRANCH; | 
|  | break; | 
|  | /* LXX (d8,PC) */ | 
|  | /* SETLB - loads the next four bytes into the LIR reg */ | 
|  | case 0xd0 ... 0xda: | 
|  | case 0xdb: | 
|  | panic("Can't singlestep Lxx/SETLB\n"); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return (unsigned)next; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * set up out of place singlestep of some branching instructions | 
|  | */ | 
|  | static unsigned __kprobes singlestep_branch_setup(struct pt_regs *regs) | 
|  | { | 
|  | u8 opc, *pc, *sp, *next; | 
|  |  | 
|  | next = NULL; | 
|  | pc = (u8 *) regs->pc; | 
|  | sp = (u8 *) (regs + 1); | 
|  |  | 
|  | switch (pc[0]) { | 
|  | case 0xc0 ... 0xca:	/* Bxx (d8,PC) */ | 
|  | case 0xcc:		/* JMP (d16,PC) */ | 
|  | case 0xdc:		/* JMP (d32,PC) */ | 
|  | case 0xf8:              /* Bxx (d8,PC)  3-byte version */ | 
|  | /* don't really need to do anything except cause trap  */ | 
|  | next = pc; | 
|  | break; | 
|  |  | 
|  | case 0xcd:		/* CALL (d16,PC) */ | 
|  | pc[1] = 5; | 
|  | pc[2] = 0; | 
|  | next = pc + 5; | 
|  | break; | 
|  |  | 
|  | case 0xdd:		/* CALL (d32,PC) */ | 
|  | pc[1] = 7; | 
|  | pc[2] = 0; | 
|  | pc[3] = 0; | 
|  | pc[4] = 0; | 
|  | next = pc + 7; | 
|  | break; | 
|  |  | 
|  | case 0xde:		/* RETF */ | 
|  | next = pc + 3; | 
|  | regs->mdr = (unsigned) next; | 
|  | break; | 
|  |  | 
|  | case 0xdf:		/* RET */ | 
|  | sp += pc[2]; | 
|  | next = pc + 3; | 
|  | *(unsigned *)sp = (unsigned) next; | 
|  | break; | 
|  |  | 
|  | case 0xf0: | 
|  | next = pc + 2; | 
|  | opc = pc[1]; | 
|  | if (opc >= 0xf0 && opc <= 0xf3) { | 
|  | /* CALLS (An) */ | 
|  | /* use CALLS (d16,PC) to avoid mucking with An */ | 
|  | pc[0] = 0xfa; | 
|  | pc[1] = 0xff; | 
|  | pc[2] = 4; | 
|  | pc[3] = 0; | 
|  | next = pc + 4; | 
|  | } else if (opc >= 0xf4 && opc <= 0xf7) { | 
|  | /* JMP (An) */ | 
|  | next = pc; | 
|  | } else if (opc == 0xfc) { | 
|  | /* RETS */ | 
|  | next = pc + 2; | 
|  | *(unsigned *) sp = (unsigned) next; | 
|  | } else if (opc == 0xfd) { | 
|  | /* RTI */ | 
|  | next = pc + 2; | 
|  | *(unsigned *)(sp + 4) = (unsigned) next; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 0xfa:	/* CALLS (d16,PC) */ | 
|  | pc[2] = 4; | 
|  | pc[3] = 0; | 
|  | next = pc + 4; | 
|  | break; | 
|  |  | 
|  | case 0xfc:	/* CALLS (d32,PC) */ | 
|  | pc[2] = 6; | 
|  | pc[3] = 0; | 
|  | pc[4] = 0; | 
|  | pc[5] = 0; | 
|  | next = pc + 6; | 
|  | break; | 
|  |  | 
|  | case 0xd0 ... 0xda:	/* LXX (d8,PC) */ | 
|  | case 0xdb:		/* SETLB */ | 
|  | panic("Can't singlestep Lxx/SETLB\n"); | 
|  | } | 
|  |  | 
|  | return (unsigned) next; | 
|  | } | 
|  |  | 
|  | int __kprobes arch_prepare_kprobe(struct kprobe *p) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __kprobes arch_copy_kprobe(struct kprobe *p) | 
|  | { | 
|  | memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE); | 
|  | } | 
|  |  | 
|  | void __kprobes arch_arm_kprobe(struct kprobe *p) | 
|  | { | 
|  | *p->addr = BREAKPOINT_INSTRUCTION; | 
|  | flush_icache_range((unsigned long) p->addr, | 
|  | (unsigned long) p->addr + sizeof(kprobe_opcode_t)); | 
|  | } | 
|  |  | 
|  | void __kprobes arch_disarm_kprobe(struct kprobe *p) | 
|  | { | 
|  | mn10300_dcache_flush(); | 
|  | mn10300_icache_inv(); | 
|  | } | 
|  |  | 
|  | void arch_remove_kprobe(struct kprobe *p) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline | 
|  | void __kprobes disarm_kprobe(struct kprobe *p, struct pt_regs *regs) | 
|  | { | 
|  | *p->addr = p->opcode; | 
|  | regs->pc = (unsigned long) p->addr; | 
|  | mn10300_dcache_flush(); | 
|  | mn10300_icache_inv(); | 
|  | } | 
|  |  | 
|  | static inline | 
|  | void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs) | 
|  | { | 
|  | unsigned long nextpc; | 
|  |  | 
|  | cur_kprobe_orig_pc = regs->pc; | 
|  | memcpy(cur_kprobe_ss_buf, &p->ainsn.insn[0], MAX_INSN_SIZE); | 
|  | regs->pc = (unsigned long) cur_kprobe_ss_buf; | 
|  |  | 
|  | nextpc = find_nextpc(regs, &cur_kprobe_ss_flags); | 
|  | if (cur_kprobe_ss_flags & SINGLESTEP_PCREL) | 
|  | cur_kprobe_next_pc = cur_kprobe_orig_pc + (nextpc - regs->pc); | 
|  | else | 
|  | cur_kprobe_next_pc = nextpc; | 
|  |  | 
|  | /* branching instructions need special handling */ | 
|  | if (cur_kprobe_ss_flags & SINGLESTEP_BRANCH) | 
|  | nextpc = singlestep_branch_setup(regs); | 
|  |  | 
|  | cur_kprobe_bp_addr = nextpc; | 
|  |  | 
|  | *(u8 *) nextpc = BREAKPOINT_INSTRUCTION; | 
|  | mn10300_dcache_flush_range2((unsigned) cur_kprobe_ss_buf, | 
|  | sizeof(cur_kprobe_ss_buf)); | 
|  | mn10300_icache_inv(); | 
|  | } | 
|  |  | 
|  | static inline int __kprobes kprobe_handler(struct pt_regs *regs) | 
|  | { | 
|  | struct kprobe *p; | 
|  | int ret = 0; | 
|  | unsigned int *addr = (unsigned int *) regs->pc; | 
|  |  | 
|  | /* We're in an interrupt, but this is clear and BUG()-safe. */ | 
|  | preempt_disable(); | 
|  |  | 
|  | /* Check we're not actually recursing */ | 
|  | if (kprobe_running()) { | 
|  | /* We *are* holding lock here, so this is safe. | 
|  | Disarm the probe we just hit, and ignore it. */ | 
|  | p = get_kprobe(addr); | 
|  | if (p) { | 
|  | disarm_kprobe(p, regs); | 
|  | ret = 1; | 
|  | } else { | 
|  | p = cur_kprobe; | 
|  | if (p->break_handler && p->break_handler(p, regs)) | 
|  | goto ss_probe; | 
|  | } | 
|  | /* If it's not ours, can't be delete race, (we hold lock). */ | 
|  | goto no_kprobe; | 
|  | } | 
|  |  | 
|  | p = get_kprobe(addr); | 
|  | if (!p) { | 
|  | if (*addr != BREAKPOINT_INSTRUCTION) { | 
|  | /* The breakpoint instruction was removed right after | 
|  | * we hit it.  Another cpu has removed either a | 
|  | * probepoint or a debugger breakpoint at this address. | 
|  | * In either case, no further handling of this | 
|  | * interrupt is appropriate. | 
|  | */ | 
|  | ret = 1; | 
|  | } | 
|  | /* Not one of ours: let kernel handle it */ | 
|  | goto no_kprobe; | 
|  | } | 
|  |  | 
|  | kprobe_status = KPROBE_HIT_ACTIVE; | 
|  | cur_kprobe = p; | 
|  | if (p->pre_handler(p, regs)) { | 
|  | /* handler has already set things up, so skip ss setup */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | ss_probe: | 
|  | prepare_singlestep(p, regs); | 
|  | kprobe_status = KPROBE_HIT_SS; | 
|  | return 1; | 
|  |  | 
|  | no_kprobe: | 
|  | preempt_enable_no_resched(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called after single-stepping.  p->addr is the address of the | 
|  | * instruction whose first byte has been replaced by the "breakpoint" | 
|  | * instruction.  To avoid the SMP problems that can occur when we | 
|  | * temporarily put back the original opcode to single-step, we | 
|  | * single-stepped a copy of the instruction.  The address of this | 
|  | * copy is p->ainsn.insn. | 
|  | */ | 
|  | static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs) | 
|  | { | 
|  | /* we may need to fixup regs/stack after singlestepping a call insn */ | 
|  | if (cur_kprobe_ss_flags & SINGLESTEP_BRANCH) { | 
|  | regs->pc = cur_kprobe_orig_pc; | 
|  | switch (p->ainsn.insn[0]) { | 
|  | case 0xcd:	/* CALL (d16,PC) */ | 
|  | *(unsigned *) regs->sp = regs->mdr = regs->pc + 5; | 
|  | break; | 
|  | case 0xdd:	/* CALL (d32,PC) */ | 
|  | /* fixup mdr and return address on stack */ | 
|  | *(unsigned *) regs->sp = regs->mdr = regs->pc + 7; | 
|  | break; | 
|  | case 0xf0: | 
|  | if (p->ainsn.insn[1] >= 0xf0 && | 
|  | p->ainsn.insn[1] <= 0xf3) { | 
|  | /* CALLS (An) */ | 
|  | /* fixup MDR and return address on stack */ | 
|  | regs->mdr = regs->pc + 2; | 
|  | *(unsigned *) regs->sp = regs->mdr; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 0xfa:	/* CALLS (d16,PC) */ | 
|  | /* fixup MDR and return address on stack */ | 
|  | *(unsigned *) regs->sp = regs->mdr = regs->pc + 4; | 
|  | break; | 
|  |  | 
|  | case 0xfc:	/* CALLS (d32,PC) */ | 
|  | /* fixup MDR and return address on stack */ | 
|  | *(unsigned *) regs->sp = regs->mdr = regs->pc + 6; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | regs->pc = cur_kprobe_next_pc; | 
|  | cur_kprobe_bp_addr = 0; | 
|  | } | 
|  |  | 
|  | static inline int __kprobes post_kprobe_handler(struct pt_regs *regs) | 
|  | { | 
|  | if (!kprobe_running()) | 
|  | return 0; | 
|  |  | 
|  | if (cur_kprobe->post_handler) | 
|  | cur_kprobe->post_handler(cur_kprobe, regs, 0); | 
|  |  | 
|  | resume_execution(cur_kprobe, regs); | 
|  | reset_current_kprobe(); | 
|  | preempt_enable_no_resched(); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Interrupts disabled, kprobe_lock held. */ | 
|  | static inline | 
|  | int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) | 
|  | { | 
|  | if (cur_kprobe->fault_handler && | 
|  | cur_kprobe->fault_handler(cur_kprobe, regs, trapnr)) | 
|  | return 1; | 
|  |  | 
|  | if (kprobe_status & KPROBE_HIT_SS) { | 
|  | resume_execution(cur_kprobe, regs); | 
|  | reset_current_kprobe(); | 
|  | preempt_enable_no_resched(); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wrapper routine to for handling exceptions. | 
|  | */ | 
|  | int __kprobes kprobe_exceptions_notify(struct notifier_block *self, | 
|  | unsigned long val, void *data) | 
|  | { | 
|  | struct die_args *args = data; | 
|  |  | 
|  | switch (val) { | 
|  | case DIE_BREAKPOINT: | 
|  | if (cur_kprobe_bp_addr != args->regs->pc) { | 
|  | if (kprobe_handler(args->regs)) | 
|  | return NOTIFY_STOP; | 
|  | } else { | 
|  | if (post_kprobe_handler(args->regs)) | 
|  | return NOTIFY_STOP; | 
|  | } | 
|  | break; | 
|  | case DIE_GPF: | 
|  | if (kprobe_running() && | 
|  | kprobe_fault_handler(args->regs, args->trapnr)) | 
|  | return NOTIFY_STOP; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return NOTIFY_DONE; | 
|  | } | 
|  |  | 
|  | /* Jprobes support.  */ | 
|  | static struct pt_regs jprobe_saved_regs; | 
|  | static struct pt_regs *jprobe_saved_regs_location; | 
|  | static kprobe_opcode_t jprobe_saved_stack[MAX_STACK_SIZE]; | 
|  |  | 
|  | int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) | 
|  | { | 
|  | struct jprobe *jp = container_of(p, struct jprobe, kp); | 
|  |  | 
|  | jprobe_saved_regs_location = regs; | 
|  | memcpy(&jprobe_saved_regs, regs, sizeof(struct pt_regs)); | 
|  |  | 
|  | /* Save a whole stack frame, this gets arguments | 
|  | * pushed onto the stack after using up all the | 
|  | * arg registers. | 
|  | */ | 
|  | memcpy(&jprobe_saved_stack, regs + 1, sizeof(jprobe_saved_stack)); | 
|  |  | 
|  | /* setup return addr to the jprobe handler routine */ | 
|  | regs->pc = (unsigned long) jp->entry; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void __kprobes jprobe_return(void) | 
|  | { | 
|  | void *orig_sp = jprobe_saved_regs_location + 1; | 
|  |  | 
|  | preempt_enable_no_resched(); | 
|  | asm volatile("		mov	%0,sp\n" | 
|  | ".globl	jprobe_return_bp_addr\n" | 
|  | "jprobe_return_bp_addr:\n\t" | 
|  | "		.byte	0xff\n" | 
|  | : : "d" (orig_sp)); | 
|  | } | 
|  |  | 
|  | extern void jprobe_return_bp_addr(void); | 
|  |  | 
|  | int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) | 
|  | { | 
|  | u8 *addr = (u8 *) regs->pc; | 
|  |  | 
|  | if (addr == (u8 *) jprobe_return_bp_addr) { | 
|  | if (jprobe_saved_regs_location != regs) { | 
|  | printk(KERN_ERR"JPROBE:" | 
|  | " Current regs (%p) does not match saved regs" | 
|  | " (%p).\n", | 
|  | regs, jprobe_saved_regs_location); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* Restore old register state. | 
|  | */ | 
|  | memcpy(regs, &jprobe_saved_regs, sizeof(struct pt_regs)); | 
|  |  | 
|  | memcpy(regs + 1, &jprobe_saved_stack, | 
|  | sizeof(jprobe_saved_stack)); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __init arch_init_kprobes(void) | 
|  | { | 
|  | return 0; | 
|  | } |