|  | /* | 
|  | * Cryptographic API. | 
|  | * | 
|  | * AES Cipher Algorithm. | 
|  | * | 
|  | * Based on Brian Gladman's code. | 
|  | * | 
|  | * Linux developers: | 
|  | *  Alexander Kjeldaas <astor@fast.no> | 
|  | *  Herbert Valerio Riedel <hvr@hvrlab.org> | 
|  | *  Kyle McMartin <kyle@debian.org> | 
|  | *  Adam J. Richter <adam@yggdrasil.com> (conversion to 2.5 API). | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * --------------------------------------------------------------------------- | 
|  | * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK. | 
|  | * All rights reserved. | 
|  | * | 
|  | * LICENSE TERMS | 
|  | * | 
|  | * The free distribution and use of this software in both source and binary | 
|  | * form is allowed (with or without changes) provided that: | 
|  | * | 
|  | *   1. distributions of this source code include the above copyright | 
|  | *      notice, this list of conditions and the following disclaimer; | 
|  | * | 
|  | *   2. distributions in binary form include the above copyright | 
|  | *      notice, this list of conditions and the following disclaimer | 
|  | *      in the documentation and/or other associated materials; | 
|  | * | 
|  | *   3. the copyright holder's name is not used to endorse products | 
|  | *      built using this software without specific written permission. | 
|  | * | 
|  | * ALTERNATIVELY, provided that this notice is retained in full, this product | 
|  | * may be distributed under the terms of the GNU General Public License (GPL), | 
|  | * in which case the provisions of the GPL apply INSTEAD OF those given above. | 
|  | * | 
|  | * DISCLAIMER | 
|  | * | 
|  | * This software is provided 'as is' with no explicit or implied warranties | 
|  | * in respect of its properties, including, but not limited to, correctness | 
|  | * and/or fitness for purpose. | 
|  | * --------------------------------------------------------------------------- | 
|  | */ | 
|  |  | 
|  | #include <crypto/aes.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/crypto.h> | 
|  | #include <asm/byteorder.h> | 
|  |  | 
|  | static inline u8 byte(const u32 x, const unsigned n) | 
|  | { | 
|  | return x >> (n << 3); | 
|  | } | 
|  |  | 
|  | static u8 pow_tab[256] __initdata; | 
|  | static u8 log_tab[256] __initdata; | 
|  | static u8 sbx_tab[256] __initdata; | 
|  | static u8 isb_tab[256] __initdata; | 
|  | static u32 rco_tab[10]; | 
|  |  | 
|  | u32 crypto_ft_tab[4][256]; | 
|  | u32 crypto_fl_tab[4][256]; | 
|  | u32 crypto_it_tab[4][256]; | 
|  | u32 crypto_il_tab[4][256]; | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(crypto_ft_tab); | 
|  | EXPORT_SYMBOL_GPL(crypto_fl_tab); | 
|  | EXPORT_SYMBOL_GPL(crypto_it_tab); | 
|  | EXPORT_SYMBOL_GPL(crypto_il_tab); | 
|  |  | 
|  | static inline u8 __init f_mult(u8 a, u8 b) | 
|  | { | 
|  | u8 aa = log_tab[a], cc = aa + log_tab[b]; | 
|  |  | 
|  | return pow_tab[cc + (cc < aa ? 1 : 0)]; | 
|  | } | 
|  |  | 
|  | #define ff_mult(a, b)	(a && b ? f_mult(a, b) : 0) | 
|  |  | 
|  | static void __init gen_tabs(void) | 
|  | { | 
|  | u32 i, t; | 
|  | u8 p, q; | 
|  |  | 
|  | /* | 
|  | * log and power tables for GF(2**8) finite field with | 
|  | * 0x011b as modular polynomial - the simplest primitive | 
|  | * root is 0x03, used here to generate the tables | 
|  | */ | 
|  |  | 
|  | for (i = 0, p = 1; i < 256; ++i) { | 
|  | pow_tab[i] = (u8) p; | 
|  | log_tab[p] = (u8) i; | 
|  |  | 
|  | p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0); | 
|  | } | 
|  |  | 
|  | log_tab[1] = 0; | 
|  |  | 
|  | for (i = 0, p = 1; i < 10; ++i) { | 
|  | rco_tab[i] = p; | 
|  |  | 
|  | p = (p << 1) ^ (p & 0x80 ? 0x01b : 0); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 256; ++i) { | 
|  | p = (i ? pow_tab[255 - log_tab[i]] : 0); | 
|  | q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2)); | 
|  | p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2)); | 
|  | sbx_tab[i] = p; | 
|  | isb_tab[p] = (u8) i; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 256; ++i) { | 
|  | p = sbx_tab[i]; | 
|  |  | 
|  | t = p; | 
|  | crypto_fl_tab[0][i] = t; | 
|  | crypto_fl_tab[1][i] = rol32(t, 8); | 
|  | crypto_fl_tab[2][i] = rol32(t, 16); | 
|  | crypto_fl_tab[3][i] = rol32(t, 24); | 
|  |  | 
|  | t = ((u32) ff_mult(2, p)) | | 
|  | ((u32) p << 8) | | 
|  | ((u32) p << 16) | ((u32) ff_mult(3, p) << 24); | 
|  |  | 
|  | crypto_ft_tab[0][i] = t; | 
|  | crypto_ft_tab[1][i] = rol32(t, 8); | 
|  | crypto_ft_tab[2][i] = rol32(t, 16); | 
|  | crypto_ft_tab[3][i] = rol32(t, 24); | 
|  |  | 
|  | p = isb_tab[i]; | 
|  |  | 
|  | t = p; | 
|  | crypto_il_tab[0][i] = t; | 
|  | crypto_il_tab[1][i] = rol32(t, 8); | 
|  | crypto_il_tab[2][i] = rol32(t, 16); | 
|  | crypto_il_tab[3][i] = rol32(t, 24); | 
|  |  | 
|  | t = ((u32) ff_mult(14, p)) | | 
|  | ((u32) ff_mult(9, p) << 8) | | 
|  | ((u32) ff_mult(13, p) << 16) | | 
|  | ((u32) ff_mult(11, p) << 24); | 
|  |  | 
|  | crypto_it_tab[0][i] = t; | 
|  | crypto_it_tab[1][i] = rol32(t, 8); | 
|  | crypto_it_tab[2][i] = rol32(t, 16); | 
|  | crypto_it_tab[3][i] = rol32(t, 24); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* initialise the key schedule from the user supplied key */ | 
|  |  | 
|  | #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b) | 
|  |  | 
|  | #define imix_col(y,x)	do {		\ | 
|  | u	= star_x(x);		\ | 
|  | v	= star_x(u);		\ | 
|  | w	= star_x(v);		\ | 
|  | t	= w ^ (x);		\ | 
|  | (y)	= u ^ v ^ w;		\ | 
|  | (y)	^= ror32(u ^ t, 8) ^	\ | 
|  | ror32(v ^ t, 16) ^	\ | 
|  | ror32(t, 24);		\ | 
|  | } while (0) | 
|  |  | 
|  | #define ls_box(x)		\ | 
|  | crypto_fl_tab[0][byte(x, 0)] ^	\ | 
|  | crypto_fl_tab[1][byte(x, 1)] ^	\ | 
|  | crypto_fl_tab[2][byte(x, 2)] ^	\ | 
|  | crypto_fl_tab[3][byte(x, 3)] | 
|  |  | 
|  | #define loop4(i)	do {		\ | 
|  | t = ror32(t, 8);		\ | 
|  | t = ls_box(t) ^ rco_tab[i];	\ | 
|  | t ^= ctx->key_enc[4 * i];		\ | 
|  | ctx->key_enc[4 * i + 4] = t;		\ | 
|  | t ^= ctx->key_enc[4 * i + 1];		\ | 
|  | ctx->key_enc[4 * i + 5] = t;		\ | 
|  | t ^= ctx->key_enc[4 * i + 2];		\ | 
|  | ctx->key_enc[4 * i + 6] = t;		\ | 
|  | t ^= ctx->key_enc[4 * i + 3];		\ | 
|  | ctx->key_enc[4 * i + 7] = t;		\ | 
|  | } while (0) | 
|  |  | 
|  | #define loop6(i)	do {		\ | 
|  | t = ror32(t, 8);		\ | 
|  | t = ls_box(t) ^ rco_tab[i];	\ | 
|  | t ^= ctx->key_enc[6 * i];		\ | 
|  | ctx->key_enc[6 * i + 6] = t;		\ | 
|  | t ^= ctx->key_enc[6 * i + 1];		\ | 
|  | ctx->key_enc[6 * i + 7] = t;		\ | 
|  | t ^= ctx->key_enc[6 * i + 2];		\ | 
|  | ctx->key_enc[6 * i + 8] = t;		\ | 
|  | t ^= ctx->key_enc[6 * i + 3];		\ | 
|  | ctx->key_enc[6 * i + 9] = t;		\ | 
|  | t ^= ctx->key_enc[6 * i + 4];		\ | 
|  | ctx->key_enc[6 * i + 10] = t;		\ | 
|  | t ^= ctx->key_enc[6 * i + 5];		\ | 
|  | ctx->key_enc[6 * i + 11] = t;		\ | 
|  | } while (0) | 
|  |  | 
|  | #define loop8(i)	do {			\ | 
|  | t = ror32(t, 8);			\ | 
|  | t = ls_box(t) ^ rco_tab[i];		\ | 
|  | t ^= ctx->key_enc[8 * i];			\ | 
|  | ctx->key_enc[8 * i + 8] = t;			\ | 
|  | t ^= ctx->key_enc[8 * i + 1];			\ | 
|  | ctx->key_enc[8 * i + 9] = t;			\ | 
|  | t ^= ctx->key_enc[8 * i + 2];			\ | 
|  | ctx->key_enc[8 * i + 10] = t;			\ | 
|  | t ^= ctx->key_enc[8 * i + 3];			\ | 
|  | ctx->key_enc[8 * i + 11] = t;			\ | 
|  | t  = ctx->key_enc[8 * i + 4] ^ ls_box(t);	\ | 
|  | ctx->key_enc[8 * i + 12] = t;			\ | 
|  | t ^= ctx->key_enc[8 * i + 5];			\ | 
|  | ctx->key_enc[8 * i + 13] = t;			\ | 
|  | t ^= ctx->key_enc[8 * i + 6];			\ | 
|  | ctx->key_enc[8 * i + 14] = t;			\ | 
|  | t ^= ctx->key_enc[8 * i + 7];			\ | 
|  | ctx->key_enc[8 * i + 15] = t;			\ | 
|  | } while (0) | 
|  |  | 
|  | /** | 
|  | * crypto_aes_expand_key - Expands the AES key as described in FIPS-197 | 
|  | * @ctx:	The location where the computed key will be stored. | 
|  | * @in_key:	The supplied key. | 
|  | * @key_len:	The length of the supplied key. | 
|  | * | 
|  | * Returns 0 on success. The function fails only if an invalid key size (or | 
|  | * pointer) is supplied. | 
|  | * The expanded key size is 240 bytes (max of 14 rounds with a unique 16 bytes | 
|  | * key schedule plus a 16 bytes key which is used before the first round). | 
|  | * The decryption key is prepared for the "Equivalent Inverse Cipher" as | 
|  | * described in FIPS-197. The first slot (16 bytes) of each key (enc or dec) is | 
|  | * for the initial combination, the second slot for the first round and so on. | 
|  | */ | 
|  | int crypto_aes_expand_key(struct crypto_aes_ctx *ctx, const u8 *in_key, | 
|  | unsigned int key_len) | 
|  | { | 
|  | const __le32 *key = (const __le32 *)in_key; | 
|  | u32 i, t, u, v, w, j; | 
|  |  | 
|  | if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 && | 
|  | key_len != AES_KEYSIZE_256) | 
|  | return -EINVAL; | 
|  |  | 
|  | ctx->key_length = key_len; | 
|  |  | 
|  | ctx->key_dec[key_len + 24] = ctx->key_enc[0] = le32_to_cpu(key[0]); | 
|  | ctx->key_dec[key_len + 25] = ctx->key_enc[1] = le32_to_cpu(key[1]); | 
|  | ctx->key_dec[key_len + 26] = ctx->key_enc[2] = le32_to_cpu(key[2]); | 
|  | ctx->key_dec[key_len + 27] = ctx->key_enc[3] = le32_to_cpu(key[3]); | 
|  |  | 
|  | switch (key_len) { | 
|  | case AES_KEYSIZE_128: | 
|  | t = ctx->key_enc[3]; | 
|  | for (i = 0; i < 10; ++i) | 
|  | loop4(i); | 
|  | break; | 
|  |  | 
|  | case AES_KEYSIZE_192: | 
|  | ctx->key_enc[4] = le32_to_cpu(key[4]); | 
|  | t = ctx->key_enc[5] = le32_to_cpu(key[5]); | 
|  | for (i = 0; i < 8; ++i) | 
|  | loop6(i); | 
|  | break; | 
|  |  | 
|  | case AES_KEYSIZE_256: | 
|  | ctx->key_enc[4] = le32_to_cpu(key[4]); | 
|  | ctx->key_enc[5] = le32_to_cpu(key[5]); | 
|  | ctx->key_enc[6] = le32_to_cpu(key[6]); | 
|  | t = ctx->key_enc[7] = le32_to_cpu(key[7]); | 
|  | for (i = 0; i < 7; ++i) | 
|  | loop8(i); | 
|  | break; | 
|  | } | 
|  |  | 
|  | ctx->key_dec[0] = ctx->key_enc[key_len + 24]; | 
|  | ctx->key_dec[1] = ctx->key_enc[key_len + 25]; | 
|  | ctx->key_dec[2] = ctx->key_enc[key_len + 26]; | 
|  | ctx->key_dec[3] = ctx->key_enc[key_len + 27]; | 
|  |  | 
|  | for (i = 4; i < key_len + 24; ++i) { | 
|  | j = key_len + 24 - (i & ~3) + (i & 3); | 
|  | imix_col(ctx->key_dec[j], ctx->key_enc[i]); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(crypto_aes_expand_key); | 
|  |  | 
|  | /** | 
|  | * crypto_aes_set_key - Set the AES key. | 
|  | * @tfm:	The %crypto_tfm that is used in the context. | 
|  | * @in_key:	The input key. | 
|  | * @key_len:	The size of the key. | 
|  | * | 
|  | * Returns 0 on success, on failure the %CRYPTO_TFM_RES_BAD_KEY_LEN flag in tfm | 
|  | * is set. The function uses crypto_aes_expand_key() to expand the key. | 
|  | * &crypto_aes_ctx _must_ be the private data embedded in @tfm which is | 
|  | * retrieved with crypto_tfm_ctx(). | 
|  | */ | 
|  | int crypto_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key, | 
|  | unsigned int key_len) | 
|  | { | 
|  | struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  | u32 *flags = &tfm->crt_flags; | 
|  | int ret; | 
|  |  | 
|  | ret = crypto_aes_expand_key(ctx, in_key, key_len); | 
|  | if (!ret) | 
|  | return 0; | 
|  |  | 
|  | *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; | 
|  | return -EINVAL; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(crypto_aes_set_key); | 
|  |  | 
|  | /* encrypt a block of text */ | 
|  |  | 
|  | #define f_rn(bo, bi, n, k)	do {				\ | 
|  | bo[n] = crypto_ft_tab[0][byte(bi[n], 0)] ^			\ | 
|  | crypto_ft_tab[1][byte(bi[(n + 1) & 3], 1)] ^		\ | 
|  | crypto_ft_tab[2][byte(bi[(n + 2) & 3], 2)] ^		\ | 
|  | crypto_ft_tab[3][byte(bi[(n + 3) & 3], 3)] ^ *(k + n);	\ | 
|  | } while (0) | 
|  |  | 
|  | #define f_nround(bo, bi, k)	do {\ | 
|  | f_rn(bo, bi, 0, k);	\ | 
|  | f_rn(bo, bi, 1, k);	\ | 
|  | f_rn(bo, bi, 2, k);	\ | 
|  | f_rn(bo, bi, 3, k);	\ | 
|  | k += 4;			\ | 
|  | } while (0) | 
|  |  | 
|  | #define f_rl(bo, bi, n, k)	do {				\ | 
|  | bo[n] = crypto_fl_tab[0][byte(bi[n], 0)] ^			\ | 
|  | crypto_fl_tab[1][byte(bi[(n + 1) & 3], 1)] ^		\ | 
|  | crypto_fl_tab[2][byte(bi[(n + 2) & 3], 2)] ^		\ | 
|  | crypto_fl_tab[3][byte(bi[(n + 3) & 3], 3)] ^ *(k + n);	\ | 
|  | } while (0) | 
|  |  | 
|  | #define f_lround(bo, bi, k)	do {\ | 
|  | f_rl(bo, bi, 0, k);	\ | 
|  | f_rl(bo, bi, 1, k);	\ | 
|  | f_rl(bo, bi, 2, k);	\ | 
|  | f_rl(bo, bi, 3, k);	\ | 
|  | } while (0) | 
|  |  | 
|  | static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) | 
|  | { | 
|  | const struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  | const __le32 *src = (const __le32 *)in; | 
|  | __le32 *dst = (__le32 *)out; | 
|  | u32 b0[4], b1[4]; | 
|  | const u32 *kp = ctx->key_enc + 4; | 
|  | const int key_len = ctx->key_length; | 
|  |  | 
|  | b0[0] = le32_to_cpu(src[0]) ^ ctx->key_enc[0]; | 
|  | b0[1] = le32_to_cpu(src[1]) ^ ctx->key_enc[1]; | 
|  | b0[2] = le32_to_cpu(src[2]) ^ ctx->key_enc[2]; | 
|  | b0[3] = le32_to_cpu(src[3]) ^ ctx->key_enc[3]; | 
|  |  | 
|  | if (key_len > 24) { | 
|  | f_nround(b1, b0, kp); | 
|  | f_nround(b0, b1, kp); | 
|  | } | 
|  |  | 
|  | if (key_len > 16) { | 
|  | f_nround(b1, b0, kp); | 
|  | f_nround(b0, b1, kp); | 
|  | } | 
|  |  | 
|  | f_nround(b1, b0, kp); | 
|  | f_nround(b0, b1, kp); | 
|  | f_nround(b1, b0, kp); | 
|  | f_nround(b0, b1, kp); | 
|  | f_nround(b1, b0, kp); | 
|  | f_nround(b0, b1, kp); | 
|  | f_nround(b1, b0, kp); | 
|  | f_nround(b0, b1, kp); | 
|  | f_nround(b1, b0, kp); | 
|  | f_lround(b0, b1, kp); | 
|  |  | 
|  | dst[0] = cpu_to_le32(b0[0]); | 
|  | dst[1] = cpu_to_le32(b0[1]); | 
|  | dst[2] = cpu_to_le32(b0[2]); | 
|  | dst[3] = cpu_to_le32(b0[3]); | 
|  | } | 
|  |  | 
|  | /* decrypt a block of text */ | 
|  |  | 
|  | #define i_rn(bo, bi, n, k)	do {				\ | 
|  | bo[n] = crypto_it_tab[0][byte(bi[n], 0)] ^			\ | 
|  | crypto_it_tab[1][byte(bi[(n + 3) & 3], 1)] ^		\ | 
|  | crypto_it_tab[2][byte(bi[(n + 2) & 3], 2)] ^		\ | 
|  | crypto_it_tab[3][byte(bi[(n + 1) & 3], 3)] ^ *(k + n);	\ | 
|  | } while (0) | 
|  |  | 
|  | #define i_nround(bo, bi, k)	do {\ | 
|  | i_rn(bo, bi, 0, k);	\ | 
|  | i_rn(bo, bi, 1, k);	\ | 
|  | i_rn(bo, bi, 2, k);	\ | 
|  | i_rn(bo, bi, 3, k);	\ | 
|  | k += 4;			\ | 
|  | } while (0) | 
|  |  | 
|  | #define i_rl(bo, bi, n, k)	do {			\ | 
|  | bo[n] = crypto_il_tab[0][byte(bi[n], 0)] ^		\ | 
|  | crypto_il_tab[1][byte(bi[(n + 3) & 3], 1)] ^		\ | 
|  | crypto_il_tab[2][byte(bi[(n + 2) & 3], 2)] ^		\ | 
|  | crypto_il_tab[3][byte(bi[(n + 1) & 3], 3)] ^ *(k + n);	\ | 
|  | } while (0) | 
|  |  | 
|  | #define i_lround(bo, bi, k)	do {\ | 
|  | i_rl(bo, bi, 0, k);	\ | 
|  | i_rl(bo, bi, 1, k);	\ | 
|  | i_rl(bo, bi, 2, k);	\ | 
|  | i_rl(bo, bi, 3, k);	\ | 
|  | } while (0) | 
|  |  | 
|  | static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) | 
|  | { | 
|  | const struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  | const __le32 *src = (const __le32 *)in; | 
|  | __le32 *dst = (__le32 *)out; | 
|  | u32 b0[4], b1[4]; | 
|  | const int key_len = ctx->key_length; | 
|  | const u32 *kp = ctx->key_dec + 4; | 
|  |  | 
|  | b0[0] = le32_to_cpu(src[0]) ^  ctx->key_dec[0]; | 
|  | b0[1] = le32_to_cpu(src[1]) ^  ctx->key_dec[1]; | 
|  | b0[2] = le32_to_cpu(src[2]) ^  ctx->key_dec[2]; | 
|  | b0[3] = le32_to_cpu(src[3]) ^  ctx->key_dec[3]; | 
|  |  | 
|  | if (key_len > 24) { | 
|  | i_nround(b1, b0, kp); | 
|  | i_nround(b0, b1, kp); | 
|  | } | 
|  |  | 
|  | if (key_len > 16) { | 
|  | i_nround(b1, b0, kp); | 
|  | i_nround(b0, b1, kp); | 
|  | } | 
|  |  | 
|  | i_nround(b1, b0, kp); | 
|  | i_nround(b0, b1, kp); | 
|  | i_nround(b1, b0, kp); | 
|  | i_nround(b0, b1, kp); | 
|  | i_nround(b1, b0, kp); | 
|  | i_nround(b0, b1, kp); | 
|  | i_nround(b1, b0, kp); | 
|  | i_nround(b0, b1, kp); | 
|  | i_nround(b1, b0, kp); | 
|  | i_lround(b0, b1, kp); | 
|  |  | 
|  | dst[0] = cpu_to_le32(b0[0]); | 
|  | dst[1] = cpu_to_le32(b0[1]); | 
|  | dst[2] = cpu_to_le32(b0[2]); | 
|  | dst[3] = cpu_to_le32(b0[3]); | 
|  | } | 
|  |  | 
|  | static struct crypto_alg aes_alg = { | 
|  | .cra_name		=	"aes", | 
|  | .cra_driver_name	=	"aes-generic", | 
|  | .cra_priority		=	100, | 
|  | .cra_flags		=	CRYPTO_ALG_TYPE_CIPHER, | 
|  | .cra_blocksize		=	AES_BLOCK_SIZE, | 
|  | .cra_ctxsize		=	sizeof(struct crypto_aes_ctx), | 
|  | .cra_alignmask		=	3, | 
|  | .cra_module		=	THIS_MODULE, | 
|  | .cra_list		=	LIST_HEAD_INIT(aes_alg.cra_list), | 
|  | .cra_u			=	{ | 
|  | .cipher = { | 
|  | .cia_min_keysize	=	AES_MIN_KEY_SIZE, | 
|  | .cia_max_keysize	=	AES_MAX_KEY_SIZE, | 
|  | .cia_setkey		=	crypto_aes_set_key, | 
|  | .cia_encrypt		=	aes_encrypt, | 
|  | .cia_decrypt		=	aes_decrypt | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | static int __init aes_init(void) | 
|  | { | 
|  | gen_tabs(); | 
|  | return crypto_register_alg(&aes_alg); | 
|  | } | 
|  |  | 
|  | static void __exit aes_fini(void) | 
|  | { | 
|  | crypto_unregister_alg(&aes_alg); | 
|  | } | 
|  |  | 
|  | module_init(aes_init); | 
|  | module_exit(aes_fini); | 
|  |  | 
|  | MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm"); | 
|  | MODULE_LICENSE("Dual BSD/GPL"); | 
|  | MODULE_ALIAS("aes"); |