|  | /* | 
|  | * Cryptographic API. | 
|  | * | 
|  | * TEA, XTEA, and XETA crypto alogrithms | 
|  | * | 
|  | * The TEA and Xtended TEA algorithms were developed by David Wheeler | 
|  | * and Roger Needham at the Computer Laboratory of Cambridge University. | 
|  | * | 
|  | * Due to the order of evaluation in XTEA many people have incorrectly | 
|  | * implemented it.  XETA (XTEA in the wrong order), exists for | 
|  | * compatibility with these implementations. | 
|  | * | 
|  | * Copyright (c) 2004 Aaron Grothe ajgrothe@yahoo.com | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/init.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/mm.h> | 
|  | #include <asm/byteorder.h> | 
|  | #include <linux/crypto.h> | 
|  | #include <linux/types.h> | 
|  |  | 
|  | #define TEA_KEY_SIZE		16 | 
|  | #define TEA_BLOCK_SIZE		8 | 
|  | #define TEA_ROUNDS		32 | 
|  | #define TEA_DELTA		0x9e3779b9 | 
|  |  | 
|  | #define XTEA_KEY_SIZE		16 | 
|  | #define XTEA_BLOCK_SIZE		8 | 
|  | #define XTEA_ROUNDS		32 | 
|  | #define XTEA_DELTA		0x9e3779b9 | 
|  |  | 
|  | struct tea_ctx { | 
|  | u32 KEY[4]; | 
|  | }; | 
|  |  | 
|  | struct xtea_ctx { | 
|  | u32 KEY[4]; | 
|  | }; | 
|  |  | 
|  | static int tea_setkey(struct crypto_tfm *tfm, const u8 *in_key, | 
|  | unsigned int key_len) | 
|  | { | 
|  | struct tea_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  | const __le32 *key = (const __le32 *)in_key; | 
|  |  | 
|  | ctx->KEY[0] = le32_to_cpu(key[0]); | 
|  | ctx->KEY[1] = le32_to_cpu(key[1]); | 
|  | ctx->KEY[2] = le32_to_cpu(key[2]); | 
|  | ctx->KEY[3] = le32_to_cpu(key[3]); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | } | 
|  |  | 
|  | static void tea_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) | 
|  | { | 
|  | u32 y, z, n, sum = 0; | 
|  | u32 k0, k1, k2, k3; | 
|  | struct tea_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  | const __le32 *in = (const __le32 *)src; | 
|  | __le32 *out = (__le32 *)dst; | 
|  |  | 
|  | y = le32_to_cpu(in[0]); | 
|  | z = le32_to_cpu(in[1]); | 
|  |  | 
|  | k0 = ctx->KEY[0]; | 
|  | k1 = ctx->KEY[1]; | 
|  | k2 = ctx->KEY[2]; | 
|  | k3 = ctx->KEY[3]; | 
|  |  | 
|  | n = TEA_ROUNDS; | 
|  |  | 
|  | while (n-- > 0) { | 
|  | sum += TEA_DELTA; | 
|  | y += ((z << 4) + k0) ^ (z + sum) ^ ((z >> 5) + k1); | 
|  | z += ((y << 4) + k2) ^ (y + sum) ^ ((y >> 5) + k3); | 
|  | } | 
|  |  | 
|  | out[0] = cpu_to_le32(y); | 
|  | out[1] = cpu_to_le32(z); | 
|  | } | 
|  |  | 
|  | static void tea_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) | 
|  | { | 
|  | u32 y, z, n, sum; | 
|  | u32 k0, k1, k2, k3; | 
|  | struct tea_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  | const __le32 *in = (const __le32 *)src; | 
|  | __le32 *out = (__le32 *)dst; | 
|  |  | 
|  | y = le32_to_cpu(in[0]); | 
|  | z = le32_to_cpu(in[1]); | 
|  |  | 
|  | k0 = ctx->KEY[0]; | 
|  | k1 = ctx->KEY[1]; | 
|  | k2 = ctx->KEY[2]; | 
|  | k3 = ctx->KEY[3]; | 
|  |  | 
|  | sum = TEA_DELTA << 5; | 
|  |  | 
|  | n = TEA_ROUNDS; | 
|  |  | 
|  | while (n-- > 0) { | 
|  | z -= ((y << 4) + k2) ^ (y + sum) ^ ((y >> 5) + k3); | 
|  | y -= ((z << 4) + k0) ^ (z + sum) ^ ((z >> 5) + k1); | 
|  | sum -= TEA_DELTA; | 
|  | } | 
|  |  | 
|  | out[0] = cpu_to_le32(y); | 
|  | out[1] = cpu_to_le32(z); | 
|  | } | 
|  |  | 
|  | static int xtea_setkey(struct crypto_tfm *tfm, const u8 *in_key, | 
|  | unsigned int key_len) | 
|  | { | 
|  | struct xtea_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  | const __le32 *key = (const __le32 *)in_key; | 
|  |  | 
|  | ctx->KEY[0] = le32_to_cpu(key[0]); | 
|  | ctx->KEY[1] = le32_to_cpu(key[1]); | 
|  | ctx->KEY[2] = le32_to_cpu(key[2]); | 
|  | ctx->KEY[3] = le32_to_cpu(key[3]); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | } | 
|  |  | 
|  | static void xtea_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) | 
|  | { | 
|  | u32 y, z, sum = 0; | 
|  | u32 limit = XTEA_DELTA * XTEA_ROUNDS; | 
|  | struct xtea_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  | const __le32 *in = (const __le32 *)src; | 
|  | __le32 *out = (__le32 *)dst; | 
|  |  | 
|  | y = le32_to_cpu(in[0]); | 
|  | z = le32_to_cpu(in[1]); | 
|  |  | 
|  | while (sum != limit) { | 
|  | y += ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum&3]); | 
|  | sum += XTEA_DELTA; | 
|  | z += ((y << 4 ^ y >> 5) + y) ^ (sum + ctx->KEY[sum>>11 &3]); | 
|  | } | 
|  |  | 
|  | out[0] = cpu_to_le32(y); | 
|  | out[1] = cpu_to_le32(z); | 
|  | } | 
|  |  | 
|  | static void xtea_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) | 
|  | { | 
|  | u32 y, z, sum; | 
|  | struct tea_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  | const __le32 *in = (const __le32 *)src; | 
|  | __le32 *out = (__le32 *)dst; | 
|  |  | 
|  | y = le32_to_cpu(in[0]); | 
|  | z = le32_to_cpu(in[1]); | 
|  |  | 
|  | sum = XTEA_DELTA * XTEA_ROUNDS; | 
|  |  | 
|  | while (sum) { | 
|  | z -= ((y << 4 ^ y >> 5) + y) ^ (sum + ctx->KEY[sum>>11 & 3]); | 
|  | sum -= XTEA_DELTA; | 
|  | y -= ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum & 3]); | 
|  | } | 
|  |  | 
|  | out[0] = cpu_to_le32(y); | 
|  | out[1] = cpu_to_le32(z); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void xeta_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) | 
|  | { | 
|  | u32 y, z, sum = 0; | 
|  | u32 limit = XTEA_DELTA * XTEA_ROUNDS; | 
|  | struct xtea_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  | const __le32 *in = (const __le32 *)src; | 
|  | __le32 *out = (__le32 *)dst; | 
|  |  | 
|  | y = le32_to_cpu(in[0]); | 
|  | z = le32_to_cpu(in[1]); | 
|  |  | 
|  | while (sum != limit) { | 
|  | y += (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum&3]; | 
|  | sum += XTEA_DELTA; | 
|  | z += (y << 4 ^ y >> 5) + (y ^ sum) + ctx->KEY[sum>>11 &3]; | 
|  | } | 
|  |  | 
|  | out[0] = cpu_to_le32(y); | 
|  | out[1] = cpu_to_le32(z); | 
|  | } | 
|  |  | 
|  | static void xeta_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) | 
|  | { | 
|  | u32 y, z, sum; | 
|  | struct tea_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  | const __le32 *in = (const __le32 *)src; | 
|  | __le32 *out = (__le32 *)dst; | 
|  |  | 
|  | y = le32_to_cpu(in[0]); | 
|  | z = le32_to_cpu(in[1]); | 
|  |  | 
|  | sum = XTEA_DELTA * XTEA_ROUNDS; | 
|  |  | 
|  | while (sum) { | 
|  | z -= (y << 4 ^ y >> 5) + (y ^ sum) + ctx->KEY[sum>>11 & 3]; | 
|  | sum -= XTEA_DELTA; | 
|  | y -= (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum & 3]; | 
|  | } | 
|  |  | 
|  | out[0] = cpu_to_le32(y); | 
|  | out[1] = cpu_to_le32(z); | 
|  | } | 
|  |  | 
|  | static struct crypto_alg tea_alg = { | 
|  | .cra_name		=	"tea", | 
|  | .cra_flags		=	CRYPTO_ALG_TYPE_CIPHER, | 
|  | .cra_blocksize		=	TEA_BLOCK_SIZE, | 
|  | .cra_ctxsize		=	sizeof (struct tea_ctx), | 
|  | .cra_alignmask		=	3, | 
|  | .cra_module		=	THIS_MODULE, | 
|  | .cra_list		=	LIST_HEAD_INIT(tea_alg.cra_list), | 
|  | .cra_u			=	{ .cipher = { | 
|  | .cia_min_keysize	=	TEA_KEY_SIZE, | 
|  | .cia_max_keysize	=	TEA_KEY_SIZE, | 
|  | .cia_setkey		= 	tea_setkey, | 
|  | .cia_encrypt		=	tea_encrypt, | 
|  | .cia_decrypt		=	tea_decrypt } } | 
|  | }; | 
|  |  | 
|  | static struct crypto_alg xtea_alg = { | 
|  | .cra_name		=	"xtea", | 
|  | .cra_flags		=	CRYPTO_ALG_TYPE_CIPHER, | 
|  | .cra_blocksize		=	XTEA_BLOCK_SIZE, | 
|  | .cra_ctxsize		=	sizeof (struct xtea_ctx), | 
|  | .cra_alignmask		=	3, | 
|  | .cra_module		=	THIS_MODULE, | 
|  | .cra_list		=	LIST_HEAD_INIT(xtea_alg.cra_list), | 
|  | .cra_u			=	{ .cipher = { | 
|  | .cia_min_keysize	=	XTEA_KEY_SIZE, | 
|  | .cia_max_keysize	=	XTEA_KEY_SIZE, | 
|  | .cia_setkey		= 	xtea_setkey, | 
|  | .cia_encrypt		=	xtea_encrypt, | 
|  | .cia_decrypt		=	xtea_decrypt } } | 
|  | }; | 
|  |  | 
|  | static struct crypto_alg xeta_alg = { | 
|  | .cra_name		=	"xeta", | 
|  | .cra_flags		=	CRYPTO_ALG_TYPE_CIPHER, | 
|  | .cra_blocksize		=	XTEA_BLOCK_SIZE, | 
|  | .cra_ctxsize		=	sizeof (struct xtea_ctx), | 
|  | .cra_alignmask		=	3, | 
|  | .cra_module		=	THIS_MODULE, | 
|  | .cra_list		=	LIST_HEAD_INIT(xtea_alg.cra_list), | 
|  | .cra_u			=	{ .cipher = { | 
|  | .cia_min_keysize	=	XTEA_KEY_SIZE, | 
|  | .cia_max_keysize	=	XTEA_KEY_SIZE, | 
|  | .cia_setkey		= 	xtea_setkey, | 
|  | .cia_encrypt		=	xeta_encrypt, | 
|  | .cia_decrypt		=	xeta_decrypt } } | 
|  | }; | 
|  |  | 
|  | static int __init tea_mod_init(void) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | ret = crypto_register_alg(&tea_alg); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | ret = crypto_register_alg(&xtea_alg); | 
|  | if (ret < 0) { | 
|  | crypto_unregister_alg(&tea_alg); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = crypto_register_alg(&xeta_alg); | 
|  | if (ret < 0) { | 
|  | crypto_unregister_alg(&tea_alg); | 
|  | crypto_unregister_alg(&xtea_alg); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __exit tea_mod_fini(void) | 
|  | { | 
|  | crypto_unregister_alg(&tea_alg); | 
|  | crypto_unregister_alg(&xtea_alg); | 
|  | crypto_unregister_alg(&xeta_alg); | 
|  | } | 
|  |  | 
|  | MODULE_ALIAS("xtea"); | 
|  | MODULE_ALIAS("xeta"); | 
|  |  | 
|  | module_init(tea_mod_init); | 
|  | module_exit(tea_mod_fini); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_DESCRIPTION("TEA, XTEA & XETA Cryptographic Algorithms"); |