| /* | 
 |  * New driver for Marvell Yukon chipset and SysKonnect Gigabit | 
 |  * Ethernet adapters. Based on earlier sk98lin, e100 and | 
 |  * FreeBSD if_sk drivers. | 
 |  * | 
 |  * This driver intentionally does not support all the features | 
 |  * of the original driver such as link fail-over and link management because | 
 |  * those should be done at higher levels. | 
 |  * | 
 |  * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org> | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
 |  */ | 
 |  | 
 | #include <linux/in.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/module.h> | 
 | #include <linux/moduleparam.h> | 
 | #include <linux/netdevice.h> | 
 | #include <linux/etherdevice.h> | 
 | #include <linux/ethtool.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/if_vlan.h> | 
 | #include <linux/ip.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/crc32.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/mii.h> | 
 | #include <asm/irq.h> | 
 |  | 
 | #include "skge.h" | 
 |  | 
 | #define DRV_NAME		"skge" | 
 | #define DRV_VERSION		"1.11" | 
 | #define PFX			DRV_NAME " " | 
 |  | 
 | #define DEFAULT_TX_RING_SIZE	128 | 
 | #define DEFAULT_RX_RING_SIZE	512 | 
 | #define MAX_TX_RING_SIZE	1024 | 
 | #define TX_LOW_WATER		(MAX_SKB_FRAGS + 1) | 
 | #define MAX_RX_RING_SIZE	4096 | 
 | #define RX_COPY_THRESHOLD	128 | 
 | #define RX_BUF_SIZE		1536 | 
 | #define PHY_RETRIES	        1000 | 
 | #define ETH_JUMBO_MTU		9000 | 
 | #define TX_WATCHDOG		(5 * HZ) | 
 | #define NAPI_WEIGHT		64 | 
 | #define BLINK_MS		250 | 
 | #define LINK_HZ			(HZ/2) | 
 |  | 
 | MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver"); | 
 | MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>"); | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_VERSION(DRV_VERSION); | 
 |  | 
 | static const u32 default_msg | 
 | 	= NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK | 
 | 	  | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN; | 
 |  | 
 | static int debug = -1;	/* defaults above */ | 
 | module_param(debug, int, 0); | 
 | MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); | 
 |  | 
 | static const struct pci_device_id skge_id_table[] = { | 
 | 	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) }, | 
 | 	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) }, | 
 | 	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) }, | 
 | 	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) }, | 
 | 	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T) }, | 
 | 	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) },	/* DGE-530T */ | 
 | 	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) }, | 
 | 	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */ | 
 | 	{ PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) }, | 
 | 	{ PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) }, | 
 | 	{ PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, | 
 | 	{ 0 } | 
 | }; | 
 | MODULE_DEVICE_TABLE(pci, skge_id_table); | 
 |  | 
 | static int skge_up(struct net_device *dev); | 
 | static int skge_down(struct net_device *dev); | 
 | static void skge_phy_reset(struct skge_port *skge); | 
 | static void skge_tx_clean(struct net_device *dev); | 
 | static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val); | 
 | static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val); | 
 | static void genesis_get_stats(struct skge_port *skge, u64 *data); | 
 | static void yukon_get_stats(struct skge_port *skge, u64 *data); | 
 | static void yukon_init(struct skge_hw *hw, int port); | 
 | static void genesis_mac_init(struct skge_hw *hw, int port); | 
 | static void genesis_link_up(struct skge_port *skge); | 
 |  | 
 | /* Avoid conditionals by using array */ | 
 | static const int txqaddr[] = { Q_XA1, Q_XA2 }; | 
 | static const int rxqaddr[] = { Q_R1, Q_R2 }; | 
 | static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F }; | 
 | static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F }; | 
 | static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F }; | 
 | static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 }; | 
 |  | 
 | static int skge_get_regs_len(struct net_device *dev) | 
 | { | 
 | 	return 0x4000; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns copy of whole control register region | 
 |  * Note: skip RAM address register because accessing it will | 
 |  * 	 cause bus hangs! | 
 |  */ | 
 | static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs, | 
 | 			  void *p) | 
 | { | 
 | 	const struct skge_port *skge = netdev_priv(dev); | 
 | 	const void __iomem *io = skge->hw->regs; | 
 |  | 
 | 	regs->version = 1; | 
 | 	memset(p, 0, regs->len); | 
 | 	memcpy_fromio(p, io, B3_RAM_ADDR); | 
 |  | 
 | 	memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1, | 
 | 		      regs->len - B3_RI_WTO_R1); | 
 | } | 
 |  | 
 | /* Wake on Lan only supported on Yukon chips with rev 1 or above */ | 
 | static u32 wol_supported(const struct skge_hw *hw) | 
 | { | 
 | 	if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev != 0) | 
 | 		return WAKE_MAGIC | WAKE_PHY; | 
 | 	else | 
 | 		return 0; | 
 | } | 
 |  | 
 | static u32 pci_wake_enabled(struct pci_dev *dev) | 
 | { | 
 | 	int pm = pci_find_capability(dev, PCI_CAP_ID_PM); | 
 | 	u16 value; | 
 |  | 
 | 	/* If device doesn't support PM Capabilities, but request is to disable | 
 | 	 * wake events, it's a nop; otherwise fail */ | 
 | 	if (!pm) | 
 | 		return 0; | 
 |  | 
 | 	pci_read_config_word(dev, pm + PCI_PM_PMC, &value); | 
 |  | 
 | 	value &= PCI_PM_CAP_PME_MASK; | 
 | 	value >>= ffs(PCI_PM_CAP_PME_MASK) - 1;   /* First bit of mask */ | 
 |  | 
 | 	return value != 0; | 
 | } | 
 |  | 
 | static void skge_wol_init(struct skge_port *skge) | 
 | { | 
 | 	struct skge_hw *hw = skge->hw; | 
 | 	int port = skge->port; | 
 | 	u16 ctrl; | 
 |  | 
 | 	skge_write16(hw, B0_CTST, CS_RST_CLR); | 
 | 	skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR); | 
 |  | 
 | 	/* Turn on Vaux */ | 
 | 	skge_write8(hw, B0_POWER_CTRL, | 
 | 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF); | 
 |  | 
 | 	/* WA code for COMA mode -- clear PHY reset */ | 
 | 	if (hw->chip_id == CHIP_ID_YUKON_LITE && | 
 | 	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) { | 
 | 		u32 reg = skge_read32(hw, B2_GP_IO); | 
 | 		reg |= GP_DIR_9; | 
 | 		reg &= ~GP_IO_9; | 
 | 		skge_write32(hw, B2_GP_IO, reg); | 
 | 	} | 
 |  | 
 | 	skge_write32(hw, SK_REG(port, GPHY_CTRL), | 
 | 		     GPC_DIS_SLEEP | | 
 | 		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 | | 
 | 		     GPC_ANEG_1 | GPC_RST_SET); | 
 |  | 
 | 	skge_write32(hw, SK_REG(port, GPHY_CTRL), | 
 | 		     GPC_DIS_SLEEP | | 
 | 		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 | | 
 | 		     GPC_ANEG_1 | GPC_RST_CLR); | 
 |  | 
 | 	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR); | 
 |  | 
 | 	/* Force to 10/100 skge_reset will re-enable on resume	 */ | 
 | 	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, | 
 | 		     PHY_AN_100FULL | PHY_AN_100HALF | | 
 | 		     PHY_AN_10FULL | PHY_AN_10HALF| PHY_AN_CSMA); | 
 | 	/* no 1000 HD/FD */ | 
 | 	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0); | 
 | 	gm_phy_write(hw, port, PHY_MARV_CTRL, | 
 | 		     PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE | | 
 | 		     PHY_CT_RE_CFG | PHY_CT_DUP_MD); | 
 |  | 
 |  | 
 | 	/* Set GMAC to no flow control and auto update for speed/duplex */ | 
 | 	gma_write16(hw, port, GM_GP_CTRL, | 
 | 		    GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA| | 
 | 		    GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS); | 
 |  | 
 | 	/* Set WOL address */ | 
 | 	memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR), | 
 | 		    skge->netdev->dev_addr, ETH_ALEN); | 
 |  | 
 | 	/* Turn on appropriate WOL control bits */ | 
 | 	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT); | 
 | 	ctrl = 0; | 
 | 	if (skge->wol & WAKE_PHY) | 
 | 		ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT; | 
 | 	else | 
 | 		ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT; | 
 |  | 
 | 	if (skge->wol & WAKE_MAGIC) | 
 | 		ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT; | 
 | 	else | 
 | 		ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;; | 
 |  | 
 | 	ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT; | 
 | 	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl); | 
 |  | 
 | 	/* block receiver */ | 
 | 	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET); | 
 | } | 
 |  | 
 | static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 |  | 
 | 	wol->supported = wol_supported(skge->hw); | 
 | 	wol->wolopts = skge->wol; | 
 | } | 
 |  | 
 | static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 | 	struct skge_hw *hw = skge->hw; | 
 |  | 
 | 	if (wol->wolopts & ~wol_supported(hw)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	skge->wol = wol->wolopts; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Determine supported/advertised modes based on hardware. | 
 |  * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx | 
 |  */ | 
 | static u32 skge_supported_modes(const struct skge_hw *hw) | 
 | { | 
 | 	u32 supported; | 
 |  | 
 | 	if (hw->copper) { | 
 | 		supported = SUPPORTED_10baseT_Half | 
 | 			| SUPPORTED_10baseT_Full | 
 | 			| SUPPORTED_100baseT_Half | 
 | 			| SUPPORTED_100baseT_Full | 
 | 			| SUPPORTED_1000baseT_Half | 
 | 			| SUPPORTED_1000baseT_Full | 
 | 			| SUPPORTED_Autoneg| SUPPORTED_TP; | 
 |  | 
 | 		if (hw->chip_id == CHIP_ID_GENESIS) | 
 | 			supported &= ~(SUPPORTED_10baseT_Half | 
 | 					     | SUPPORTED_10baseT_Full | 
 | 					     | SUPPORTED_100baseT_Half | 
 | 					     | SUPPORTED_100baseT_Full); | 
 |  | 
 | 		else if (hw->chip_id == CHIP_ID_YUKON) | 
 | 			supported &= ~SUPPORTED_1000baseT_Half; | 
 | 	} else | 
 | 		supported = SUPPORTED_1000baseT_Full | SUPPORTED_1000baseT_Half | 
 | 			| SUPPORTED_FIBRE | SUPPORTED_Autoneg; | 
 |  | 
 | 	return supported; | 
 | } | 
 |  | 
 | static int skge_get_settings(struct net_device *dev, | 
 | 			     struct ethtool_cmd *ecmd) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 | 	struct skge_hw *hw = skge->hw; | 
 |  | 
 | 	ecmd->transceiver = XCVR_INTERNAL; | 
 | 	ecmd->supported = skge_supported_modes(hw); | 
 |  | 
 | 	if (hw->copper) { | 
 | 		ecmd->port = PORT_TP; | 
 | 		ecmd->phy_address = hw->phy_addr; | 
 | 	} else | 
 | 		ecmd->port = PORT_FIBRE; | 
 |  | 
 | 	ecmd->advertising = skge->advertising; | 
 | 	ecmd->autoneg = skge->autoneg; | 
 | 	ecmd->speed = skge->speed; | 
 | 	ecmd->duplex = skge->duplex; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 | 	const struct skge_hw *hw = skge->hw; | 
 | 	u32 supported = skge_supported_modes(hw); | 
 |  | 
 | 	if (ecmd->autoneg == AUTONEG_ENABLE) { | 
 | 		ecmd->advertising = supported; | 
 | 		skge->duplex = -1; | 
 | 		skge->speed = -1; | 
 | 	} else { | 
 | 		u32 setting; | 
 |  | 
 | 		switch (ecmd->speed) { | 
 | 		case SPEED_1000: | 
 | 			if (ecmd->duplex == DUPLEX_FULL) | 
 | 				setting = SUPPORTED_1000baseT_Full; | 
 | 			else if (ecmd->duplex == DUPLEX_HALF) | 
 | 				setting = SUPPORTED_1000baseT_Half; | 
 | 			else | 
 | 				return -EINVAL; | 
 | 			break; | 
 | 		case SPEED_100: | 
 | 			if (ecmd->duplex == DUPLEX_FULL) | 
 | 				setting = SUPPORTED_100baseT_Full; | 
 | 			else if (ecmd->duplex == DUPLEX_HALF) | 
 | 				setting = SUPPORTED_100baseT_Half; | 
 | 			else | 
 | 				return -EINVAL; | 
 | 			break; | 
 |  | 
 | 		case SPEED_10: | 
 | 			if (ecmd->duplex == DUPLEX_FULL) | 
 | 				setting = SUPPORTED_10baseT_Full; | 
 | 			else if (ecmd->duplex == DUPLEX_HALF) | 
 | 				setting = SUPPORTED_10baseT_Half; | 
 | 			else | 
 | 				return -EINVAL; | 
 | 			break; | 
 | 		default: | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		if ((setting & supported) == 0) | 
 | 			return -EINVAL; | 
 |  | 
 | 		skge->speed = ecmd->speed; | 
 | 		skge->duplex = ecmd->duplex; | 
 | 	} | 
 |  | 
 | 	skge->autoneg = ecmd->autoneg; | 
 | 	skge->advertising = ecmd->advertising; | 
 |  | 
 | 	if (netif_running(dev)) | 
 | 		skge_phy_reset(skge); | 
 |  | 
 | 	return (0); | 
 | } | 
 |  | 
 | static void skge_get_drvinfo(struct net_device *dev, | 
 | 			     struct ethtool_drvinfo *info) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 |  | 
 | 	strcpy(info->driver, DRV_NAME); | 
 | 	strcpy(info->version, DRV_VERSION); | 
 | 	strcpy(info->fw_version, "N/A"); | 
 | 	strcpy(info->bus_info, pci_name(skge->hw->pdev)); | 
 | } | 
 |  | 
 | static const struct skge_stat { | 
 | 	char 	   name[ETH_GSTRING_LEN]; | 
 | 	u16	   xmac_offset; | 
 | 	u16	   gma_offset; | 
 | } skge_stats[] = { | 
 | 	{ "tx_bytes",		XM_TXO_OK_HI,  GM_TXO_OK_HI }, | 
 | 	{ "rx_bytes",		XM_RXO_OK_HI,  GM_RXO_OK_HI }, | 
 |  | 
 | 	{ "tx_broadcast",	XM_TXF_BC_OK,  GM_TXF_BC_OK }, | 
 | 	{ "rx_broadcast",	XM_RXF_BC_OK,  GM_RXF_BC_OK }, | 
 | 	{ "tx_multicast",	XM_TXF_MC_OK,  GM_TXF_MC_OK }, | 
 | 	{ "rx_multicast",	XM_RXF_MC_OK,  GM_RXF_MC_OK }, | 
 | 	{ "tx_unicast",		XM_TXF_UC_OK,  GM_TXF_UC_OK }, | 
 | 	{ "rx_unicast",		XM_RXF_UC_OK,  GM_RXF_UC_OK }, | 
 | 	{ "tx_mac_pause",	XM_TXF_MPAUSE, GM_TXF_MPAUSE }, | 
 | 	{ "rx_mac_pause",	XM_RXF_MPAUSE, GM_RXF_MPAUSE }, | 
 |  | 
 | 	{ "collisions",		XM_TXF_SNG_COL, GM_TXF_SNG_COL }, | 
 | 	{ "multi_collisions",	XM_TXF_MUL_COL, GM_TXF_MUL_COL }, | 
 | 	{ "aborted",		XM_TXF_ABO_COL, GM_TXF_ABO_COL }, | 
 | 	{ "late_collision",	XM_TXF_LAT_COL, GM_TXF_LAT_COL }, | 
 | 	{ "fifo_underrun",	XM_TXE_FIFO_UR, GM_TXE_FIFO_UR }, | 
 | 	{ "fifo_overflow",	XM_RXE_FIFO_OV, GM_RXE_FIFO_OV }, | 
 |  | 
 | 	{ "rx_toolong",		XM_RXF_LNG_ERR, GM_RXF_LNG_ERR }, | 
 | 	{ "rx_jabber",		XM_RXF_JAB_PKT, GM_RXF_JAB_PKT }, | 
 | 	{ "rx_runt",		XM_RXE_RUNT, 	GM_RXE_FRAG }, | 
 | 	{ "rx_too_long",	XM_RXF_LNG_ERR, GM_RXF_LNG_ERR }, | 
 | 	{ "rx_fcs_error",	XM_RXF_FCS_ERR, GM_RXF_FCS_ERR }, | 
 | }; | 
 |  | 
 | static int skge_get_stats_count(struct net_device *dev) | 
 | { | 
 | 	return ARRAY_SIZE(skge_stats); | 
 | } | 
 |  | 
 | static void skge_get_ethtool_stats(struct net_device *dev, | 
 | 				   struct ethtool_stats *stats, u64 *data) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 |  | 
 | 	if (skge->hw->chip_id == CHIP_ID_GENESIS) | 
 | 		genesis_get_stats(skge, data); | 
 | 	else | 
 | 		yukon_get_stats(skge, data); | 
 | } | 
 |  | 
 | /* Use hardware MIB variables for critical path statistics and | 
 |  * transmit feedback not reported at interrupt. | 
 |  * Other errors are accounted for in interrupt handler. | 
 |  */ | 
 | static struct net_device_stats *skge_get_stats(struct net_device *dev) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 | 	u64 data[ARRAY_SIZE(skge_stats)]; | 
 |  | 
 | 	if (skge->hw->chip_id == CHIP_ID_GENESIS) | 
 | 		genesis_get_stats(skge, data); | 
 | 	else | 
 | 		yukon_get_stats(skge, data); | 
 |  | 
 | 	skge->net_stats.tx_bytes = data[0]; | 
 | 	skge->net_stats.rx_bytes = data[1]; | 
 | 	skge->net_stats.tx_packets = data[2] + data[4] + data[6]; | 
 | 	skge->net_stats.rx_packets = data[3] + data[5] + data[7]; | 
 | 	skge->net_stats.multicast = data[3] + data[5]; | 
 | 	skge->net_stats.collisions = data[10]; | 
 | 	skge->net_stats.tx_aborted_errors = data[12]; | 
 |  | 
 | 	return &skge->net_stats; | 
 | } | 
 |  | 
 | static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	switch (stringset) { | 
 | 	case ETH_SS_STATS: | 
 | 		for (i = 0; i < ARRAY_SIZE(skge_stats); i++) | 
 | 			memcpy(data + i * ETH_GSTRING_LEN, | 
 | 			       skge_stats[i].name, ETH_GSTRING_LEN); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static void skge_get_ring_param(struct net_device *dev, | 
 | 				struct ethtool_ringparam *p) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 |  | 
 | 	p->rx_max_pending = MAX_RX_RING_SIZE; | 
 | 	p->tx_max_pending = MAX_TX_RING_SIZE; | 
 | 	p->rx_mini_max_pending = 0; | 
 | 	p->rx_jumbo_max_pending = 0; | 
 |  | 
 | 	p->rx_pending = skge->rx_ring.count; | 
 | 	p->tx_pending = skge->tx_ring.count; | 
 | 	p->rx_mini_pending = 0; | 
 | 	p->rx_jumbo_pending = 0; | 
 | } | 
 |  | 
 | static int skge_set_ring_param(struct net_device *dev, | 
 | 			       struct ethtool_ringparam *p) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 | 	int err; | 
 |  | 
 | 	if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE || | 
 | 	    p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE) | 
 | 		return -EINVAL; | 
 |  | 
 | 	skge->rx_ring.count = p->rx_pending; | 
 | 	skge->tx_ring.count = p->tx_pending; | 
 |  | 
 | 	if (netif_running(dev)) { | 
 | 		skge_down(dev); | 
 | 		err = skge_up(dev); | 
 | 		if (err) | 
 | 			dev_close(dev); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u32 skge_get_msglevel(struct net_device *netdev) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(netdev); | 
 | 	return skge->msg_enable; | 
 | } | 
 |  | 
 | static void skge_set_msglevel(struct net_device *netdev, u32 value) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(netdev); | 
 | 	skge->msg_enable = value; | 
 | } | 
 |  | 
 | static int skge_nway_reset(struct net_device *dev) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 |  | 
 | 	if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	skge_phy_reset(skge); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int skge_set_sg(struct net_device *dev, u32 data) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 | 	struct skge_hw *hw = skge->hw; | 
 |  | 
 | 	if (hw->chip_id == CHIP_ID_GENESIS && data) | 
 | 		return -EOPNOTSUPP; | 
 | 	return ethtool_op_set_sg(dev, data); | 
 | } | 
 |  | 
 | static int skge_set_tx_csum(struct net_device *dev, u32 data) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 | 	struct skge_hw *hw = skge->hw; | 
 |  | 
 | 	if (hw->chip_id == CHIP_ID_GENESIS && data) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	return ethtool_op_set_tx_csum(dev, data); | 
 | } | 
 |  | 
 | static u32 skge_get_rx_csum(struct net_device *dev) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 |  | 
 | 	return skge->rx_csum; | 
 | } | 
 |  | 
 | /* Only Yukon supports checksum offload. */ | 
 | static int skge_set_rx_csum(struct net_device *dev, u32 data) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 |  | 
 | 	if (skge->hw->chip_id == CHIP_ID_GENESIS && data) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	skge->rx_csum = data; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void skge_get_pauseparam(struct net_device *dev, | 
 | 				struct ethtool_pauseparam *ecmd) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 |  | 
 | 	ecmd->rx_pause = (skge->flow_control == FLOW_MODE_SYMMETRIC) | 
 | 		|| (skge->flow_control == FLOW_MODE_SYM_OR_REM); | 
 | 	ecmd->tx_pause = ecmd->rx_pause || (skge->flow_control == FLOW_MODE_LOC_SEND); | 
 |  | 
 | 	ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause; | 
 | } | 
 |  | 
 | static int skge_set_pauseparam(struct net_device *dev, | 
 | 			       struct ethtool_pauseparam *ecmd) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 | 	struct ethtool_pauseparam old; | 
 |  | 
 | 	skge_get_pauseparam(dev, &old); | 
 |  | 
 | 	if (ecmd->autoneg != old.autoneg) | 
 | 		skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC; | 
 | 	else { | 
 | 		if (ecmd->rx_pause && ecmd->tx_pause) | 
 | 			skge->flow_control = FLOW_MODE_SYMMETRIC; | 
 | 		else if (ecmd->rx_pause && !ecmd->tx_pause) | 
 | 			skge->flow_control = FLOW_MODE_SYM_OR_REM; | 
 | 		else if (!ecmd->rx_pause && ecmd->tx_pause) | 
 | 			skge->flow_control = FLOW_MODE_LOC_SEND; | 
 | 		else | 
 | 			skge->flow_control = FLOW_MODE_NONE; | 
 | 	} | 
 |  | 
 | 	if (netif_running(dev)) | 
 | 		skge_phy_reset(skge); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Chip internal frequency for clock calculations */ | 
 | static inline u32 hwkhz(const struct skge_hw *hw) | 
 | { | 
 | 	return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125; | 
 | } | 
 |  | 
 | /* Chip HZ to microseconds */ | 
 | static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks) | 
 | { | 
 | 	return (ticks * 1000) / hwkhz(hw); | 
 | } | 
 |  | 
 | /* Microseconds to chip HZ */ | 
 | static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec) | 
 | { | 
 | 	return hwkhz(hw) * usec / 1000; | 
 | } | 
 |  | 
 | static int skge_get_coalesce(struct net_device *dev, | 
 | 			     struct ethtool_coalesce *ecmd) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 | 	struct skge_hw *hw = skge->hw; | 
 | 	int port = skge->port; | 
 |  | 
 | 	ecmd->rx_coalesce_usecs = 0; | 
 | 	ecmd->tx_coalesce_usecs = 0; | 
 |  | 
 | 	if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) { | 
 | 		u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI)); | 
 | 		u32 msk = skge_read32(hw, B2_IRQM_MSK); | 
 |  | 
 | 		if (msk & rxirqmask[port]) | 
 | 			ecmd->rx_coalesce_usecs = delay; | 
 | 		if (msk & txirqmask[port]) | 
 | 			ecmd->tx_coalesce_usecs = delay; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Note: interrupt timer is per board, but can turn on/off per port */ | 
 | static int skge_set_coalesce(struct net_device *dev, | 
 | 			     struct ethtool_coalesce *ecmd) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 | 	struct skge_hw *hw = skge->hw; | 
 | 	int port = skge->port; | 
 | 	u32 msk = skge_read32(hw, B2_IRQM_MSK); | 
 | 	u32 delay = 25; | 
 |  | 
 | 	if (ecmd->rx_coalesce_usecs == 0) | 
 | 		msk &= ~rxirqmask[port]; | 
 | 	else if (ecmd->rx_coalesce_usecs < 25 || | 
 | 		 ecmd->rx_coalesce_usecs > 33333) | 
 | 		return -EINVAL; | 
 | 	else { | 
 | 		msk |= rxirqmask[port]; | 
 | 		delay = ecmd->rx_coalesce_usecs; | 
 | 	} | 
 |  | 
 | 	if (ecmd->tx_coalesce_usecs == 0) | 
 | 		msk &= ~txirqmask[port]; | 
 | 	else if (ecmd->tx_coalesce_usecs < 25 || | 
 | 		 ecmd->tx_coalesce_usecs > 33333) | 
 | 		return -EINVAL; | 
 | 	else { | 
 | 		msk |= txirqmask[port]; | 
 | 		delay = min(delay, ecmd->rx_coalesce_usecs); | 
 | 	} | 
 |  | 
 | 	skge_write32(hw, B2_IRQM_MSK, msk); | 
 | 	if (msk == 0) | 
 | 		skge_write32(hw, B2_IRQM_CTRL, TIM_STOP); | 
 | 	else { | 
 | 		skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay)); | 
 | 		skge_write32(hw, B2_IRQM_CTRL, TIM_START); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST }; | 
 | static void skge_led(struct skge_port *skge, enum led_mode mode) | 
 | { | 
 | 	struct skge_hw *hw = skge->hw; | 
 | 	int port = skge->port; | 
 |  | 
 | 	spin_lock_bh(&hw->phy_lock); | 
 | 	if (hw->chip_id == CHIP_ID_GENESIS) { | 
 | 		switch (mode) { | 
 | 		case LED_MODE_OFF: | 
 | 			if (hw->phy_type == SK_PHY_BCOM) | 
 | 				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF); | 
 | 			else { | 
 | 				skge_write32(hw, SK_REG(port, TX_LED_VAL), 0); | 
 | 				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF); | 
 | 			} | 
 | 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF); | 
 | 			skge_write32(hw, SK_REG(port, RX_LED_VAL), 0); | 
 | 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF); | 
 | 			break; | 
 |  | 
 | 		case LED_MODE_ON: | 
 | 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON); | 
 | 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON); | 
 |  | 
 | 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START); | 
 | 			skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START); | 
 |  | 
 | 			break; | 
 |  | 
 | 		case LED_MODE_TST: | 
 | 			skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON); | 
 | 			skge_write32(hw, SK_REG(port, RX_LED_VAL), 100); | 
 | 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START); | 
 |  | 
 | 			if (hw->phy_type == SK_PHY_BCOM) | 
 | 				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON); | 
 | 			else { | 
 | 				skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON); | 
 | 				skge_write32(hw, SK_REG(port, TX_LED_VAL), 100); | 
 | 				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START); | 
 | 			} | 
 |  | 
 | 		} | 
 | 	} else { | 
 | 		switch (mode) { | 
 | 		case LED_MODE_OFF: | 
 | 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0); | 
 | 			gm_phy_write(hw, port, PHY_MARV_LED_OVER, | 
 | 				     PHY_M_LED_MO_DUP(MO_LED_OFF)  | | 
 | 				     PHY_M_LED_MO_10(MO_LED_OFF)   | | 
 | 				     PHY_M_LED_MO_100(MO_LED_OFF)  | | 
 | 				     PHY_M_LED_MO_1000(MO_LED_OFF) | | 
 | 				     PHY_M_LED_MO_RX(MO_LED_OFF)); | 
 | 			break; | 
 | 		case LED_MODE_ON: | 
 | 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, | 
 | 				     PHY_M_LED_PULS_DUR(PULS_170MS) | | 
 | 				     PHY_M_LED_BLINK_RT(BLINK_84MS) | | 
 | 				     PHY_M_LEDC_TX_CTRL | | 
 | 				     PHY_M_LEDC_DP_CTRL); | 
 |  | 
 | 			gm_phy_write(hw, port, PHY_MARV_LED_OVER, | 
 | 				     PHY_M_LED_MO_RX(MO_LED_OFF) | | 
 | 				     (skge->speed == SPEED_100 ? | 
 | 				      PHY_M_LED_MO_100(MO_LED_ON) : 0)); | 
 | 			break; | 
 | 		case LED_MODE_TST: | 
 | 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0); | 
 | 			gm_phy_write(hw, port, PHY_MARV_LED_OVER, | 
 | 				     PHY_M_LED_MO_DUP(MO_LED_ON)  | | 
 | 				     PHY_M_LED_MO_10(MO_LED_ON)   | | 
 | 				     PHY_M_LED_MO_100(MO_LED_ON)  | | 
 | 				     PHY_M_LED_MO_1000(MO_LED_ON) | | 
 | 				     PHY_M_LED_MO_RX(MO_LED_ON)); | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_bh(&hw->phy_lock); | 
 | } | 
 |  | 
 | /* blink LED's for finding board */ | 
 | static int skge_phys_id(struct net_device *dev, u32 data) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 | 	unsigned long ms; | 
 | 	enum led_mode mode = LED_MODE_TST; | 
 |  | 
 | 	if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ)) | 
 | 		ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000; | 
 | 	else | 
 | 		ms = data * 1000; | 
 |  | 
 | 	while (ms > 0) { | 
 | 		skge_led(skge, mode); | 
 | 		mode ^= LED_MODE_TST; | 
 |  | 
 | 		if (msleep_interruptible(BLINK_MS)) | 
 | 			break; | 
 | 		ms -= BLINK_MS; | 
 | 	} | 
 |  | 
 | 	/* back to regular LED state */ | 
 | 	skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct ethtool_ops skge_ethtool_ops = { | 
 | 	.get_settings	= skge_get_settings, | 
 | 	.set_settings	= skge_set_settings, | 
 | 	.get_drvinfo	= skge_get_drvinfo, | 
 | 	.get_regs_len	= skge_get_regs_len, | 
 | 	.get_regs	= skge_get_regs, | 
 | 	.get_wol	= skge_get_wol, | 
 | 	.set_wol	= skge_set_wol, | 
 | 	.get_msglevel	= skge_get_msglevel, | 
 | 	.set_msglevel	= skge_set_msglevel, | 
 | 	.nway_reset	= skge_nway_reset, | 
 | 	.get_link	= ethtool_op_get_link, | 
 | 	.get_ringparam	= skge_get_ring_param, | 
 | 	.set_ringparam	= skge_set_ring_param, | 
 | 	.get_pauseparam = skge_get_pauseparam, | 
 | 	.set_pauseparam = skge_set_pauseparam, | 
 | 	.get_coalesce	= skge_get_coalesce, | 
 | 	.set_coalesce	= skge_set_coalesce, | 
 | 	.get_sg		= ethtool_op_get_sg, | 
 | 	.set_sg		= skge_set_sg, | 
 | 	.get_tx_csum	= ethtool_op_get_tx_csum, | 
 | 	.set_tx_csum	= skge_set_tx_csum, | 
 | 	.get_rx_csum	= skge_get_rx_csum, | 
 | 	.set_rx_csum	= skge_set_rx_csum, | 
 | 	.get_strings	= skge_get_strings, | 
 | 	.phys_id	= skge_phys_id, | 
 | 	.get_stats_count = skge_get_stats_count, | 
 | 	.get_ethtool_stats = skge_get_ethtool_stats, | 
 | 	.get_perm_addr	= ethtool_op_get_perm_addr, | 
 | }; | 
 |  | 
 | /* | 
 |  * Allocate ring elements and chain them together | 
 |  * One-to-one association of board descriptors with ring elements | 
 |  */ | 
 | static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base) | 
 | { | 
 | 	struct skge_tx_desc *d; | 
 | 	struct skge_element *e; | 
 | 	int i; | 
 |  | 
 | 	ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL); | 
 | 	if (!ring->start) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) { | 
 | 		e->desc = d; | 
 | 		if (i == ring->count - 1) { | 
 | 			e->next = ring->start; | 
 | 			d->next_offset = base; | 
 | 		} else { | 
 | 			e->next = e + 1; | 
 | 			d->next_offset = base + (i+1) * sizeof(*d); | 
 | 		} | 
 | 	} | 
 | 	ring->to_use = ring->to_clean = ring->start; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Allocate and setup a new buffer for receiving */ | 
 | static void skge_rx_setup(struct skge_port *skge, struct skge_element *e, | 
 | 			  struct sk_buff *skb, unsigned int bufsize) | 
 | { | 
 | 	struct skge_rx_desc *rd = e->desc; | 
 | 	u64 map; | 
 |  | 
 | 	map = pci_map_single(skge->hw->pdev, skb->data, bufsize, | 
 | 			     PCI_DMA_FROMDEVICE); | 
 |  | 
 | 	rd->dma_lo = map; | 
 | 	rd->dma_hi = map >> 32; | 
 | 	e->skb = skb; | 
 | 	rd->csum1_start = ETH_HLEN; | 
 | 	rd->csum2_start = ETH_HLEN; | 
 | 	rd->csum1 = 0; | 
 | 	rd->csum2 = 0; | 
 |  | 
 | 	wmb(); | 
 |  | 
 | 	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize; | 
 | 	pci_unmap_addr_set(e, mapaddr, map); | 
 | 	pci_unmap_len_set(e, maplen, bufsize); | 
 | } | 
 |  | 
 | /* Resume receiving using existing skb, | 
 |  * Note: DMA address is not changed by chip. | 
 |  * 	 MTU not changed while receiver active. | 
 |  */ | 
 | static inline void skge_rx_reuse(struct skge_element *e, unsigned int size) | 
 | { | 
 | 	struct skge_rx_desc *rd = e->desc; | 
 |  | 
 | 	rd->csum2 = 0; | 
 | 	rd->csum2_start = ETH_HLEN; | 
 |  | 
 | 	wmb(); | 
 |  | 
 | 	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size; | 
 | } | 
 |  | 
 |  | 
 | /* Free all  buffers in receive ring, assumes receiver stopped */ | 
 | static void skge_rx_clean(struct skge_port *skge) | 
 | { | 
 | 	struct skge_hw *hw = skge->hw; | 
 | 	struct skge_ring *ring = &skge->rx_ring; | 
 | 	struct skge_element *e; | 
 |  | 
 | 	e = ring->start; | 
 | 	do { | 
 | 		struct skge_rx_desc *rd = e->desc; | 
 | 		rd->control = 0; | 
 | 		if (e->skb) { | 
 | 			pci_unmap_single(hw->pdev, | 
 | 					 pci_unmap_addr(e, mapaddr), | 
 | 					 pci_unmap_len(e, maplen), | 
 | 					 PCI_DMA_FROMDEVICE); | 
 | 			dev_kfree_skb(e->skb); | 
 | 			e->skb = NULL; | 
 | 		} | 
 | 	} while ((e = e->next) != ring->start); | 
 | } | 
 |  | 
 |  | 
 | /* Allocate buffers for receive ring | 
 |  * For receive:  to_clean is next received frame. | 
 |  */ | 
 | static int skge_rx_fill(struct net_device *dev) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 | 	struct skge_ring *ring = &skge->rx_ring; | 
 | 	struct skge_element *e; | 
 |  | 
 | 	e = ring->start; | 
 | 	do { | 
 | 		struct sk_buff *skb; | 
 |  | 
 | 		skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN, | 
 | 					 GFP_KERNEL); | 
 | 		if (!skb) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		skb_reserve(skb, NET_IP_ALIGN); | 
 | 		skge_rx_setup(skge, e, skb, skge->rx_buf_size); | 
 | 	} while ( (e = e->next) != ring->start); | 
 |  | 
 | 	ring->to_clean = ring->start; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const char *skge_pause(enum pause_status status) | 
 | { | 
 | 	switch(status) { | 
 | 	case FLOW_STAT_NONE: | 
 | 		return "none"; | 
 | 	case FLOW_STAT_REM_SEND: | 
 | 		return "rx only"; | 
 | 	case FLOW_STAT_LOC_SEND: | 
 | 		return "tx_only"; | 
 | 	case FLOW_STAT_SYMMETRIC:		/* Both station may send PAUSE */ | 
 | 		return "both"; | 
 | 	default: | 
 | 		return "indeterminated"; | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | static void skge_link_up(struct skge_port *skge) | 
 | { | 
 | 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), | 
 | 		    LED_BLK_OFF|LED_SYNC_OFF|LED_ON); | 
 |  | 
 | 	netif_carrier_on(skge->netdev); | 
 | 	netif_wake_queue(skge->netdev); | 
 |  | 
 | 	if (netif_msg_link(skge)) { | 
 | 		printk(KERN_INFO PFX | 
 | 		       "%s: Link is up at %d Mbps, %s duplex, flow control %s\n", | 
 | 		       skge->netdev->name, skge->speed, | 
 | 		       skge->duplex == DUPLEX_FULL ? "full" : "half", | 
 | 		       skge_pause(skge->flow_status)); | 
 | 	} | 
 | } | 
 |  | 
 | static void skge_link_down(struct skge_port *skge) | 
 | { | 
 | 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF); | 
 | 	netif_carrier_off(skge->netdev); | 
 | 	netif_stop_queue(skge->netdev); | 
 |  | 
 | 	if (netif_msg_link(skge)) | 
 | 		printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name); | 
 | } | 
 |  | 
 |  | 
 | static void xm_link_down(struct skge_hw *hw, int port) | 
 | { | 
 | 	struct net_device *dev = hw->dev[port]; | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 | 	u16 cmd, msk; | 
 |  | 
 | 	if (hw->phy_type == SK_PHY_XMAC) { | 
 | 		msk = xm_read16(hw, port, XM_IMSK); | 
 | 		msk |= XM_IS_INP_ASS | XM_IS_LIPA_RC | XM_IS_RX_PAGE | XM_IS_AND; | 
 | 		xm_write16(hw, port, XM_IMSK, msk); | 
 | 	} | 
 |  | 
 | 	cmd = xm_read16(hw, port, XM_MMU_CMD); | 
 | 	cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX); | 
 | 	xm_write16(hw, port, XM_MMU_CMD, cmd); | 
 | 	/* dummy read to ensure writing */ | 
 | 	(void) xm_read16(hw, port, XM_MMU_CMD); | 
 |  | 
 | 	if (netif_carrier_ok(dev)) | 
 | 		skge_link_down(skge); | 
 | } | 
 |  | 
 | static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr); | 
 | 	*val = xm_read16(hw, port, XM_PHY_DATA); | 
 |  | 
 | 	if (hw->phy_type == SK_PHY_XMAC) | 
 | 		goto ready; | 
 |  | 
 | 	for (i = 0; i < PHY_RETRIES; i++) { | 
 | 		if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY) | 
 | 			goto ready; | 
 | 		udelay(1); | 
 | 	} | 
 |  | 
 | 	return -ETIMEDOUT; | 
 |  ready: | 
 | 	*val = xm_read16(hw, port, XM_PHY_DATA); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg) | 
 | { | 
 | 	u16 v = 0; | 
 | 	if (__xm_phy_read(hw, port, reg, &v)) | 
 | 		printk(KERN_WARNING PFX "%s: phy read timed out\n", | 
 | 		       hw->dev[port]->name); | 
 | 	return v; | 
 | } | 
 |  | 
 | static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr); | 
 | 	for (i = 0; i < PHY_RETRIES; i++) { | 
 | 		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY)) | 
 | 			goto ready; | 
 | 		udelay(1); | 
 | 	} | 
 | 	return -EIO; | 
 |  | 
 |  ready: | 
 | 	xm_write16(hw, port, XM_PHY_DATA, val); | 
 | 	for (i = 0; i < PHY_RETRIES; i++) { | 
 | 		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY)) | 
 | 			return 0; | 
 | 		udelay(1); | 
 | 	} | 
 | 	return -ETIMEDOUT; | 
 | } | 
 |  | 
 | static void genesis_init(struct skge_hw *hw) | 
 | { | 
 | 	/* set blink source counter */ | 
 | 	skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100); | 
 | 	skge_write8(hw, B2_BSC_CTRL, BSC_START); | 
 |  | 
 | 	/* configure mac arbiter */ | 
 | 	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR); | 
 |  | 
 | 	/* configure mac arbiter timeout values */ | 
 | 	skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53); | 
 | 	skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53); | 
 | 	skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53); | 
 | 	skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53); | 
 |  | 
 | 	skge_write8(hw, B3_MA_RCINI_RX1, 0); | 
 | 	skge_write8(hw, B3_MA_RCINI_RX2, 0); | 
 | 	skge_write8(hw, B3_MA_RCINI_TX1, 0); | 
 | 	skge_write8(hw, B3_MA_RCINI_TX2, 0); | 
 |  | 
 | 	/* configure packet arbiter timeout */ | 
 | 	skge_write16(hw, B3_PA_CTRL, PA_RST_CLR); | 
 | 	skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX); | 
 | 	skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX); | 
 | 	skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX); | 
 | 	skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX); | 
 | } | 
 |  | 
 | static void genesis_reset(struct skge_hw *hw, int port) | 
 | { | 
 | 	const u8 zero[8]  = { 0 }; | 
 |  | 
 | 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0); | 
 |  | 
 | 	/* reset the statistics module */ | 
 | 	xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT); | 
 | 	xm_write16(hw, port, XM_IMSK, 0xffff);	/* disable XMAC IRQs */ | 
 | 	xm_write32(hw, port, XM_MODE, 0);		/* clear Mode Reg */ | 
 | 	xm_write16(hw, port, XM_TX_CMD, 0);	/* reset TX CMD Reg */ | 
 | 	xm_write16(hw, port, XM_RX_CMD, 0);	/* reset RX CMD Reg */ | 
 |  | 
 | 	/* disable Broadcom PHY IRQ */ | 
 | 	if (hw->phy_type == SK_PHY_BCOM) | 
 | 		xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff); | 
 |  | 
 | 	xm_outhash(hw, port, XM_HSM, zero); | 
 | } | 
 |  | 
 |  | 
 | /* Convert mode to MII values  */ | 
 | static const u16 phy_pause_map[] = { | 
 | 	[FLOW_MODE_NONE] =	0, | 
 | 	[FLOW_MODE_LOC_SEND] =	PHY_AN_PAUSE_ASYM, | 
 | 	[FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP, | 
 | 	[FLOW_MODE_SYM_OR_REM]  = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM, | 
 | }; | 
 |  | 
 | /* special defines for FIBER (88E1011S only) */ | 
 | static const u16 fiber_pause_map[] = { | 
 | 	[FLOW_MODE_NONE]	= PHY_X_P_NO_PAUSE, | 
 | 	[FLOW_MODE_LOC_SEND]	= PHY_X_P_ASYM_MD, | 
 | 	[FLOW_MODE_SYMMETRIC]	= PHY_X_P_SYM_MD, | 
 | 	[FLOW_MODE_SYM_OR_REM]	= PHY_X_P_BOTH_MD, | 
 | }; | 
 |  | 
 |  | 
 | /* Check status of Broadcom phy link */ | 
 | static void bcom_check_link(struct skge_hw *hw, int port) | 
 | { | 
 | 	struct net_device *dev = hw->dev[port]; | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 | 	u16 status; | 
 |  | 
 | 	/* read twice because of latch */ | 
 | 	(void) xm_phy_read(hw, port, PHY_BCOM_STAT); | 
 | 	status = xm_phy_read(hw, port, PHY_BCOM_STAT); | 
 |  | 
 | 	if ((status & PHY_ST_LSYNC) == 0) { | 
 | 		xm_link_down(hw, port); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (skge->autoneg == AUTONEG_ENABLE) { | 
 | 		u16 lpa, aux; | 
 |  | 
 | 		if (!(status & PHY_ST_AN_OVER)) | 
 | 			return; | 
 |  | 
 | 		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP); | 
 | 		if (lpa & PHY_B_AN_RF) { | 
 | 			printk(KERN_NOTICE PFX "%s: remote fault\n", | 
 | 			       dev->name); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT); | 
 |  | 
 | 		/* Check Duplex mismatch */ | 
 | 		switch (aux & PHY_B_AS_AN_RES_MSK) { | 
 | 		case PHY_B_RES_1000FD: | 
 | 			skge->duplex = DUPLEX_FULL; | 
 | 			break; | 
 | 		case PHY_B_RES_1000HD: | 
 | 			skge->duplex = DUPLEX_HALF; | 
 | 			break; | 
 | 		default: | 
 | 			printk(KERN_NOTICE PFX "%s: duplex mismatch\n", | 
 | 			       dev->name); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */ | 
 | 		switch (aux & PHY_B_AS_PAUSE_MSK) { | 
 | 		case PHY_B_AS_PAUSE_MSK: | 
 | 			skge->flow_status = FLOW_STAT_SYMMETRIC; | 
 | 			break; | 
 | 		case PHY_B_AS_PRR: | 
 | 			skge->flow_status = FLOW_STAT_REM_SEND; | 
 | 			break; | 
 | 		case PHY_B_AS_PRT: | 
 | 			skge->flow_status = FLOW_STAT_LOC_SEND; | 
 | 			break; | 
 | 		default: | 
 | 			skge->flow_status = FLOW_STAT_NONE; | 
 | 		} | 
 | 		skge->speed = SPEED_1000; | 
 | 	} | 
 |  | 
 | 	if (!netif_carrier_ok(dev)) | 
 | 		genesis_link_up(skge); | 
 | } | 
 |  | 
 | /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional | 
 |  * Phy on for 100 or 10Mbit operation | 
 |  */ | 
 | static void bcom_phy_init(struct skge_port *skge) | 
 | { | 
 | 	struct skge_hw *hw = skge->hw; | 
 | 	int port = skge->port; | 
 | 	int i; | 
 | 	u16 id1, r, ext, ctl; | 
 |  | 
 | 	/* magic workaround patterns for Broadcom */ | 
 | 	static const struct { | 
 | 		u16 reg; | 
 | 		u16 val; | 
 | 	} A1hack[] = { | 
 | 		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, | 
 | 		{ 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 }, | 
 | 		{ 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 }, | 
 | 		{ 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 }, | 
 | 	}, C0hack[] = { | 
 | 		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 }, | 
 | 		{ 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 }, | 
 | 	}; | 
 |  | 
 | 	/* read Id from external PHY (all have the same address) */ | 
 | 	id1 = xm_phy_read(hw, port, PHY_XMAC_ID1); | 
 |  | 
 | 	/* Optimize MDIO transfer by suppressing preamble. */ | 
 | 	r = xm_read16(hw, port, XM_MMU_CMD); | 
 | 	r |=  XM_MMU_NO_PRE; | 
 | 	xm_write16(hw, port, XM_MMU_CMD,r); | 
 |  | 
 | 	switch (id1) { | 
 | 	case PHY_BCOM_ID1_C0: | 
 | 		/* | 
 | 		 * Workaround BCOM Errata for the C0 type. | 
 | 		 * Write magic patterns to reserved registers. | 
 | 		 */ | 
 | 		for (i = 0; i < ARRAY_SIZE(C0hack); i++) | 
 | 			xm_phy_write(hw, port, | 
 | 				     C0hack[i].reg, C0hack[i].val); | 
 |  | 
 | 		break; | 
 | 	case PHY_BCOM_ID1_A1: | 
 | 		/* | 
 | 		 * Workaround BCOM Errata for the A1 type. | 
 | 		 * Write magic patterns to reserved registers. | 
 | 		 */ | 
 | 		for (i = 0; i < ARRAY_SIZE(A1hack); i++) | 
 | 			xm_phy_write(hw, port, | 
 | 				     A1hack[i].reg, A1hack[i].val); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Workaround BCOM Errata (#10523) for all BCom PHYs. | 
 | 	 * Disable Power Management after reset. | 
 | 	 */ | 
 | 	r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL); | 
 | 	r |= PHY_B_AC_DIS_PM; | 
 | 	xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r); | 
 |  | 
 | 	/* Dummy read */ | 
 | 	xm_read16(hw, port, XM_ISRC); | 
 |  | 
 | 	ext = PHY_B_PEC_EN_LTR; /* enable tx led */ | 
 | 	ctl = PHY_CT_SP1000;	/* always 1000mbit */ | 
 |  | 
 | 	if (skge->autoneg == AUTONEG_ENABLE) { | 
 | 		/* | 
 | 		 * Workaround BCOM Errata #1 for the C5 type. | 
 | 		 * 1000Base-T Link Acquisition Failure in Slave Mode | 
 | 		 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register | 
 | 		 */ | 
 | 		u16 adv = PHY_B_1000C_RD; | 
 | 		if (skge->advertising & ADVERTISED_1000baseT_Half) | 
 | 			adv |= PHY_B_1000C_AHD; | 
 | 		if (skge->advertising & ADVERTISED_1000baseT_Full) | 
 | 			adv |= PHY_B_1000C_AFD; | 
 | 		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv); | 
 |  | 
 | 		ctl |= PHY_CT_ANE | PHY_CT_RE_CFG; | 
 | 	} else { | 
 | 		if (skge->duplex == DUPLEX_FULL) | 
 | 			ctl |= PHY_CT_DUP_MD; | 
 | 		/* Force to slave */ | 
 | 		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE); | 
 | 	} | 
 |  | 
 | 	/* Set autonegotiation pause parameters */ | 
 | 	xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV, | 
 | 		     phy_pause_map[skge->flow_control] | PHY_AN_CSMA); | 
 |  | 
 | 	/* Handle Jumbo frames */ | 
 | 	if (hw->dev[port]->mtu > ETH_DATA_LEN) { | 
 | 		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, | 
 | 			     PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK); | 
 |  | 
 | 		ext |= PHY_B_PEC_HIGH_LA; | 
 |  | 
 | 	} | 
 |  | 
 | 	xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext); | 
 | 	xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl); | 
 |  | 
 | 	/* Use link status change interrupt */ | 
 | 	xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK); | 
 | } | 
 |  | 
 | static void xm_phy_init(struct skge_port *skge) | 
 | { | 
 | 	struct skge_hw *hw = skge->hw; | 
 | 	int port = skge->port; | 
 | 	u16 ctrl = 0; | 
 |  | 
 | 	if (skge->autoneg == AUTONEG_ENABLE) { | 
 | 		if (skge->advertising & ADVERTISED_1000baseT_Half) | 
 | 			ctrl |= PHY_X_AN_HD; | 
 | 		if (skge->advertising & ADVERTISED_1000baseT_Full) | 
 | 			ctrl |= PHY_X_AN_FD; | 
 |  | 
 | 		ctrl |= fiber_pause_map[skge->flow_control]; | 
 |  | 
 | 		xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl); | 
 |  | 
 | 		/* Restart Auto-negotiation */ | 
 | 		ctrl = PHY_CT_ANE | PHY_CT_RE_CFG; | 
 | 	} else { | 
 | 		/* Set DuplexMode in Config register */ | 
 | 		if (skge->duplex == DUPLEX_FULL) | 
 | 			ctrl |= PHY_CT_DUP_MD; | 
 | 		/* | 
 | 		 * Do NOT enable Auto-negotiation here. This would hold | 
 | 		 * the link down because no IDLEs are transmitted | 
 | 		 */ | 
 | 	} | 
 |  | 
 | 	xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl); | 
 |  | 
 | 	/* Poll PHY for status changes */ | 
 | 	mod_timer(&skge->link_timer, jiffies + LINK_HZ); | 
 | } | 
 |  | 
 | static void xm_check_link(struct net_device *dev) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 | 	struct skge_hw *hw = skge->hw; | 
 | 	int port = skge->port; | 
 | 	u16 status; | 
 |  | 
 | 	/* read twice because of latch */ | 
 | 	(void) xm_phy_read(hw, port, PHY_XMAC_STAT); | 
 | 	status = xm_phy_read(hw, port, PHY_XMAC_STAT); | 
 |  | 
 | 	if ((status & PHY_ST_LSYNC) == 0) { | 
 | 		xm_link_down(hw, port); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (skge->autoneg == AUTONEG_ENABLE) { | 
 | 		u16 lpa, res; | 
 |  | 
 | 		if (!(status & PHY_ST_AN_OVER)) | 
 | 			return; | 
 |  | 
 | 		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP); | 
 | 		if (lpa & PHY_B_AN_RF) { | 
 | 			printk(KERN_NOTICE PFX "%s: remote fault\n", | 
 | 			       dev->name); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI); | 
 |  | 
 | 		/* Check Duplex mismatch */ | 
 | 		switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) { | 
 | 		case PHY_X_RS_FD: | 
 | 			skge->duplex = DUPLEX_FULL; | 
 | 			break; | 
 | 		case PHY_X_RS_HD: | 
 | 			skge->duplex = DUPLEX_HALF; | 
 | 			break; | 
 | 		default: | 
 | 			printk(KERN_NOTICE PFX "%s: duplex mismatch\n", | 
 | 			       dev->name); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */ | 
 | 		if ((skge->flow_control == FLOW_MODE_SYMMETRIC || | 
 | 		     skge->flow_control == FLOW_MODE_SYM_OR_REM) && | 
 | 		    (lpa & PHY_X_P_SYM_MD)) | 
 | 			skge->flow_status = FLOW_STAT_SYMMETRIC; | 
 | 		else if (skge->flow_control == FLOW_MODE_SYM_OR_REM && | 
 | 			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD) | 
 | 			/* Enable PAUSE receive, disable PAUSE transmit */ | 
 | 			skge->flow_status  = FLOW_STAT_REM_SEND; | 
 | 		else if (skge->flow_control == FLOW_MODE_LOC_SEND && | 
 | 			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD) | 
 | 			/* Disable PAUSE receive, enable PAUSE transmit */ | 
 | 			skge->flow_status = FLOW_STAT_LOC_SEND; | 
 | 		else | 
 | 			skge->flow_status = FLOW_STAT_NONE; | 
 |  | 
 | 		skge->speed = SPEED_1000; | 
 | 	} | 
 |  | 
 | 	if (!netif_carrier_ok(dev)) | 
 | 		genesis_link_up(skge); | 
 | } | 
 |  | 
 | /* Poll to check for link coming up. | 
 |  * Since internal PHY is wired to a level triggered pin, can't | 
 |  * get an interrupt when carrier is detected. | 
 |  */ | 
 | static void xm_link_timer(unsigned long arg) | 
 | { | 
 | 	struct skge_port *skge = (struct skge_port *) arg; | 
 | 	struct net_device *dev = skge->netdev; | 
 |  	struct skge_hw *hw = skge->hw; | 
 | 	int port = skge->port; | 
 |  | 
 | 	if (!netif_running(dev)) | 
 | 		return; | 
 |  | 
 | 	if (netif_carrier_ok(dev)) { | 
 | 		xm_read16(hw, port, XM_ISRC); | 
 | 		if (!(xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS)) | 
 | 			goto nochange; | 
 | 	} else { | 
 | 		if (xm_read32(hw, port, XM_GP_PORT) & XM_GP_INP_ASS) | 
 | 			goto nochange; | 
 | 		xm_read16(hw, port, XM_ISRC); | 
 | 		if (xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS) | 
 | 			goto nochange; | 
 | 	} | 
 |  | 
 | 	spin_lock(&hw->phy_lock); | 
 | 	xm_check_link(dev); | 
 | 	spin_unlock(&hw->phy_lock); | 
 |  | 
 | nochange: | 
 | 	if (netif_running(dev)) | 
 | 		mod_timer(&skge->link_timer, jiffies + LINK_HZ); | 
 | } | 
 |  | 
 | static void genesis_mac_init(struct skge_hw *hw, int port) | 
 | { | 
 | 	struct net_device *dev = hw->dev[port]; | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 | 	int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN; | 
 | 	int i; | 
 | 	u32 r; | 
 | 	const u8 zero[6]  = { 0 }; | 
 |  | 
 | 	for (i = 0; i < 10; i++) { | 
 | 		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), | 
 | 			     MFF_SET_MAC_RST); | 
 | 		if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST) | 
 | 			goto reset_ok; | 
 | 		udelay(1); | 
 | 	} | 
 |  | 
 | 	printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name); | 
 |  | 
 |  reset_ok: | 
 | 	/* Unreset the XMAC. */ | 
 | 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST); | 
 |  | 
 | 	/* | 
 | 	 * Perform additional initialization for external PHYs, | 
 | 	 * namely for the 1000baseTX cards that use the XMAC's | 
 | 	 * GMII mode. | 
 | 	 */ | 
 | 	if (hw->phy_type != SK_PHY_XMAC) { | 
 | 		/* Take external Phy out of reset */ | 
 | 		r = skge_read32(hw, B2_GP_IO); | 
 | 		if (port == 0) | 
 | 			r |= GP_DIR_0|GP_IO_0; | 
 | 		else | 
 | 			r |= GP_DIR_2|GP_IO_2; | 
 |  | 
 | 		skge_write32(hw, B2_GP_IO, r); | 
 |  | 
 | 		/* Enable GMII interface */ | 
 | 		xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD); | 
 | 	} | 
 |  | 
 |  | 
 | 	switch(hw->phy_type) { | 
 | 	case SK_PHY_XMAC: | 
 | 		xm_phy_init(skge); | 
 | 		break; | 
 | 	case SK_PHY_BCOM: | 
 | 		bcom_phy_init(skge); | 
 | 		bcom_check_link(hw, port); | 
 | 	} | 
 |  | 
 | 	/* Set Station Address */ | 
 | 	xm_outaddr(hw, port, XM_SA, dev->dev_addr); | 
 |  | 
 | 	/* We don't use match addresses so clear */ | 
 | 	for (i = 1; i < 16; i++) | 
 | 		xm_outaddr(hw, port, XM_EXM(i), zero); | 
 |  | 
 | 	/* Clear MIB counters */ | 
 | 	xm_write16(hw, port, XM_STAT_CMD, | 
 | 			XM_SC_CLR_RXC | XM_SC_CLR_TXC); | 
 | 	/* Clear two times according to Errata #3 */ | 
 | 	xm_write16(hw, port, XM_STAT_CMD, | 
 | 			XM_SC_CLR_RXC | XM_SC_CLR_TXC); | 
 |  | 
 | 	/* configure Rx High Water Mark (XM_RX_HI_WM) */ | 
 | 	xm_write16(hw, port, XM_RX_HI_WM, 1450); | 
 |  | 
 | 	/* We don't need the FCS appended to the packet. */ | 
 | 	r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS; | 
 | 	if (jumbo) | 
 | 		r |= XM_RX_BIG_PK_OK; | 
 |  | 
 | 	if (skge->duplex == DUPLEX_HALF) { | 
 | 		/* | 
 | 		 * If in manual half duplex mode the other side might be in | 
 | 		 * full duplex mode, so ignore if a carrier extension is not seen | 
 | 		 * on frames received | 
 | 		 */ | 
 | 		r |= XM_RX_DIS_CEXT; | 
 | 	} | 
 | 	xm_write16(hw, port, XM_RX_CMD, r); | 
 |  | 
 |  | 
 | 	/* We want short frames padded to 60 bytes. */ | 
 | 	xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD); | 
 |  | 
 | 	/* | 
 | 	 * Bump up the transmit threshold. This helps hold off transmit | 
 | 	 * underruns when we're blasting traffic from both ports at once. | 
 | 	 */ | 
 | 	xm_write16(hw, port, XM_TX_THR, 512); | 
 |  | 
 | 	/* | 
 | 	 * Enable the reception of all error frames. This is is | 
 | 	 * a necessary evil due to the design of the XMAC. The | 
 | 	 * XMAC's receive FIFO is only 8K in size, however jumbo | 
 | 	 * frames can be up to 9000 bytes in length. When bad | 
 | 	 * frame filtering is enabled, the XMAC's RX FIFO operates | 
 | 	 * in 'store and forward' mode. For this to work, the | 
 | 	 * entire frame has to fit into the FIFO, but that means | 
 | 	 * that jumbo frames larger than 8192 bytes will be | 
 | 	 * truncated. Disabling all bad frame filtering causes | 
 | 	 * the RX FIFO to operate in streaming mode, in which | 
 | 	 * case the XMAC will start transferring frames out of the | 
 | 	 * RX FIFO as soon as the FIFO threshold is reached. | 
 | 	 */ | 
 | 	xm_write32(hw, port, XM_MODE, XM_DEF_MODE); | 
 |  | 
 |  | 
 | 	/* | 
 | 	 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK) | 
 | 	 *	- Enable all bits excepting 'Octets Rx OK Low CntOv' | 
 | 	 *	  and 'Octets Rx OK Hi Cnt Ov'. | 
 | 	 */ | 
 | 	xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK); | 
 |  | 
 | 	/* | 
 | 	 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK) | 
 | 	 *	- Enable all bits excepting 'Octets Tx OK Low CntOv' | 
 | 	 *	  and 'Octets Tx OK Hi Cnt Ov'. | 
 | 	 */ | 
 | 	xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK); | 
 |  | 
 | 	/* Configure MAC arbiter */ | 
 | 	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR); | 
 |  | 
 | 	/* configure timeout values */ | 
 | 	skge_write8(hw, B3_MA_TOINI_RX1, 72); | 
 | 	skge_write8(hw, B3_MA_TOINI_RX2, 72); | 
 | 	skge_write8(hw, B3_MA_TOINI_TX1, 72); | 
 | 	skge_write8(hw, B3_MA_TOINI_TX2, 72); | 
 |  | 
 | 	skge_write8(hw, B3_MA_RCINI_RX1, 0); | 
 | 	skge_write8(hw, B3_MA_RCINI_RX2, 0); | 
 | 	skge_write8(hw, B3_MA_RCINI_TX1, 0); | 
 | 	skge_write8(hw, B3_MA_RCINI_TX2, 0); | 
 |  | 
 | 	/* Configure Rx MAC FIFO */ | 
 | 	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR); | 
 | 	skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT); | 
 | 	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD); | 
 |  | 
 | 	/* Configure Tx MAC FIFO */ | 
 | 	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR); | 
 | 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF); | 
 | 	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD); | 
 |  | 
 | 	if (jumbo) { | 
 | 		/* Enable frame flushing if jumbo frames used */ | 
 | 		skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH); | 
 | 	} else { | 
 | 		/* enable timeout timers if normal frames */ | 
 | 		skge_write16(hw, B3_PA_CTRL, | 
 | 			     (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2); | 
 | 	} | 
 | } | 
 |  | 
 | static void genesis_stop(struct skge_port *skge) | 
 | { | 
 | 	struct skge_hw *hw = skge->hw; | 
 | 	int port = skge->port; | 
 | 	u32 reg; | 
 |  | 
 | 	genesis_reset(hw, port); | 
 |  | 
 | 	/* Clear Tx packet arbiter timeout IRQ */ | 
 | 	skge_write16(hw, B3_PA_CTRL, | 
 | 		     port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2); | 
 |  | 
 | 	/* | 
 | 	 * If the transfer sticks at the MAC the STOP command will not | 
 | 	 * terminate if we don't flush the XMAC's transmit FIFO ! | 
 | 	 */ | 
 | 	xm_write32(hw, port, XM_MODE, | 
 | 			xm_read32(hw, port, XM_MODE)|XM_MD_FTF); | 
 |  | 
 |  | 
 | 	/* Reset the MAC */ | 
 | 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST); | 
 |  | 
 | 	/* For external PHYs there must be special handling */ | 
 | 	if (hw->phy_type != SK_PHY_XMAC) { | 
 | 		reg = skge_read32(hw, B2_GP_IO); | 
 | 		if (port == 0) { | 
 | 			reg |= GP_DIR_0; | 
 | 			reg &= ~GP_IO_0; | 
 | 		} else { | 
 | 			reg |= GP_DIR_2; | 
 | 			reg &= ~GP_IO_2; | 
 | 		} | 
 | 		skge_write32(hw, B2_GP_IO, reg); | 
 | 		skge_read32(hw, B2_GP_IO); | 
 | 	} | 
 |  | 
 | 	xm_write16(hw, port, XM_MMU_CMD, | 
 | 			xm_read16(hw, port, XM_MMU_CMD) | 
 | 			& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX)); | 
 |  | 
 | 	xm_read16(hw, port, XM_MMU_CMD); | 
 | } | 
 |  | 
 |  | 
 | static void genesis_get_stats(struct skge_port *skge, u64 *data) | 
 | { | 
 | 	struct skge_hw *hw = skge->hw; | 
 | 	int port = skge->port; | 
 | 	int i; | 
 | 	unsigned long timeout = jiffies + HZ; | 
 |  | 
 | 	xm_write16(hw, port, | 
 | 			XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC); | 
 |  | 
 | 	/* wait for update to complete */ | 
 | 	while (xm_read16(hw, port, XM_STAT_CMD) | 
 | 	       & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) { | 
 | 		if (time_after(jiffies, timeout)) | 
 | 			break; | 
 | 		udelay(10); | 
 | 	} | 
 |  | 
 | 	/* special case for 64 bit octet counter */ | 
 | 	data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32 | 
 | 		| xm_read32(hw, port, XM_TXO_OK_LO); | 
 | 	data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32 | 
 | 		| xm_read32(hw, port, XM_RXO_OK_LO); | 
 |  | 
 | 	for (i = 2; i < ARRAY_SIZE(skge_stats); i++) | 
 | 		data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset); | 
 | } | 
 |  | 
 | static void genesis_mac_intr(struct skge_hw *hw, int port) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(hw->dev[port]); | 
 | 	u16 status = xm_read16(hw, port, XM_ISRC); | 
 |  | 
 | 	if (netif_msg_intr(skge)) | 
 | 		printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n", | 
 | 		       skge->netdev->name, status); | 
 |  | 
 | 	if (hw->phy_type == SK_PHY_XMAC && | 
 | 	    (status & (XM_IS_INP_ASS | XM_IS_LIPA_RC))) | 
 | 		xm_link_down(hw, port); | 
 |  | 
 | 	if (status & XM_IS_TXF_UR) { | 
 | 		xm_write32(hw, port, XM_MODE, XM_MD_FTF); | 
 | 		++skge->net_stats.tx_fifo_errors; | 
 | 	} | 
 | 	if (status & XM_IS_RXF_OV) { | 
 | 		xm_write32(hw, port, XM_MODE, XM_MD_FRF); | 
 | 		++skge->net_stats.rx_fifo_errors; | 
 | 	} | 
 | } | 
 |  | 
 | static void genesis_link_up(struct skge_port *skge) | 
 | { | 
 | 	struct skge_hw *hw = skge->hw; | 
 | 	int port = skge->port; | 
 | 	u16 cmd, msk; | 
 | 	u32 mode; | 
 |  | 
 | 	cmd = xm_read16(hw, port, XM_MMU_CMD); | 
 |  | 
 | 	/* | 
 | 	 * enabling pause frame reception is required for 1000BT | 
 | 	 * because the XMAC is not reset if the link is going down | 
 | 	 */ | 
 | 	if (skge->flow_status == FLOW_STAT_NONE || | 
 | 	    skge->flow_status == FLOW_STAT_LOC_SEND) | 
 | 		/* Disable Pause Frame Reception */ | 
 | 		cmd |= XM_MMU_IGN_PF; | 
 | 	else | 
 | 		/* Enable Pause Frame Reception */ | 
 | 		cmd &= ~XM_MMU_IGN_PF; | 
 |  | 
 | 	xm_write16(hw, port, XM_MMU_CMD, cmd); | 
 |  | 
 | 	mode = xm_read32(hw, port, XM_MODE); | 
 | 	if (skge->flow_status== FLOW_STAT_SYMMETRIC || | 
 | 	    skge->flow_status == FLOW_STAT_LOC_SEND) { | 
 | 		/* | 
 | 		 * Configure Pause Frame Generation | 
 | 		 * Use internal and external Pause Frame Generation. | 
 | 		 * Sending pause frames is edge triggered. | 
 | 		 * Send a Pause frame with the maximum pause time if | 
 | 		 * internal oder external FIFO full condition occurs. | 
 | 		 * Send a zero pause time frame to re-start transmission. | 
 | 		 */ | 
 | 		/* XM_PAUSE_DA = '010000C28001' (default) */ | 
 | 		/* XM_MAC_PTIME = 0xffff (maximum) */ | 
 | 		/* remember this value is defined in big endian (!) */ | 
 | 		xm_write16(hw, port, XM_MAC_PTIME, 0xffff); | 
 |  | 
 | 		mode |= XM_PAUSE_MODE; | 
 | 		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE); | 
 | 	} else { | 
 | 		/* | 
 | 		 * disable pause frame generation is required for 1000BT | 
 | 		 * because the XMAC is not reset if the link is going down | 
 | 		 */ | 
 | 		/* Disable Pause Mode in Mode Register */ | 
 | 		mode &= ~XM_PAUSE_MODE; | 
 |  | 
 | 		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE); | 
 | 	} | 
 |  | 
 | 	xm_write32(hw, port, XM_MODE, mode); | 
 | 	msk = XM_DEF_MSK; | 
 | 	if (hw->phy_type != SK_PHY_XMAC) | 
 | 		msk |= XM_IS_INP_ASS;	/* disable GP0 interrupt bit */ | 
 |  | 
 | 	xm_write16(hw, port, XM_IMSK, msk); | 
 | 	xm_read16(hw, port, XM_ISRC); | 
 |  | 
 | 	/* get MMU Command Reg. */ | 
 | 	cmd = xm_read16(hw, port, XM_MMU_CMD); | 
 | 	if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL) | 
 | 		cmd |= XM_MMU_GMII_FD; | 
 |  | 
 | 	/* | 
 | 	 * Workaround BCOM Errata (#10523) for all BCom Phys | 
 | 	 * Enable Power Management after link up | 
 | 	 */ | 
 | 	if (hw->phy_type == SK_PHY_BCOM) { | 
 | 		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, | 
 | 			     xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL) | 
 | 			     & ~PHY_B_AC_DIS_PM); | 
 | 		xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK); | 
 | 	} | 
 |  | 
 | 	/* enable Rx/Tx */ | 
 | 	xm_write16(hw, port, XM_MMU_CMD, | 
 | 			cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX); | 
 | 	skge_link_up(skge); | 
 | } | 
 |  | 
 |  | 
 | static inline void bcom_phy_intr(struct skge_port *skge) | 
 | { | 
 | 	struct skge_hw *hw = skge->hw; | 
 | 	int port = skge->port; | 
 | 	u16 isrc; | 
 |  | 
 | 	isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT); | 
 | 	if (netif_msg_intr(skge)) | 
 | 		printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n", | 
 | 		       skge->netdev->name, isrc); | 
 |  | 
 | 	if (isrc & PHY_B_IS_PSE) | 
 | 		printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n", | 
 | 		       hw->dev[port]->name); | 
 |  | 
 | 	/* Workaround BCom Errata: | 
 | 	 *	enable and disable loopback mode if "NO HCD" occurs. | 
 | 	 */ | 
 | 	if (isrc & PHY_B_IS_NO_HDCL) { | 
 | 		u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL); | 
 | 		xm_phy_write(hw, port, PHY_BCOM_CTRL, | 
 | 				  ctrl | PHY_CT_LOOP); | 
 | 		xm_phy_write(hw, port, PHY_BCOM_CTRL, | 
 | 				  ctrl & ~PHY_CT_LOOP); | 
 | 	} | 
 |  | 
 | 	if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE)) | 
 | 		bcom_check_link(hw, port); | 
 |  | 
 | } | 
 |  | 
 | static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	gma_write16(hw, port, GM_SMI_DATA, val); | 
 | 	gma_write16(hw, port, GM_SMI_CTRL, | 
 | 			 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg)); | 
 | 	for (i = 0; i < PHY_RETRIES; i++) { | 
 | 		udelay(1); | 
 |  | 
 | 		if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY)) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	printk(KERN_WARNING PFX "%s: phy write timeout\n", | 
 | 	       hw->dev[port]->name); | 
 | 	return -EIO; | 
 | } | 
 |  | 
 | static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	gma_write16(hw, port, GM_SMI_CTRL, | 
 | 			 GM_SMI_CT_PHY_AD(hw->phy_addr) | 
 | 			 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD); | 
 |  | 
 | 	for (i = 0; i < PHY_RETRIES; i++) { | 
 | 		udelay(1); | 
 | 		if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL) | 
 | 			goto ready; | 
 | 	} | 
 |  | 
 | 	return -ETIMEDOUT; | 
 |  ready: | 
 | 	*val = gma_read16(hw, port, GM_SMI_DATA); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg) | 
 | { | 
 | 	u16 v = 0; | 
 | 	if (__gm_phy_read(hw, port, reg, &v)) | 
 | 		printk(KERN_WARNING PFX "%s: phy read timeout\n", | 
 | 	       hw->dev[port]->name); | 
 | 	return v; | 
 | } | 
 |  | 
 | /* Marvell Phy Initialization */ | 
 | static void yukon_init(struct skge_hw *hw, int port) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(hw->dev[port]); | 
 | 	u16 ctrl, ct1000, adv; | 
 |  | 
 | 	if (skge->autoneg == AUTONEG_ENABLE) { | 
 | 		u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL); | 
 |  | 
 | 		ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK | | 
 | 			  PHY_M_EC_MAC_S_MSK); | 
 | 		ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ); | 
 |  | 
 | 		ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1); | 
 |  | 
 | 		gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl); | 
 | 	} | 
 |  | 
 | 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); | 
 | 	if (skge->autoneg == AUTONEG_DISABLE) | 
 | 		ctrl &= ~PHY_CT_ANE; | 
 |  | 
 | 	ctrl |= PHY_CT_RESET; | 
 | 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); | 
 |  | 
 | 	ctrl = 0; | 
 | 	ct1000 = 0; | 
 | 	adv = PHY_AN_CSMA; | 
 |  | 
 | 	if (skge->autoneg == AUTONEG_ENABLE) { | 
 | 		if (hw->copper) { | 
 | 			if (skge->advertising & ADVERTISED_1000baseT_Full) | 
 | 				ct1000 |= PHY_M_1000C_AFD; | 
 | 			if (skge->advertising & ADVERTISED_1000baseT_Half) | 
 | 				ct1000 |= PHY_M_1000C_AHD; | 
 | 			if (skge->advertising & ADVERTISED_100baseT_Full) | 
 | 				adv |= PHY_M_AN_100_FD; | 
 | 			if (skge->advertising & ADVERTISED_100baseT_Half) | 
 | 				adv |= PHY_M_AN_100_HD; | 
 | 			if (skge->advertising & ADVERTISED_10baseT_Full) | 
 | 				adv |= PHY_M_AN_10_FD; | 
 | 			if (skge->advertising & ADVERTISED_10baseT_Half) | 
 | 				adv |= PHY_M_AN_10_HD; | 
 |  | 
 | 			/* Set Flow-control capabilities */ | 
 | 			adv |= phy_pause_map[skge->flow_control]; | 
 | 		} else { | 
 | 			if (skge->advertising & ADVERTISED_1000baseT_Full) | 
 | 				adv |= PHY_M_AN_1000X_AFD; | 
 | 			if (skge->advertising & ADVERTISED_1000baseT_Half) | 
 | 				adv |= PHY_M_AN_1000X_AHD; | 
 |  | 
 | 			adv |= fiber_pause_map[skge->flow_control]; | 
 | 		} | 
 |  | 
 | 		/* Restart Auto-negotiation */ | 
 | 		ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG; | 
 | 	} else { | 
 | 		/* forced speed/duplex settings */ | 
 | 		ct1000 = PHY_M_1000C_MSE; | 
 |  | 
 | 		if (skge->duplex == DUPLEX_FULL) | 
 | 			ctrl |= PHY_CT_DUP_MD; | 
 |  | 
 | 		switch (skge->speed) { | 
 | 		case SPEED_1000: | 
 | 			ctrl |= PHY_CT_SP1000; | 
 | 			break; | 
 | 		case SPEED_100: | 
 | 			ctrl |= PHY_CT_SP100; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		ctrl |= PHY_CT_RESET; | 
 | 	} | 
 |  | 
 | 	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000); | 
 |  | 
 | 	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv); | 
 | 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); | 
 |  | 
 | 	/* Enable phy interrupt on autonegotiation complete (or link up) */ | 
 | 	if (skge->autoneg == AUTONEG_ENABLE) | 
 | 		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK); | 
 | 	else | 
 | 		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK); | 
 | } | 
 |  | 
 | static void yukon_reset(struct skge_hw *hw, int port) | 
 | { | 
 | 	gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */ | 
 | 	gma_write16(hw, port, GM_MC_ADDR_H1, 0);	/* clear MC hash */ | 
 | 	gma_write16(hw, port, GM_MC_ADDR_H2, 0); | 
 | 	gma_write16(hw, port, GM_MC_ADDR_H3, 0); | 
 | 	gma_write16(hw, port, GM_MC_ADDR_H4, 0); | 
 |  | 
 | 	gma_write16(hw, port, GM_RX_CTRL, | 
 | 			 gma_read16(hw, port, GM_RX_CTRL) | 
 | 			 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); | 
 | } | 
 |  | 
 | /* Apparently, early versions of Yukon-Lite had wrong chip_id? */ | 
 | static int is_yukon_lite_a0(struct skge_hw *hw) | 
 | { | 
 | 	u32 reg; | 
 | 	int ret; | 
 |  | 
 | 	if (hw->chip_id != CHIP_ID_YUKON) | 
 | 		return 0; | 
 |  | 
 | 	reg = skge_read32(hw, B2_FAR); | 
 | 	skge_write8(hw, B2_FAR + 3, 0xff); | 
 | 	ret = (skge_read8(hw, B2_FAR + 3) != 0); | 
 | 	skge_write32(hw, B2_FAR, reg); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void yukon_mac_init(struct skge_hw *hw, int port) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(hw->dev[port]); | 
 | 	int i; | 
 | 	u32 reg; | 
 | 	const u8 *addr = hw->dev[port]->dev_addr; | 
 |  | 
 | 	/* WA code for COMA mode -- set PHY reset */ | 
 | 	if (hw->chip_id == CHIP_ID_YUKON_LITE && | 
 | 	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) { | 
 | 		reg = skge_read32(hw, B2_GP_IO); | 
 | 		reg |= GP_DIR_9 | GP_IO_9; | 
 | 		skge_write32(hw, B2_GP_IO, reg); | 
 | 	} | 
 |  | 
 | 	/* hard reset */ | 
 | 	skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET); | 
 | 	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET); | 
 |  | 
 | 	/* WA code for COMA mode -- clear PHY reset */ | 
 | 	if (hw->chip_id == CHIP_ID_YUKON_LITE && | 
 | 	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) { | 
 | 		reg = skge_read32(hw, B2_GP_IO); | 
 | 		reg |= GP_DIR_9; | 
 | 		reg &= ~GP_IO_9; | 
 | 		skge_write32(hw, B2_GP_IO, reg); | 
 | 	} | 
 |  | 
 | 	/* Set hardware config mode */ | 
 | 	reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP | | 
 | 		GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE; | 
 | 	reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB; | 
 |  | 
 | 	/* Clear GMC reset */ | 
 | 	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET); | 
 | 	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR); | 
 | 	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR); | 
 |  | 
 | 	if (skge->autoneg == AUTONEG_DISABLE) { | 
 | 		reg = GM_GPCR_AU_ALL_DIS; | 
 | 		gma_write16(hw, port, GM_GP_CTRL, | 
 | 				 gma_read16(hw, port, GM_GP_CTRL) | reg); | 
 |  | 
 | 		switch (skge->speed) { | 
 | 		case SPEED_1000: | 
 | 			reg &= ~GM_GPCR_SPEED_100; | 
 | 			reg |= GM_GPCR_SPEED_1000; | 
 | 			break; | 
 | 		case SPEED_100: | 
 | 			reg &= ~GM_GPCR_SPEED_1000; | 
 | 			reg |= GM_GPCR_SPEED_100; | 
 | 			break; | 
 | 		case SPEED_10: | 
 | 			reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (skge->duplex == DUPLEX_FULL) | 
 | 			reg |= GM_GPCR_DUP_FULL; | 
 | 	} else | 
 | 		reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL; | 
 |  | 
 | 	switch (skge->flow_control) { | 
 | 	case FLOW_MODE_NONE: | 
 | 		skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); | 
 | 		reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS; | 
 | 		break; | 
 | 	case FLOW_MODE_LOC_SEND: | 
 | 		/* disable Rx flow-control */ | 
 | 		reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS; | 
 | 		break; | 
 | 	case FLOW_MODE_SYMMETRIC: | 
 | 	case FLOW_MODE_SYM_OR_REM: | 
 | 		/* enable Tx & Rx flow-control */ | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	gma_write16(hw, port, GM_GP_CTRL, reg); | 
 | 	skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC)); | 
 |  | 
 | 	yukon_init(hw, port); | 
 |  | 
 | 	/* MIB clear */ | 
 | 	reg = gma_read16(hw, port, GM_PHY_ADDR); | 
 | 	gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR); | 
 |  | 
 | 	for (i = 0; i < GM_MIB_CNT_SIZE; i++) | 
 | 		gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i); | 
 | 	gma_write16(hw, port, GM_PHY_ADDR, reg); | 
 |  | 
 | 	/* transmit control */ | 
 | 	gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF)); | 
 |  | 
 | 	/* receive control reg: unicast + multicast + no FCS  */ | 
 | 	gma_write16(hw, port, GM_RX_CTRL, | 
 | 			 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA); | 
 |  | 
 | 	/* transmit flow control */ | 
 | 	gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff); | 
 |  | 
 | 	/* transmit parameter */ | 
 | 	gma_write16(hw, port, GM_TX_PARAM, | 
 | 			 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | | 
 | 			 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) | | 
 | 			 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF)); | 
 |  | 
 | 	/* serial mode register */ | 
 | 	reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF); | 
 | 	if (hw->dev[port]->mtu > 1500) | 
 | 		reg |= GM_SMOD_JUMBO_ENA; | 
 |  | 
 | 	gma_write16(hw, port, GM_SERIAL_MODE, reg); | 
 |  | 
 | 	/* physical address: used for pause frames */ | 
 | 	gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr); | 
 | 	/* virtual address for data */ | 
 | 	gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr); | 
 |  | 
 | 	/* enable interrupt mask for counter overflows */ | 
 | 	gma_write16(hw, port, GM_TX_IRQ_MSK, 0); | 
 | 	gma_write16(hw, port, GM_RX_IRQ_MSK, 0); | 
 | 	gma_write16(hw, port, GM_TR_IRQ_MSK, 0); | 
 |  | 
 | 	/* Initialize Mac Fifo */ | 
 |  | 
 | 	/* Configure Rx MAC FIFO */ | 
 | 	skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK); | 
 | 	reg = GMF_OPER_ON | GMF_RX_F_FL_ON; | 
 |  | 
 | 	/* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */ | 
 | 	if (is_yukon_lite_a0(hw)) | 
 | 		reg &= ~GMF_RX_F_FL_ON; | 
 |  | 
 | 	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR); | 
 | 	skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg); | 
 | 	/* | 
 | 	 * because Pause Packet Truncation in GMAC is not working | 
 | 	 * we have to increase the Flush Threshold to 64 bytes | 
 | 	 * in order to flush pause packets in Rx FIFO on Yukon-1 | 
 | 	 */ | 
 | 	skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1); | 
 |  | 
 | 	/* Configure Tx MAC FIFO */ | 
 | 	skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR); | 
 | 	skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON); | 
 | } | 
 |  | 
 | /* Go into power down mode */ | 
 | static void yukon_suspend(struct skge_hw *hw, int port) | 
 | { | 
 | 	u16 ctrl; | 
 |  | 
 | 	ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL); | 
 | 	ctrl |= PHY_M_PC_POL_R_DIS; | 
 | 	gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl); | 
 |  | 
 | 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); | 
 | 	ctrl |= PHY_CT_RESET; | 
 | 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); | 
 |  | 
 | 	/* switch IEEE compatible power down mode on */ | 
 | 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); | 
 | 	ctrl |= PHY_CT_PDOWN; | 
 | 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); | 
 | } | 
 |  | 
 | static void yukon_stop(struct skge_port *skge) | 
 | { | 
 | 	struct skge_hw *hw = skge->hw; | 
 | 	int port = skge->port; | 
 |  | 
 | 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0); | 
 | 	yukon_reset(hw, port); | 
 |  | 
 | 	gma_write16(hw, port, GM_GP_CTRL, | 
 | 			 gma_read16(hw, port, GM_GP_CTRL) | 
 | 			 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA)); | 
 | 	gma_read16(hw, port, GM_GP_CTRL); | 
 |  | 
 | 	yukon_suspend(hw, port); | 
 |  | 
 | 	/* set GPHY Control reset */ | 
 | 	skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET); | 
 | 	skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET); | 
 | } | 
 |  | 
 | static void yukon_get_stats(struct skge_port *skge, u64 *data) | 
 | { | 
 | 	struct skge_hw *hw = skge->hw; | 
 | 	int port = skge->port; | 
 | 	int i; | 
 |  | 
 | 	data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32 | 
 | 		| gma_read32(hw, port, GM_TXO_OK_LO); | 
 | 	data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32 | 
 | 		| gma_read32(hw, port, GM_RXO_OK_LO); | 
 |  | 
 | 	for (i = 2; i < ARRAY_SIZE(skge_stats); i++) | 
 | 		data[i] = gma_read32(hw, port, | 
 | 					  skge_stats[i].gma_offset); | 
 | } | 
 |  | 
 | static void yukon_mac_intr(struct skge_hw *hw, int port) | 
 | { | 
 | 	struct net_device *dev = hw->dev[port]; | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 | 	u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC)); | 
 |  | 
 | 	if (netif_msg_intr(skge)) | 
 | 		printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n", | 
 | 		       dev->name, status); | 
 |  | 
 | 	if (status & GM_IS_RX_FF_OR) { | 
 | 		++skge->net_stats.rx_fifo_errors; | 
 | 		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO); | 
 | 	} | 
 |  | 
 | 	if (status & GM_IS_TX_FF_UR) { | 
 | 		++skge->net_stats.tx_fifo_errors; | 
 | 		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU); | 
 | 	} | 
 |  | 
 | } | 
 |  | 
 | static u16 yukon_speed(const struct skge_hw *hw, u16 aux) | 
 | { | 
 | 	switch (aux & PHY_M_PS_SPEED_MSK) { | 
 | 	case PHY_M_PS_SPEED_1000: | 
 | 		return SPEED_1000; | 
 | 	case PHY_M_PS_SPEED_100: | 
 | 		return SPEED_100; | 
 | 	default: | 
 | 		return SPEED_10; | 
 | 	} | 
 | } | 
 |  | 
 | static void yukon_link_up(struct skge_port *skge) | 
 | { | 
 | 	struct skge_hw *hw = skge->hw; | 
 | 	int port = skge->port; | 
 | 	u16 reg; | 
 |  | 
 | 	/* Enable Transmit FIFO Underrun */ | 
 | 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK); | 
 |  | 
 | 	reg = gma_read16(hw, port, GM_GP_CTRL); | 
 | 	if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE) | 
 | 		reg |= GM_GPCR_DUP_FULL; | 
 |  | 
 | 	/* enable Rx/Tx */ | 
 | 	reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA; | 
 | 	gma_write16(hw, port, GM_GP_CTRL, reg); | 
 |  | 
 | 	gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK); | 
 | 	skge_link_up(skge); | 
 | } | 
 |  | 
 | static void yukon_link_down(struct skge_port *skge) | 
 | { | 
 | 	struct skge_hw *hw = skge->hw; | 
 | 	int port = skge->port; | 
 | 	u16 ctrl; | 
 |  | 
 | 	ctrl = gma_read16(hw, port, GM_GP_CTRL); | 
 | 	ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA); | 
 | 	gma_write16(hw, port, GM_GP_CTRL, ctrl); | 
 |  | 
 | 	if (skge->flow_status == FLOW_STAT_REM_SEND) { | 
 | 		ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV); | 
 | 		ctrl |= PHY_M_AN_ASP; | 
 | 		/* restore Asymmetric Pause bit */ | 
 | 		gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl); | 
 | 	} | 
 |  | 
 | 	skge_link_down(skge); | 
 |  | 
 | 	yukon_init(hw, port); | 
 | } | 
 |  | 
 | static void yukon_phy_intr(struct skge_port *skge) | 
 | { | 
 | 	struct skge_hw *hw = skge->hw; | 
 | 	int port = skge->port; | 
 | 	const char *reason = NULL; | 
 | 	u16 istatus, phystat; | 
 |  | 
 | 	istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT); | 
 | 	phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT); | 
 |  | 
 | 	if (netif_msg_intr(skge)) | 
 | 		printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n", | 
 | 		       skge->netdev->name, istatus, phystat); | 
 |  | 
 | 	if (istatus & PHY_M_IS_AN_COMPL) { | 
 | 		if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP) | 
 | 		    & PHY_M_AN_RF) { | 
 | 			reason = "remote fault"; | 
 | 			goto failed; | 
 | 		} | 
 |  | 
 | 		if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) { | 
 | 			reason = "master/slave fault"; | 
 | 			goto failed; | 
 | 		} | 
 |  | 
 | 		if (!(phystat & PHY_M_PS_SPDUP_RES)) { | 
 | 			reason = "speed/duplex"; | 
 | 			goto failed; | 
 | 		} | 
 |  | 
 | 		skge->duplex = (phystat & PHY_M_PS_FULL_DUP) | 
 | 			? DUPLEX_FULL : DUPLEX_HALF; | 
 | 		skge->speed = yukon_speed(hw, phystat); | 
 |  | 
 | 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */ | 
 | 		switch (phystat & PHY_M_PS_PAUSE_MSK) { | 
 | 		case PHY_M_PS_PAUSE_MSK: | 
 | 			skge->flow_status = FLOW_STAT_SYMMETRIC; | 
 | 			break; | 
 | 		case PHY_M_PS_RX_P_EN: | 
 | 			skge->flow_status = FLOW_STAT_REM_SEND; | 
 | 			break; | 
 | 		case PHY_M_PS_TX_P_EN: | 
 | 			skge->flow_status = FLOW_STAT_LOC_SEND; | 
 | 			break; | 
 | 		default: | 
 | 			skge->flow_status = FLOW_STAT_NONE; | 
 | 		} | 
 |  | 
 | 		if (skge->flow_status == FLOW_STAT_NONE || | 
 | 		    (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF)) | 
 | 			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); | 
 | 		else | 
 | 			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON); | 
 | 		yukon_link_up(skge); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (istatus & PHY_M_IS_LSP_CHANGE) | 
 | 		skge->speed = yukon_speed(hw, phystat); | 
 |  | 
 | 	if (istatus & PHY_M_IS_DUP_CHANGE) | 
 | 		skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF; | 
 | 	if (istatus & PHY_M_IS_LST_CHANGE) { | 
 | 		if (phystat & PHY_M_PS_LINK_UP) | 
 | 			yukon_link_up(skge); | 
 | 		else | 
 | 			yukon_link_down(skge); | 
 | 	} | 
 | 	return; | 
 |  failed: | 
 | 	printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n", | 
 | 	       skge->netdev->name, reason); | 
 |  | 
 | 	/* XXX restart autonegotiation? */ | 
 | } | 
 |  | 
 | static void skge_phy_reset(struct skge_port *skge) | 
 | { | 
 | 	struct skge_hw *hw = skge->hw; | 
 | 	int port = skge->port; | 
 | 	struct net_device *dev = hw->dev[port]; | 
 |  | 
 | 	netif_stop_queue(skge->netdev); | 
 | 	netif_carrier_off(skge->netdev); | 
 |  | 
 | 	spin_lock_bh(&hw->phy_lock); | 
 | 	if (hw->chip_id == CHIP_ID_GENESIS) { | 
 | 		genesis_reset(hw, port); | 
 | 		genesis_mac_init(hw, port); | 
 | 	} else { | 
 | 		yukon_reset(hw, port); | 
 | 		yukon_init(hw, port); | 
 | 	} | 
 | 	spin_unlock_bh(&hw->phy_lock); | 
 |  | 
 | 	dev->set_multicast_list(dev); | 
 | } | 
 |  | 
 | /* Basic MII support */ | 
 | static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) | 
 | { | 
 | 	struct mii_ioctl_data *data = if_mii(ifr); | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 | 	struct skge_hw *hw = skge->hw; | 
 | 	int err = -EOPNOTSUPP; | 
 |  | 
 | 	if (!netif_running(dev)) | 
 | 		return -ENODEV;	/* Phy still in reset */ | 
 |  | 
 | 	switch(cmd) { | 
 | 	case SIOCGMIIPHY: | 
 | 		data->phy_id = hw->phy_addr; | 
 |  | 
 | 		/* fallthru */ | 
 | 	case SIOCGMIIREG: { | 
 | 		u16 val = 0; | 
 | 		spin_lock_bh(&hw->phy_lock); | 
 | 		if (hw->chip_id == CHIP_ID_GENESIS) | 
 | 			err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val); | 
 | 		else | 
 | 			err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val); | 
 | 		spin_unlock_bh(&hw->phy_lock); | 
 | 		data->val_out = val; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	case SIOCSMIIREG: | 
 | 		if (!capable(CAP_NET_ADMIN)) | 
 | 			return -EPERM; | 
 |  | 
 | 		spin_lock_bh(&hw->phy_lock); | 
 | 		if (hw->chip_id == CHIP_ID_GENESIS) | 
 | 			err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f, | 
 | 				   data->val_in); | 
 | 		else | 
 | 			err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f, | 
 | 				   data->val_in); | 
 | 		spin_unlock_bh(&hw->phy_lock); | 
 | 		break; | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len) | 
 | { | 
 | 	u32 end; | 
 |  | 
 | 	start /= 8; | 
 | 	len /= 8; | 
 | 	end = start + len - 1; | 
 |  | 
 | 	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR); | 
 | 	skge_write32(hw, RB_ADDR(q, RB_START), start); | 
 | 	skge_write32(hw, RB_ADDR(q, RB_WP), start); | 
 | 	skge_write32(hw, RB_ADDR(q, RB_RP), start); | 
 | 	skge_write32(hw, RB_ADDR(q, RB_END), end); | 
 |  | 
 | 	if (q == Q_R1 || q == Q_R2) { | 
 | 		/* Set thresholds on receive queue's */ | 
 | 		skge_write32(hw, RB_ADDR(q, RB_RX_UTPP), | 
 | 			     start + (2*len)/3); | 
 | 		skge_write32(hw, RB_ADDR(q, RB_RX_LTPP), | 
 | 			     start + (len/3)); | 
 | 	} else { | 
 | 		/* Enable store & forward on Tx queue's because | 
 | 		 * Tx FIFO is only 4K on Genesis and 1K on Yukon | 
 | 		 */ | 
 | 		skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD); | 
 | 	} | 
 |  | 
 | 	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD); | 
 | } | 
 |  | 
 | /* Setup Bus Memory Interface */ | 
 | static void skge_qset(struct skge_port *skge, u16 q, | 
 | 		      const struct skge_element *e) | 
 | { | 
 | 	struct skge_hw *hw = skge->hw; | 
 | 	u32 watermark = 0x600; | 
 | 	u64 base = skge->dma + (e->desc - skge->mem); | 
 |  | 
 | 	/* optimization to reduce window on 32bit/33mhz */ | 
 | 	if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0) | 
 | 		watermark /= 2; | 
 |  | 
 | 	skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET); | 
 | 	skge_write32(hw, Q_ADDR(q, Q_F), watermark); | 
 | 	skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32)); | 
 | 	skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base); | 
 | } | 
 |  | 
 | static int skge_up(struct net_device *dev) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 | 	struct skge_hw *hw = skge->hw; | 
 | 	int port = skge->port; | 
 | 	u32 chunk, ram_addr; | 
 | 	size_t rx_size, tx_size; | 
 | 	int err; | 
 |  | 
 | 	if (!is_valid_ether_addr(dev->dev_addr)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (netif_msg_ifup(skge)) | 
 | 		printk(KERN_INFO PFX "%s: enabling interface\n", dev->name); | 
 |  | 
 | 	if (dev->mtu > RX_BUF_SIZE) | 
 | 		skge->rx_buf_size = dev->mtu + ETH_HLEN; | 
 | 	else | 
 | 		skge->rx_buf_size = RX_BUF_SIZE; | 
 |  | 
 |  | 
 | 	rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc); | 
 | 	tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc); | 
 | 	skge->mem_size = tx_size + rx_size; | 
 | 	skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma); | 
 | 	if (!skge->mem) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	BUG_ON(skge->dma & 7); | 
 |  | 
 | 	if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) { | 
 | 		dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n"); | 
 | 		err = -EINVAL; | 
 | 		goto free_pci_mem; | 
 | 	} | 
 |  | 
 | 	memset(skge->mem, 0, skge->mem_size); | 
 |  | 
 | 	err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma); | 
 | 	if (err) | 
 | 		goto free_pci_mem; | 
 |  | 
 | 	err = skge_rx_fill(dev); | 
 | 	if (err) | 
 | 		goto free_rx_ring; | 
 |  | 
 | 	err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size, | 
 | 			      skge->dma + rx_size); | 
 | 	if (err) | 
 | 		goto free_rx_ring; | 
 |  | 
 | 	/* Initialize MAC */ | 
 | 	spin_lock_bh(&hw->phy_lock); | 
 | 	if (hw->chip_id == CHIP_ID_GENESIS) | 
 | 		genesis_mac_init(hw, port); | 
 | 	else | 
 | 		yukon_mac_init(hw, port); | 
 | 	spin_unlock_bh(&hw->phy_lock); | 
 |  | 
 | 	/* Configure RAMbuffers */ | 
 | 	chunk = hw->ram_size / ((hw->ports + 1)*2); | 
 | 	ram_addr = hw->ram_offset + 2 * chunk * port; | 
 |  | 
 | 	skge_ramset(hw, rxqaddr[port], ram_addr, chunk); | 
 | 	skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean); | 
 |  | 
 | 	BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean); | 
 | 	skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk); | 
 | 	skge_qset(skge, txqaddr[port], skge->tx_ring.to_use); | 
 |  | 
 | 	/* Start receiver BMU */ | 
 | 	wmb(); | 
 | 	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F); | 
 | 	skge_led(skge, LED_MODE_ON); | 
 |  | 
 | 	spin_lock_irq(&hw->hw_lock); | 
 | 	hw->intr_mask |= portmask[port]; | 
 | 	skge_write32(hw, B0_IMSK, hw->intr_mask); | 
 | 	spin_unlock_irq(&hw->hw_lock); | 
 |  | 
 | 	netif_poll_enable(dev); | 
 | 	return 0; | 
 |  | 
 |  free_rx_ring: | 
 | 	skge_rx_clean(skge); | 
 | 	kfree(skge->rx_ring.start); | 
 |  free_pci_mem: | 
 | 	pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma); | 
 | 	skge->mem = NULL; | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int skge_down(struct net_device *dev) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 | 	struct skge_hw *hw = skge->hw; | 
 | 	int port = skge->port; | 
 |  | 
 | 	if (skge->mem == NULL) | 
 | 		return 0; | 
 |  | 
 | 	if (netif_msg_ifdown(skge)) | 
 | 		printk(KERN_INFO PFX "%s: disabling interface\n", dev->name); | 
 |  | 
 | 	netif_stop_queue(dev); | 
 |  | 
 | 	if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC) | 
 | 		del_timer_sync(&skge->link_timer); | 
 |  | 
 | 	netif_poll_disable(dev); | 
 | 	netif_carrier_off(dev); | 
 |  | 
 | 	spin_lock_irq(&hw->hw_lock); | 
 | 	hw->intr_mask &= ~portmask[port]; | 
 | 	skge_write32(hw, B0_IMSK, hw->intr_mask); | 
 | 	spin_unlock_irq(&hw->hw_lock); | 
 |  | 
 | 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF); | 
 | 	if (hw->chip_id == CHIP_ID_GENESIS) | 
 | 		genesis_stop(skge); | 
 | 	else | 
 | 		yukon_stop(skge); | 
 |  | 
 | 	/* Stop transmitter */ | 
 | 	skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP); | 
 | 	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), | 
 | 		     RB_RST_SET|RB_DIS_OP_MD); | 
 |  | 
 |  | 
 | 	/* Disable Force Sync bit and Enable Alloc bit */ | 
 | 	skge_write8(hw, SK_REG(port, TXA_CTRL), | 
 | 		    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC); | 
 |  | 
 | 	/* Stop Interval Timer and Limit Counter of Tx Arbiter */ | 
 | 	skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L); | 
 | 	skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L); | 
 |  | 
 | 	/* Reset PCI FIFO */ | 
 | 	skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET); | 
 | 	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET); | 
 |  | 
 | 	/* Reset the RAM Buffer async Tx queue */ | 
 | 	skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET); | 
 | 	/* stop receiver */ | 
 | 	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP); | 
 | 	skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL), | 
 | 		     RB_RST_SET|RB_DIS_OP_MD); | 
 | 	skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET); | 
 |  | 
 | 	if (hw->chip_id == CHIP_ID_GENESIS) { | 
 | 		skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET); | 
 | 		skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET); | 
 | 	} else { | 
 | 		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET); | 
 | 		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET); | 
 | 	} | 
 |  | 
 | 	skge_led(skge, LED_MODE_OFF); | 
 |  | 
 | 	netif_tx_lock_bh(dev); | 
 | 	skge_tx_clean(dev); | 
 | 	netif_tx_unlock_bh(dev); | 
 |  | 
 | 	skge_rx_clean(skge); | 
 |  | 
 | 	kfree(skge->rx_ring.start); | 
 | 	kfree(skge->tx_ring.start); | 
 | 	pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma); | 
 | 	skge->mem = NULL; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int skge_avail(const struct skge_ring *ring) | 
 | { | 
 | 	smp_mb(); | 
 | 	return ((ring->to_clean > ring->to_use) ? 0 : ring->count) | 
 | 		+ (ring->to_clean - ring->to_use) - 1; | 
 | } | 
 |  | 
 | static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 | 	struct skge_hw *hw = skge->hw; | 
 | 	struct skge_element *e; | 
 | 	struct skge_tx_desc *td; | 
 | 	int i; | 
 | 	u32 control, len; | 
 | 	u64 map; | 
 |  | 
 | 	if (skb_padto(skb, ETH_ZLEN)) | 
 | 		return NETDEV_TX_OK; | 
 |  | 
 | 	if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1)) | 
 | 		return NETDEV_TX_BUSY; | 
 |  | 
 | 	e = skge->tx_ring.to_use; | 
 | 	td = e->desc; | 
 | 	BUG_ON(td->control & BMU_OWN); | 
 | 	e->skb = skb; | 
 | 	len = skb_headlen(skb); | 
 | 	map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE); | 
 | 	pci_unmap_addr_set(e, mapaddr, map); | 
 | 	pci_unmap_len_set(e, maplen, len); | 
 |  | 
 | 	td->dma_lo = map; | 
 | 	td->dma_hi = map >> 32; | 
 |  | 
 | 	if (skb->ip_summed == CHECKSUM_PARTIAL) { | 
 | 		const int offset = skb_transport_offset(skb); | 
 |  | 
 | 		/* This seems backwards, but it is what the sk98lin | 
 | 		 * does.  Looks like hardware is wrong? | 
 | 		 */ | 
 | 		if (ipip_hdr(skb)->protocol == IPPROTO_UDP | 
 | 	            && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON) | 
 | 			control = BMU_TCP_CHECK; | 
 | 		else | 
 | 			control = BMU_UDP_CHECK; | 
 |  | 
 | 		td->csum_offs = 0; | 
 | 		td->csum_start = offset; | 
 | 		td->csum_write = offset + skb->csum_offset; | 
 | 	} else | 
 | 		control = BMU_CHECK; | 
 |  | 
 | 	if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */ | 
 | 		control |= BMU_EOF| BMU_IRQ_EOF; | 
 | 	else { | 
 | 		struct skge_tx_desc *tf = td; | 
 |  | 
 | 		control |= BMU_STFWD; | 
 | 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { | 
 | 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | 
 |  | 
 | 			map = pci_map_page(hw->pdev, frag->page, frag->page_offset, | 
 | 					   frag->size, PCI_DMA_TODEVICE); | 
 |  | 
 | 			e = e->next; | 
 | 			e->skb = skb; | 
 | 			tf = e->desc; | 
 | 			BUG_ON(tf->control & BMU_OWN); | 
 |  | 
 | 			tf->dma_lo = map; | 
 | 			tf->dma_hi = (u64) map >> 32; | 
 | 			pci_unmap_addr_set(e, mapaddr, map); | 
 | 			pci_unmap_len_set(e, maplen, frag->size); | 
 |  | 
 | 			tf->control = BMU_OWN | BMU_SW | control | frag->size; | 
 | 		} | 
 | 		tf->control |= BMU_EOF | BMU_IRQ_EOF; | 
 | 	} | 
 | 	/* Make sure all the descriptors written */ | 
 | 	wmb(); | 
 | 	td->control = BMU_OWN | BMU_SW | BMU_STF | control | len; | 
 | 	wmb(); | 
 |  | 
 | 	skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START); | 
 |  | 
 | 	if (unlikely(netif_msg_tx_queued(skge))) | 
 | 		printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n", | 
 | 		       dev->name, e - skge->tx_ring.start, skb->len); | 
 |  | 
 | 	skge->tx_ring.to_use = e->next; | 
 | 	smp_wmb(); | 
 |  | 
 | 	if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) { | 
 | 		pr_debug("%s: transmit queue full\n", dev->name); | 
 | 		netif_stop_queue(dev); | 
 | 	} | 
 |  | 
 | 	dev->trans_start = jiffies; | 
 |  | 
 | 	return NETDEV_TX_OK; | 
 | } | 
 |  | 
 |  | 
 | /* Free resources associated with this reing element */ | 
 | static void skge_tx_free(struct skge_port *skge, struct skge_element *e, | 
 | 			 u32 control) | 
 | { | 
 | 	struct pci_dev *pdev = skge->hw->pdev; | 
 |  | 
 | 	/* skb header vs. fragment */ | 
 | 	if (control & BMU_STF) | 
 | 		pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr), | 
 | 				 pci_unmap_len(e, maplen), | 
 | 				 PCI_DMA_TODEVICE); | 
 | 	else | 
 | 		pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr), | 
 | 			       pci_unmap_len(e, maplen), | 
 | 			       PCI_DMA_TODEVICE); | 
 |  | 
 | 	if (control & BMU_EOF) { | 
 | 		if (unlikely(netif_msg_tx_done(skge))) | 
 | 			printk(KERN_DEBUG PFX "%s: tx done slot %td\n", | 
 | 			       skge->netdev->name, e - skge->tx_ring.start); | 
 |  | 
 | 		dev_kfree_skb(e->skb); | 
 | 	} | 
 | } | 
 |  | 
 | /* Free all buffers in transmit ring */ | 
 | static void skge_tx_clean(struct net_device *dev) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 | 	struct skge_element *e; | 
 |  | 
 | 	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) { | 
 | 		struct skge_tx_desc *td = e->desc; | 
 | 		skge_tx_free(skge, e, td->control); | 
 | 		td->control = 0; | 
 | 	} | 
 |  | 
 | 	skge->tx_ring.to_clean = e; | 
 | 	netif_wake_queue(dev); | 
 | } | 
 |  | 
 | static void skge_tx_timeout(struct net_device *dev) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 |  | 
 | 	if (netif_msg_timer(skge)) | 
 | 		printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name); | 
 |  | 
 | 	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP); | 
 | 	skge_tx_clean(dev); | 
 | } | 
 |  | 
 | static int skge_change_mtu(struct net_device *dev, int new_mtu) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!netif_running(dev)) { | 
 | 		dev->mtu = new_mtu; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	skge_down(dev); | 
 |  | 
 | 	dev->mtu = new_mtu; | 
 |  | 
 | 	err = skge_up(dev); | 
 | 	if (err) | 
 | 		dev_close(dev); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 }; | 
 |  | 
 | static void genesis_add_filter(u8 filter[8], const u8 *addr) | 
 | { | 
 | 	u32 crc, bit; | 
 |  | 
 | 	crc = ether_crc_le(ETH_ALEN, addr); | 
 | 	bit = ~crc & 0x3f; | 
 | 	filter[bit/8] |= 1 << (bit%8); | 
 | } | 
 |  | 
 | static void genesis_set_multicast(struct net_device *dev) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 | 	struct skge_hw *hw = skge->hw; | 
 | 	int port = skge->port; | 
 | 	int i, count = dev->mc_count; | 
 | 	struct dev_mc_list *list = dev->mc_list; | 
 | 	u32 mode; | 
 | 	u8 filter[8]; | 
 |  | 
 | 	mode = xm_read32(hw, port, XM_MODE); | 
 | 	mode |= XM_MD_ENA_HASH; | 
 | 	if (dev->flags & IFF_PROMISC) | 
 | 		mode |= XM_MD_ENA_PROM; | 
 | 	else | 
 | 		mode &= ~XM_MD_ENA_PROM; | 
 |  | 
 | 	if (dev->flags & IFF_ALLMULTI) | 
 | 		memset(filter, 0xff, sizeof(filter)); | 
 | 	else { | 
 | 		memset(filter, 0, sizeof(filter)); | 
 |  | 
 | 		if (skge->flow_status == FLOW_STAT_REM_SEND | 
 | 		    || skge->flow_status == FLOW_STAT_SYMMETRIC) | 
 | 			genesis_add_filter(filter, pause_mc_addr); | 
 |  | 
 | 		for (i = 0; list && i < count; i++, list = list->next) | 
 | 			genesis_add_filter(filter, list->dmi_addr); | 
 | 	} | 
 |  | 
 | 	xm_write32(hw, port, XM_MODE, mode); | 
 | 	xm_outhash(hw, port, XM_HSM, filter); | 
 | } | 
 |  | 
 | static void yukon_add_filter(u8 filter[8], const u8 *addr) | 
 | { | 
 | 	 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f; | 
 | 	 filter[bit/8] |= 1 << (bit%8); | 
 | } | 
 |  | 
 | static void yukon_set_multicast(struct net_device *dev) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 | 	struct skge_hw *hw = skge->hw; | 
 | 	int port = skge->port; | 
 | 	struct dev_mc_list *list = dev->mc_list; | 
 | 	int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND | 
 | 			|| skge->flow_status == FLOW_STAT_SYMMETRIC); | 
 | 	u16 reg; | 
 | 	u8 filter[8]; | 
 |  | 
 | 	memset(filter, 0, sizeof(filter)); | 
 |  | 
 | 	reg = gma_read16(hw, port, GM_RX_CTRL); | 
 | 	reg |= GM_RXCR_UCF_ENA; | 
 |  | 
 | 	if (dev->flags & IFF_PROMISC) 		/* promiscuous */ | 
 | 		reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); | 
 | 	else if (dev->flags & IFF_ALLMULTI)	/* all multicast */ | 
 | 		memset(filter, 0xff, sizeof(filter)); | 
 | 	else if (dev->mc_count == 0 && !rx_pause)/* no multicast */ | 
 | 		reg &= ~GM_RXCR_MCF_ENA; | 
 | 	else { | 
 | 		int i; | 
 | 		reg |= GM_RXCR_MCF_ENA; | 
 |  | 
 | 		if (rx_pause) | 
 | 			yukon_add_filter(filter, pause_mc_addr); | 
 |  | 
 | 		for (i = 0; list && i < dev->mc_count; i++, list = list->next) | 
 | 			yukon_add_filter(filter, list->dmi_addr); | 
 | 	} | 
 |  | 
 |  | 
 | 	gma_write16(hw, port, GM_MC_ADDR_H1, | 
 | 			 (u16)filter[0] | ((u16)filter[1] << 8)); | 
 | 	gma_write16(hw, port, GM_MC_ADDR_H2, | 
 | 			 (u16)filter[2] | ((u16)filter[3] << 8)); | 
 | 	gma_write16(hw, port, GM_MC_ADDR_H3, | 
 | 			 (u16)filter[4] | ((u16)filter[5] << 8)); | 
 | 	gma_write16(hw, port, GM_MC_ADDR_H4, | 
 | 			 (u16)filter[6] | ((u16)filter[7] << 8)); | 
 |  | 
 | 	gma_write16(hw, port, GM_RX_CTRL, reg); | 
 | } | 
 |  | 
 | static inline u16 phy_length(const struct skge_hw *hw, u32 status) | 
 | { | 
 | 	if (hw->chip_id == CHIP_ID_GENESIS) | 
 | 		return status >> XMR_FS_LEN_SHIFT; | 
 | 	else | 
 | 		return status >> GMR_FS_LEN_SHIFT; | 
 | } | 
 |  | 
 | static inline int bad_phy_status(const struct skge_hw *hw, u32 status) | 
 | { | 
 | 	if (hw->chip_id == CHIP_ID_GENESIS) | 
 | 		return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0; | 
 | 	else | 
 | 		return (status & GMR_FS_ANY_ERR) || | 
 | 			(status & GMR_FS_RX_OK) == 0; | 
 | } | 
 |  | 
 |  | 
 | /* Get receive buffer from descriptor. | 
 |  * Handles copy of small buffers and reallocation failures | 
 |  */ | 
 | static struct sk_buff *skge_rx_get(struct net_device *dev, | 
 | 				   struct skge_element *e, | 
 | 				   u32 control, u32 status, u16 csum) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 | 	struct sk_buff *skb; | 
 | 	u16 len = control & BMU_BBC; | 
 |  | 
 | 	if (unlikely(netif_msg_rx_status(skge))) | 
 | 		printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n", | 
 | 		       dev->name, e - skge->rx_ring.start, | 
 | 		       status, len); | 
 |  | 
 | 	if (len > skge->rx_buf_size) | 
 | 		goto error; | 
 |  | 
 | 	if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF)) | 
 | 		goto error; | 
 |  | 
 | 	if (bad_phy_status(skge->hw, status)) | 
 | 		goto error; | 
 |  | 
 | 	if (phy_length(skge->hw, status) != len) | 
 | 		goto error; | 
 |  | 
 | 	if (len < RX_COPY_THRESHOLD) { | 
 | 		skb = netdev_alloc_skb(dev, len + 2); | 
 | 		if (!skb) | 
 | 			goto resubmit; | 
 |  | 
 | 		skb_reserve(skb, 2); | 
 | 		pci_dma_sync_single_for_cpu(skge->hw->pdev, | 
 | 					    pci_unmap_addr(e, mapaddr), | 
 | 					    len, PCI_DMA_FROMDEVICE); | 
 | 		skb_copy_from_linear_data(e->skb, skb->data, len); | 
 | 		pci_dma_sync_single_for_device(skge->hw->pdev, | 
 | 					       pci_unmap_addr(e, mapaddr), | 
 | 					       len, PCI_DMA_FROMDEVICE); | 
 | 		skge_rx_reuse(e, skge->rx_buf_size); | 
 | 	} else { | 
 | 		struct sk_buff *nskb; | 
 | 		nskb = netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN); | 
 | 		if (!nskb) | 
 | 			goto resubmit; | 
 |  | 
 | 		skb_reserve(nskb, NET_IP_ALIGN); | 
 | 		pci_unmap_single(skge->hw->pdev, | 
 | 				 pci_unmap_addr(e, mapaddr), | 
 | 				 pci_unmap_len(e, maplen), | 
 | 				 PCI_DMA_FROMDEVICE); | 
 | 		skb = e->skb; | 
 |   		prefetch(skb->data); | 
 | 		skge_rx_setup(skge, e, nskb, skge->rx_buf_size); | 
 | 	} | 
 |  | 
 | 	skb_put(skb, len); | 
 | 	if (skge->rx_csum) { | 
 | 		skb->csum = csum; | 
 | 		skb->ip_summed = CHECKSUM_COMPLETE; | 
 | 	} | 
 |  | 
 | 	skb->protocol = eth_type_trans(skb, dev); | 
 |  | 
 | 	return skb; | 
 | error: | 
 |  | 
 | 	if (netif_msg_rx_err(skge)) | 
 | 		printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n", | 
 | 		       dev->name, e - skge->rx_ring.start, | 
 | 		       control, status); | 
 |  | 
 | 	if (skge->hw->chip_id == CHIP_ID_GENESIS) { | 
 | 		if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR)) | 
 | 			skge->net_stats.rx_length_errors++; | 
 | 		if (status & XMR_FS_FRA_ERR) | 
 | 			skge->net_stats.rx_frame_errors++; | 
 | 		if (status & XMR_FS_FCS_ERR) | 
 | 			skge->net_stats.rx_crc_errors++; | 
 | 	} else { | 
 | 		if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE)) | 
 | 			skge->net_stats.rx_length_errors++; | 
 | 		if (status & GMR_FS_FRAGMENT) | 
 | 			skge->net_stats.rx_frame_errors++; | 
 | 		if (status & GMR_FS_CRC_ERR) | 
 | 			skge->net_stats.rx_crc_errors++; | 
 | 	} | 
 |  | 
 | resubmit: | 
 | 	skge_rx_reuse(e, skge->rx_buf_size); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* Free all buffers in Tx ring which are no longer owned by device */ | 
 | static void skge_tx_done(struct net_device *dev) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 | 	struct skge_ring *ring = &skge->tx_ring; | 
 | 	struct skge_element *e; | 
 |  | 
 | 	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F); | 
 |  | 
 | 	for (e = ring->to_clean; e != ring->to_use; e = e->next) { | 
 | 		u32 control = ((const struct skge_tx_desc *) e->desc)->control; | 
 |  | 
 | 		if (control & BMU_OWN) | 
 | 			break; | 
 |  | 
 | 		skge_tx_free(skge, e, control); | 
 | 	} | 
 | 	skge->tx_ring.to_clean = e; | 
 |  | 
 | 	/* Can run lockless until we need to synchronize to restart queue. */ | 
 | 	smp_mb(); | 
 |  | 
 | 	if (unlikely(netif_queue_stopped(dev) && | 
 | 		     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) { | 
 | 		netif_tx_lock(dev); | 
 | 		if (unlikely(netif_queue_stopped(dev) && | 
 | 			     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) { | 
 | 			netif_wake_queue(dev); | 
 |  | 
 | 		} | 
 | 		netif_tx_unlock(dev); | 
 | 	} | 
 | } | 
 |  | 
 | static int skge_poll(struct net_device *dev, int *budget) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 | 	struct skge_hw *hw = skge->hw; | 
 | 	struct skge_ring *ring = &skge->rx_ring; | 
 | 	struct skge_element *e; | 
 | 	unsigned long flags; | 
 | 	int to_do = min(dev->quota, *budget); | 
 | 	int work_done = 0; | 
 |  | 
 | 	skge_tx_done(dev); | 
 |  | 
 | 	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F); | 
 |  | 
 | 	for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) { | 
 | 		struct skge_rx_desc *rd = e->desc; | 
 | 		struct sk_buff *skb; | 
 | 		u32 control; | 
 |  | 
 | 		rmb(); | 
 | 		control = rd->control; | 
 | 		if (control & BMU_OWN) | 
 | 			break; | 
 |  | 
 | 		skb = skge_rx_get(dev, e, control, rd->status, rd->csum2); | 
 | 		if (likely(skb)) { | 
 | 			dev->last_rx = jiffies; | 
 | 			netif_receive_skb(skb); | 
 |  | 
 | 			++work_done; | 
 | 		} | 
 | 	} | 
 | 	ring->to_clean = e; | 
 |  | 
 | 	/* restart receiver */ | 
 | 	wmb(); | 
 | 	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START); | 
 |  | 
 | 	*budget -= work_done; | 
 | 	dev->quota -= work_done; | 
 |  | 
 | 	if (work_done >=  to_do) | 
 | 		return 1; /* not done */ | 
 |  | 
 | 	spin_lock_irqsave(&hw->hw_lock, flags); | 
 | 	__netif_rx_complete(dev); | 
 | 	hw->intr_mask |= napimask[skge->port]; | 
 |   	skge_write32(hw, B0_IMSK, hw->intr_mask); | 
 | 	skge_read32(hw, B0_IMSK); | 
 | 	spin_unlock_irqrestore(&hw->hw_lock, flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Parity errors seem to happen when Genesis is connected to a switch | 
 |  * with no other ports present. Heartbeat error?? | 
 |  */ | 
 | static void skge_mac_parity(struct skge_hw *hw, int port) | 
 | { | 
 | 	struct net_device *dev = hw->dev[port]; | 
 |  | 
 | 	if (dev) { | 
 | 		struct skge_port *skge = netdev_priv(dev); | 
 | 		++skge->net_stats.tx_heartbeat_errors; | 
 | 	} | 
 |  | 
 | 	if (hw->chip_id == CHIP_ID_GENESIS) | 
 | 		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), | 
 | 			     MFF_CLR_PERR); | 
 | 	else | 
 | 		/* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */ | 
 | 		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), | 
 | 			    (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0) | 
 | 			    ? GMF_CLI_TX_FC : GMF_CLI_TX_PE); | 
 | } | 
 |  | 
 | static void skge_mac_intr(struct skge_hw *hw, int port) | 
 | { | 
 | 	if (hw->chip_id == CHIP_ID_GENESIS) | 
 | 		genesis_mac_intr(hw, port); | 
 | 	else | 
 | 		yukon_mac_intr(hw, port); | 
 | } | 
 |  | 
 | /* Handle device specific framing and timeout interrupts */ | 
 | static void skge_error_irq(struct skge_hw *hw) | 
 | { | 
 | 	struct pci_dev *pdev = hw->pdev; | 
 | 	u32 hwstatus = skge_read32(hw, B0_HWE_ISRC); | 
 |  | 
 | 	if (hw->chip_id == CHIP_ID_GENESIS) { | 
 | 		/* clear xmac errors */ | 
 | 		if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1)) | 
 | 			skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT); | 
 | 		if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2)) | 
 | 			skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT); | 
 | 	} else { | 
 | 		/* Timestamp (unused) overflow */ | 
 | 		if (hwstatus & IS_IRQ_TIST_OV) | 
 | 			skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ); | 
 | 	} | 
 |  | 
 | 	if (hwstatus & IS_RAM_RD_PAR) { | 
 | 		dev_err(&pdev->dev, "Ram read data parity error\n"); | 
 | 		skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR); | 
 | 	} | 
 |  | 
 | 	if (hwstatus & IS_RAM_WR_PAR) { | 
 | 		dev_err(&pdev->dev, "Ram write data parity error\n"); | 
 | 		skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR); | 
 | 	} | 
 |  | 
 | 	if (hwstatus & IS_M1_PAR_ERR) | 
 | 		skge_mac_parity(hw, 0); | 
 |  | 
 | 	if (hwstatus & IS_M2_PAR_ERR) | 
 | 		skge_mac_parity(hw, 1); | 
 |  | 
 | 	if (hwstatus & IS_R1_PAR_ERR) { | 
 | 		dev_err(&pdev->dev, "%s: receive queue parity error\n", | 
 | 			hw->dev[0]->name); | 
 | 		skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P); | 
 | 	} | 
 |  | 
 | 	if (hwstatus & IS_R2_PAR_ERR) { | 
 | 		dev_err(&pdev->dev, "%s: receive queue parity error\n", | 
 | 			hw->dev[1]->name); | 
 | 		skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P); | 
 | 	} | 
 |  | 
 | 	if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) { | 
 | 		u16 pci_status, pci_cmd; | 
 |  | 
 | 		pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); | 
 | 		pci_read_config_word(pdev, PCI_STATUS, &pci_status); | 
 |  | 
 | 		dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n", | 
 | 			pci_cmd, pci_status); | 
 |  | 
 | 		/* Write the error bits back to clear them. */ | 
 | 		pci_status &= PCI_STATUS_ERROR_BITS; | 
 | 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); | 
 | 		pci_write_config_word(pdev, PCI_COMMAND, | 
 | 				      pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY); | 
 | 		pci_write_config_word(pdev, PCI_STATUS, pci_status); | 
 | 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); | 
 |  | 
 | 		/* if error still set then just ignore it */ | 
 | 		hwstatus = skge_read32(hw, B0_HWE_ISRC); | 
 | 		if (hwstatus & IS_IRQ_STAT) { | 
 | 			dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n"); | 
 | 			hw->intr_mask &= ~IS_HW_ERR; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Interrupt from PHY are handled in tasklet (softirq) | 
 |  * because accessing phy registers requires spin wait which might | 
 |  * cause excess interrupt latency. | 
 |  */ | 
 | static void skge_extirq(unsigned long arg) | 
 | { | 
 | 	struct skge_hw *hw = (struct skge_hw *) arg; | 
 | 	int port; | 
 |  | 
 | 	for (port = 0; port < hw->ports; port++) { | 
 | 		struct net_device *dev = hw->dev[port]; | 
 |  | 
 | 		if (netif_running(dev)) { | 
 | 			struct skge_port *skge = netdev_priv(dev); | 
 |  | 
 | 			spin_lock(&hw->phy_lock); | 
 | 			if (hw->chip_id != CHIP_ID_GENESIS) | 
 | 				yukon_phy_intr(skge); | 
 | 			else if (hw->phy_type == SK_PHY_BCOM) | 
 | 				bcom_phy_intr(skge); | 
 | 			spin_unlock(&hw->phy_lock); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_lock_irq(&hw->hw_lock); | 
 | 	hw->intr_mask |= IS_EXT_REG; | 
 | 	skge_write32(hw, B0_IMSK, hw->intr_mask); | 
 | 	skge_read32(hw, B0_IMSK); | 
 | 	spin_unlock_irq(&hw->hw_lock); | 
 | } | 
 |  | 
 | static irqreturn_t skge_intr(int irq, void *dev_id) | 
 | { | 
 | 	struct skge_hw *hw = dev_id; | 
 | 	u32 status; | 
 | 	int handled = 0; | 
 |  | 
 | 	spin_lock(&hw->hw_lock); | 
 | 	/* Reading this register masks IRQ */ | 
 | 	status = skge_read32(hw, B0_SP_ISRC); | 
 | 	if (status == 0 || status == ~0) | 
 | 		goto out; | 
 |  | 
 | 	handled = 1; | 
 | 	status &= hw->intr_mask; | 
 | 	if (status & IS_EXT_REG) { | 
 | 		hw->intr_mask &= ~IS_EXT_REG; | 
 | 		tasklet_schedule(&hw->phy_task); | 
 | 	} | 
 |  | 
 | 	if (status & (IS_XA1_F|IS_R1_F)) { | 
 | 		hw->intr_mask &= ~(IS_XA1_F|IS_R1_F); | 
 | 		netif_rx_schedule(hw->dev[0]); | 
 | 	} | 
 |  | 
 | 	if (status & IS_PA_TO_TX1) | 
 | 		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1); | 
 |  | 
 | 	if (status & IS_PA_TO_RX1) { | 
 | 		struct skge_port *skge = netdev_priv(hw->dev[0]); | 
 |  | 
 | 		++skge->net_stats.rx_over_errors; | 
 | 		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1); | 
 | 	} | 
 |  | 
 |  | 
 | 	if (status & IS_MAC1) | 
 | 		skge_mac_intr(hw, 0); | 
 |  | 
 | 	if (hw->dev[1]) { | 
 | 		if (status & (IS_XA2_F|IS_R2_F)) { | 
 | 			hw->intr_mask &= ~(IS_XA2_F|IS_R2_F); | 
 | 			netif_rx_schedule(hw->dev[1]); | 
 | 		} | 
 |  | 
 | 		if (status & IS_PA_TO_RX2) { | 
 | 			struct skge_port *skge = netdev_priv(hw->dev[1]); | 
 | 			++skge->net_stats.rx_over_errors; | 
 | 			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2); | 
 | 		} | 
 |  | 
 | 		if (status & IS_PA_TO_TX2) | 
 | 			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2); | 
 |  | 
 | 		if (status & IS_MAC2) | 
 | 			skge_mac_intr(hw, 1); | 
 | 	} | 
 |  | 
 | 	if (status & IS_HW_ERR) | 
 | 		skge_error_irq(hw); | 
 |  | 
 | 	skge_write32(hw, B0_IMSK, hw->intr_mask); | 
 | 	skge_read32(hw, B0_IMSK); | 
 | out: | 
 | 	spin_unlock(&hw->hw_lock); | 
 |  | 
 | 	return IRQ_RETVAL(handled); | 
 | } | 
 |  | 
 | #ifdef CONFIG_NET_POLL_CONTROLLER | 
 | static void skge_netpoll(struct net_device *dev) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 |  | 
 | 	disable_irq(dev->irq); | 
 | 	skge_intr(dev->irq, skge->hw); | 
 | 	enable_irq(dev->irq); | 
 | } | 
 | #endif | 
 |  | 
 | static int skge_set_mac_address(struct net_device *dev, void *p) | 
 | { | 
 | 	struct skge_port *skge = netdev_priv(dev); | 
 | 	struct skge_hw *hw = skge->hw; | 
 | 	unsigned port = skge->port; | 
 | 	const struct sockaddr *addr = p; | 
 | 	u16 ctrl; | 
 |  | 
 | 	if (!is_valid_ether_addr(addr->sa_data)) | 
 | 		return -EADDRNOTAVAIL; | 
 |  | 
 | 	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); | 
 |  | 
 | 	if (!netif_running(dev)) { | 
 | 		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN); | 
 | 		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN); | 
 | 	} else { | 
 | 		/* disable Rx */ | 
 | 		spin_lock_bh(&hw->phy_lock); | 
 | 		ctrl = gma_read16(hw, port, GM_GP_CTRL); | 
 | 		gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA); | 
 |  | 
 | 		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN); | 
 | 		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN); | 
 |  | 
 | 		if (hw->chip_id == CHIP_ID_GENESIS) | 
 | 			xm_outaddr(hw, port, XM_SA, dev->dev_addr); | 
 | 		else { | 
 | 			gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr); | 
 | 			gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr); | 
 | 		} | 
 |  | 
 | 		gma_write16(hw, port, GM_GP_CTRL, ctrl); | 
 | 		spin_unlock_bh(&hw->phy_lock); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct { | 
 | 	u8 id; | 
 | 	const char *name; | 
 | } skge_chips[] = { | 
 | 	{ CHIP_ID_GENESIS,	"Genesis" }, | 
 | 	{ CHIP_ID_YUKON,	 "Yukon" }, | 
 | 	{ CHIP_ID_YUKON_LITE,	 "Yukon-Lite"}, | 
 | 	{ CHIP_ID_YUKON_LP,	 "Yukon-LP"}, | 
 | }; | 
 |  | 
 | static const char *skge_board_name(const struct skge_hw *hw) | 
 | { | 
 | 	int i; | 
 | 	static char buf[16]; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(skge_chips); i++) | 
 | 		if (skge_chips[i].id == hw->chip_id) | 
 | 			return skge_chips[i].name; | 
 |  | 
 | 	snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id); | 
 | 	return buf; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Setup the board data structure, but don't bring up | 
 |  * the port(s) | 
 |  */ | 
 | static int skge_reset(struct skge_hw *hw) | 
 | { | 
 | 	u32 reg; | 
 | 	u16 ctst, pci_status; | 
 | 	u8 t8, mac_cfg, pmd_type; | 
 | 	int i; | 
 |  | 
 | 	ctst = skge_read16(hw, B0_CTST); | 
 |  | 
 | 	/* do a SW reset */ | 
 | 	skge_write8(hw, B0_CTST, CS_RST_SET); | 
 | 	skge_write8(hw, B0_CTST, CS_RST_CLR); | 
 |  | 
 | 	/* clear PCI errors, if any */ | 
 | 	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); | 
 | 	skge_write8(hw, B2_TST_CTRL2, 0); | 
 |  | 
 | 	pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status); | 
 | 	pci_write_config_word(hw->pdev, PCI_STATUS, | 
 | 			      pci_status | PCI_STATUS_ERROR_BITS); | 
 | 	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); | 
 | 	skge_write8(hw, B0_CTST, CS_MRST_CLR); | 
 |  | 
 | 	/* restore CLK_RUN bits (for Yukon-Lite) */ | 
 | 	skge_write16(hw, B0_CTST, | 
 | 		     ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA)); | 
 |  | 
 | 	hw->chip_id = skge_read8(hw, B2_CHIP_ID); | 
 | 	hw->phy_type = skge_read8(hw, B2_E_1) & 0xf; | 
 | 	pmd_type = skge_read8(hw, B2_PMD_TYP); | 
 | 	hw->copper = (pmd_type == 'T' || pmd_type == '1'); | 
 |  | 
 | 	switch (hw->chip_id) { | 
 | 	case CHIP_ID_GENESIS: | 
 | 		switch (hw->phy_type) { | 
 | 		case SK_PHY_XMAC: | 
 | 			hw->phy_addr = PHY_ADDR_XMAC; | 
 | 			break; | 
 | 		case SK_PHY_BCOM: | 
 | 			hw->phy_addr = PHY_ADDR_BCOM; | 
 | 			break; | 
 | 		default: | 
 | 			dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n", | 
 | 			       hw->phy_type); | 
 | 			return -EOPNOTSUPP; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case CHIP_ID_YUKON: | 
 | 	case CHIP_ID_YUKON_LITE: | 
 | 	case CHIP_ID_YUKON_LP: | 
 | 		if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S') | 
 | 			hw->copper = 1; | 
 |  | 
 | 		hw->phy_addr = PHY_ADDR_MARV; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n", | 
 | 		       hw->chip_id); | 
 | 		return -EOPNOTSUPP; | 
 | 	} | 
 |  | 
 | 	mac_cfg = skge_read8(hw, B2_MAC_CFG); | 
 | 	hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2; | 
 | 	hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4; | 
 |  | 
 | 	/* read the adapters RAM size */ | 
 | 	t8 = skge_read8(hw, B2_E_0); | 
 | 	if (hw->chip_id == CHIP_ID_GENESIS) { | 
 | 		if (t8 == 3) { | 
 | 			/* special case: 4 x 64k x 36, offset = 0x80000 */ | 
 | 			hw->ram_size = 0x100000; | 
 | 			hw->ram_offset = 0x80000; | 
 | 		} else | 
 | 			hw->ram_size = t8 * 512; | 
 | 	} | 
 | 	else if (t8 == 0) | 
 | 		hw->ram_size = 0x20000; | 
 | 	else | 
 | 		hw->ram_size = t8 * 4096; | 
 |  | 
 | 	hw->intr_mask = IS_HW_ERR; | 
 |  | 
 | 	/* Use PHY IRQ for all but fiber based Genesis board */ | 
 | 	if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)) | 
 | 		hw->intr_mask |= IS_EXT_REG; | 
 |  | 
 | 	if (hw->chip_id == CHIP_ID_GENESIS) | 
 | 		genesis_init(hw); | 
 | 	else { | 
 | 		/* switch power to VCC (WA for VAUX problem) */ | 
 | 		skge_write8(hw, B0_POWER_CTRL, | 
 | 			    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON); | 
 |  | 
 | 		/* avoid boards with stuck Hardware error bits */ | 
 | 		if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) && | 
 | 		    (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) { | 
 | 			dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n"); | 
 | 			hw->intr_mask &= ~IS_HW_ERR; | 
 | 		} | 
 |  | 
 | 		/* Clear PHY COMA */ | 
 | 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); | 
 | 		pci_read_config_dword(hw->pdev, PCI_DEV_REG1, ®); | 
 | 		reg &= ~PCI_PHY_COMA; | 
 | 		pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg); | 
 | 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); | 
 |  | 
 |  | 
 | 		for (i = 0; i < hw->ports; i++) { | 
 | 			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET); | 
 | 			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* turn off hardware timer (unused) */ | 
 | 	skge_write8(hw, B2_TI_CTRL, TIM_STOP); | 
 | 	skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ); | 
 | 	skge_write8(hw, B0_LED, LED_STAT_ON); | 
 |  | 
 | 	/* enable the Tx Arbiters */ | 
 | 	for (i = 0; i < hw->ports; i++) | 
 | 		skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB); | 
 |  | 
 | 	/* Initialize ram interface */ | 
 | 	skge_write16(hw, B3_RI_CTRL, RI_RST_CLR); | 
 |  | 
 | 	skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53); | 
 | 	skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53); | 
 | 	skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53); | 
 | 	skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53); | 
 | 	skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53); | 
 | 	skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53); | 
 | 	skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53); | 
 | 	skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53); | 
 | 	skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53); | 
 | 	skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53); | 
 | 	skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53); | 
 | 	skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53); | 
 |  | 
 | 	skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK); | 
 |  | 
 | 	/* Set interrupt moderation for Transmit only | 
 | 	 * Receive interrupts avoided by NAPI | 
 | 	 */ | 
 | 	skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F); | 
 | 	skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100)); | 
 | 	skge_write32(hw, B2_IRQM_CTRL, TIM_START); | 
 |  | 
 | 	skge_write32(hw, B0_IMSK, hw->intr_mask); | 
 |  | 
 | 	for (i = 0; i < hw->ports; i++) { | 
 | 		if (hw->chip_id == CHIP_ID_GENESIS) | 
 | 			genesis_reset(hw, i); | 
 | 		else | 
 | 			yukon_reset(hw, i); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Initialize network device */ | 
 | static struct net_device *skge_devinit(struct skge_hw *hw, int port, | 
 | 				       int highmem) | 
 | { | 
 | 	struct skge_port *skge; | 
 | 	struct net_device *dev = alloc_etherdev(sizeof(*skge)); | 
 |  | 
 | 	if (!dev) { | 
 | 		dev_err(&hw->pdev->dev, "etherdev alloc failed\n"); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	SET_MODULE_OWNER(dev); | 
 | 	SET_NETDEV_DEV(dev, &hw->pdev->dev); | 
 | 	dev->open = skge_up; | 
 | 	dev->stop = skge_down; | 
 | 	dev->do_ioctl = skge_ioctl; | 
 | 	dev->hard_start_xmit = skge_xmit_frame; | 
 | 	dev->get_stats = skge_get_stats; | 
 | 	if (hw->chip_id == CHIP_ID_GENESIS) | 
 | 		dev->set_multicast_list = genesis_set_multicast; | 
 | 	else | 
 | 		dev->set_multicast_list = yukon_set_multicast; | 
 |  | 
 | 	dev->set_mac_address = skge_set_mac_address; | 
 | 	dev->change_mtu = skge_change_mtu; | 
 | 	SET_ETHTOOL_OPS(dev, &skge_ethtool_ops); | 
 | 	dev->tx_timeout = skge_tx_timeout; | 
 | 	dev->watchdog_timeo = TX_WATCHDOG; | 
 | 	dev->poll = skge_poll; | 
 | 	dev->weight = NAPI_WEIGHT; | 
 | #ifdef CONFIG_NET_POLL_CONTROLLER | 
 | 	dev->poll_controller = skge_netpoll; | 
 | #endif | 
 | 	dev->irq = hw->pdev->irq; | 
 |  | 
 | 	if (highmem) | 
 | 		dev->features |= NETIF_F_HIGHDMA; | 
 |  | 
 | 	skge = netdev_priv(dev); | 
 | 	skge->netdev = dev; | 
 | 	skge->hw = hw; | 
 | 	skge->msg_enable = netif_msg_init(debug, default_msg); | 
 |  | 
 | 	skge->tx_ring.count = DEFAULT_TX_RING_SIZE; | 
 | 	skge->rx_ring.count = DEFAULT_RX_RING_SIZE; | 
 |  | 
 | 	/* Auto speed and flow control */ | 
 | 	skge->autoneg = AUTONEG_ENABLE; | 
 | 	skge->flow_control = FLOW_MODE_SYM_OR_REM; | 
 | 	skge->duplex = -1; | 
 | 	skge->speed = -1; | 
 | 	skge->advertising = skge_supported_modes(hw); | 
 | 	skge->wol = pci_wake_enabled(hw->pdev) ? wol_supported(hw) : 0; | 
 |  | 
 | 	hw->dev[port] = dev; | 
 |  | 
 | 	skge->port = port; | 
 |  | 
 | 	/* Only used for Genesis XMAC */ | 
 | 	setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge); | 
 |  | 
 | 	if (hw->chip_id != CHIP_ID_GENESIS) { | 
 | 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG; | 
 | 		skge->rx_csum = 1; | 
 | 	} | 
 |  | 
 | 	/* read the mac address */ | 
 | 	memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN); | 
 | 	memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); | 
 |  | 
 | 	/* device is off until link detection */ | 
 | 	netif_carrier_off(dev); | 
 | 	netif_stop_queue(dev); | 
 |  | 
 | 	return dev; | 
 | } | 
 |  | 
 | static void __devinit skge_show_addr(struct net_device *dev) | 
 | { | 
 | 	const struct skge_port *skge = netdev_priv(dev); | 
 |  | 
 | 	if (netif_msg_probe(skge)) | 
 | 		printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n", | 
 | 		       dev->name, | 
 | 		       dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2], | 
 | 		       dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]); | 
 | } | 
 |  | 
 | static int __devinit skge_probe(struct pci_dev *pdev, | 
 | 				const struct pci_device_id *ent) | 
 | { | 
 | 	struct net_device *dev, *dev1; | 
 | 	struct skge_hw *hw; | 
 | 	int err, using_dac = 0; | 
 |  | 
 | 	err = pci_enable_device(pdev); | 
 | 	if (err) { | 
 | 		dev_err(&pdev->dev, "cannot enable PCI device\n"); | 
 | 		goto err_out; | 
 | 	} | 
 |  | 
 | 	err = pci_request_regions(pdev, DRV_NAME); | 
 | 	if (err) { | 
 | 		dev_err(&pdev->dev, "cannot obtain PCI resources\n"); | 
 | 		goto err_out_disable_pdev; | 
 | 	} | 
 |  | 
 | 	pci_set_master(pdev); | 
 |  | 
 | 	if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) { | 
 | 		using_dac = 1; | 
 | 		err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK); | 
 | 	} else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) { | 
 | 		using_dac = 0; | 
 | 		err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK); | 
 | 	} | 
 |  | 
 | 	if (err) { | 
 | 		dev_err(&pdev->dev, "no usable DMA configuration\n"); | 
 | 		goto err_out_free_regions; | 
 | 	} | 
 |  | 
 | #ifdef __BIG_ENDIAN | 
 | 	/* byte swap descriptors in hardware */ | 
 | 	{ | 
 | 		u32 reg; | 
 |  | 
 | 		pci_read_config_dword(pdev, PCI_DEV_REG2, ®); | 
 | 		reg |= PCI_REV_DESC; | 
 | 		pci_write_config_dword(pdev, PCI_DEV_REG2, reg); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	err = -ENOMEM; | 
 | 	hw = kzalloc(sizeof(*hw), GFP_KERNEL); | 
 | 	if (!hw) { | 
 | 		dev_err(&pdev->dev, "cannot allocate hardware struct\n"); | 
 | 		goto err_out_free_regions; | 
 | 	} | 
 |  | 
 | 	hw->pdev = pdev; | 
 | 	spin_lock_init(&hw->hw_lock); | 
 | 	spin_lock_init(&hw->phy_lock); | 
 | 	tasklet_init(&hw->phy_task, &skge_extirq, (unsigned long) hw); | 
 |  | 
 | 	hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000); | 
 | 	if (!hw->regs) { | 
 | 		dev_err(&pdev->dev, "cannot map device registers\n"); | 
 | 		goto err_out_free_hw; | 
 | 	} | 
 |  | 
 | 	err = skge_reset(hw); | 
 | 	if (err) | 
 | 		goto err_out_iounmap; | 
 |  | 
 | 	printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n", | 
 | 	       (unsigned long long)pci_resource_start(pdev, 0), pdev->irq, | 
 | 	       skge_board_name(hw), hw->chip_rev); | 
 |  | 
 | 	dev = skge_devinit(hw, 0, using_dac); | 
 | 	if (!dev) | 
 | 		goto err_out_led_off; | 
 |  | 
 | 	/* Some motherboards are broken and has zero in ROM. */ | 
 | 	if (!is_valid_ether_addr(dev->dev_addr)) | 
 | 		dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n"); | 
 |  | 
 | 	err = register_netdev(dev); | 
 | 	if (err) { | 
 | 		dev_err(&pdev->dev, "cannot register net device\n"); | 
 | 		goto err_out_free_netdev; | 
 | 	} | 
 |  | 
 | 	err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, dev->name, hw); | 
 | 	if (err) { | 
 | 		dev_err(&pdev->dev, "%s: cannot assign irq %d\n", | 
 | 		       dev->name, pdev->irq); | 
 | 		goto err_out_unregister; | 
 | 	} | 
 | 	skge_show_addr(dev); | 
 |  | 
 | 	if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) { | 
 | 		if (register_netdev(dev1) == 0) | 
 | 			skge_show_addr(dev1); | 
 | 		else { | 
 | 			/* Failure to register second port need not be fatal */ | 
 | 			dev_warn(&pdev->dev, "register of second port failed\n"); | 
 | 			hw->dev[1] = NULL; | 
 | 			free_netdev(dev1); | 
 | 		} | 
 | 	} | 
 | 	pci_set_drvdata(pdev, hw); | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_out_unregister: | 
 | 	unregister_netdev(dev); | 
 | err_out_free_netdev: | 
 | 	free_netdev(dev); | 
 | err_out_led_off: | 
 | 	skge_write16(hw, B0_LED, LED_STAT_OFF); | 
 | err_out_iounmap: | 
 | 	iounmap(hw->regs); | 
 | err_out_free_hw: | 
 | 	kfree(hw); | 
 | err_out_free_regions: | 
 | 	pci_release_regions(pdev); | 
 | err_out_disable_pdev: | 
 | 	pci_disable_device(pdev); | 
 | 	pci_set_drvdata(pdev, NULL); | 
 | err_out: | 
 | 	return err; | 
 | } | 
 |  | 
 | static void __devexit skge_remove(struct pci_dev *pdev) | 
 | { | 
 | 	struct skge_hw *hw  = pci_get_drvdata(pdev); | 
 | 	struct net_device *dev0, *dev1; | 
 |  | 
 | 	if (!hw) | 
 | 		return; | 
 |  | 
 | 	flush_scheduled_work(); | 
 |  | 
 | 	if ((dev1 = hw->dev[1])) | 
 | 		unregister_netdev(dev1); | 
 | 	dev0 = hw->dev[0]; | 
 | 	unregister_netdev(dev0); | 
 |  | 
 | 	tasklet_disable(&hw->phy_task); | 
 |  | 
 | 	spin_lock_irq(&hw->hw_lock); | 
 | 	hw->intr_mask = 0; | 
 | 	skge_write32(hw, B0_IMSK, 0); | 
 | 	skge_read32(hw, B0_IMSK); | 
 | 	spin_unlock_irq(&hw->hw_lock); | 
 |  | 
 | 	skge_write16(hw, B0_LED, LED_STAT_OFF); | 
 | 	skge_write8(hw, B0_CTST, CS_RST_SET); | 
 |  | 
 | 	free_irq(pdev->irq, hw); | 
 | 	pci_release_regions(pdev); | 
 | 	pci_disable_device(pdev); | 
 | 	if (dev1) | 
 | 		free_netdev(dev1); | 
 | 	free_netdev(dev0); | 
 |  | 
 | 	iounmap(hw->regs); | 
 | 	kfree(hw); | 
 | 	pci_set_drvdata(pdev, NULL); | 
 | } | 
 |  | 
 | #ifdef CONFIG_PM | 
 | static int skge_suspend(struct pci_dev *pdev, pm_message_t state) | 
 | { | 
 | 	struct skge_hw *hw  = pci_get_drvdata(pdev); | 
 | 	int i, err, wol = 0; | 
 |  | 
 | 	err = pci_save_state(pdev); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	for (i = 0; i < hw->ports; i++) { | 
 | 		struct net_device *dev = hw->dev[i]; | 
 | 		struct skge_port *skge = netdev_priv(dev); | 
 |  | 
 | 		if (netif_running(dev)) | 
 | 			skge_down(dev); | 
 | 		if (skge->wol) | 
 | 			skge_wol_init(skge); | 
 |  | 
 | 		wol |= skge->wol; | 
 | 	} | 
 |  | 
 | 	skge_write32(hw, B0_IMSK, 0); | 
 | 	pci_enable_wake(pdev, pci_choose_state(pdev, state), wol); | 
 | 	pci_set_power_state(pdev, pci_choose_state(pdev, state)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int skge_resume(struct pci_dev *pdev) | 
 | { | 
 | 	struct skge_hw *hw  = pci_get_drvdata(pdev); | 
 | 	int i, err; | 
 |  | 
 | 	err = pci_set_power_state(pdev, PCI_D0); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	err = pci_restore_state(pdev); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	pci_enable_wake(pdev, PCI_D0, 0); | 
 |  | 
 | 	err = skge_reset(hw); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	for (i = 0; i < hw->ports; i++) { | 
 | 		struct net_device *dev = hw->dev[i]; | 
 |  | 
 | 		if (netif_running(dev)) { | 
 | 			err = skge_up(dev); | 
 |  | 
 | 			if (err) { | 
 | 				printk(KERN_ERR PFX "%s: could not up: %d\n", | 
 | 				       dev->name, err); | 
 | 				dev_close(dev); | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	return err; | 
 | } | 
 | #endif | 
 |  | 
 | static void skge_shutdown(struct pci_dev *pdev) | 
 | { | 
 | 	struct skge_hw *hw  = pci_get_drvdata(pdev); | 
 | 	int i, wol = 0; | 
 |  | 
 | 	for (i = 0; i < hw->ports; i++) { | 
 | 		struct net_device *dev = hw->dev[i]; | 
 | 		struct skge_port *skge = netdev_priv(dev); | 
 |  | 
 | 		if (skge->wol) | 
 | 			skge_wol_init(skge); | 
 | 		wol |= skge->wol; | 
 | 	} | 
 |  | 
 | 	pci_enable_wake(pdev, PCI_D3hot, wol); | 
 | 	pci_enable_wake(pdev, PCI_D3cold, wol); | 
 |  | 
 | 	pci_disable_device(pdev); | 
 | 	pci_set_power_state(pdev, PCI_D3hot); | 
 |  | 
 | } | 
 |  | 
 | static struct pci_driver skge_driver = { | 
 | 	.name =         DRV_NAME, | 
 | 	.id_table =     skge_id_table, | 
 | 	.probe =        skge_probe, | 
 | 	.remove =       __devexit_p(skge_remove), | 
 | #ifdef CONFIG_PM | 
 | 	.suspend = 	skge_suspend, | 
 | 	.resume = 	skge_resume, | 
 | #endif | 
 | 	.shutdown =	skge_shutdown, | 
 | }; | 
 |  | 
 | static int __init skge_init_module(void) | 
 | { | 
 | 	return pci_register_driver(&skge_driver); | 
 | } | 
 |  | 
 | static void __exit skge_cleanup_module(void) | 
 | { | 
 | 	pci_unregister_driver(&skge_driver); | 
 | } | 
 |  | 
 | module_init(skge_init_module); | 
 | module_exit(skge_cleanup_module); |