|  | #ifndef _ASM_IA64_BITOPS_H | 
|  | #define _ASM_IA64_BITOPS_H | 
|  |  | 
|  | /* | 
|  | * Copyright (C) 1998-2003 Hewlett-Packard Co | 
|  | *	David Mosberger-Tang <davidm@hpl.hp.com> | 
|  | * | 
|  | * 02/06/02 find_next_bit() and find_first_bit() added from Erich Focht's ia64 | 
|  | * O(1) scheduler patch | 
|  | */ | 
|  |  | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/types.h> | 
|  | #include <asm/intrinsics.h> | 
|  |  | 
|  | /** | 
|  | * set_bit - Atomically set a bit in memory | 
|  | * @nr: the bit to set | 
|  | * @addr: the address to start counting from | 
|  | * | 
|  | * This function is atomic and may not be reordered.  See __set_bit() | 
|  | * if you do not require the atomic guarantees. | 
|  | * Note that @nr may be almost arbitrarily large; this function is not | 
|  | * restricted to acting on a single-word quantity. | 
|  | * | 
|  | * The address must be (at least) "long" aligned. | 
|  | * Note that there are driver (e.g., eepro100) which use these operations to | 
|  | * operate on hw-defined data-structures, so we can't easily change these | 
|  | * operations to force a bigger alignment. | 
|  | * | 
|  | * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). | 
|  | */ | 
|  | static __inline__ void | 
|  | set_bit (int nr, volatile void *addr) | 
|  | { | 
|  | __u32 bit, old, new; | 
|  | volatile __u32 *m; | 
|  | CMPXCHG_BUGCHECK_DECL | 
|  |  | 
|  | m = (volatile __u32 *) addr + (nr >> 5); | 
|  | bit = 1 << (nr & 31); | 
|  | do { | 
|  | CMPXCHG_BUGCHECK(m); | 
|  | old = *m; | 
|  | new = old | bit; | 
|  | } while (cmpxchg_acq(m, old, new) != old); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __set_bit - Set a bit in memory | 
|  | * @nr: the bit to set | 
|  | * @addr: the address to start counting from | 
|  | * | 
|  | * Unlike set_bit(), this function is non-atomic and may be reordered. | 
|  | * If it's called on the same region of memory simultaneously, the effect | 
|  | * may be that only one operation succeeds. | 
|  | */ | 
|  | static __inline__ void | 
|  | __set_bit (int nr, volatile void *addr) | 
|  | { | 
|  | *((__u32 *) addr + (nr >> 5)) |= (1 << (nr & 31)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * clear_bit() has "acquire" semantics. | 
|  | */ | 
|  | #define smp_mb__before_clear_bit()	smp_mb() | 
|  | #define smp_mb__after_clear_bit()	do { /* skip */; } while (0) | 
|  |  | 
|  | /** | 
|  | * clear_bit - Clears a bit in memory | 
|  | * @nr: Bit to clear | 
|  | * @addr: Address to start counting from | 
|  | * | 
|  | * clear_bit() is atomic and may not be reordered.  However, it does | 
|  | * not contain a memory barrier, so if it is used for locking purposes, | 
|  | * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() | 
|  | * in order to ensure changes are visible on other processors. | 
|  | */ | 
|  | static __inline__ void | 
|  | clear_bit (int nr, volatile void *addr) | 
|  | { | 
|  | __u32 mask, old, new; | 
|  | volatile __u32 *m; | 
|  | CMPXCHG_BUGCHECK_DECL | 
|  |  | 
|  | m = (volatile __u32 *) addr + (nr >> 5); | 
|  | mask = ~(1 << (nr & 31)); | 
|  | do { | 
|  | CMPXCHG_BUGCHECK(m); | 
|  | old = *m; | 
|  | new = old & mask; | 
|  | } while (cmpxchg_acq(m, old, new) != old); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __clear_bit - Clears a bit in memory (non-atomic version) | 
|  | */ | 
|  | static __inline__ void | 
|  | __clear_bit (int nr, volatile void *addr) | 
|  | { | 
|  | volatile __u32 *p = (__u32 *) addr + (nr >> 5); | 
|  | __u32 m = 1 << (nr & 31); | 
|  | *p &= ~m; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * change_bit - Toggle a bit in memory | 
|  | * @nr: Bit to clear | 
|  | * @addr: Address to start counting from | 
|  | * | 
|  | * change_bit() is atomic and may not be reordered. | 
|  | * Note that @nr may be almost arbitrarily large; this function is not | 
|  | * restricted to acting on a single-word quantity. | 
|  | */ | 
|  | static __inline__ void | 
|  | change_bit (int nr, volatile void *addr) | 
|  | { | 
|  | __u32 bit, old, new; | 
|  | volatile __u32 *m; | 
|  | CMPXCHG_BUGCHECK_DECL | 
|  |  | 
|  | m = (volatile __u32 *) addr + (nr >> 5); | 
|  | bit = (1 << (nr & 31)); | 
|  | do { | 
|  | CMPXCHG_BUGCHECK(m); | 
|  | old = *m; | 
|  | new = old ^ bit; | 
|  | } while (cmpxchg_acq(m, old, new) != old); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __change_bit - Toggle a bit in memory | 
|  | * @nr: the bit to set | 
|  | * @addr: the address to start counting from | 
|  | * | 
|  | * Unlike change_bit(), this function is non-atomic and may be reordered. | 
|  | * If it's called on the same region of memory simultaneously, the effect | 
|  | * may be that only one operation succeeds. | 
|  | */ | 
|  | static __inline__ void | 
|  | __change_bit (int nr, volatile void *addr) | 
|  | { | 
|  | *((__u32 *) addr + (nr >> 5)) ^= (1 << (nr & 31)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * test_and_set_bit - Set a bit and return its old value | 
|  | * @nr: Bit to set | 
|  | * @addr: Address to count from | 
|  | * | 
|  | * This operation is atomic and cannot be reordered. | 
|  | * It also implies a memory barrier. | 
|  | */ | 
|  | static __inline__ int | 
|  | test_and_set_bit (int nr, volatile void *addr) | 
|  | { | 
|  | __u32 bit, old, new; | 
|  | volatile __u32 *m; | 
|  | CMPXCHG_BUGCHECK_DECL | 
|  |  | 
|  | m = (volatile __u32 *) addr + (nr >> 5); | 
|  | bit = 1 << (nr & 31); | 
|  | do { | 
|  | CMPXCHG_BUGCHECK(m); | 
|  | old = *m; | 
|  | new = old | bit; | 
|  | } while (cmpxchg_acq(m, old, new) != old); | 
|  | return (old & bit) != 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __test_and_set_bit - Set a bit and return its old value | 
|  | * @nr: Bit to set | 
|  | * @addr: Address to count from | 
|  | * | 
|  | * This operation is non-atomic and can be reordered. | 
|  | * If two examples of this operation race, one can appear to succeed | 
|  | * but actually fail.  You must protect multiple accesses with a lock. | 
|  | */ | 
|  | static __inline__ int | 
|  | __test_and_set_bit (int nr, volatile void *addr) | 
|  | { | 
|  | __u32 *p = (__u32 *) addr + (nr >> 5); | 
|  | __u32 m = 1 << (nr & 31); | 
|  | int oldbitset = (*p & m) != 0; | 
|  |  | 
|  | *p |= m; | 
|  | return oldbitset; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * test_and_clear_bit - Clear a bit and return its old value | 
|  | * @nr: Bit to set | 
|  | * @addr: Address to count from | 
|  | * | 
|  | * This operation is atomic and cannot be reordered. | 
|  | * It also implies a memory barrier. | 
|  | */ | 
|  | static __inline__ int | 
|  | test_and_clear_bit (int nr, volatile void *addr) | 
|  | { | 
|  | __u32 mask, old, new; | 
|  | volatile __u32 *m; | 
|  | CMPXCHG_BUGCHECK_DECL | 
|  |  | 
|  | m = (volatile __u32 *) addr + (nr >> 5); | 
|  | mask = ~(1 << (nr & 31)); | 
|  | do { | 
|  | CMPXCHG_BUGCHECK(m); | 
|  | old = *m; | 
|  | new = old & mask; | 
|  | } while (cmpxchg_acq(m, old, new) != old); | 
|  | return (old & ~mask) != 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __test_and_clear_bit - Clear a bit and return its old value | 
|  | * @nr: Bit to set | 
|  | * @addr: Address to count from | 
|  | * | 
|  | * This operation is non-atomic and can be reordered. | 
|  | * If two examples of this operation race, one can appear to succeed | 
|  | * but actually fail.  You must protect multiple accesses with a lock. | 
|  | */ | 
|  | static __inline__ int | 
|  | __test_and_clear_bit(int nr, volatile void * addr) | 
|  | { | 
|  | __u32 *p = (__u32 *) addr + (nr >> 5); | 
|  | __u32 m = 1 << (nr & 31); | 
|  | int oldbitset = *p & m; | 
|  |  | 
|  | *p &= ~m; | 
|  | return oldbitset; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * test_and_change_bit - Change a bit and return its old value | 
|  | * @nr: Bit to set | 
|  | * @addr: Address to count from | 
|  | * | 
|  | * This operation is atomic and cannot be reordered. | 
|  | * It also implies a memory barrier. | 
|  | */ | 
|  | static __inline__ int | 
|  | test_and_change_bit (int nr, volatile void *addr) | 
|  | { | 
|  | __u32 bit, old, new; | 
|  | volatile __u32 *m; | 
|  | CMPXCHG_BUGCHECK_DECL | 
|  |  | 
|  | m = (volatile __u32 *) addr + (nr >> 5); | 
|  | bit = (1 << (nr & 31)); | 
|  | do { | 
|  | CMPXCHG_BUGCHECK(m); | 
|  | old = *m; | 
|  | new = old ^ bit; | 
|  | } while (cmpxchg_acq(m, old, new) != old); | 
|  | return (old & bit) != 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * WARNING: non atomic version. | 
|  | */ | 
|  | static __inline__ int | 
|  | __test_and_change_bit (int nr, void *addr) | 
|  | { | 
|  | __u32 old, bit = (1 << (nr & 31)); | 
|  | __u32 *m = (__u32 *) addr + (nr >> 5); | 
|  |  | 
|  | old = *m; | 
|  | *m = old ^ bit; | 
|  | return (old & bit) != 0; | 
|  | } | 
|  |  | 
|  | static __inline__ int | 
|  | test_bit (int nr, const volatile void *addr) | 
|  | { | 
|  | return 1 & (((const volatile __u32 *) addr)[nr >> 5] >> (nr & 31)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ffz - find the first zero bit in a long word | 
|  | * @x: The long word to find the bit in | 
|  | * | 
|  | * Returns the bit-number (0..63) of the first (least significant) zero bit. | 
|  | * Undefined if no zero exists, so code should check against ~0UL first... | 
|  | */ | 
|  | static inline unsigned long | 
|  | ffz (unsigned long x) | 
|  | { | 
|  | unsigned long result; | 
|  |  | 
|  | result = ia64_popcnt(x & (~x - 1)); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __ffs - find first bit in word. | 
|  | * @x: The word to search | 
|  | * | 
|  | * Undefined if no bit exists, so code should check against 0 first. | 
|  | */ | 
|  | static __inline__ unsigned long | 
|  | __ffs (unsigned long x) | 
|  | { | 
|  | unsigned long result; | 
|  |  | 
|  | result = ia64_popcnt((x-1) & ~x); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | #ifdef __KERNEL__ | 
|  |  | 
|  | /* | 
|  | * Return bit number of last (most-significant) bit set.  Undefined | 
|  | * for x==0.  Bits are numbered from 0..63 (e.g., ia64_fls(9) == 3). | 
|  | */ | 
|  | static inline unsigned long | 
|  | ia64_fls (unsigned long x) | 
|  | { | 
|  | long double d = x; | 
|  | long exp; | 
|  |  | 
|  | exp = ia64_getf_exp(d); | 
|  | return exp - 0xffff; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the last (most significant) bit set.  Returns 0 for x==0 and | 
|  | * bits are numbered from 1..32 (e.g., fls(9) == 4). | 
|  | */ | 
|  | static inline int | 
|  | fls (int t) | 
|  | { | 
|  | unsigned long x = t & 0xffffffffu; | 
|  |  | 
|  | if (!x) | 
|  | return 0; | 
|  | x |= x >> 1; | 
|  | x |= x >> 2; | 
|  | x |= x >> 4; | 
|  | x |= x >> 8; | 
|  | x |= x >> 16; | 
|  | return ia64_popcnt(x); | 
|  | } | 
|  |  | 
|  | #include <asm-generic/bitops/fls64.h> | 
|  |  | 
|  | /* | 
|  | * ffs: find first bit set. This is defined the same way as the libc and | 
|  | * compiler builtin ffs routines, therefore differs in spirit from the above | 
|  | * ffz (man ffs): it operates on "int" values only and the result value is the | 
|  | * bit number + 1.  ffs(0) is defined to return zero. | 
|  | */ | 
|  | #define ffs(x)	__builtin_ffs(x) | 
|  |  | 
|  | /* | 
|  | * hweightN: returns the hamming weight (i.e. the number | 
|  | * of bits set) of a N-bit word | 
|  | */ | 
|  | static __inline__ unsigned long | 
|  | hweight64 (unsigned long x) | 
|  | { | 
|  | unsigned long result; | 
|  | result = ia64_popcnt(x); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | #define hweight32(x)	(unsigned int) hweight64((x) & 0xfffffffful) | 
|  | #define hweight16(x)	(unsigned int) hweight64((x) & 0xfffful) | 
|  | #define hweight8(x)	(unsigned int) hweight64((x) & 0xfful) | 
|  |  | 
|  | #endif /* __KERNEL__ */ | 
|  |  | 
|  | #include <asm-generic/bitops/find.h> | 
|  |  | 
|  | #ifdef __KERNEL__ | 
|  |  | 
|  | #include <asm-generic/bitops/ext2-non-atomic.h> | 
|  |  | 
|  | #define ext2_set_bit_atomic(l,n,a)	test_and_set_bit(n,a) | 
|  | #define ext2_clear_bit_atomic(l,n,a)	test_and_clear_bit(n,a) | 
|  |  | 
|  | #include <asm-generic/bitops/minix.h> | 
|  | #include <asm-generic/bitops/sched.h> | 
|  |  | 
|  | #endif /* __KERNEL__ */ | 
|  |  | 
|  | #endif /* _ASM_IA64_BITOPS_H */ |