| /* | 
 |  *  linux/mm/memory.c | 
 |  * | 
 |  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
 |  */ | 
 |  | 
 | /* | 
 |  * demand-loading started 01.12.91 - seems it is high on the list of | 
 |  * things wanted, and it should be easy to implement. - Linus | 
 |  */ | 
 |  | 
 | /* | 
 |  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared | 
 |  * pages started 02.12.91, seems to work. - Linus. | 
 |  * | 
 |  * Tested sharing by executing about 30 /bin/sh: under the old kernel it | 
 |  * would have taken more than the 6M I have free, but it worked well as | 
 |  * far as I could see. | 
 |  * | 
 |  * Also corrected some "invalidate()"s - I wasn't doing enough of them. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Real VM (paging to/from disk) started 18.12.91. Much more work and | 
 |  * thought has to go into this. Oh, well.. | 
 |  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why. | 
 |  *		Found it. Everything seems to work now. | 
 |  * 20.12.91  -  Ok, making the swap-device changeable like the root. | 
 |  */ | 
 |  | 
 | /* | 
 |  * 05.04.94  -  Multi-page memory management added for v1.1. | 
 |  * 		Idea by Alex Bligh (alex@cconcepts.co.uk) | 
 |  * | 
 |  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG | 
 |  *		(Gerhard.Wichert@pdb.siemens.de) | 
 |  * | 
 |  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) | 
 |  */ | 
 |  | 
 | #include <linux/kernel_stat.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/rmap.h> | 
 | #include <linux/module.h> | 
 | #include <linux/delayacct.h> | 
 | #include <linux/init.h> | 
 | #include <linux/writeback.h> | 
 |  | 
 | #include <asm/pgalloc.h> | 
 | #include <asm/uaccess.h> | 
 | #include <asm/tlb.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/pgtable.h> | 
 |  | 
 | #include <linux/swapops.h> | 
 | #include <linux/elf.h> | 
 |  | 
 | #ifndef CONFIG_NEED_MULTIPLE_NODES | 
 | /* use the per-pgdat data instead for discontigmem - mbligh */ | 
 | unsigned long max_mapnr; | 
 | struct page *mem_map; | 
 |  | 
 | EXPORT_SYMBOL(max_mapnr); | 
 | EXPORT_SYMBOL(mem_map); | 
 | #endif | 
 |  | 
 | unsigned long num_physpages; | 
 | /* | 
 |  * A number of key systems in x86 including ioremap() rely on the assumption | 
 |  * that high_memory defines the upper bound on direct map memory, then end | 
 |  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and | 
 |  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL | 
 |  * and ZONE_HIGHMEM. | 
 |  */ | 
 | void * high_memory; | 
 | unsigned long vmalloc_earlyreserve; | 
 |  | 
 | EXPORT_SYMBOL(num_physpages); | 
 | EXPORT_SYMBOL(high_memory); | 
 | EXPORT_SYMBOL(vmalloc_earlyreserve); | 
 |  | 
 | int randomize_va_space __read_mostly = 1; | 
 |  | 
 | static int __init disable_randmaps(char *s) | 
 | { | 
 | 	randomize_va_space = 0; | 
 | 	return 1; | 
 | } | 
 | __setup("norandmaps", disable_randmaps); | 
 |  | 
 |  | 
 | /* | 
 |  * If a p?d_bad entry is found while walking page tables, report | 
 |  * the error, before resetting entry to p?d_none.  Usually (but | 
 |  * very seldom) called out from the p?d_none_or_clear_bad macros. | 
 |  */ | 
 |  | 
 | void pgd_clear_bad(pgd_t *pgd) | 
 | { | 
 | 	pgd_ERROR(*pgd); | 
 | 	pgd_clear(pgd); | 
 | } | 
 |  | 
 | void pud_clear_bad(pud_t *pud) | 
 | { | 
 | 	pud_ERROR(*pud); | 
 | 	pud_clear(pud); | 
 | } | 
 |  | 
 | void pmd_clear_bad(pmd_t *pmd) | 
 | { | 
 | 	pmd_ERROR(*pmd); | 
 | 	pmd_clear(pmd); | 
 | } | 
 |  | 
 | /* | 
 |  * Note: this doesn't free the actual pages themselves. That | 
 |  * has been handled earlier when unmapping all the memory regions. | 
 |  */ | 
 | static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) | 
 | { | 
 | 	struct page *page = pmd_page(*pmd); | 
 | 	pmd_clear(pmd); | 
 | 	pte_lock_deinit(page); | 
 | 	pte_free_tlb(tlb, page); | 
 | 	dec_zone_page_state(page, NR_PAGETABLE); | 
 | 	tlb->mm->nr_ptes--; | 
 | } | 
 |  | 
 | static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, | 
 | 				unsigned long addr, unsigned long end, | 
 | 				unsigned long floor, unsigned long ceiling) | 
 | { | 
 | 	pmd_t *pmd; | 
 | 	unsigned long next; | 
 | 	unsigned long start; | 
 |  | 
 | 	start = addr; | 
 | 	pmd = pmd_offset(pud, addr); | 
 | 	do { | 
 | 		next = pmd_addr_end(addr, end); | 
 | 		if (pmd_none_or_clear_bad(pmd)) | 
 | 			continue; | 
 | 		free_pte_range(tlb, pmd); | 
 | 	} while (pmd++, addr = next, addr != end); | 
 |  | 
 | 	start &= PUD_MASK; | 
 | 	if (start < floor) | 
 | 		return; | 
 | 	if (ceiling) { | 
 | 		ceiling &= PUD_MASK; | 
 | 		if (!ceiling) | 
 | 			return; | 
 | 	} | 
 | 	if (end - 1 > ceiling - 1) | 
 | 		return; | 
 |  | 
 | 	pmd = pmd_offset(pud, start); | 
 | 	pud_clear(pud); | 
 | 	pmd_free_tlb(tlb, pmd); | 
 | } | 
 |  | 
 | static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, | 
 | 				unsigned long addr, unsigned long end, | 
 | 				unsigned long floor, unsigned long ceiling) | 
 | { | 
 | 	pud_t *pud; | 
 | 	unsigned long next; | 
 | 	unsigned long start; | 
 |  | 
 | 	start = addr; | 
 | 	pud = pud_offset(pgd, addr); | 
 | 	do { | 
 | 		next = pud_addr_end(addr, end); | 
 | 		if (pud_none_or_clear_bad(pud)) | 
 | 			continue; | 
 | 		free_pmd_range(tlb, pud, addr, next, floor, ceiling); | 
 | 	} while (pud++, addr = next, addr != end); | 
 |  | 
 | 	start &= PGDIR_MASK; | 
 | 	if (start < floor) | 
 | 		return; | 
 | 	if (ceiling) { | 
 | 		ceiling &= PGDIR_MASK; | 
 | 		if (!ceiling) | 
 | 			return; | 
 | 	} | 
 | 	if (end - 1 > ceiling - 1) | 
 | 		return; | 
 |  | 
 | 	pud = pud_offset(pgd, start); | 
 | 	pgd_clear(pgd); | 
 | 	pud_free_tlb(tlb, pud); | 
 | } | 
 |  | 
 | /* | 
 |  * This function frees user-level page tables of a process. | 
 |  * | 
 |  * Must be called with pagetable lock held. | 
 |  */ | 
 | void free_pgd_range(struct mmu_gather **tlb, | 
 | 			unsigned long addr, unsigned long end, | 
 | 			unsigned long floor, unsigned long ceiling) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	unsigned long next; | 
 | 	unsigned long start; | 
 |  | 
 | 	/* | 
 | 	 * The next few lines have given us lots of grief... | 
 | 	 * | 
 | 	 * Why are we testing PMD* at this top level?  Because often | 
 | 	 * there will be no work to do at all, and we'd prefer not to | 
 | 	 * go all the way down to the bottom just to discover that. | 
 | 	 * | 
 | 	 * Why all these "- 1"s?  Because 0 represents both the bottom | 
 | 	 * of the address space and the top of it (using -1 for the | 
 | 	 * top wouldn't help much: the masks would do the wrong thing). | 
 | 	 * The rule is that addr 0 and floor 0 refer to the bottom of | 
 | 	 * the address space, but end 0 and ceiling 0 refer to the top | 
 | 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though | 
 | 	 * that end 0 case should be mythical). | 
 | 	 * | 
 | 	 * Wherever addr is brought up or ceiling brought down, we must | 
 | 	 * be careful to reject "the opposite 0" before it confuses the | 
 | 	 * subsequent tests.  But what about where end is brought down | 
 | 	 * by PMD_SIZE below? no, end can't go down to 0 there. | 
 | 	 * | 
 | 	 * Whereas we round start (addr) and ceiling down, by different | 
 | 	 * masks at different levels, in order to test whether a table | 
 | 	 * now has no other vmas using it, so can be freed, we don't | 
 | 	 * bother to round floor or end up - the tests don't need that. | 
 | 	 */ | 
 |  | 
 | 	addr &= PMD_MASK; | 
 | 	if (addr < floor) { | 
 | 		addr += PMD_SIZE; | 
 | 		if (!addr) | 
 | 			return; | 
 | 	} | 
 | 	if (ceiling) { | 
 | 		ceiling &= PMD_MASK; | 
 | 		if (!ceiling) | 
 | 			return; | 
 | 	} | 
 | 	if (end - 1 > ceiling - 1) | 
 | 		end -= PMD_SIZE; | 
 | 	if (addr > end - 1) | 
 | 		return; | 
 |  | 
 | 	start = addr; | 
 | 	pgd = pgd_offset((*tlb)->mm, addr); | 
 | 	do { | 
 | 		next = pgd_addr_end(addr, end); | 
 | 		if (pgd_none_or_clear_bad(pgd)) | 
 | 			continue; | 
 | 		free_pud_range(*tlb, pgd, addr, next, floor, ceiling); | 
 | 	} while (pgd++, addr = next, addr != end); | 
 |  | 
 | 	if (!(*tlb)->fullmm) | 
 | 		flush_tlb_pgtables((*tlb)->mm, start, end); | 
 | } | 
 |  | 
 | void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma, | 
 | 		unsigned long floor, unsigned long ceiling) | 
 | { | 
 | 	while (vma) { | 
 | 		struct vm_area_struct *next = vma->vm_next; | 
 | 		unsigned long addr = vma->vm_start; | 
 |  | 
 | 		/* | 
 | 		 * Hide vma from rmap and vmtruncate before freeing pgtables | 
 | 		 */ | 
 | 		anon_vma_unlink(vma); | 
 | 		unlink_file_vma(vma); | 
 |  | 
 | 		if (is_vm_hugetlb_page(vma)) { | 
 | 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end, | 
 | 				floor, next? next->vm_start: ceiling); | 
 | 		} else { | 
 | 			/* | 
 | 			 * Optimization: gather nearby vmas into one call down | 
 | 			 */ | 
 | 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE | 
 | 			       && !is_vm_hugetlb_page(next)) { | 
 | 				vma = next; | 
 | 				next = vma->vm_next; | 
 | 				anon_vma_unlink(vma); | 
 | 				unlink_file_vma(vma); | 
 | 			} | 
 | 			free_pgd_range(tlb, addr, vma->vm_end, | 
 | 				floor, next? next->vm_start: ceiling); | 
 | 		} | 
 | 		vma = next; | 
 | 	} | 
 | } | 
 |  | 
 | int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) | 
 | { | 
 | 	struct page *new = pte_alloc_one(mm, address); | 
 | 	if (!new) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	pte_lock_init(new); | 
 | 	spin_lock(&mm->page_table_lock); | 
 | 	if (pmd_present(*pmd)) {	/* Another has populated it */ | 
 | 		pte_lock_deinit(new); | 
 | 		pte_free(new); | 
 | 	} else { | 
 | 		mm->nr_ptes++; | 
 | 		inc_zone_page_state(new, NR_PAGETABLE); | 
 | 		pmd_populate(mm, pmd, new); | 
 | 	} | 
 | 	spin_unlock(&mm->page_table_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) | 
 | { | 
 | 	pte_t *new = pte_alloc_one_kernel(&init_mm, address); | 
 | 	if (!new) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	spin_lock(&init_mm.page_table_lock); | 
 | 	if (pmd_present(*pmd))		/* Another has populated it */ | 
 | 		pte_free_kernel(new); | 
 | 	else | 
 | 		pmd_populate_kernel(&init_mm, pmd, new); | 
 | 	spin_unlock(&init_mm.page_table_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) | 
 | { | 
 | 	if (file_rss) | 
 | 		add_mm_counter(mm, file_rss, file_rss); | 
 | 	if (anon_rss) | 
 | 		add_mm_counter(mm, anon_rss, anon_rss); | 
 | } | 
 |  | 
 | /* | 
 |  * This function is called to print an error when a bad pte | 
 |  * is found. For example, we might have a PFN-mapped pte in | 
 |  * a region that doesn't allow it. | 
 |  * | 
 |  * The calling function must still handle the error. | 
 |  */ | 
 | void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr) | 
 | { | 
 | 	printk(KERN_ERR "Bad pte = %08llx, process = %s, " | 
 | 			"vm_flags = %lx, vaddr = %lx\n", | 
 | 		(long long)pte_val(pte), | 
 | 		(vma->vm_mm == current->mm ? current->comm : "???"), | 
 | 		vma->vm_flags, vaddr); | 
 | 	dump_stack(); | 
 | } | 
 |  | 
 | static inline int is_cow_mapping(unsigned int flags) | 
 | { | 
 | 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; | 
 | } | 
 |  | 
 | /* | 
 |  * This function gets the "struct page" associated with a pte. | 
 |  * | 
 |  * NOTE! Some mappings do not have "struct pages". A raw PFN mapping | 
 |  * will have each page table entry just pointing to a raw page frame | 
 |  * number, and as far as the VM layer is concerned, those do not have | 
 |  * pages associated with them - even if the PFN might point to memory | 
 |  * that otherwise is perfectly fine and has a "struct page". | 
 |  * | 
 |  * The way we recognize those mappings is through the rules set up | 
 |  * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set, | 
 |  * and the vm_pgoff will point to the first PFN mapped: thus every | 
 |  * page that is a raw mapping will always honor the rule | 
 |  * | 
 |  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) | 
 |  * | 
 |  * and if that isn't true, the page has been COW'ed (in which case it | 
 |  * _does_ have a "struct page" associated with it even if it is in a | 
 |  * VM_PFNMAP range). | 
 |  */ | 
 | struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte) | 
 | { | 
 | 	unsigned long pfn = pte_pfn(pte); | 
 |  | 
 | 	if (unlikely(vma->vm_flags & VM_PFNMAP)) { | 
 | 		unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT; | 
 | 		if (pfn == vma->vm_pgoff + off) | 
 | 			return NULL; | 
 | 		if (!is_cow_mapping(vma->vm_flags)) | 
 | 			return NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Add some anal sanity checks for now. Eventually, | 
 | 	 * we should just do "return pfn_to_page(pfn)", but | 
 | 	 * in the meantime we check that we get a valid pfn, | 
 | 	 * and that the resulting page looks ok. | 
 | 	 */ | 
 | 	if (unlikely(!pfn_valid(pfn))) { | 
 | 		print_bad_pte(vma, pte, addr); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * NOTE! We still have PageReserved() pages in the page  | 
 | 	 * tables.  | 
 | 	 * | 
 | 	 * The PAGE_ZERO() pages and various VDSO mappings can | 
 | 	 * cause them to exist. | 
 | 	 */ | 
 | 	return pfn_to_page(pfn); | 
 | } | 
 |  | 
 | /* | 
 |  * copy one vm_area from one task to the other. Assumes the page tables | 
 |  * already present in the new task to be cleared in the whole range | 
 |  * covered by this vma. | 
 |  */ | 
 |  | 
 | static inline void | 
 | copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
 | 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, | 
 | 		unsigned long addr, int *rss) | 
 | { | 
 | 	unsigned long vm_flags = vma->vm_flags; | 
 | 	pte_t pte = *src_pte; | 
 | 	struct page *page; | 
 |  | 
 | 	/* pte contains position in swap or file, so copy. */ | 
 | 	if (unlikely(!pte_present(pte))) { | 
 | 		if (!pte_file(pte)) { | 
 | 			swp_entry_t entry = pte_to_swp_entry(pte); | 
 |  | 
 | 			swap_duplicate(entry); | 
 | 			/* make sure dst_mm is on swapoff's mmlist. */ | 
 | 			if (unlikely(list_empty(&dst_mm->mmlist))) { | 
 | 				spin_lock(&mmlist_lock); | 
 | 				if (list_empty(&dst_mm->mmlist)) | 
 | 					list_add(&dst_mm->mmlist, | 
 | 						 &src_mm->mmlist); | 
 | 				spin_unlock(&mmlist_lock); | 
 | 			} | 
 | 			if (is_write_migration_entry(entry) && | 
 | 					is_cow_mapping(vm_flags)) { | 
 | 				/* | 
 | 				 * COW mappings require pages in both parent | 
 | 				 * and child to be set to read. | 
 | 				 */ | 
 | 				make_migration_entry_read(&entry); | 
 | 				pte = swp_entry_to_pte(entry); | 
 | 				set_pte_at(src_mm, addr, src_pte, pte); | 
 | 			} | 
 | 		} | 
 | 		goto out_set_pte; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If it's a COW mapping, write protect it both | 
 | 	 * in the parent and the child | 
 | 	 */ | 
 | 	if (is_cow_mapping(vm_flags)) { | 
 | 		ptep_set_wrprotect(src_mm, addr, src_pte); | 
 | 		pte = pte_wrprotect(pte); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If it's a shared mapping, mark it clean in | 
 | 	 * the child | 
 | 	 */ | 
 | 	if (vm_flags & VM_SHARED) | 
 | 		pte = pte_mkclean(pte); | 
 | 	pte = pte_mkold(pte); | 
 |  | 
 | 	page = vm_normal_page(vma, addr, pte); | 
 | 	if (page) { | 
 | 		get_page(page); | 
 | 		page_dup_rmap(page); | 
 | 		rss[!!PageAnon(page)]++; | 
 | 	} | 
 |  | 
 | out_set_pte: | 
 | 	set_pte_at(dst_mm, addr, dst_pte, pte); | 
 | } | 
 |  | 
 | static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
 | 		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, | 
 | 		unsigned long addr, unsigned long end) | 
 | { | 
 | 	pte_t *src_pte, *dst_pte; | 
 | 	spinlock_t *src_ptl, *dst_ptl; | 
 | 	int progress = 0; | 
 | 	int rss[2]; | 
 |  | 
 | again: | 
 | 	rss[1] = rss[0] = 0; | 
 | 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); | 
 | 	if (!dst_pte) | 
 | 		return -ENOMEM; | 
 | 	src_pte = pte_offset_map_nested(src_pmd, addr); | 
 | 	src_ptl = pte_lockptr(src_mm, src_pmd); | 
 | 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); | 
 | 	arch_enter_lazy_mmu_mode(); | 
 |  | 
 | 	do { | 
 | 		/* | 
 | 		 * We are holding two locks at this point - either of them | 
 | 		 * could generate latencies in another task on another CPU. | 
 | 		 */ | 
 | 		if (progress >= 32) { | 
 | 			progress = 0; | 
 | 			if (need_resched() || | 
 | 			    need_lockbreak(src_ptl) || | 
 | 			    need_lockbreak(dst_ptl)) | 
 | 				break; | 
 | 		} | 
 | 		if (pte_none(*src_pte)) { | 
 | 			progress++; | 
 | 			continue; | 
 | 		} | 
 | 		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss); | 
 | 		progress += 8; | 
 | 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); | 
 |  | 
 | 	arch_leave_lazy_mmu_mode(); | 
 | 	spin_unlock(src_ptl); | 
 | 	pte_unmap_nested(src_pte - 1); | 
 | 	add_mm_rss(dst_mm, rss[0], rss[1]); | 
 | 	pte_unmap_unlock(dst_pte - 1, dst_ptl); | 
 | 	cond_resched(); | 
 | 	if (addr != end) | 
 | 		goto again; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
 | 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, | 
 | 		unsigned long addr, unsigned long end) | 
 | { | 
 | 	pmd_t *src_pmd, *dst_pmd; | 
 | 	unsigned long next; | 
 |  | 
 | 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); | 
 | 	if (!dst_pmd) | 
 | 		return -ENOMEM; | 
 | 	src_pmd = pmd_offset(src_pud, addr); | 
 | 	do { | 
 | 		next = pmd_addr_end(addr, end); | 
 | 		if (pmd_none_or_clear_bad(src_pmd)) | 
 | 			continue; | 
 | 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, | 
 | 						vma, addr, next)) | 
 | 			return -ENOMEM; | 
 | 	} while (dst_pmd++, src_pmd++, addr = next, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
 | 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, | 
 | 		unsigned long addr, unsigned long end) | 
 | { | 
 | 	pud_t *src_pud, *dst_pud; | 
 | 	unsigned long next; | 
 |  | 
 | 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr); | 
 | 	if (!dst_pud) | 
 | 		return -ENOMEM; | 
 | 	src_pud = pud_offset(src_pgd, addr); | 
 | 	do { | 
 | 		next = pud_addr_end(addr, end); | 
 | 		if (pud_none_or_clear_bad(src_pud)) | 
 | 			continue; | 
 | 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, | 
 | 						vma, addr, next)) | 
 | 			return -ENOMEM; | 
 | 	} while (dst_pud++, src_pud++, addr = next, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
 | 		struct vm_area_struct *vma) | 
 | { | 
 | 	pgd_t *src_pgd, *dst_pgd; | 
 | 	unsigned long next; | 
 | 	unsigned long addr = vma->vm_start; | 
 | 	unsigned long end = vma->vm_end; | 
 |  | 
 | 	/* | 
 | 	 * Don't copy ptes where a page fault will fill them correctly. | 
 | 	 * Fork becomes much lighter when there are big shared or private | 
 | 	 * readonly mappings. The tradeoff is that copy_page_range is more | 
 | 	 * efficient than faulting. | 
 | 	 */ | 
 | 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { | 
 | 		if (!vma->anon_vma) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	if (is_vm_hugetlb_page(vma)) | 
 | 		return copy_hugetlb_page_range(dst_mm, src_mm, vma); | 
 |  | 
 | 	dst_pgd = pgd_offset(dst_mm, addr); | 
 | 	src_pgd = pgd_offset(src_mm, addr); | 
 | 	do { | 
 | 		next = pgd_addr_end(addr, end); | 
 | 		if (pgd_none_or_clear_bad(src_pgd)) | 
 | 			continue; | 
 | 		if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, | 
 | 						vma, addr, next)) | 
 | 			return -ENOMEM; | 
 | 	} while (dst_pgd++, src_pgd++, addr = next, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static unsigned long zap_pte_range(struct mmu_gather *tlb, | 
 | 				struct vm_area_struct *vma, pmd_t *pmd, | 
 | 				unsigned long addr, unsigned long end, | 
 | 				long *zap_work, struct zap_details *details) | 
 | { | 
 | 	struct mm_struct *mm = tlb->mm; | 
 | 	pte_t *pte; | 
 | 	spinlock_t *ptl; | 
 | 	int file_rss = 0; | 
 | 	int anon_rss = 0; | 
 |  | 
 | 	pte = pte_offset_map_lock(mm, pmd, addr, &ptl); | 
 | 	arch_enter_lazy_mmu_mode(); | 
 | 	do { | 
 | 		pte_t ptent = *pte; | 
 | 		if (pte_none(ptent)) { | 
 | 			(*zap_work)--; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		(*zap_work) -= PAGE_SIZE; | 
 |  | 
 | 		if (pte_present(ptent)) { | 
 | 			struct page *page; | 
 |  | 
 | 			page = vm_normal_page(vma, addr, ptent); | 
 | 			if (unlikely(details) && page) { | 
 | 				/* | 
 | 				 * unmap_shared_mapping_pages() wants to | 
 | 				 * invalidate cache without truncating: | 
 | 				 * unmap shared but keep private pages. | 
 | 				 */ | 
 | 				if (details->check_mapping && | 
 | 				    details->check_mapping != page->mapping) | 
 | 					continue; | 
 | 				/* | 
 | 				 * Each page->index must be checked when | 
 | 				 * invalidating or truncating nonlinear. | 
 | 				 */ | 
 | 				if (details->nonlinear_vma && | 
 | 				    (page->index < details->first_index || | 
 | 				     page->index > details->last_index)) | 
 | 					continue; | 
 | 			} | 
 | 			ptent = ptep_get_and_clear_full(mm, addr, pte, | 
 | 							tlb->fullmm); | 
 | 			tlb_remove_tlb_entry(tlb, pte, addr); | 
 | 			if (unlikely(!page)) | 
 | 				continue; | 
 | 			if (unlikely(details) && details->nonlinear_vma | 
 | 			    && linear_page_index(details->nonlinear_vma, | 
 | 						addr) != page->index) | 
 | 				set_pte_at(mm, addr, pte, | 
 | 					   pgoff_to_pte(page->index)); | 
 | 			if (PageAnon(page)) | 
 | 				anon_rss--; | 
 | 			else { | 
 | 				if (pte_dirty(ptent)) | 
 | 					set_page_dirty(page); | 
 | 				if (pte_young(ptent)) | 
 | 					mark_page_accessed(page); | 
 | 				file_rss--; | 
 | 			} | 
 | 			page_remove_rmap(page); | 
 | 			tlb_remove_page(tlb, page); | 
 | 			continue; | 
 | 		} | 
 | 		/* | 
 | 		 * If details->check_mapping, we leave swap entries; | 
 | 		 * if details->nonlinear_vma, we leave file entries. | 
 | 		 */ | 
 | 		if (unlikely(details)) | 
 | 			continue; | 
 | 		if (!pte_file(ptent)) | 
 | 			free_swap_and_cache(pte_to_swp_entry(ptent)); | 
 | 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); | 
 | 	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); | 
 |  | 
 | 	add_mm_rss(mm, file_rss, anon_rss); | 
 | 	arch_leave_lazy_mmu_mode(); | 
 | 	pte_unmap_unlock(pte - 1, ptl); | 
 |  | 
 | 	return addr; | 
 | } | 
 |  | 
 | static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, | 
 | 				struct vm_area_struct *vma, pud_t *pud, | 
 | 				unsigned long addr, unsigned long end, | 
 | 				long *zap_work, struct zap_details *details) | 
 | { | 
 | 	pmd_t *pmd; | 
 | 	unsigned long next; | 
 |  | 
 | 	pmd = pmd_offset(pud, addr); | 
 | 	do { | 
 | 		next = pmd_addr_end(addr, end); | 
 | 		if (pmd_none_or_clear_bad(pmd)) { | 
 | 			(*zap_work)--; | 
 | 			continue; | 
 | 		} | 
 | 		next = zap_pte_range(tlb, vma, pmd, addr, next, | 
 | 						zap_work, details); | 
 | 	} while (pmd++, addr = next, (addr != end && *zap_work > 0)); | 
 |  | 
 | 	return addr; | 
 | } | 
 |  | 
 | static inline unsigned long zap_pud_range(struct mmu_gather *tlb, | 
 | 				struct vm_area_struct *vma, pgd_t *pgd, | 
 | 				unsigned long addr, unsigned long end, | 
 | 				long *zap_work, struct zap_details *details) | 
 | { | 
 | 	pud_t *pud; | 
 | 	unsigned long next; | 
 |  | 
 | 	pud = pud_offset(pgd, addr); | 
 | 	do { | 
 | 		next = pud_addr_end(addr, end); | 
 | 		if (pud_none_or_clear_bad(pud)) { | 
 | 			(*zap_work)--; | 
 | 			continue; | 
 | 		} | 
 | 		next = zap_pmd_range(tlb, vma, pud, addr, next, | 
 | 						zap_work, details); | 
 | 	} while (pud++, addr = next, (addr != end && *zap_work > 0)); | 
 |  | 
 | 	return addr; | 
 | } | 
 |  | 
 | static unsigned long unmap_page_range(struct mmu_gather *tlb, | 
 | 				struct vm_area_struct *vma, | 
 | 				unsigned long addr, unsigned long end, | 
 | 				long *zap_work, struct zap_details *details) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	unsigned long next; | 
 |  | 
 | 	if (details && !details->check_mapping && !details->nonlinear_vma) | 
 | 		details = NULL; | 
 |  | 
 | 	BUG_ON(addr >= end); | 
 | 	tlb_start_vma(tlb, vma); | 
 | 	pgd = pgd_offset(vma->vm_mm, addr); | 
 | 	do { | 
 | 		next = pgd_addr_end(addr, end); | 
 | 		if (pgd_none_or_clear_bad(pgd)) { | 
 | 			(*zap_work)--; | 
 | 			continue; | 
 | 		} | 
 | 		next = zap_pud_range(tlb, vma, pgd, addr, next, | 
 | 						zap_work, details); | 
 | 	} while (pgd++, addr = next, (addr != end && *zap_work > 0)); | 
 | 	tlb_end_vma(tlb, vma); | 
 |  | 
 | 	return addr; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PREEMPT | 
 | # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE) | 
 | #else | 
 | /* No preempt: go for improved straight-line efficiency */ | 
 | # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE) | 
 | #endif | 
 |  | 
 | /** | 
 |  * unmap_vmas - unmap a range of memory covered by a list of vma's | 
 |  * @tlbp: address of the caller's struct mmu_gather | 
 |  * @vma: the starting vma | 
 |  * @start_addr: virtual address at which to start unmapping | 
 |  * @end_addr: virtual address at which to end unmapping | 
 |  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here | 
 |  * @details: details of nonlinear truncation or shared cache invalidation | 
 |  * | 
 |  * Returns the end address of the unmapping (restart addr if interrupted). | 
 |  * | 
 |  * Unmap all pages in the vma list. | 
 |  * | 
 |  * We aim to not hold locks for too long (for scheduling latency reasons). | 
 |  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to | 
 |  * return the ending mmu_gather to the caller. | 
 |  * | 
 |  * Only addresses between `start' and `end' will be unmapped. | 
 |  * | 
 |  * The VMA list must be sorted in ascending virtual address order. | 
 |  * | 
 |  * unmap_vmas() assumes that the caller will flush the whole unmapped address | 
 |  * range after unmap_vmas() returns.  So the only responsibility here is to | 
 |  * ensure that any thus-far unmapped pages are flushed before unmap_vmas() | 
 |  * drops the lock and schedules. | 
 |  */ | 
 | unsigned long unmap_vmas(struct mmu_gather **tlbp, | 
 | 		struct vm_area_struct *vma, unsigned long start_addr, | 
 | 		unsigned long end_addr, unsigned long *nr_accounted, | 
 | 		struct zap_details *details) | 
 | { | 
 | 	long zap_work = ZAP_BLOCK_SIZE; | 
 | 	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */ | 
 | 	int tlb_start_valid = 0; | 
 | 	unsigned long start = start_addr; | 
 | 	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; | 
 | 	int fullmm = (*tlbp)->fullmm; | 
 |  | 
 | 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { | 
 | 		unsigned long end; | 
 |  | 
 | 		start = max(vma->vm_start, start_addr); | 
 | 		if (start >= vma->vm_end) | 
 | 			continue; | 
 | 		end = min(vma->vm_end, end_addr); | 
 | 		if (end <= vma->vm_start) | 
 | 			continue; | 
 |  | 
 | 		if (vma->vm_flags & VM_ACCOUNT) | 
 | 			*nr_accounted += (end - start) >> PAGE_SHIFT; | 
 |  | 
 | 		while (start != end) { | 
 | 			if (!tlb_start_valid) { | 
 | 				tlb_start = start; | 
 | 				tlb_start_valid = 1; | 
 | 			} | 
 |  | 
 | 			if (unlikely(is_vm_hugetlb_page(vma))) { | 
 | 				unmap_hugepage_range(vma, start, end); | 
 | 				zap_work -= (end - start) / | 
 | 						(HPAGE_SIZE / PAGE_SIZE); | 
 | 				start = end; | 
 | 			} else | 
 | 				start = unmap_page_range(*tlbp, vma, | 
 | 						start, end, &zap_work, details); | 
 |  | 
 | 			if (zap_work > 0) { | 
 | 				BUG_ON(start != end); | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			tlb_finish_mmu(*tlbp, tlb_start, start); | 
 |  | 
 | 			if (need_resched() || | 
 | 				(i_mmap_lock && need_lockbreak(i_mmap_lock))) { | 
 | 				if (i_mmap_lock) { | 
 | 					*tlbp = NULL; | 
 | 					goto out; | 
 | 				} | 
 | 				cond_resched(); | 
 | 			} | 
 |  | 
 | 			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); | 
 | 			tlb_start_valid = 0; | 
 | 			zap_work = ZAP_BLOCK_SIZE; | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	return start;	/* which is now the end (or restart) address */ | 
 | } | 
 |  | 
 | /** | 
 |  * zap_page_range - remove user pages in a given range | 
 |  * @vma: vm_area_struct holding the applicable pages | 
 |  * @address: starting address of pages to zap | 
 |  * @size: number of bytes to zap | 
 |  * @details: details of nonlinear truncation or shared cache invalidation | 
 |  */ | 
 | unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, | 
 | 		unsigned long size, struct zap_details *details) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	struct mmu_gather *tlb; | 
 | 	unsigned long end = address + size; | 
 | 	unsigned long nr_accounted = 0; | 
 |  | 
 | 	lru_add_drain(); | 
 | 	tlb = tlb_gather_mmu(mm, 0); | 
 | 	update_hiwater_rss(mm); | 
 | 	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); | 
 | 	if (tlb) | 
 | 		tlb_finish_mmu(tlb, address, end); | 
 | 	return end; | 
 | } | 
 |  | 
 | /* | 
 |  * Do a quick page-table lookup for a single page. | 
 |  */ | 
 | struct page *follow_page(struct vm_area_struct *vma, unsigned long address, | 
 | 			unsigned int flags) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 | 	pte_t *ptep, pte; | 
 | 	spinlock_t *ptl; | 
 | 	struct page *page; | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 |  | 
 | 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE); | 
 | 	if (!IS_ERR(page)) { | 
 | 		BUG_ON(flags & FOLL_GET); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	page = NULL; | 
 | 	pgd = pgd_offset(mm, address); | 
 | 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | 
 | 		goto no_page_table; | 
 |  | 
 | 	pud = pud_offset(pgd, address); | 
 | 	if (pud_none(*pud) || unlikely(pud_bad(*pud))) | 
 | 		goto no_page_table; | 
 | 	 | 
 | 	pmd = pmd_offset(pud, address); | 
 | 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) | 
 | 		goto no_page_table; | 
 |  | 
 | 	if (pmd_huge(*pmd)) { | 
 | 		BUG_ON(flags & FOLL_GET); | 
 | 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl); | 
 | 	if (!ptep) | 
 | 		goto out; | 
 |  | 
 | 	pte = *ptep; | 
 | 	if (!pte_present(pte)) | 
 | 		goto unlock; | 
 | 	if ((flags & FOLL_WRITE) && !pte_write(pte)) | 
 | 		goto unlock; | 
 | 	page = vm_normal_page(vma, address, pte); | 
 | 	if (unlikely(!page)) | 
 | 		goto unlock; | 
 |  | 
 | 	if (flags & FOLL_GET) | 
 | 		get_page(page); | 
 | 	if (flags & FOLL_TOUCH) { | 
 | 		if ((flags & FOLL_WRITE) && | 
 | 		    !pte_dirty(pte) && !PageDirty(page)) | 
 | 			set_page_dirty(page); | 
 | 		mark_page_accessed(page); | 
 | 	} | 
 | unlock: | 
 | 	pte_unmap_unlock(ptep, ptl); | 
 | out: | 
 | 	return page; | 
 |  | 
 | no_page_table: | 
 | 	/* | 
 | 	 * When core dumping an enormous anonymous area that nobody | 
 | 	 * has touched so far, we don't want to allocate page tables. | 
 | 	 */ | 
 | 	if (flags & FOLL_ANON) { | 
 | 		page = ZERO_PAGE(address); | 
 | 		if (flags & FOLL_GET) | 
 | 			get_page(page); | 
 | 		BUG_ON(flags & FOLL_WRITE); | 
 | 	} | 
 | 	return page; | 
 | } | 
 |  | 
 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | 
 | 		unsigned long start, int len, int write, int force, | 
 | 		struct page **pages, struct vm_area_struct **vmas) | 
 | { | 
 | 	int i; | 
 | 	unsigned int vm_flags; | 
 |  | 
 | 	/*  | 
 | 	 * Require read or write permissions. | 
 | 	 * If 'force' is set, we only require the "MAY" flags. | 
 | 	 */ | 
 | 	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); | 
 | 	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); | 
 | 	i = 0; | 
 |  | 
 | 	do { | 
 | 		struct vm_area_struct *vma; | 
 | 		unsigned int foll_flags; | 
 |  | 
 | 		vma = find_extend_vma(mm, start); | 
 | 		if (!vma && in_gate_area(tsk, start)) { | 
 | 			unsigned long pg = start & PAGE_MASK; | 
 | 			struct vm_area_struct *gate_vma = get_gate_vma(tsk); | 
 | 			pgd_t *pgd; | 
 | 			pud_t *pud; | 
 | 			pmd_t *pmd; | 
 | 			pte_t *pte; | 
 | 			if (write) /* user gate pages are read-only */ | 
 | 				return i ? : -EFAULT; | 
 | 			if (pg > TASK_SIZE) | 
 | 				pgd = pgd_offset_k(pg); | 
 | 			else | 
 | 				pgd = pgd_offset_gate(mm, pg); | 
 | 			BUG_ON(pgd_none(*pgd)); | 
 | 			pud = pud_offset(pgd, pg); | 
 | 			BUG_ON(pud_none(*pud)); | 
 | 			pmd = pmd_offset(pud, pg); | 
 | 			if (pmd_none(*pmd)) | 
 | 				return i ? : -EFAULT; | 
 | 			pte = pte_offset_map(pmd, pg); | 
 | 			if (pte_none(*pte)) { | 
 | 				pte_unmap(pte); | 
 | 				return i ? : -EFAULT; | 
 | 			} | 
 | 			if (pages) { | 
 | 				struct page *page = vm_normal_page(gate_vma, start, *pte); | 
 | 				pages[i] = page; | 
 | 				if (page) | 
 | 					get_page(page); | 
 | 			} | 
 | 			pte_unmap(pte); | 
 | 			if (vmas) | 
 | 				vmas[i] = gate_vma; | 
 | 			i++; | 
 | 			start += PAGE_SIZE; | 
 | 			len--; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP)) | 
 | 				|| !(vm_flags & vma->vm_flags)) | 
 | 			return i ? : -EFAULT; | 
 |  | 
 | 		if (is_vm_hugetlb_page(vma)) { | 
 | 			i = follow_hugetlb_page(mm, vma, pages, vmas, | 
 | 						&start, &len, i); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		foll_flags = FOLL_TOUCH; | 
 | 		if (pages) | 
 | 			foll_flags |= FOLL_GET; | 
 | 		if (!write && !(vma->vm_flags & VM_LOCKED) && | 
 | 		    (!vma->vm_ops || !vma->vm_ops->nopage)) | 
 | 			foll_flags |= FOLL_ANON; | 
 |  | 
 | 		do { | 
 | 			struct page *page; | 
 |  | 
 | 			if (write) | 
 | 				foll_flags |= FOLL_WRITE; | 
 |  | 
 | 			cond_resched(); | 
 | 			while (!(page = follow_page(vma, start, foll_flags))) { | 
 | 				int ret; | 
 | 				ret = __handle_mm_fault(mm, vma, start, | 
 | 						foll_flags & FOLL_WRITE); | 
 | 				/* | 
 | 				 * The VM_FAULT_WRITE bit tells us that do_wp_page has | 
 | 				 * broken COW when necessary, even if maybe_mkwrite | 
 | 				 * decided not to set pte_write. We can thus safely do | 
 | 				 * subsequent page lookups as if they were reads. | 
 | 				 */ | 
 | 				if (ret & VM_FAULT_WRITE) | 
 | 					foll_flags &= ~FOLL_WRITE; | 
 | 				 | 
 | 				switch (ret & ~VM_FAULT_WRITE) { | 
 | 				case VM_FAULT_MINOR: | 
 | 					tsk->min_flt++; | 
 | 					break; | 
 | 				case VM_FAULT_MAJOR: | 
 | 					tsk->maj_flt++; | 
 | 					break; | 
 | 				case VM_FAULT_SIGBUS: | 
 | 					return i ? i : -EFAULT; | 
 | 				case VM_FAULT_OOM: | 
 | 					return i ? i : -ENOMEM; | 
 | 				default: | 
 | 					BUG(); | 
 | 				} | 
 | 				cond_resched(); | 
 | 			} | 
 | 			if (pages) { | 
 | 				pages[i] = page; | 
 |  | 
 | 				flush_anon_page(page, start); | 
 | 				flush_dcache_page(page); | 
 | 			} | 
 | 			if (vmas) | 
 | 				vmas[i] = vma; | 
 | 			i++; | 
 | 			start += PAGE_SIZE; | 
 | 			len--; | 
 | 		} while (len && start < vma->vm_end); | 
 | 	} while (len); | 
 | 	return i; | 
 | } | 
 | EXPORT_SYMBOL(get_user_pages); | 
 |  | 
 | static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd, | 
 | 			unsigned long addr, unsigned long end, pgprot_t prot) | 
 | { | 
 | 	pte_t *pte; | 
 | 	spinlock_t *ptl; | 
 |  | 
 | 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); | 
 | 	if (!pte) | 
 | 		return -ENOMEM; | 
 | 	arch_enter_lazy_mmu_mode(); | 
 | 	do { | 
 | 		struct page *page = ZERO_PAGE(addr); | 
 | 		pte_t zero_pte = pte_wrprotect(mk_pte(page, prot)); | 
 | 		page_cache_get(page); | 
 | 		page_add_file_rmap(page); | 
 | 		inc_mm_counter(mm, file_rss); | 
 | 		BUG_ON(!pte_none(*pte)); | 
 | 		set_pte_at(mm, addr, pte, zero_pte); | 
 | 	} while (pte++, addr += PAGE_SIZE, addr != end); | 
 | 	arch_leave_lazy_mmu_mode(); | 
 | 	pte_unmap_unlock(pte - 1, ptl); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud, | 
 | 			unsigned long addr, unsigned long end, pgprot_t prot) | 
 | { | 
 | 	pmd_t *pmd; | 
 | 	unsigned long next; | 
 |  | 
 | 	pmd = pmd_alloc(mm, pud, addr); | 
 | 	if (!pmd) | 
 | 		return -ENOMEM; | 
 | 	do { | 
 | 		next = pmd_addr_end(addr, end); | 
 | 		if (zeromap_pte_range(mm, pmd, addr, next, prot)) | 
 | 			return -ENOMEM; | 
 | 	} while (pmd++, addr = next, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd, | 
 | 			unsigned long addr, unsigned long end, pgprot_t prot) | 
 | { | 
 | 	pud_t *pud; | 
 | 	unsigned long next; | 
 |  | 
 | 	pud = pud_alloc(mm, pgd, addr); | 
 | 	if (!pud) | 
 | 		return -ENOMEM; | 
 | 	do { | 
 | 		next = pud_addr_end(addr, end); | 
 | 		if (zeromap_pmd_range(mm, pud, addr, next, prot)) | 
 | 			return -ENOMEM; | 
 | 	} while (pud++, addr = next, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int zeromap_page_range(struct vm_area_struct *vma, | 
 | 			unsigned long addr, unsigned long size, pgprot_t prot) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	unsigned long next; | 
 | 	unsigned long end = addr + size; | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	int err; | 
 |  | 
 | 	BUG_ON(addr >= end); | 
 | 	pgd = pgd_offset(mm, addr); | 
 | 	flush_cache_range(vma, addr, end); | 
 | 	do { | 
 | 		next = pgd_addr_end(addr, end); | 
 | 		err = zeromap_pud_range(mm, pgd, addr, next, prot); | 
 | 		if (err) | 
 | 			break; | 
 | 	} while (pgd++, addr = next, addr != end); | 
 | 	return err; | 
 | } | 
 |  | 
 | pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl) | 
 | { | 
 | 	pgd_t * pgd = pgd_offset(mm, addr); | 
 | 	pud_t * pud = pud_alloc(mm, pgd, addr); | 
 | 	if (pud) { | 
 | 		pmd_t * pmd = pmd_alloc(mm, pud, addr); | 
 | 		if (pmd) | 
 | 			return pte_alloc_map_lock(mm, pmd, addr, ptl); | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * This is the old fallback for page remapping. | 
 |  * | 
 |  * For historical reasons, it only allows reserved pages. Only | 
 |  * old drivers should use this, and they needed to mark their | 
 |  * pages reserved for the old functions anyway. | 
 |  */ | 
 | static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot) | 
 | { | 
 | 	int retval; | 
 | 	pte_t *pte; | 
 | 	spinlock_t *ptl;   | 
 |  | 
 | 	retval = -EINVAL; | 
 | 	if (PageAnon(page)) | 
 | 		goto out; | 
 | 	retval = -ENOMEM; | 
 | 	flush_dcache_page(page); | 
 | 	pte = get_locked_pte(mm, addr, &ptl); | 
 | 	if (!pte) | 
 | 		goto out; | 
 | 	retval = -EBUSY; | 
 | 	if (!pte_none(*pte)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* Ok, finally just insert the thing.. */ | 
 | 	get_page(page); | 
 | 	inc_mm_counter(mm, file_rss); | 
 | 	page_add_file_rmap(page); | 
 | 	set_pte_at(mm, addr, pte, mk_pte(page, prot)); | 
 |  | 
 | 	retval = 0; | 
 | out_unlock: | 
 | 	pte_unmap_unlock(pte, ptl); | 
 | out: | 
 | 	return retval; | 
 | } | 
 |  | 
 | /** | 
 |  * vm_insert_page - insert single page into user vma | 
 |  * @vma: user vma to map to | 
 |  * @addr: target user address of this page | 
 |  * @page: source kernel page | 
 |  * | 
 |  * This allows drivers to insert individual pages they've allocated | 
 |  * into a user vma. | 
 |  * | 
 |  * The page has to be a nice clean _individual_ kernel allocation. | 
 |  * If you allocate a compound page, you need to have marked it as | 
 |  * such (__GFP_COMP), or manually just split the page up yourself | 
 |  * (see split_page()). | 
 |  * | 
 |  * NOTE! Traditionally this was done with "remap_pfn_range()" which | 
 |  * took an arbitrary page protection parameter. This doesn't allow | 
 |  * that. Your vma protection will have to be set up correctly, which | 
 |  * means that if you want a shared writable mapping, you'd better | 
 |  * ask for a shared writable mapping! | 
 |  * | 
 |  * The page does not need to be reserved. | 
 |  */ | 
 | int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page) | 
 | { | 
 | 	if (addr < vma->vm_start || addr >= vma->vm_end) | 
 | 		return -EFAULT; | 
 | 	if (!page_count(page)) | 
 | 		return -EINVAL; | 
 | 	vma->vm_flags |= VM_INSERTPAGE; | 
 | 	return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot); | 
 | } | 
 | EXPORT_SYMBOL(vm_insert_page); | 
 |  | 
 | /* | 
 |  * maps a range of physical memory into the requested pages. the old | 
 |  * mappings are removed. any references to nonexistent pages results | 
 |  * in null mappings (currently treated as "copy-on-access") | 
 |  */ | 
 | static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, | 
 | 			unsigned long addr, unsigned long end, | 
 | 			unsigned long pfn, pgprot_t prot) | 
 | { | 
 | 	pte_t *pte; | 
 | 	spinlock_t *ptl; | 
 |  | 
 | 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); | 
 | 	if (!pte) | 
 | 		return -ENOMEM; | 
 | 	arch_enter_lazy_mmu_mode(); | 
 | 	do { | 
 | 		BUG_ON(!pte_none(*pte)); | 
 | 		set_pte_at(mm, addr, pte, pfn_pte(pfn, prot)); | 
 | 		pfn++; | 
 | 	} while (pte++, addr += PAGE_SIZE, addr != end); | 
 | 	arch_leave_lazy_mmu_mode(); | 
 | 	pte_unmap_unlock(pte - 1, ptl); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, | 
 | 			unsigned long addr, unsigned long end, | 
 | 			unsigned long pfn, pgprot_t prot) | 
 | { | 
 | 	pmd_t *pmd; | 
 | 	unsigned long next; | 
 |  | 
 | 	pfn -= addr >> PAGE_SHIFT; | 
 | 	pmd = pmd_alloc(mm, pud, addr); | 
 | 	if (!pmd) | 
 | 		return -ENOMEM; | 
 | 	do { | 
 | 		next = pmd_addr_end(addr, end); | 
 | 		if (remap_pte_range(mm, pmd, addr, next, | 
 | 				pfn + (addr >> PAGE_SHIFT), prot)) | 
 | 			return -ENOMEM; | 
 | 	} while (pmd++, addr = next, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, | 
 | 			unsigned long addr, unsigned long end, | 
 | 			unsigned long pfn, pgprot_t prot) | 
 | { | 
 | 	pud_t *pud; | 
 | 	unsigned long next; | 
 |  | 
 | 	pfn -= addr >> PAGE_SHIFT; | 
 | 	pud = pud_alloc(mm, pgd, addr); | 
 | 	if (!pud) | 
 | 		return -ENOMEM; | 
 | 	do { | 
 | 		next = pud_addr_end(addr, end); | 
 | 		if (remap_pmd_range(mm, pud, addr, next, | 
 | 				pfn + (addr >> PAGE_SHIFT), prot)) | 
 | 			return -ENOMEM; | 
 | 	} while (pud++, addr = next, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * remap_pfn_range - remap kernel memory to userspace | 
 |  * @vma: user vma to map to | 
 |  * @addr: target user address to start at | 
 |  * @pfn: physical address of kernel memory | 
 |  * @size: size of map area | 
 |  * @prot: page protection flags for this mapping | 
 |  * | 
 |  *  Note: this is only safe if the mm semaphore is held when called. | 
 |  */ | 
 | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, | 
 | 		    unsigned long pfn, unsigned long size, pgprot_t prot) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	unsigned long next; | 
 | 	unsigned long end = addr + PAGE_ALIGN(size); | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	int err; | 
 |  | 
 | 	/* | 
 | 	 * Physically remapped pages are special. Tell the | 
 | 	 * rest of the world about it: | 
 | 	 *   VM_IO tells people not to look at these pages | 
 | 	 *	(accesses can have side effects). | 
 | 	 *   VM_RESERVED is specified all over the place, because | 
 | 	 *	in 2.4 it kept swapout's vma scan off this vma; but | 
 | 	 *	in 2.6 the LRU scan won't even find its pages, so this | 
 | 	 *	flag means no more than count its pages in reserved_vm, | 
 | 	 * 	and omit it from core dump, even when VM_IO turned off. | 
 | 	 *   VM_PFNMAP tells the core MM that the base pages are just | 
 | 	 *	raw PFN mappings, and do not have a "struct page" associated | 
 | 	 *	with them. | 
 | 	 * | 
 | 	 * There's a horrible special case to handle copy-on-write | 
 | 	 * behaviour that some programs depend on. We mark the "original" | 
 | 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff". | 
 | 	 */ | 
 | 	if (is_cow_mapping(vma->vm_flags)) { | 
 | 		if (addr != vma->vm_start || end != vma->vm_end) | 
 | 			return -EINVAL; | 
 | 		vma->vm_pgoff = pfn; | 
 | 	} | 
 |  | 
 | 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; | 
 |  | 
 | 	BUG_ON(addr >= end); | 
 | 	pfn -= addr >> PAGE_SHIFT; | 
 | 	pgd = pgd_offset(mm, addr); | 
 | 	flush_cache_range(vma, addr, end); | 
 | 	do { | 
 | 		next = pgd_addr_end(addr, end); | 
 | 		err = remap_pud_range(mm, pgd, addr, next, | 
 | 				pfn + (addr >> PAGE_SHIFT), prot); | 
 | 		if (err) | 
 | 			break; | 
 | 	} while (pgd++, addr = next, addr != end); | 
 | 	return err; | 
 | } | 
 | EXPORT_SYMBOL(remap_pfn_range); | 
 |  | 
 | /* | 
 |  * handle_pte_fault chooses page fault handler according to an entry | 
 |  * which was read non-atomically.  Before making any commitment, on | 
 |  * those architectures or configurations (e.g. i386 with PAE) which | 
 |  * might give a mix of unmatched parts, do_swap_page and do_file_page | 
 |  * must check under lock before unmapping the pte and proceeding | 
 |  * (but do_wp_page is only called after already making such a check; | 
 |  * and do_anonymous_page and do_no_page can safely check later on). | 
 |  */ | 
 | static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, | 
 | 				pte_t *page_table, pte_t orig_pte) | 
 | { | 
 | 	int same = 1; | 
 | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) | 
 | 	if (sizeof(pte_t) > sizeof(unsigned long)) { | 
 | 		spinlock_t *ptl = pte_lockptr(mm, pmd); | 
 | 		spin_lock(ptl); | 
 | 		same = pte_same(*page_table, orig_pte); | 
 | 		spin_unlock(ptl); | 
 | 	} | 
 | #endif | 
 | 	pte_unmap(page_table); | 
 | 	return same; | 
 | } | 
 |  | 
 | /* | 
 |  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when | 
 |  * servicing faults for write access.  In the normal case, do always want | 
 |  * pte_mkwrite.  But get_user_pages can cause write faults for mappings | 
 |  * that do not have writing enabled, when used by access_process_vm. | 
 |  */ | 
 | static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) | 
 | { | 
 | 	if (likely(vma->vm_flags & VM_WRITE)) | 
 | 		pte = pte_mkwrite(pte); | 
 | 	return pte; | 
 | } | 
 |  | 
 | static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va) | 
 | { | 
 | 	/* | 
 | 	 * If the source page was a PFN mapping, we don't have | 
 | 	 * a "struct page" for it. We do a best-effort copy by | 
 | 	 * just copying from the original user address. If that | 
 | 	 * fails, we just zero-fill it. Live with it. | 
 | 	 */ | 
 | 	if (unlikely(!src)) { | 
 | 		void *kaddr = kmap_atomic(dst, KM_USER0); | 
 | 		void __user *uaddr = (void __user *)(va & PAGE_MASK); | 
 |  | 
 | 		/* | 
 | 		 * This really shouldn't fail, because the page is there | 
 | 		 * in the page tables. But it might just be unreadable, | 
 | 		 * in which case we just give up and fill the result with | 
 | 		 * zeroes. | 
 | 		 */ | 
 | 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) | 
 | 			memset(kaddr, 0, PAGE_SIZE); | 
 | 		kunmap_atomic(kaddr, KM_USER0); | 
 | 		flush_dcache_page(dst); | 
 | 		return; | 
 | 		 | 
 | 	} | 
 | 	copy_user_highpage(dst, src, va); | 
 | } | 
 |  | 
 | /* | 
 |  * This routine handles present pages, when users try to write | 
 |  * to a shared page. It is done by copying the page to a new address | 
 |  * and decrementing the shared-page counter for the old page. | 
 |  * | 
 |  * Note that this routine assumes that the protection checks have been | 
 |  * done by the caller (the low-level page fault routine in most cases). | 
 |  * Thus we can safely just mark it writable once we've done any necessary | 
 |  * COW. | 
 |  * | 
 |  * We also mark the page dirty at this point even though the page will | 
 |  * change only once the write actually happens. This avoids a few races, | 
 |  * and potentially makes it more efficient. | 
 |  * | 
 |  * We enter with non-exclusive mmap_sem (to exclude vma changes, | 
 |  * but allow concurrent faults), with pte both mapped and locked. | 
 |  * We return with mmap_sem still held, but pte unmapped and unlocked. | 
 |  */ | 
 | static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 		unsigned long address, pte_t *page_table, pmd_t *pmd, | 
 | 		spinlock_t *ptl, pte_t orig_pte) | 
 | { | 
 | 	struct page *old_page, *new_page; | 
 | 	pte_t entry; | 
 | 	int reuse = 0, ret = VM_FAULT_MINOR; | 
 | 	struct page *dirty_page = NULL; | 
 |  | 
 | 	old_page = vm_normal_page(vma, address, orig_pte); | 
 | 	if (!old_page) | 
 | 		goto gotten; | 
 |  | 
 | 	/* | 
 | 	 * Take out anonymous pages first, anonymous shared vmas are | 
 | 	 * not dirty accountable. | 
 | 	 */ | 
 | 	if (PageAnon(old_page)) { | 
 | 		if (!TestSetPageLocked(old_page)) { | 
 | 			reuse = can_share_swap_page(old_page); | 
 | 			unlock_page(old_page); | 
 | 		} | 
 | 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == | 
 | 					(VM_WRITE|VM_SHARED))) { | 
 | 		/* | 
 | 		 * Only catch write-faults on shared writable pages, | 
 | 		 * read-only shared pages can get COWed by | 
 | 		 * get_user_pages(.write=1, .force=1). | 
 | 		 */ | 
 | 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) { | 
 | 			/* | 
 | 			 * Notify the address space that the page is about to | 
 | 			 * become writable so that it can prohibit this or wait | 
 | 			 * for the page to get into an appropriate state. | 
 | 			 * | 
 | 			 * We do this without the lock held, so that it can | 
 | 			 * sleep if it needs to. | 
 | 			 */ | 
 | 			page_cache_get(old_page); | 
 | 			pte_unmap_unlock(page_table, ptl); | 
 |  | 
 | 			if (vma->vm_ops->page_mkwrite(vma, old_page) < 0) | 
 | 				goto unwritable_page; | 
 |  | 
 | 			page_cache_release(old_page); | 
 |  | 
 | 			/* | 
 | 			 * Since we dropped the lock we need to revalidate | 
 | 			 * the PTE as someone else may have changed it.  If | 
 | 			 * they did, we just return, as we can count on the | 
 | 			 * MMU to tell us if they didn't also make it writable. | 
 | 			 */ | 
 | 			page_table = pte_offset_map_lock(mm, pmd, address, | 
 | 							 &ptl); | 
 | 			if (!pte_same(*page_table, orig_pte)) | 
 | 				goto unlock; | 
 | 		} | 
 | 		dirty_page = old_page; | 
 | 		get_page(dirty_page); | 
 | 		reuse = 1; | 
 | 	} | 
 |  | 
 | 	if (reuse) { | 
 | 		flush_cache_page(vma, address, pte_pfn(orig_pte)); | 
 | 		entry = pte_mkyoung(orig_pte); | 
 | 		entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 
 | 		ptep_set_access_flags(vma, address, page_table, entry, 1); | 
 | 		update_mmu_cache(vma, address, entry); | 
 | 		lazy_mmu_prot_update(entry); | 
 | 		ret |= VM_FAULT_WRITE; | 
 | 		goto unlock; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Ok, we need to copy. Oh, well.. | 
 | 	 */ | 
 | 	page_cache_get(old_page); | 
 | gotten: | 
 | 	pte_unmap_unlock(page_table, ptl); | 
 |  | 
 | 	if (unlikely(anon_vma_prepare(vma))) | 
 | 		goto oom; | 
 | 	if (old_page == ZERO_PAGE(address)) { | 
 | 		new_page = alloc_zeroed_user_highpage(vma, address); | 
 | 		if (!new_page) | 
 | 			goto oom; | 
 | 	} else { | 
 | 		new_page = alloc_page_vma(GFP_HIGHUSER, vma, address); | 
 | 		if (!new_page) | 
 | 			goto oom; | 
 | 		cow_user_page(new_page, old_page, address); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Re-check the pte - we dropped the lock | 
 | 	 */ | 
 | 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 
 | 	if (likely(pte_same(*page_table, orig_pte))) { | 
 | 		if (old_page) { | 
 | 			page_remove_rmap(old_page); | 
 | 			if (!PageAnon(old_page)) { | 
 | 				dec_mm_counter(mm, file_rss); | 
 | 				inc_mm_counter(mm, anon_rss); | 
 | 			} | 
 | 		} else | 
 | 			inc_mm_counter(mm, anon_rss); | 
 | 		flush_cache_page(vma, address, pte_pfn(orig_pte)); | 
 | 		entry = mk_pte(new_page, vma->vm_page_prot); | 
 | 		entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 
 | 		lazy_mmu_prot_update(entry); | 
 | 		/* | 
 | 		 * Clear the pte entry and flush it first, before updating the | 
 | 		 * pte with the new entry. This will avoid a race condition | 
 | 		 * seen in the presence of one thread doing SMC and another | 
 | 		 * thread doing COW. | 
 | 		 */ | 
 | 		ptep_clear_flush(vma, address, page_table); | 
 | 		set_pte_at(mm, address, page_table, entry); | 
 | 		update_mmu_cache(vma, address, entry); | 
 | 		lru_cache_add_active(new_page); | 
 | 		page_add_new_anon_rmap(new_page, vma, address); | 
 |  | 
 | 		/* Free the old page.. */ | 
 | 		new_page = old_page; | 
 | 		ret |= VM_FAULT_WRITE; | 
 | 	} | 
 | 	if (new_page) | 
 | 		page_cache_release(new_page); | 
 | 	if (old_page) | 
 | 		page_cache_release(old_page); | 
 | unlock: | 
 | 	pte_unmap_unlock(page_table, ptl); | 
 | 	if (dirty_page) { | 
 | 		set_page_dirty_balance(dirty_page); | 
 | 		put_page(dirty_page); | 
 | 	} | 
 | 	return ret; | 
 | oom: | 
 | 	if (old_page) | 
 | 		page_cache_release(old_page); | 
 | 	return VM_FAULT_OOM; | 
 |  | 
 | unwritable_page: | 
 | 	page_cache_release(old_page); | 
 | 	return VM_FAULT_SIGBUS; | 
 | } | 
 |  | 
 | /* | 
 |  * Helper functions for unmap_mapping_range(). | 
 |  * | 
 |  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ | 
 |  * | 
 |  * We have to restart searching the prio_tree whenever we drop the lock, | 
 |  * since the iterator is only valid while the lock is held, and anyway | 
 |  * a later vma might be split and reinserted earlier while lock dropped. | 
 |  * | 
 |  * The list of nonlinear vmas could be handled more efficiently, using | 
 |  * a placeholder, but handle it in the same way until a need is shown. | 
 |  * It is important to search the prio_tree before nonlinear list: a vma | 
 |  * may become nonlinear and be shifted from prio_tree to nonlinear list | 
 |  * while the lock is dropped; but never shifted from list to prio_tree. | 
 |  * | 
 |  * In order to make forward progress despite restarting the search, | 
 |  * vm_truncate_count is used to mark a vma as now dealt with, so we can | 
 |  * quickly skip it next time around.  Since the prio_tree search only | 
 |  * shows us those vmas affected by unmapping the range in question, we | 
 |  * can't efficiently keep all vmas in step with mapping->truncate_count: | 
 |  * so instead reset them all whenever it wraps back to 0 (then go to 1). | 
 |  * mapping->truncate_count and vma->vm_truncate_count are protected by | 
 |  * i_mmap_lock. | 
 |  * | 
 |  * In order to make forward progress despite repeatedly restarting some | 
 |  * large vma, note the restart_addr from unmap_vmas when it breaks out: | 
 |  * and restart from that address when we reach that vma again.  It might | 
 |  * have been split or merged, shrunk or extended, but never shifted: so | 
 |  * restart_addr remains valid so long as it remains in the vma's range. | 
 |  * unmap_mapping_range forces truncate_count to leap over page-aligned | 
 |  * values so we can save vma's restart_addr in its truncate_count field. | 
 |  */ | 
 | #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) | 
 |  | 
 | static void reset_vma_truncate_counts(struct address_space *mapping) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 | 	struct prio_tree_iter iter; | 
 |  | 
 | 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) | 
 | 		vma->vm_truncate_count = 0; | 
 | 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) | 
 | 		vma->vm_truncate_count = 0; | 
 | } | 
 |  | 
 | static int unmap_mapping_range_vma(struct vm_area_struct *vma, | 
 | 		unsigned long start_addr, unsigned long end_addr, | 
 | 		struct zap_details *details) | 
 | { | 
 | 	unsigned long restart_addr; | 
 | 	int need_break; | 
 |  | 
 | again: | 
 | 	restart_addr = vma->vm_truncate_count; | 
 | 	if (is_restart_addr(restart_addr) && start_addr < restart_addr) { | 
 | 		start_addr = restart_addr; | 
 | 		if (start_addr >= end_addr) { | 
 | 			/* Top of vma has been split off since last time */ | 
 | 			vma->vm_truncate_count = details->truncate_count; | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	restart_addr = zap_page_range(vma, start_addr, | 
 | 					end_addr - start_addr, details); | 
 | 	need_break = need_resched() || | 
 | 			need_lockbreak(details->i_mmap_lock); | 
 |  | 
 | 	if (restart_addr >= end_addr) { | 
 | 		/* We have now completed this vma: mark it so */ | 
 | 		vma->vm_truncate_count = details->truncate_count; | 
 | 		if (!need_break) | 
 | 			return 0; | 
 | 	} else { | 
 | 		/* Note restart_addr in vma's truncate_count field */ | 
 | 		vma->vm_truncate_count = restart_addr; | 
 | 		if (!need_break) | 
 | 			goto again; | 
 | 	} | 
 |  | 
 | 	spin_unlock(details->i_mmap_lock); | 
 | 	cond_resched(); | 
 | 	spin_lock(details->i_mmap_lock); | 
 | 	return -EINTR; | 
 | } | 
 |  | 
 | static inline void unmap_mapping_range_tree(struct prio_tree_root *root, | 
 | 					    struct zap_details *details) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 | 	struct prio_tree_iter iter; | 
 | 	pgoff_t vba, vea, zba, zea; | 
 |  | 
 | restart: | 
 | 	vma_prio_tree_foreach(vma, &iter, root, | 
 | 			details->first_index, details->last_index) { | 
 | 		/* Skip quickly over those we have already dealt with */ | 
 | 		if (vma->vm_truncate_count == details->truncate_count) | 
 | 			continue; | 
 |  | 
 | 		vba = vma->vm_pgoff; | 
 | 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; | 
 | 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ | 
 | 		zba = details->first_index; | 
 | 		if (zba < vba) | 
 | 			zba = vba; | 
 | 		zea = details->last_index; | 
 | 		if (zea > vea) | 
 | 			zea = vea; | 
 |  | 
 | 		if (unmap_mapping_range_vma(vma, | 
 | 			((zba - vba) << PAGE_SHIFT) + vma->vm_start, | 
 | 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, | 
 | 				details) < 0) | 
 | 			goto restart; | 
 | 	} | 
 | } | 
 |  | 
 | static inline void unmap_mapping_range_list(struct list_head *head, | 
 | 					    struct zap_details *details) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 |  | 
 | 	/* | 
 | 	 * In nonlinear VMAs there is no correspondence between virtual address | 
 | 	 * offset and file offset.  So we must perform an exhaustive search | 
 | 	 * across *all* the pages in each nonlinear VMA, not just the pages | 
 | 	 * whose virtual address lies outside the file truncation point. | 
 | 	 */ | 
 | restart: | 
 | 	list_for_each_entry(vma, head, shared.vm_set.list) { | 
 | 		/* Skip quickly over those we have already dealt with */ | 
 | 		if (vma->vm_truncate_count == details->truncate_count) | 
 | 			continue; | 
 | 		details->nonlinear_vma = vma; | 
 | 		if (unmap_mapping_range_vma(vma, vma->vm_start, | 
 | 					vma->vm_end, details) < 0) | 
 | 			goto restart; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * unmap_mapping_range - unmap the portion of all mmaps | 
 |  * in the specified address_space corresponding to the specified | 
 |  * page range in the underlying file. | 
 |  * @mapping: the address space containing mmaps to be unmapped. | 
 |  * @holebegin: byte in first page to unmap, relative to the start of | 
 |  * the underlying file.  This will be rounded down to a PAGE_SIZE | 
 |  * boundary.  Note that this is different from vmtruncate(), which | 
 |  * must keep the partial page.  In contrast, we must get rid of | 
 |  * partial pages. | 
 |  * @holelen: size of prospective hole in bytes.  This will be rounded | 
 |  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the | 
 |  * end of the file. | 
 |  * @even_cows: 1 when truncating a file, unmap even private COWed pages; | 
 |  * but 0 when invalidating pagecache, don't throw away private data. | 
 |  */ | 
 | void unmap_mapping_range(struct address_space *mapping, | 
 | 		loff_t const holebegin, loff_t const holelen, int even_cows) | 
 | { | 
 | 	struct zap_details details; | 
 | 	pgoff_t hba = holebegin >> PAGE_SHIFT; | 
 | 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
 |  | 
 | 	/* Check for overflow. */ | 
 | 	if (sizeof(holelen) > sizeof(hlen)) { | 
 | 		long long holeend = | 
 | 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
 | 		if (holeend & ~(long long)ULONG_MAX) | 
 | 			hlen = ULONG_MAX - hba + 1; | 
 | 	} | 
 |  | 
 | 	details.check_mapping = even_cows? NULL: mapping; | 
 | 	details.nonlinear_vma = NULL; | 
 | 	details.first_index = hba; | 
 | 	details.last_index = hba + hlen - 1; | 
 | 	if (details.last_index < details.first_index) | 
 | 		details.last_index = ULONG_MAX; | 
 | 	details.i_mmap_lock = &mapping->i_mmap_lock; | 
 |  | 
 | 	spin_lock(&mapping->i_mmap_lock); | 
 |  | 
 | 	/* serialize i_size write against truncate_count write */ | 
 | 	smp_wmb(); | 
 | 	/* Protect against page faults, and endless unmapping loops */ | 
 | 	mapping->truncate_count++; | 
 | 	/* | 
 | 	 * For archs where spin_lock has inclusive semantics like ia64 | 
 | 	 * this smp_mb() will prevent to read pagetable contents | 
 | 	 * before the truncate_count increment is visible to | 
 | 	 * other cpus. | 
 | 	 */ | 
 | 	smp_mb(); | 
 | 	if (unlikely(is_restart_addr(mapping->truncate_count))) { | 
 | 		if (mapping->truncate_count == 0) | 
 | 			reset_vma_truncate_counts(mapping); | 
 | 		mapping->truncate_count++; | 
 | 	} | 
 | 	details.truncate_count = mapping->truncate_count; | 
 |  | 
 | 	if (unlikely(!prio_tree_empty(&mapping->i_mmap))) | 
 | 		unmap_mapping_range_tree(&mapping->i_mmap, &details); | 
 | 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) | 
 | 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); | 
 | 	spin_unlock(&mapping->i_mmap_lock); | 
 | } | 
 | EXPORT_SYMBOL(unmap_mapping_range); | 
 |  | 
 | /** | 
 |  * vmtruncate - unmap mappings "freed" by truncate() syscall | 
 |  * @inode: inode of the file used | 
 |  * @offset: file offset to start truncating | 
 |  * | 
 |  * NOTE! We have to be ready to update the memory sharing | 
 |  * between the file and the memory map for a potential last | 
 |  * incomplete page.  Ugly, but necessary. | 
 |  */ | 
 | int vmtruncate(struct inode * inode, loff_t offset) | 
 | { | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 | 	unsigned long limit; | 
 |  | 
 | 	if (inode->i_size < offset) | 
 | 		goto do_expand; | 
 | 	/* | 
 | 	 * truncation of in-use swapfiles is disallowed - it would cause | 
 | 	 * subsequent swapout to scribble on the now-freed blocks. | 
 | 	 */ | 
 | 	if (IS_SWAPFILE(inode)) | 
 | 		goto out_busy; | 
 | 	i_size_write(inode, offset); | 
 | 	unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); | 
 | 	truncate_inode_pages(mapping, offset); | 
 | 	goto out_truncate; | 
 |  | 
 | do_expand: | 
 | 	limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; | 
 | 	if (limit != RLIM_INFINITY && offset > limit) | 
 | 		goto out_sig; | 
 | 	if (offset > inode->i_sb->s_maxbytes) | 
 | 		goto out_big; | 
 | 	i_size_write(inode, offset); | 
 |  | 
 | out_truncate: | 
 | 	if (inode->i_op && inode->i_op->truncate) | 
 | 		inode->i_op->truncate(inode); | 
 | 	return 0; | 
 | out_sig: | 
 | 	send_sig(SIGXFSZ, current, 0); | 
 | out_big: | 
 | 	return -EFBIG; | 
 | out_busy: | 
 | 	return -ETXTBSY; | 
 | } | 
 | EXPORT_SYMBOL(vmtruncate); | 
 |  | 
 | int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) | 
 | { | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 |  | 
 | 	/* | 
 | 	 * If the underlying filesystem is not going to provide | 
 | 	 * a way to truncate a range of blocks (punch a hole) - | 
 | 	 * we should return failure right now. | 
 | 	 */ | 
 | 	if (!inode->i_op || !inode->i_op->truncate_range) | 
 | 		return -ENOSYS; | 
 |  | 
 | 	mutex_lock(&inode->i_mutex); | 
 | 	down_write(&inode->i_alloc_sem); | 
 | 	unmap_mapping_range(mapping, offset, (end - offset), 1); | 
 | 	truncate_inode_pages_range(mapping, offset, end); | 
 | 	inode->i_op->truncate_range(inode, offset, end); | 
 | 	up_write(&inode->i_alloc_sem); | 
 | 	mutex_unlock(&inode->i_mutex); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_UNUSED_SYMBOL(vmtruncate_range);  /*  June 2006  */ | 
 |  | 
 | /** | 
 |  * swapin_readahead - swap in pages in hope we need them soon | 
 |  * @entry: swap entry of this memory | 
 |  * @addr: address to start | 
 |  * @vma: user vma this addresses belong to | 
 |  * | 
 |  * Primitive swap readahead code. We simply read an aligned block of | 
 |  * (1 << page_cluster) entries in the swap area. This method is chosen | 
 |  * because it doesn't cost us any seek time.  We also make sure to queue | 
 |  * the 'original' request together with the readahead ones... | 
 |  * | 
 |  * This has been extended to use the NUMA policies from the mm triggering | 
 |  * the readahead. | 
 |  * | 
 |  * Caller must hold down_read on the vma->vm_mm if vma is not NULL. | 
 |  */ | 
 | void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma) | 
 | { | 
 | #ifdef CONFIG_NUMA | 
 | 	struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL; | 
 | #endif | 
 | 	int i, num; | 
 | 	struct page *new_page; | 
 | 	unsigned long offset; | 
 |  | 
 | 	/* | 
 | 	 * Get the number of handles we should do readahead io to. | 
 | 	 */ | 
 | 	num = valid_swaphandles(entry, &offset); | 
 | 	for (i = 0; i < num; offset++, i++) { | 
 | 		/* Ok, do the async read-ahead now */ | 
 | 		new_page = read_swap_cache_async(swp_entry(swp_type(entry), | 
 | 							   offset), vma, addr); | 
 | 		if (!new_page) | 
 | 			break; | 
 | 		page_cache_release(new_page); | 
 | #ifdef CONFIG_NUMA | 
 | 		/* | 
 | 		 * Find the next applicable VMA for the NUMA policy. | 
 | 		 */ | 
 | 		addr += PAGE_SIZE; | 
 | 		if (addr == 0) | 
 | 			vma = NULL; | 
 | 		if (vma) { | 
 | 			if (addr >= vma->vm_end) { | 
 | 				vma = next_vma; | 
 | 				next_vma = vma ? vma->vm_next : NULL; | 
 | 			} | 
 | 			if (vma && addr < vma->vm_start) | 
 | 				vma = NULL; | 
 | 		} else { | 
 | 			if (next_vma && addr >= next_vma->vm_start) { | 
 | 				vma = next_vma; | 
 | 				next_vma = vma->vm_next; | 
 | 			} | 
 | 		} | 
 | #endif | 
 | 	} | 
 | 	lru_add_drain();	/* Push any new pages onto the LRU now */ | 
 | } | 
 |  | 
 | /* | 
 |  * We enter with non-exclusive mmap_sem (to exclude vma changes, | 
 |  * but allow concurrent faults), and pte mapped but not yet locked. | 
 |  * We return with mmap_sem still held, but pte unmapped and unlocked. | 
 |  */ | 
 | static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 		unsigned long address, pte_t *page_table, pmd_t *pmd, | 
 | 		int write_access, pte_t orig_pte) | 
 | { | 
 | 	spinlock_t *ptl; | 
 | 	struct page *page; | 
 | 	swp_entry_t entry; | 
 | 	pte_t pte; | 
 | 	int ret = VM_FAULT_MINOR; | 
 |  | 
 | 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) | 
 | 		goto out; | 
 |  | 
 | 	entry = pte_to_swp_entry(orig_pte); | 
 | 	if (is_migration_entry(entry)) { | 
 | 		migration_entry_wait(mm, pmd, address); | 
 | 		goto out; | 
 | 	} | 
 | 	delayacct_set_flag(DELAYACCT_PF_SWAPIN); | 
 | 	page = lookup_swap_cache(entry); | 
 | 	if (!page) { | 
 |  		swapin_readahead(entry, address, vma); | 
 |  		page = read_swap_cache_async(entry, vma, address); | 
 | 		if (!page) { | 
 | 			/* | 
 | 			 * Back out if somebody else faulted in this pte | 
 | 			 * while we released the pte lock. | 
 | 			 */ | 
 | 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 
 | 			if (likely(pte_same(*page_table, orig_pte))) | 
 | 				ret = VM_FAULT_OOM; | 
 | 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN); | 
 | 			goto unlock; | 
 | 		} | 
 |  | 
 | 		/* Had to read the page from swap area: Major fault */ | 
 | 		ret = VM_FAULT_MAJOR; | 
 | 		count_vm_event(PGMAJFAULT); | 
 | 		grab_swap_token(); | 
 | 	} | 
 |  | 
 | 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN); | 
 | 	mark_page_accessed(page); | 
 | 	lock_page(page); | 
 |  | 
 | 	/* | 
 | 	 * Back out if somebody else already faulted in this pte. | 
 | 	 */ | 
 | 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 
 | 	if (unlikely(!pte_same(*page_table, orig_pte))) | 
 | 		goto out_nomap; | 
 |  | 
 | 	if (unlikely(!PageUptodate(page))) { | 
 | 		ret = VM_FAULT_SIGBUS; | 
 | 		goto out_nomap; | 
 | 	} | 
 |  | 
 | 	/* The page isn't present yet, go ahead with the fault. */ | 
 |  | 
 | 	inc_mm_counter(mm, anon_rss); | 
 | 	pte = mk_pte(page, vma->vm_page_prot); | 
 | 	if (write_access && can_share_swap_page(page)) { | 
 | 		pte = maybe_mkwrite(pte_mkdirty(pte), vma); | 
 | 		write_access = 0; | 
 | 	} | 
 |  | 
 | 	flush_icache_page(vma, page); | 
 | 	set_pte_at(mm, address, page_table, pte); | 
 | 	page_add_anon_rmap(page, vma, address); | 
 |  | 
 | 	swap_free(entry); | 
 | 	if (vm_swap_full()) | 
 | 		remove_exclusive_swap_page(page); | 
 | 	unlock_page(page); | 
 |  | 
 | 	if (write_access) { | 
 | 		if (do_wp_page(mm, vma, address, | 
 | 				page_table, pmd, ptl, pte) == VM_FAULT_OOM) | 
 | 			ret = VM_FAULT_OOM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* No need to invalidate - it was non-present before */ | 
 | 	update_mmu_cache(vma, address, pte); | 
 | 	lazy_mmu_prot_update(pte); | 
 | unlock: | 
 | 	pte_unmap_unlock(page_table, ptl); | 
 | out: | 
 | 	return ret; | 
 | out_nomap: | 
 | 	pte_unmap_unlock(page_table, ptl); | 
 | 	unlock_page(page); | 
 | 	page_cache_release(page); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * We enter with non-exclusive mmap_sem (to exclude vma changes, | 
 |  * but allow concurrent faults), and pte mapped but not yet locked. | 
 |  * We return with mmap_sem still held, but pte unmapped and unlocked. | 
 |  */ | 
 | static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 		unsigned long address, pte_t *page_table, pmd_t *pmd, | 
 | 		int write_access) | 
 | { | 
 | 	struct page *page; | 
 | 	spinlock_t *ptl; | 
 | 	pte_t entry; | 
 |  | 
 | 	if (write_access) { | 
 | 		/* Allocate our own private page. */ | 
 | 		pte_unmap(page_table); | 
 |  | 
 | 		if (unlikely(anon_vma_prepare(vma))) | 
 | 			goto oom; | 
 | 		page = alloc_zeroed_user_highpage(vma, address); | 
 | 		if (!page) | 
 | 			goto oom; | 
 |  | 
 | 		entry = mk_pte(page, vma->vm_page_prot); | 
 | 		entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 
 |  | 
 | 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 
 | 		if (!pte_none(*page_table)) | 
 | 			goto release; | 
 | 		inc_mm_counter(mm, anon_rss); | 
 | 		lru_cache_add_active(page); | 
 | 		page_add_new_anon_rmap(page, vma, address); | 
 | 	} else { | 
 | 		/* Map the ZERO_PAGE - vm_page_prot is readonly */ | 
 | 		page = ZERO_PAGE(address); | 
 | 		page_cache_get(page); | 
 | 		entry = mk_pte(page, vma->vm_page_prot); | 
 |  | 
 | 		ptl = pte_lockptr(mm, pmd); | 
 | 		spin_lock(ptl); | 
 | 		if (!pte_none(*page_table)) | 
 | 			goto release; | 
 | 		inc_mm_counter(mm, file_rss); | 
 | 		page_add_file_rmap(page); | 
 | 	} | 
 |  | 
 | 	set_pte_at(mm, address, page_table, entry); | 
 |  | 
 | 	/* No need to invalidate - it was non-present before */ | 
 | 	update_mmu_cache(vma, address, entry); | 
 | 	lazy_mmu_prot_update(entry); | 
 | unlock: | 
 | 	pte_unmap_unlock(page_table, ptl); | 
 | 	return VM_FAULT_MINOR; | 
 | release: | 
 | 	page_cache_release(page); | 
 | 	goto unlock; | 
 | oom: | 
 | 	return VM_FAULT_OOM; | 
 | } | 
 |  | 
 | /* | 
 |  * do_no_page() tries to create a new page mapping. It aggressively | 
 |  * tries to share with existing pages, but makes a separate copy if | 
 |  * the "write_access" parameter is true in order to avoid the next | 
 |  * page fault. | 
 |  * | 
 |  * As this is called only for pages that do not currently exist, we | 
 |  * do not need to flush old virtual caches or the TLB. | 
 |  * | 
 |  * We enter with non-exclusive mmap_sem (to exclude vma changes, | 
 |  * but allow concurrent faults), and pte mapped but not yet locked. | 
 |  * We return with mmap_sem still held, but pte unmapped and unlocked. | 
 |  */ | 
 | static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 		unsigned long address, pte_t *page_table, pmd_t *pmd, | 
 | 		int write_access) | 
 | { | 
 | 	spinlock_t *ptl; | 
 | 	struct page *new_page; | 
 | 	struct address_space *mapping = NULL; | 
 | 	pte_t entry; | 
 | 	unsigned int sequence = 0; | 
 | 	int ret = VM_FAULT_MINOR; | 
 | 	int anon = 0; | 
 | 	struct page *dirty_page = NULL; | 
 |  | 
 | 	pte_unmap(page_table); | 
 | 	BUG_ON(vma->vm_flags & VM_PFNMAP); | 
 |  | 
 | 	if (vma->vm_file) { | 
 | 		mapping = vma->vm_file->f_mapping; | 
 | 		sequence = mapping->truncate_count; | 
 | 		smp_rmb(); /* serializes i_size against truncate_count */ | 
 | 	} | 
 | retry: | 
 | 	new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret); | 
 | 	/* | 
 | 	 * No smp_rmb is needed here as long as there's a full | 
 | 	 * spin_lock/unlock sequence inside the ->nopage callback | 
 | 	 * (for the pagecache lookup) that acts as an implicit | 
 | 	 * smp_mb() and prevents the i_size read to happen | 
 | 	 * after the next truncate_count read. | 
 | 	 */ | 
 |  | 
 | 	/* no page was available -- either SIGBUS, OOM or REFAULT */ | 
 | 	if (unlikely(new_page == NOPAGE_SIGBUS)) | 
 | 		return VM_FAULT_SIGBUS; | 
 | 	else if (unlikely(new_page == NOPAGE_OOM)) | 
 | 		return VM_FAULT_OOM; | 
 | 	else if (unlikely(new_page == NOPAGE_REFAULT)) | 
 | 		return VM_FAULT_MINOR; | 
 |  | 
 | 	/* | 
 | 	 * Should we do an early C-O-W break? | 
 | 	 */ | 
 | 	if (write_access) { | 
 | 		if (!(vma->vm_flags & VM_SHARED)) { | 
 | 			struct page *page; | 
 |  | 
 | 			if (unlikely(anon_vma_prepare(vma))) | 
 | 				goto oom; | 
 | 			page = alloc_page_vma(GFP_HIGHUSER, vma, address); | 
 | 			if (!page) | 
 | 				goto oom; | 
 | 			copy_user_highpage(page, new_page, address); | 
 | 			page_cache_release(new_page); | 
 | 			new_page = page; | 
 | 			anon = 1; | 
 |  | 
 | 		} else { | 
 | 			/* if the page will be shareable, see if the backing | 
 | 			 * address space wants to know that the page is about | 
 | 			 * to become writable */ | 
 | 			if (vma->vm_ops->page_mkwrite && | 
 | 			    vma->vm_ops->page_mkwrite(vma, new_page) < 0 | 
 | 			    ) { | 
 | 				page_cache_release(new_page); | 
 | 				return VM_FAULT_SIGBUS; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 
 | 	/* | 
 | 	 * For a file-backed vma, someone could have truncated or otherwise | 
 | 	 * invalidated this page.  If unmap_mapping_range got called, | 
 | 	 * retry getting the page. | 
 | 	 */ | 
 | 	if (mapping && unlikely(sequence != mapping->truncate_count)) { | 
 | 		pte_unmap_unlock(page_table, ptl); | 
 | 		page_cache_release(new_page); | 
 | 		cond_resched(); | 
 | 		sequence = mapping->truncate_count; | 
 | 		smp_rmb(); | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * This silly early PAGE_DIRTY setting removes a race | 
 | 	 * due to the bad i386 page protection. But it's valid | 
 | 	 * for other architectures too. | 
 | 	 * | 
 | 	 * Note that if write_access is true, we either now have | 
 | 	 * an exclusive copy of the page, or this is a shared mapping, | 
 | 	 * so we can make it writable and dirty to avoid having to | 
 | 	 * handle that later. | 
 | 	 */ | 
 | 	/* Only go through if we didn't race with anybody else... */ | 
 | 	if (pte_none(*page_table)) { | 
 | 		flush_icache_page(vma, new_page); | 
 | 		entry = mk_pte(new_page, vma->vm_page_prot); | 
 | 		if (write_access) | 
 | 			entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 
 | 		set_pte_at(mm, address, page_table, entry); | 
 | 		if (anon) { | 
 | 			inc_mm_counter(mm, anon_rss); | 
 | 			lru_cache_add_active(new_page); | 
 | 			page_add_new_anon_rmap(new_page, vma, address); | 
 | 		} else { | 
 | 			inc_mm_counter(mm, file_rss); | 
 | 			page_add_file_rmap(new_page); | 
 | 			if (write_access) { | 
 | 				dirty_page = new_page; | 
 | 				get_page(dirty_page); | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		/* One of our sibling threads was faster, back out. */ | 
 | 		page_cache_release(new_page); | 
 | 		goto unlock; | 
 | 	} | 
 |  | 
 | 	/* no need to invalidate: a not-present page shouldn't be cached */ | 
 | 	update_mmu_cache(vma, address, entry); | 
 | 	lazy_mmu_prot_update(entry); | 
 | unlock: | 
 | 	pte_unmap_unlock(page_table, ptl); | 
 | 	if (dirty_page) { | 
 | 		set_page_dirty_balance(dirty_page); | 
 | 		put_page(dirty_page); | 
 | 	} | 
 | 	return ret; | 
 | oom: | 
 | 	page_cache_release(new_page); | 
 | 	return VM_FAULT_OOM; | 
 | } | 
 |  | 
 | /* | 
 |  * do_no_pfn() tries to create a new page mapping for a page without | 
 |  * a struct_page backing it | 
 |  * | 
 |  * As this is called only for pages that do not currently exist, we | 
 |  * do not need to flush old virtual caches or the TLB. | 
 |  * | 
 |  * We enter with non-exclusive mmap_sem (to exclude vma changes, | 
 |  * but allow concurrent faults), and pte mapped but not yet locked. | 
 |  * We return with mmap_sem still held, but pte unmapped and unlocked. | 
 |  * | 
 |  * It is expected that the ->nopfn handler always returns the same pfn | 
 |  * for a given virtual mapping. | 
 |  * | 
 |  * Mark this `noinline' to prevent it from bloating the main pagefault code. | 
 |  */ | 
 | static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 		     unsigned long address, pte_t *page_table, pmd_t *pmd, | 
 | 		     int write_access) | 
 | { | 
 | 	spinlock_t *ptl; | 
 | 	pte_t entry; | 
 | 	unsigned long pfn; | 
 | 	int ret = VM_FAULT_MINOR; | 
 |  | 
 | 	pte_unmap(page_table); | 
 | 	BUG_ON(!(vma->vm_flags & VM_PFNMAP)); | 
 | 	BUG_ON(is_cow_mapping(vma->vm_flags)); | 
 |  | 
 | 	pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK); | 
 | 	if (pfn == NOPFN_OOM) | 
 | 		return VM_FAULT_OOM; | 
 | 	if (pfn == NOPFN_SIGBUS) | 
 | 		return VM_FAULT_SIGBUS; | 
 |  | 
 | 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 
 |  | 
 | 	/* Only go through if we didn't race with anybody else... */ | 
 | 	if (pte_none(*page_table)) { | 
 | 		entry = pfn_pte(pfn, vma->vm_page_prot); | 
 | 		if (write_access) | 
 | 			entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 
 | 		set_pte_at(mm, address, page_table, entry); | 
 | 	} | 
 | 	pte_unmap_unlock(page_table, ptl); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Fault of a previously existing named mapping. Repopulate the pte | 
 |  * from the encoded file_pte if possible. This enables swappable | 
 |  * nonlinear vmas. | 
 |  * | 
 |  * We enter with non-exclusive mmap_sem (to exclude vma changes, | 
 |  * but allow concurrent faults), and pte mapped but not yet locked. | 
 |  * We return with mmap_sem still held, but pte unmapped and unlocked. | 
 |  */ | 
 | static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 		unsigned long address, pte_t *page_table, pmd_t *pmd, | 
 | 		int write_access, pte_t orig_pte) | 
 | { | 
 | 	pgoff_t pgoff; | 
 | 	int err; | 
 |  | 
 | 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) | 
 | 		return VM_FAULT_MINOR; | 
 |  | 
 | 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { | 
 | 		/* | 
 | 		 * Page table corrupted: show pte and kill process. | 
 | 		 */ | 
 | 		print_bad_pte(vma, orig_pte, address); | 
 | 		return VM_FAULT_OOM; | 
 | 	} | 
 | 	/* We can then assume vm->vm_ops && vma->vm_ops->populate */ | 
 |  | 
 | 	pgoff = pte_to_pgoff(orig_pte); | 
 | 	err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, | 
 | 					vma->vm_page_prot, pgoff, 0); | 
 | 	if (err == -ENOMEM) | 
 | 		return VM_FAULT_OOM; | 
 | 	if (err) | 
 | 		return VM_FAULT_SIGBUS; | 
 | 	return VM_FAULT_MAJOR; | 
 | } | 
 |  | 
 | /* | 
 |  * These routines also need to handle stuff like marking pages dirty | 
 |  * and/or accessed for architectures that don't do it in hardware (most | 
 |  * RISC architectures).  The early dirtying is also good on the i386. | 
 |  * | 
 |  * There is also a hook called "update_mmu_cache()" that architectures | 
 |  * with external mmu caches can use to update those (ie the Sparc or | 
 |  * PowerPC hashed page tables that act as extended TLBs). | 
 |  * | 
 |  * We enter with non-exclusive mmap_sem (to exclude vma changes, | 
 |  * but allow concurrent faults), and pte mapped but not yet locked. | 
 |  * We return with mmap_sem still held, but pte unmapped and unlocked. | 
 |  */ | 
 | static inline int handle_pte_fault(struct mm_struct *mm, | 
 | 		struct vm_area_struct *vma, unsigned long address, | 
 | 		pte_t *pte, pmd_t *pmd, int write_access) | 
 | { | 
 | 	pte_t entry; | 
 | 	pte_t old_entry; | 
 | 	spinlock_t *ptl; | 
 |  | 
 | 	old_entry = entry = *pte; | 
 | 	if (!pte_present(entry)) { | 
 | 		if (pte_none(entry)) { | 
 | 			if (vma->vm_ops) { | 
 | 				if (vma->vm_ops->nopage) | 
 | 					return do_no_page(mm, vma, address, | 
 | 							  pte, pmd, | 
 | 							  write_access); | 
 | 				if (unlikely(vma->vm_ops->nopfn)) | 
 | 					return do_no_pfn(mm, vma, address, pte, | 
 | 							 pmd, write_access); | 
 | 			} | 
 | 			return do_anonymous_page(mm, vma, address, | 
 | 						 pte, pmd, write_access); | 
 | 		} | 
 | 		if (pte_file(entry)) | 
 | 			return do_file_page(mm, vma, address, | 
 | 					pte, pmd, write_access, entry); | 
 | 		return do_swap_page(mm, vma, address, | 
 | 					pte, pmd, write_access, entry); | 
 | 	} | 
 |  | 
 | 	ptl = pte_lockptr(mm, pmd); | 
 | 	spin_lock(ptl); | 
 | 	if (unlikely(!pte_same(*pte, entry))) | 
 | 		goto unlock; | 
 | 	if (write_access) { | 
 | 		if (!pte_write(entry)) | 
 | 			return do_wp_page(mm, vma, address, | 
 | 					pte, pmd, ptl, entry); | 
 | 		entry = pte_mkdirty(entry); | 
 | 	} | 
 | 	entry = pte_mkyoung(entry); | 
 | 	if (!pte_same(old_entry, entry)) { | 
 | 		ptep_set_access_flags(vma, address, pte, entry, write_access); | 
 | 		update_mmu_cache(vma, address, entry); | 
 | 		lazy_mmu_prot_update(entry); | 
 | 	} else { | 
 | 		/* | 
 | 		 * This is needed only for protection faults but the arch code | 
 | 		 * is not yet telling us if this is a protection fault or not. | 
 | 		 * This still avoids useless tlb flushes for .text page faults | 
 | 		 * with threads. | 
 | 		 */ | 
 | 		if (write_access) | 
 | 			flush_tlb_page(vma, address); | 
 | 	} | 
 | unlock: | 
 | 	pte_unmap_unlock(pte, ptl); | 
 | 	return VM_FAULT_MINOR; | 
 | } | 
 |  | 
 | /* | 
 |  * By the time we get here, we already hold the mm semaphore | 
 |  */ | 
 | int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 		unsigned long address, int write_access) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 | 	pte_t *pte; | 
 |  | 
 | 	__set_current_state(TASK_RUNNING); | 
 |  | 
 | 	count_vm_event(PGFAULT); | 
 |  | 
 | 	if (unlikely(is_vm_hugetlb_page(vma))) | 
 | 		return hugetlb_fault(mm, vma, address, write_access); | 
 |  | 
 | 	pgd = pgd_offset(mm, address); | 
 | 	pud = pud_alloc(mm, pgd, address); | 
 | 	if (!pud) | 
 | 		return VM_FAULT_OOM; | 
 | 	pmd = pmd_alloc(mm, pud, address); | 
 | 	if (!pmd) | 
 | 		return VM_FAULT_OOM; | 
 | 	pte = pte_alloc_map(mm, pmd, address); | 
 | 	if (!pte) | 
 | 		return VM_FAULT_OOM; | 
 |  | 
 | 	return handle_pte_fault(mm, vma, address, pte, pmd, write_access); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL_GPL(__handle_mm_fault); | 
 |  | 
 | #ifndef __PAGETABLE_PUD_FOLDED | 
 | /* | 
 |  * Allocate page upper directory. | 
 |  * We've already handled the fast-path in-line. | 
 |  */ | 
 | int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) | 
 | { | 
 | 	pud_t *new = pud_alloc_one(mm, address); | 
 | 	if (!new) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	spin_lock(&mm->page_table_lock); | 
 | 	if (pgd_present(*pgd))		/* Another has populated it */ | 
 | 		pud_free(new); | 
 | 	else | 
 | 		pgd_populate(mm, pgd, new); | 
 | 	spin_unlock(&mm->page_table_lock); | 
 | 	return 0; | 
 | } | 
 | #else | 
 | /* Workaround for gcc 2.96 */ | 
 | int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif /* __PAGETABLE_PUD_FOLDED */ | 
 |  | 
 | #ifndef __PAGETABLE_PMD_FOLDED | 
 | /* | 
 |  * Allocate page middle directory. | 
 |  * We've already handled the fast-path in-line. | 
 |  */ | 
 | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) | 
 | { | 
 | 	pmd_t *new = pmd_alloc_one(mm, address); | 
 | 	if (!new) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	spin_lock(&mm->page_table_lock); | 
 | #ifndef __ARCH_HAS_4LEVEL_HACK | 
 | 	if (pud_present(*pud))		/* Another has populated it */ | 
 | 		pmd_free(new); | 
 | 	else | 
 | 		pud_populate(mm, pud, new); | 
 | #else | 
 | 	if (pgd_present(*pud))		/* Another has populated it */ | 
 | 		pmd_free(new); | 
 | 	else | 
 | 		pgd_populate(mm, pud, new); | 
 | #endif /* __ARCH_HAS_4LEVEL_HACK */ | 
 | 	spin_unlock(&mm->page_table_lock); | 
 | 	return 0; | 
 | } | 
 | #else | 
 | /* Workaround for gcc 2.96 */ | 
 | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif /* __PAGETABLE_PMD_FOLDED */ | 
 |  | 
 | int make_pages_present(unsigned long addr, unsigned long end) | 
 | { | 
 | 	int ret, len, write; | 
 | 	struct vm_area_struct * vma; | 
 |  | 
 | 	vma = find_vma(current->mm, addr); | 
 | 	if (!vma) | 
 | 		return -1; | 
 | 	write = (vma->vm_flags & VM_WRITE) != 0; | 
 | 	BUG_ON(addr >= end); | 
 | 	BUG_ON(end > vma->vm_end); | 
 | 	len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE; | 
 | 	ret = get_user_pages(current, current->mm, addr, | 
 | 			len, write, 0, NULL, NULL); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 | 	return ret == len ? 0 : -1; | 
 | } | 
 |  | 
 | /*  | 
 |  * Map a vmalloc()-space virtual address to the physical page. | 
 |  */ | 
 | struct page * vmalloc_to_page(void * vmalloc_addr) | 
 | { | 
 | 	unsigned long addr = (unsigned long) vmalloc_addr; | 
 | 	struct page *page = NULL; | 
 | 	pgd_t *pgd = pgd_offset_k(addr); | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 | 	pte_t *ptep, pte; | 
 |    | 
 | 	if (!pgd_none(*pgd)) { | 
 | 		pud = pud_offset(pgd, addr); | 
 | 		if (!pud_none(*pud)) { | 
 | 			pmd = pmd_offset(pud, addr); | 
 | 			if (!pmd_none(*pmd)) { | 
 | 				ptep = pte_offset_map(pmd, addr); | 
 | 				pte = *ptep; | 
 | 				if (pte_present(pte)) | 
 | 					page = pte_page(pte); | 
 | 				pte_unmap(ptep); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	return page; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(vmalloc_to_page); | 
 |  | 
 | /* | 
 |  * Map a vmalloc()-space virtual address to the physical page frame number. | 
 |  */ | 
 | unsigned long vmalloc_to_pfn(void * vmalloc_addr) | 
 | { | 
 | 	return page_to_pfn(vmalloc_to_page(vmalloc_addr)); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(vmalloc_to_pfn); | 
 |  | 
 | #if !defined(__HAVE_ARCH_GATE_AREA) | 
 |  | 
 | #if defined(AT_SYSINFO_EHDR) | 
 | static struct vm_area_struct gate_vma; | 
 |  | 
 | static int __init gate_vma_init(void) | 
 | { | 
 | 	gate_vma.vm_mm = NULL; | 
 | 	gate_vma.vm_start = FIXADDR_USER_START; | 
 | 	gate_vma.vm_end = FIXADDR_USER_END; | 
 | 	gate_vma.vm_page_prot = PAGE_READONLY; | 
 | 	gate_vma.vm_flags = 0; | 
 | 	return 0; | 
 | } | 
 | __initcall(gate_vma_init); | 
 | #endif | 
 |  | 
 | struct vm_area_struct *get_gate_vma(struct task_struct *tsk) | 
 | { | 
 | #ifdef AT_SYSINFO_EHDR | 
 | 	return &gate_vma; | 
 | #else | 
 | 	return NULL; | 
 | #endif | 
 | } | 
 |  | 
 | int in_gate_area_no_task(unsigned long addr) | 
 | { | 
 | #ifdef AT_SYSINFO_EHDR | 
 | 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) | 
 | 		return 1; | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | #endif	/* __HAVE_ARCH_GATE_AREA */ | 
 |  | 
 | /* | 
 |  * Access another process' address space. | 
 |  * Source/target buffer must be kernel space, | 
 |  * Do not walk the page table directly, use get_user_pages | 
 |  */ | 
 | int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) | 
 | { | 
 | 	struct mm_struct *mm; | 
 | 	struct vm_area_struct *vma; | 
 | 	struct page *page; | 
 | 	void *old_buf = buf; | 
 |  | 
 | 	mm = get_task_mm(tsk); | 
 | 	if (!mm) | 
 | 		return 0; | 
 |  | 
 | 	down_read(&mm->mmap_sem); | 
 | 	/* ignore errors, just check how much was sucessfully transfered */ | 
 | 	while (len) { | 
 | 		int bytes, ret, offset; | 
 | 		void *maddr; | 
 |  | 
 | 		ret = get_user_pages(tsk, mm, addr, 1, | 
 | 				write, 1, &page, &vma); | 
 | 		if (ret <= 0) | 
 | 			break; | 
 |  | 
 | 		bytes = len; | 
 | 		offset = addr & (PAGE_SIZE-1); | 
 | 		if (bytes > PAGE_SIZE-offset) | 
 | 			bytes = PAGE_SIZE-offset; | 
 |  | 
 | 		maddr = kmap(page); | 
 | 		if (write) { | 
 | 			copy_to_user_page(vma, page, addr, | 
 | 					  maddr + offset, buf, bytes); | 
 | 			set_page_dirty_lock(page); | 
 | 		} else { | 
 | 			copy_from_user_page(vma, page, addr, | 
 | 					    buf, maddr + offset, bytes); | 
 | 		} | 
 | 		kunmap(page); | 
 | 		page_cache_release(page); | 
 | 		len -= bytes; | 
 | 		buf += bytes; | 
 | 		addr += bytes; | 
 | 	} | 
 | 	up_read(&mm->mmap_sem); | 
 | 	mmput(mm); | 
 |  | 
 | 	return buf - old_buf; | 
 | } |