|  | /* | 
|  | * This file is subject to the terms and conditions of the GNU General Public | 
|  | * License.  See the file "COPYING" in the main directory of this archive | 
|  | * for more details. | 
|  | * | 
|  | * Copyright (C) 2000  Ani Joshi <ajoshi@unixbox.com> | 
|  | * Copyright (C) 2000, 2001, 06  Ralf Baechle <ralf@linux-mips.org> | 
|  | * swiped from i386, and cloned for MIPS by Geert, polished by Ralf. | 
|  | */ | 
|  |  | 
|  | #include <linux/types.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/scatterlist.h> | 
|  | #include <linux/string.h> | 
|  |  | 
|  | #include <asm/cache.h> | 
|  | #include <asm/io.h> | 
|  |  | 
|  | #include <dma-coherence.h> | 
|  |  | 
|  | static inline unsigned long dma_addr_to_virt(dma_addr_t dma_addr) | 
|  | { | 
|  | unsigned long addr = plat_dma_addr_to_phys(dma_addr); | 
|  |  | 
|  | return (unsigned long)phys_to_virt(addr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Warning on the terminology - Linux calls an uncached area coherent; | 
|  | * MIPS terminology calls memory areas with hardware maintained coherency | 
|  | * coherent. | 
|  | */ | 
|  |  | 
|  | static inline int cpu_is_noncoherent_r10000(struct device *dev) | 
|  | { | 
|  | return !plat_device_is_coherent(dev) && | 
|  | (current_cpu_type() == CPU_R10000 || | 
|  | current_cpu_type() == CPU_R12000); | 
|  | } | 
|  |  | 
|  | static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp) | 
|  | { | 
|  | /* ignore region specifiers */ | 
|  | gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM); | 
|  |  | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  | if (dev == NULL) | 
|  | gfp |= __GFP_DMA; | 
|  | else if (dev->coherent_dma_mask < DMA_BIT_MASK(24)) | 
|  | gfp |= __GFP_DMA; | 
|  | else | 
|  | #endif | 
|  | #ifdef CONFIG_ZONE_DMA32 | 
|  | if (dev->coherent_dma_mask < DMA_BIT_MASK(32)) | 
|  | gfp |= __GFP_DMA32; | 
|  | else | 
|  | #endif | 
|  | ; | 
|  |  | 
|  | /* Don't invoke OOM killer */ | 
|  | gfp |= __GFP_NORETRY; | 
|  |  | 
|  | return gfp; | 
|  | } | 
|  |  | 
|  | void *dma_alloc_noncoherent(struct device *dev, size_t size, | 
|  | dma_addr_t * dma_handle, gfp_t gfp) | 
|  | { | 
|  | void *ret; | 
|  |  | 
|  | gfp = massage_gfp_flags(dev, gfp); | 
|  |  | 
|  | ret = (void *) __get_free_pages(gfp, get_order(size)); | 
|  |  | 
|  | if (ret != NULL) { | 
|  | memset(ret, 0, size); | 
|  | *dma_handle = plat_map_dma_mem(dev, ret, size); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(dma_alloc_noncoherent); | 
|  |  | 
|  | void *dma_alloc_coherent(struct device *dev, size_t size, | 
|  | dma_addr_t * dma_handle, gfp_t gfp) | 
|  | { | 
|  | void *ret; | 
|  |  | 
|  | gfp = massage_gfp_flags(dev, gfp); | 
|  |  | 
|  | ret = (void *) __get_free_pages(gfp, get_order(size)); | 
|  |  | 
|  | if (ret) { | 
|  | memset(ret, 0, size); | 
|  | *dma_handle = plat_map_dma_mem(dev, ret, size); | 
|  |  | 
|  | if (!plat_device_is_coherent(dev)) { | 
|  | dma_cache_wback_inv((unsigned long) ret, size); | 
|  | ret = UNCAC_ADDR(ret); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(dma_alloc_coherent); | 
|  |  | 
|  | void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr, | 
|  | dma_addr_t dma_handle) | 
|  | { | 
|  | free_pages((unsigned long) vaddr, get_order(size)); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(dma_free_noncoherent); | 
|  |  | 
|  | void dma_free_coherent(struct device *dev, size_t size, void *vaddr, | 
|  | dma_addr_t dma_handle) | 
|  | { | 
|  | unsigned long addr = (unsigned long) vaddr; | 
|  |  | 
|  | if (!plat_device_is_coherent(dev)) | 
|  | addr = CAC_ADDR(addr); | 
|  |  | 
|  | free_pages(addr, get_order(size)); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(dma_free_coherent); | 
|  |  | 
|  | static inline void __dma_sync(unsigned long addr, size_t size, | 
|  | enum dma_data_direction direction) | 
|  | { | 
|  | switch (direction) { | 
|  | case DMA_TO_DEVICE: | 
|  | dma_cache_wback(addr, size); | 
|  | break; | 
|  |  | 
|  | case DMA_FROM_DEVICE: | 
|  | dma_cache_inv(addr, size); | 
|  | break; | 
|  |  | 
|  | case DMA_BIDIRECTIONAL: | 
|  | dma_cache_wback_inv(addr, size); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size, | 
|  | enum dma_data_direction direction) | 
|  | { | 
|  | unsigned long addr = (unsigned long) ptr; | 
|  |  | 
|  | if (!plat_device_is_coherent(dev)) | 
|  | __dma_sync(addr, size, direction); | 
|  |  | 
|  | return plat_map_dma_mem(dev, ptr, size); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(dma_map_single); | 
|  |  | 
|  | void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size, | 
|  | enum dma_data_direction direction) | 
|  | { | 
|  | if (cpu_is_noncoherent_r10000(dev)) | 
|  | __dma_sync(dma_addr_to_virt(dma_addr), size, | 
|  | direction); | 
|  |  | 
|  | plat_unmap_dma_mem(dma_addr); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(dma_unmap_single); | 
|  |  | 
|  | int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, | 
|  | enum dma_data_direction direction) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | BUG_ON(direction == DMA_NONE); | 
|  |  | 
|  | for (i = 0; i < nents; i++, sg++) { | 
|  | unsigned long addr; | 
|  |  | 
|  | addr = (unsigned long) sg_virt(sg); | 
|  | if (!plat_device_is_coherent(dev) && addr) | 
|  | __dma_sync(addr, sg->length, direction); | 
|  | sg->dma_address = plat_map_dma_mem(dev, | 
|  | (void *)addr, sg->length); | 
|  | } | 
|  |  | 
|  | return nents; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(dma_map_sg); | 
|  |  | 
|  | dma_addr_t dma_map_page(struct device *dev, struct page *page, | 
|  | unsigned long offset, size_t size, enum dma_data_direction direction) | 
|  | { | 
|  | BUG_ON(direction == DMA_NONE); | 
|  |  | 
|  | if (!plat_device_is_coherent(dev)) { | 
|  | unsigned long addr; | 
|  |  | 
|  | addr = (unsigned long) page_address(page) + offset; | 
|  | dma_cache_wback_inv(addr, size); | 
|  | } | 
|  |  | 
|  | return plat_map_dma_mem_page(dev, page) + offset; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(dma_map_page); | 
|  |  | 
|  | void dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size, | 
|  | enum dma_data_direction direction) | 
|  | { | 
|  | BUG_ON(direction == DMA_NONE); | 
|  |  | 
|  | if (!plat_device_is_coherent(dev) && direction != DMA_TO_DEVICE) { | 
|  | unsigned long addr; | 
|  |  | 
|  | addr = plat_dma_addr_to_phys(dma_address); | 
|  | dma_cache_wback_inv(addr, size); | 
|  | } | 
|  |  | 
|  | plat_unmap_dma_mem(dma_address); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(dma_unmap_page); | 
|  |  | 
|  | void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries, | 
|  | enum dma_data_direction direction) | 
|  | { | 
|  | unsigned long addr; | 
|  | int i; | 
|  |  | 
|  | BUG_ON(direction == DMA_NONE); | 
|  |  | 
|  | for (i = 0; i < nhwentries; i++, sg++) { | 
|  | if (!plat_device_is_coherent(dev) && | 
|  | direction != DMA_TO_DEVICE) { | 
|  | addr = (unsigned long) sg_virt(sg); | 
|  | if (addr) | 
|  | __dma_sync(addr, sg->length, direction); | 
|  | } | 
|  | plat_unmap_dma_mem(sg->dma_address); | 
|  | } | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(dma_unmap_sg); | 
|  |  | 
|  | void dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, | 
|  | size_t size, enum dma_data_direction direction) | 
|  | { | 
|  | BUG_ON(direction == DMA_NONE); | 
|  |  | 
|  | if (cpu_is_noncoherent_r10000(dev)) { | 
|  | unsigned long addr; | 
|  |  | 
|  | addr = dma_addr_to_virt(dma_handle); | 
|  | __dma_sync(addr, size, direction); | 
|  | } | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(dma_sync_single_for_cpu); | 
|  |  | 
|  | void dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, | 
|  | size_t size, enum dma_data_direction direction) | 
|  | { | 
|  | BUG_ON(direction == DMA_NONE); | 
|  |  | 
|  | if (!plat_device_is_coherent(dev)) { | 
|  | unsigned long addr; | 
|  |  | 
|  | addr = dma_addr_to_virt(dma_handle); | 
|  | __dma_sync(addr, size, direction); | 
|  | } | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(dma_sync_single_for_device); | 
|  |  | 
|  | void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle, | 
|  | unsigned long offset, size_t size, enum dma_data_direction direction) | 
|  | { | 
|  | BUG_ON(direction == DMA_NONE); | 
|  |  | 
|  | if (cpu_is_noncoherent_r10000(dev)) { | 
|  | unsigned long addr; | 
|  |  | 
|  | addr = dma_addr_to_virt(dma_handle); | 
|  | __dma_sync(addr + offset, size, direction); | 
|  | } | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(dma_sync_single_range_for_cpu); | 
|  |  | 
|  | void dma_sync_single_range_for_device(struct device *dev, dma_addr_t dma_handle, | 
|  | unsigned long offset, size_t size, enum dma_data_direction direction) | 
|  | { | 
|  | BUG_ON(direction == DMA_NONE); | 
|  |  | 
|  | if (!plat_device_is_coherent(dev)) { | 
|  | unsigned long addr; | 
|  |  | 
|  | addr = dma_addr_to_virt(dma_handle); | 
|  | __dma_sync(addr + offset, size, direction); | 
|  | } | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(dma_sync_single_range_for_device); | 
|  |  | 
|  | void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems, | 
|  | enum dma_data_direction direction) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | BUG_ON(direction == DMA_NONE); | 
|  |  | 
|  | /* Make sure that gcc doesn't leave the empty loop body.  */ | 
|  | for (i = 0; i < nelems; i++, sg++) { | 
|  | if (cpu_is_noncoherent_r10000(dev)) | 
|  | __dma_sync((unsigned long)page_address(sg_page(sg)), | 
|  | sg->length, direction); | 
|  | plat_unmap_dma_mem(sg->dma_address); | 
|  | } | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(dma_sync_sg_for_cpu); | 
|  |  | 
|  | void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nelems, | 
|  | enum dma_data_direction direction) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | BUG_ON(direction == DMA_NONE); | 
|  |  | 
|  | /* Make sure that gcc doesn't leave the empty loop body.  */ | 
|  | for (i = 0; i < nelems; i++, sg++) { | 
|  | if (!plat_device_is_coherent(dev)) | 
|  | __dma_sync((unsigned long)page_address(sg_page(sg)), | 
|  | sg->length, direction); | 
|  | plat_unmap_dma_mem(sg->dma_address); | 
|  | } | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(dma_sync_sg_for_device); | 
|  |  | 
|  | int dma_mapping_error(struct device *dev, dma_addr_t dma_addr) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(dma_mapping_error); | 
|  |  | 
|  | int dma_supported(struct device *dev, u64 mask) | 
|  | { | 
|  | /* | 
|  | * we fall back to GFP_DMA when the mask isn't all 1s, | 
|  | * so we can't guarantee allocations that must be | 
|  | * within a tighter range than GFP_DMA.. | 
|  | */ | 
|  | if (mask < DMA_BIT_MASK(24)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(dma_supported); | 
|  |  | 
|  | int dma_is_consistent(struct device *dev, dma_addr_t dma_addr) | 
|  | { | 
|  | return plat_device_is_coherent(dev); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(dma_is_consistent); | 
|  |  | 
|  | void dma_cache_sync(struct device *dev, void *vaddr, size_t size, | 
|  | enum dma_data_direction direction) | 
|  | { | 
|  | BUG_ON(direction == DMA_NONE); | 
|  |  | 
|  | if (!plat_device_is_coherent(dev)) | 
|  | __dma_sync((unsigned long)vaddr, size, direction); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(dma_cache_sync); |