| #include <linux/string.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/of.h> | 
 | #include <linux/init.h> | 
 | #include <linux/module.h> | 
 | #include <linux/mod_devicetable.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/irq.h> | 
 | #include <linux/of_device.h> | 
 | #include <linux/of_platform.h> | 
 |  | 
 | void __iomem *of_ioremap(struct resource *res, unsigned long offset, unsigned long size, char *name) | 
 | { | 
 | 	unsigned long ret = res->start + offset; | 
 | 	struct resource *r; | 
 |  | 
 | 	if (res->flags & IORESOURCE_MEM) | 
 | 		r = request_mem_region(ret, size, name); | 
 | 	else | 
 | 		r = request_region(ret, size, name); | 
 | 	if (!r) | 
 | 		ret = 0; | 
 |  | 
 | 	return (void __iomem *) ret; | 
 | } | 
 | EXPORT_SYMBOL(of_ioremap); | 
 |  | 
 | void of_iounmap(struct resource *res, void __iomem *base, unsigned long size) | 
 | { | 
 | 	if (res->flags & IORESOURCE_MEM) | 
 | 		release_mem_region((unsigned long) base, size); | 
 | 	else | 
 | 		release_region((unsigned long) base, size); | 
 | } | 
 | EXPORT_SYMBOL(of_iounmap); | 
 |  | 
 | static int node_match(struct device *dev, void *data) | 
 | { | 
 | 	struct of_device *op = to_of_device(dev); | 
 | 	struct device_node *dp = data; | 
 |  | 
 | 	return (op->node == dp); | 
 | } | 
 |  | 
 | struct of_device *of_find_device_by_node(struct device_node *dp) | 
 | { | 
 | 	struct device *dev = bus_find_device(&of_platform_bus_type, NULL, | 
 | 					     dp, node_match); | 
 |  | 
 | 	if (dev) | 
 | 		return to_of_device(dev); | 
 |  | 
 | 	return NULL; | 
 | } | 
 | EXPORT_SYMBOL(of_find_device_by_node); | 
 |  | 
 | #ifdef CONFIG_PCI | 
 | struct bus_type isa_bus_type; | 
 | EXPORT_SYMBOL(isa_bus_type); | 
 |  | 
 | struct bus_type ebus_bus_type; | 
 | EXPORT_SYMBOL(ebus_bus_type); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SBUS | 
 | struct bus_type sbus_bus_type; | 
 | EXPORT_SYMBOL(sbus_bus_type); | 
 | #endif | 
 |  | 
 | struct bus_type of_platform_bus_type; | 
 | EXPORT_SYMBOL(of_platform_bus_type); | 
 |  | 
 | static inline u64 of_read_addr(const u32 *cell, int size) | 
 | { | 
 | 	u64 r = 0; | 
 | 	while (size--) | 
 | 		r = (r << 32) | *(cell++); | 
 | 	return r; | 
 | } | 
 |  | 
 | static void __init get_cells(struct device_node *dp, | 
 | 			     int *addrc, int *sizec) | 
 | { | 
 | 	if (addrc) | 
 | 		*addrc = of_n_addr_cells(dp); | 
 | 	if (sizec) | 
 | 		*sizec = of_n_size_cells(dp); | 
 | } | 
 |  | 
 | /* Max address size we deal with */ | 
 | #define OF_MAX_ADDR_CELLS	4 | 
 |  | 
 | struct of_bus { | 
 | 	const char	*name; | 
 | 	const char	*addr_prop_name; | 
 | 	int		(*match)(struct device_node *parent); | 
 | 	void		(*count_cells)(struct device_node *child, | 
 | 				       int *addrc, int *sizec); | 
 | 	int		(*map)(u32 *addr, const u32 *range, | 
 | 			       int na, int ns, int pna); | 
 | 	unsigned int	(*get_flags)(const u32 *addr); | 
 | }; | 
 |  | 
 | /* | 
 |  * Default translator (generic bus) | 
 |  */ | 
 |  | 
 | static void of_bus_default_count_cells(struct device_node *dev, | 
 | 				       int *addrc, int *sizec) | 
 | { | 
 | 	get_cells(dev, addrc, sizec); | 
 | } | 
 |  | 
 | /* Make sure the least significant 64-bits are in-range.  Even | 
 |  * for 3 or 4 cell values it is a good enough approximation. | 
 |  */ | 
 | static int of_out_of_range(const u32 *addr, const u32 *base, | 
 | 			   const u32 *size, int na, int ns) | 
 | { | 
 | 	u64 a = of_read_addr(addr, na); | 
 | 	u64 b = of_read_addr(base, na); | 
 |  | 
 | 	if (a < b) | 
 | 		return 1; | 
 |  | 
 | 	b += of_read_addr(size, ns); | 
 | 	if (a >= b) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int of_bus_default_map(u32 *addr, const u32 *range, | 
 | 			      int na, int ns, int pna) | 
 | { | 
 | 	u32 result[OF_MAX_ADDR_CELLS]; | 
 | 	int i; | 
 |  | 
 | 	if (ns > 2) { | 
 | 		printk("of_device: Cannot handle size cells (%d) > 2.", ns); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (of_out_of_range(addr, range, range + na + pna, na, ns)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Start with the parent range base.  */ | 
 | 	memcpy(result, range + na, pna * 4); | 
 |  | 
 | 	/* Add in the child address offset.  */ | 
 | 	for (i = 0; i < na; i++) | 
 | 		result[pna - 1 - i] += | 
 | 			(addr[na - 1 - i] - | 
 | 			 range[na - 1 - i]); | 
 |  | 
 | 	memcpy(addr, result, pna * 4); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static unsigned int of_bus_default_get_flags(const u32 *addr) | 
 | { | 
 | 	return IORESOURCE_MEM; | 
 | } | 
 |  | 
 | /* | 
 |  * PCI bus specific translator | 
 |  */ | 
 |  | 
 | static int of_bus_pci_match(struct device_node *np) | 
 | { | 
 | 	if (!strcmp(np->type, "pci") || !strcmp(np->type, "pciex")) { | 
 | 		const char *model = of_get_property(np, "model", NULL); | 
 |  | 
 | 		if (model && !strcmp(model, "SUNW,simba")) | 
 | 			return 0; | 
 |  | 
 | 		/* Do not do PCI specific frobbing if the | 
 | 		 * PCI bridge lacks a ranges property.  We | 
 | 		 * want to pass it through up to the next | 
 | 		 * parent as-is, not with the PCI translate | 
 | 		 * method which chops off the top address cell. | 
 | 		 */ | 
 | 		if (!of_find_property(np, "ranges", NULL)) | 
 | 			return 0; | 
 |  | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int of_bus_simba_match(struct device_node *np) | 
 | { | 
 | 	const char *model = of_get_property(np, "model", NULL); | 
 |  | 
 | 	if (model && !strcmp(model, "SUNW,simba")) | 
 | 		return 1; | 
 |  | 
 | 	/* Treat PCI busses lacking ranges property just like | 
 | 	 * simba. | 
 | 	 */ | 
 | 	if (!strcmp(np->type, "pci") || !strcmp(np->type, "pciex")) { | 
 | 		if (!of_find_property(np, "ranges", NULL)) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int of_bus_simba_map(u32 *addr, const u32 *range, | 
 | 			    int na, int ns, int pna) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void of_bus_pci_count_cells(struct device_node *np, | 
 | 				   int *addrc, int *sizec) | 
 | { | 
 | 	if (addrc) | 
 | 		*addrc = 3; | 
 | 	if (sizec) | 
 | 		*sizec = 2; | 
 | } | 
 |  | 
 | static int of_bus_pci_map(u32 *addr, const u32 *range, | 
 | 			  int na, int ns, int pna) | 
 | { | 
 | 	u32 result[OF_MAX_ADDR_CELLS]; | 
 | 	int i; | 
 |  | 
 | 	/* Check address type match */ | 
 | 	if ((addr[0] ^ range[0]) & 0x03000000) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (of_out_of_range(addr + 1, range + 1, range + na + pna, | 
 | 			    na - 1, ns)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Start with the parent range base.  */ | 
 | 	memcpy(result, range + na, pna * 4); | 
 |  | 
 | 	/* Add in the child address offset, skipping high cell.  */ | 
 | 	for (i = 0; i < na - 1; i++) | 
 | 		result[pna - 1 - i] += | 
 | 			(addr[na - 1 - i] - | 
 | 			 range[na - 1 - i]); | 
 |  | 
 | 	memcpy(addr, result, pna * 4); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static unsigned int of_bus_pci_get_flags(const u32 *addr) | 
 | { | 
 | 	unsigned int flags = 0; | 
 | 	u32 w = addr[0]; | 
 |  | 
 | 	switch((w >> 24) & 0x03) { | 
 | 	case 0x01: | 
 | 		flags |= IORESOURCE_IO; | 
 | 	case 0x02: /* 32 bits */ | 
 | 	case 0x03: /* 64 bits */ | 
 | 		flags |= IORESOURCE_MEM; | 
 | 	} | 
 | 	if (w & 0x40000000) | 
 | 		flags |= IORESOURCE_PREFETCH; | 
 | 	return flags; | 
 | } | 
 |  | 
 | /* | 
 |  * SBUS bus specific translator | 
 |  */ | 
 |  | 
 | static int of_bus_sbus_match(struct device_node *np) | 
 | { | 
 | 	return !strcmp(np->name, "sbus") || | 
 | 		!strcmp(np->name, "sbi"); | 
 | } | 
 |  | 
 | static void of_bus_sbus_count_cells(struct device_node *child, | 
 | 				   int *addrc, int *sizec) | 
 | { | 
 | 	if (addrc) | 
 | 		*addrc = 2; | 
 | 	if (sizec) | 
 | 		*sizec = 1; | 
 | } | 
 |  | 
 | /* | 
 |  * FHC/Central bus specific translator. | 
 |  * | 
 |  * This is just needed to hard-code the address and size cell | 
 |  * counts.  'fhc' and 'central' nodes lack the #address-cells and | 
 |  * #size-cells properties, and if you walk to the root on such | 
 |  * Enterprise boxes all you'll get is a #size-cells of 2 which is | 
 |  * not what we want to use. | 
 |  */ | 
 | static int of_bus_fhc_match(struct device_node *np) | 
 | { | 
 | 	return !strcmp(np->name, "fhc") || | 
 | 		!strcmp(np->name, "central"); | 
 | } | 
 |  | 
 | #define of_bus_fhc_count_cells of_bus_sbus_count_cells | 
 |  | 
 | /* | 
 |  * Array of bus specific translators | 
 |  */ | 
 |  | 
 | static struct of_bus of_busses[] = { | 
 | 	/* PCI */ | 
 | 	{ | 
 | 		.name = "pci", | 
 | 		.addr_prop_name = "assigned-addresses", | 
 | 		.match = of_bus_pci_match, | 
 | 		.count_cells = of_bus_pci_count_cells, | 
 | 		.map = of_bus_pci_map, | 
 | 		.get_flags = of_bus_pci_get_flags, | 
 | 	}, | 
 | 	/* SIMBA */ | 
 | 	{ | 
 | 		.name = "simba", | 
 | 		.addr_prop_name = "assigned-addresses", | 
 | 		.match = of_bus_simba_match, | 
 | 		.count_cells = of_bus_pci_count_cells, | 
 | 		.map = of_bus_simba_map, | 
 | 		.get_flags = of_bus_pci_get_flags, | 
 | 	}, | 
 | 	/* SBUS */ | 
 | 	{ | 
 | 		.name = "sbus", | 
 | 		.addr_prop_name = "reg", | 
 | 		.match = of_bus_sbus_match, | 
 | 		.count_cells = of_bus_sbus_count_cells, | 
 | 		.map = of_bus_default_map, | 
 | 		.get_flags = of_bus_default_get_flags, | 
 | 	}, | 
 | 	/* FHC */ | 
 | 	{ | 
 | 		.name = "fhc", | 
 | 		.addr_prop_name = "reg", | 
 | 		.match = of_bus_fhc_match, | 
 | 		.count_cells = of_bus_fhc_count_cells, | 
 | 		.map = of_bus_default_map, | 
 | 		.get_flags = of_bus_default_get_flags, | 
 | 	}, | 
 | 	/* Default */ | 
 | 	{ | 
 | 		.name = "default", | 
 | 		.addr_prop_name = "reg", | 
 | 		.match = NULL, | 
 | 		.count_cells = of_bus_default_count_cells, | 
 | 		.map = of_bus_default_map, | 
 | 		.get_flags = of_bus_default_get_flags, | 
 | 	}, | 
 | }; | 
 |  | 
 | static struct of_bus *of_match_bus(struct device_node *np) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(of_busses); i ++) | 
 | 		if (!of_busses[i].match || of_busses[i].match(np)) | 
 | 			return &of_busses[i]; | 
 | 	BUG(); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static int __init build_one_resource(struct device_node *parent, | 
 | 				     struct of_bus *bus, | 
 | 				     struct of_bus *pbus, | 
 | 				     u32 *addr, | 
 | 				     int na, int ns, int pna) | 
 | { | 
 | 	const u32 *ranges; | 
 | 	unsigned int rlen; | 
 | 	int rone; | 
 |  | 
 | 	ranges = of_get_property(parent, "ranges", &rlen); | 
 | 	if (ranges == NULL || rlen == 0) { | 
 | 		u32 result[OF_MAX_ADDR_CELLS]; | 
 | 		int i; | 
 |  | 
 | 		memset(result, 0, pna * 4); | 
 | 		for (i = 0; i < na; i++) | 
 | 			result[pna - 1 - i] = | 
 | 				addr[na - 1 - i]; | 
 |  | 
 | 		memcpy(addr, result, pna * 4); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Now walk through the ranges */ | 
 | 	rlen /= 4; | 
 | 	rone = na + pna + ns; | 
 | 	for (; rlen >= rone; rlen -= rone, ranges += rone) { | 
 | 		if (!bus->map(addr, ranges, na, ns, pna)) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	/* When we miss an I/O space match on PCI, just pass it up | 
 | 	 * to the next PCI bridge and/or controller. | 
 | 	 */ | 
 | 	if (!strcmp(bus->name, "pci") && | 
 | 	    (addr[0] & 0x03000000) == 0x01000000) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int __init use_1to1_mapping(struct device_node *pp) | 
 | { | 
 | 	/* If we have a ranges property in the parent, use it.  */ | 
 | 	if (of_find_property(pp, "ranges", NULL) != NULL) | 
 | 		return 0; | 
 |  | 
 | 	/* If the parent is the dma node of an ISA bus, pass | 
 | 	 * the translation up to the root. | 
 | 	 */ | 
 | 	if (!strcmp(pp->name, "dma")) | 
 | 		return 0; | 
 |  | 
 | 	/* Similarly for all PCI bridges, if we get this far | 
 | 	 * it lacks a ranges property, and this will include | 
 | 	 * cases like Simba. | 
 | 	 */ | 
 | 	if (!strcmp(pp->type, "pci") || !strcmp(pp->type, "pciex")) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int of_resource_verbose; | 
 |  | 
 | static void __init build_device_resources(struct of_device *op, | 
 | 					  struct device *parent) | 
 | { | 
 | 	struct of_device *p_op; | 
 | 	struct of_bus *bus; | 
 | 	int na, ns; | 
 | 	int index, num_reg; | 
 | 	const void *preg; | 
 |  | 
 | 	if (!parent) | 
 | 		return; | 
 |  | 
 | 	p_op = to_of_device(parent); | 
 | 	bus = of_match_bus(p_op->node); | 
 | 	bus->count_cells(op->node, &na, &ns); | 
 |  | 
 | 	preg = of_get_property(op->node, bus->addr_prop_name, &num_reg); | 
 | 	if (!preg || num_reg == 0) | 
 | 		return; | 
 |  | 
 | 	/* Convert to num-cells.  */ | 
 | 	num_reg /= 4; | 
 |  | 
 | 	/* Convert to num-entries.  */ | 
 | 	num_reg /= na + ns; | 
 |  | 
 | 	/* Prevent overrunning the op->resources[] array.  */ | 
 | 	if (num_reg > PROMREG_MAX) { | 
 | 		printk(KERN_WARNING "%s: Too many regs (%d), " | 
 | 		       "limiting to %d.\n", | 
 | 		       op->node->full_name, num_reg, PROMREG_MAX); | 
 | 		num_reg = PROMREG_MAX; | 
 | 	} | 
 |  | 
 | 	for (index = 0; index < num_reg; index++) { | 
 | 		struct resource *r = &op->resource[index]; | 
 | 		u32 addr[OF_MAX_ADDR_CELLS]; | 
 | 		const u32 *reg = (preg + (index * ((na + ns) * 4))); | 
 | 		struct device_node *dp = op->node; | 
 | 		struct device_node *pp = p_op->node; | 
 | 		struct of_bus *pbus, *dbus; | 
 | 		u64 size, result = OF_BAD_ADDR; | 
 | 		unsigned long flags; | 
 | 		int dna, dns; | 
 | 		int pna, pns; | 
 |  | 
 | 		size = of_read_addr(reg + na, ns); | 
 | 		flags = bus->get_flags(reg); | 
 |  | 
 | 		memcpy(addr, reg, na * 4); | 
 |  | 
 | 		if (use_1to1_mapping(pp)) { | 
 | 			result = of_read_addr(addr, na); | 
 | 			goto build_res; | 
 | 		} | 
 |  | 
 | 		dna = na; | 
 | 		dns = ns; | 
 | 		dbus = bus; | 
 |  | 
 | 		while (1) { | 
 | 			dp = pp; | 
 | 			pp = dp->parent; | 
 | 			if (!pp) { | 
 | 				result = of_read_addr(addr, dna); | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			pbus = of_match_bus(pp); | 
 | 			pbus->count_cells(dp, &pna, &pns); | 
 |  | 
 | 			if (build_one_resource(dp, dbus, pbus, addr, | 
 | 					       dna, dns, pna)) | 
 | 				break; | 
 |  | 
 | 			dna = pna; | 
 | 			dns = pns; | 
 | 			dbus = pbus; | 
 | 		} | 
 |  | 
 | 	build_res: | 
 | 		memset(r, 0, sizeof(*r)); | 
 |  | 
 | 		if (of_resource_verbose) | 
 | 			printk("%s reg[%d] -> %lx\n", | 
 | 			       op->node->full_name, index, | 
 | 			       result); | 
 |  | 
 | 		if (result != OF_BAD_ADDR) { | 
 | 			if (tlb_type == hypervisor) | 
 | 				result &= 0x0fffffffffffffffUL; | 
 |  | 
 | 			r->start = result; | 
 | 			r->end = result + size - 1; | 
 | 			r->flags = flags; | 
 | 		} | 
 | 		r->name = op->node->name; | 
 | 	} | 
 | } | 
 |  | 
 | static struct device_node * __init | 
 | apply_interrupt_map(struct device_node *dp, struct device_node *pp, | 
 | 		    const u32 *imap, int imlen, const u32 *imask, | 
 | 		    unsigned int *irq_p) | 
 | { | 
 | 	struct device_node *cp; | 
 | 	unsigned int irq = *irq_p; | 
 | 	struct of_bus *bus; | 
 | 	phandle handle; | 
 | 	const u32 *reg; | 
 | 	int na, num_reg, i; | 
 |  | 
 | 	bus = of_match_bus(pp); | 
 | 	bus->count_cells(dp, &na, NULL); | 
 |  | 
 | 	reg = of_get_property(dp, "reg", &num_reg); | 
 | 	if (!reg || !num_reg) | 
 | 		return NULL; | 
 |  | 
 | 	imlen /= ((na + 3) * 4); | 
 | 	handle = 0; | 
 | 	for (i = 0; i < imlen; i++) { | 
 | 		int j; | 
 |  | 
 | 		for (j = 0; j < na; j++) { | 
 | 			if ((reg[j] & imask[j]) != imap[j]) | 
 | 				goto next; | 
 | 		} | 
 | 		if (imap[na] == irq) { | 
 | 			handle = imap[na + 1]; | 
 | 			irq = imap[na + 2]; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 	next: | 
 | 		imap += (na + 3); | 
 | 	} | 
 | 	if (i == imlen) { | 
 | 		/* Psycho and Sabre PCI controllers can have 'interrupt-map' | 
 | 		 * properties that do not include the on-board device | 
 | 		 * interrupts.  Instead, the device's 'interrupts' property | 
 | 		 * is already a fully specified INO value. | 
 | 		 * | 
 | 		 * Handle this by deciding that, if we didn't get a | 
 | 		 * match in the parent's 'interrupt-map', and the | 
 | 		 * parent is an IRQ translater, then use the parent as | 
 | 		 * our IRQ controller. | 
 | 		 */ | 
 | 		if (pp->irq_trans) | 
 | 			return pp; | 
 |  | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	*irq_p = irq; | 
 | 	cp = of_find_node_by_phandle(handle); | 
 |  | 
 | 	return cp; | 
 | } | 
 |  | 
 | static unsigned int __init pci_irq_swizzle(struct device_node *dp, | 
 | 					   struct device_node *pp, | 
 | 					   unsigned int irq) | 
 | { | 
 | 	const struct linux_prom_pci_registers *regs; | 
 | 	unsigned int bus, devfn, slot, ret; | 
 |  | 
 | 	if (irq < 1 || irq > 4) | 
 | 		return irq; | 
 |  | 
 | 	regs = of_get_property(dp, "reg", NULL); | 
 | 	if (!regs) | 
 | 		return irq; | 
 |  | 
 | 	bus = (regs->phys_hi >> 16) & 0xff; | 
 | 	devfn = (regs->phys_hi >> 8) & 0xff; | 
 | 	slot = (devfn >> 3) & 0x1f; | 
 |  | 
 | 	if (pp->irq_trans) { | 
 | 		/* Derived from Table 8-3, U2P User's Manual.  This branch | 
 | 		 * is handling a PCI controller that lacks a proper set of | 
 | 		 * interrupt-map and interrupt-map-mask properties.  The | 
 | 		 * Ultra-E450 is one example. | 
 | 		 * | 
 | 		 * The bit layout is BSSLL, where: | 
 | 		 * B: 0 on bus A, 1 on bus B | 
 | 		 * D: 2-bit slot number, derived from PCI device number as | 
 | 		 *    (dev - 1) for bus A, or (dev - 2) for bus B | 
 | 		 * L: 2-bit line number | 
 | 		 */ | 
 | 		if (bus & 0x80) { | 
 | 			/* PBM-A */ | 
 | 			bus  = 0x00; | 
 | 			slot = (slot - 1) << 2; | 
 | 		} else { | 
 | 			/* PBM-B */ | 
 | 			bus  = 0x10; | 
 | 			slot = (slot - 2) << 2; | 
 | 		} | 
 | 		irq -= 1; | 
 |  | 
 | 		ret = (bus | slot | irq); | 
 | 	} else { | 
 | 		/* Going through a PCI-PCI bridge that lacks a set of | 
 | 		 * interrupt-map and interrupt-map-mask properties. | 
 | 		 */ | 
 | 		ret = ((irq - 1 + (slot & 3)) & 3) + 1; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int of_irq_verbose; | 
 |  | 
 | static unsigned int __init build_one_device_irq(struct of_device *op, | 
 | 						struct device *parent, | 
 | 						unsigned int irq) | 
 | { | 
 | 	struct device_node *dp = op->node; | 
 | 	struct device_node *pp, *ip; | 
 | 	unsigned int orig_irq = irq; | 
 | 	int nid; | 
 |  | 
 | 	if (irq == 0xffffffff) | 
 | 		return irq; | 
 |  | 
 | 	if (dp->irq_trans) { | 
 | 		irq = dp->irq_trans->irq_build(dp, irq, | 
 | 					       dp->irq_trans->data); | 
 |  | 
 | 		if (of_irq_verbose) | 
 | 			printk("%s: direct translate %x --> %x\n", | 
 | 			       dp->full_name, orig_irq, irq); | 
 |  | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Something more complicated.  Walk up to the root, applying | 
 | 	 * interrupt-map or bus specific translations, until we hit | 
 | 	 * an IRQ translator. | 
 | 	 * | 
 | 	 * If we hit a bus type or situation we cannot handle, we | 
 | 	 * stop and assume that the original IRQ number was in a | 
 | 	 * format which has special meaning to it's immediate parent. | 
 | 	 */ | 
 | 	pp = dp->parent; | 
 | 	ip = NULL; | 
 | 	while (pp) { | 
 | 		const void *imap, *imsk; | 
 | 		int imlen; | 
 |  | 
 | 		imap = of_get_property(pp, "interrupt-map", &imlen); | 
 | 		imsk = of_get_property(pp, "interrupt-map-mask", NULL); | 
 | 		if (imap && imsk) { | 
 | 			struct device_node *iret; | 
 | 			int this_orig_irq = irq; | 
 |  | 
 | 			iret = apply_interrupt_map(dp, pp, | 
 | 						   imap, imlen, imsk, | 
 | 						   &irq); | 
 |  | 
 | 			if (of_irq_verbose) | 
 | 				printk("%s: Apply [%s:%x] imap --> [%s:%x]\n", | 
 | 				       op->node->full_name, | 
 | 				       pp->full_name, this_orig_irq, | 
 | 				       (iret ? iret->full_name : "NULL"), irq); | 
 |  | 
 | 			if (!iret) | 
 | 				break; | 
 |  | 
 | 			if (iret->irq_trans) { | 
 | 				ip = iret; | 
 | 				break; | 
 | 			} | 
 | 		} else { | 
 | 			if (!strcmp(pp->type, "pci") || | 
 | 			    !strcmp(pp->type, "pciex")) { | 
 | 				unsigned int this_orig_irq = irq; | 
 |  | 
 | 				irq = pci_irq_swizzle(dp, pp, irq); | 
 | 				if (of_irq_verbose) | 
 | 					printk("%s: PCI swizzle [%s] " | 
 | 					       "%x --> %x\n", | 
 | 					       op->node->full_name, | 
 | 					       pp->full_name, this_orig_irq, | 
 | 					       irq); | 
 |  | 
 | 			} | 
 |  | 
 | 			if (pp->irq_trans) { | 
 | 				ip = pp; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		dp = pp; | 
 | 		pp = pp->parent; | 
 | 	} | 
 | 	if (!ip) | 
 | 		return orig_irq; | 
 |  | 
 | 	irq = ip->irq_trans->irq_build(op->node, irq, | 
 | 				       ip->irq_trans->data); | 
 | 	if (of_irq_verbose) | 
 | 		printk("%s: Apply IRQ trans [%s] %x --> %x\n", | 
 | 		       op->node->full_name, ip->full_name, orig_irq, irq); | 
 |  | 
 | out: | 
 | 	nid = of_node_to_nid(dp); | 
 | 	if (nid != -1) { | 
 | 		cpumask_t numa_mask = node_to_cpumask(nid); | 
 |  | 
 | 		irq_set_affinity(irq, numa_mask); | 
 | 	} | 
 |  | 
 | 	return irq; | 
 | } | 
 |  | 
 | static struct of_device * __init scan_one_device(struct device_node *dp, | 
 | 						 struct device *parent) | 
 | { | 
 | 	struct of_device *op = kzalloc(sizeof(*op), GFP_KERNEL); | 
 | 	const unsigned int *irq; | 
 | 	struct dev_archdata *sd; | 
 | 	int len, i; | 
 |  | 
 | 	if (!op) | 
 | 		return NULL; | 
 |  | 
 | 	sd = &op->dev.archdata; | 
 | 	sd->prom_node = dp; | 
 | 	sd->op = op; | 
 |  | 
 | 	op->node = dp; | 
 |  | 
 | 	op->clock_freq = of_getintprop_default(dp, "clock-frequency", | 
 | 					       (25*1000*1000)); | 
 | 	op->portid = of_getintprop_default(dp, "upa-portid", -1); | 
 | 	if (op->portid == -1) | 
 | 		op->portid = of_getintprop_default(dp, "portid", -1); | 
 |  | 
 | 	irq = of_get_property(dp, "interrupts", &len); | 
 | 	if (irq) { | 
 | 		memcpy(op->irqs, irq, len); | 
 | 		op->num_irqs = len / 4; | 
 | 	} else { | 
 | 		op->num_irqs = 0; | 
 | 	} | 
 |  | 
 | 	/* Prevent overrunning the op->irqs[] array.  */ | 
 | 	if (op->num_irqs > PROMINTR_MAX) { | 
 | 		printk(KERN_WARNING "%s: Too many irqs (%d), " | 
 | 		       "limiting to %d.\n", | 
 | 		       dp->full_name, op->num_irqs, PROMINTR_MAX); | 
 | 		op->num_irqs = PROMINTR_MAX; | 
 | 	} | 
 |  | 
 | 	build_device_resources(op, parent); | 
 | 	for (i = 0; i < op->num_irqs; i++) | 
 | 		op->irqs[i] = build_one_device_irq(op, parent, op->irqs[i]); | 
 |  | 
 | 	op->dev.parent = parent; | 
 | 	op->dev.bus = &of_platform_bus_type; | 
 | 	if (!parent) | 
 | 		dev_set_name(&op->dev, "root"); | 
 | 	else | 
 | 		dev_set_name(&op->dev, "%08x", dp->node); | 
 |  | 
 | 	if (of_device_register(op)) { | 
 | 		printk("%s: Could not register of device.\n", | 
 | 		       dp->full_name); | 
 | 		kfree(op); | 
 | 		op = NULL; | 
 | 	} | 
 |  | 
 | 	return op; | 
 | } | 
 |  | 
 | static void __init scan_tree(struct device_node *dp, struct device *parent) | 
 | { | 
 | 	while (dp) { | 
 | 		struct of_device *op = scan_one_device(dp, parent); | 
 |  | 
 | 		if (op) | 
 | 			scan_tree(dp->child, &op->dev); | 
 |  | 
 | 		dp = dp->sibling; | 
 | 	} | 
 | } | 
 |  | 
 | static void __init scan_of_devices(void) | 
 | { | 
 | 	struct device_node *root = of_find_node_by_path("/"); | 
 | 	struct of_device *parent; | 
 |  | 
 | 	parent = scan_one_device(root, NULL); | 
 | 	if (!parent) | 
 | 		return; | 
 |  | 
 | 	scan_tree(root->child, &parent->dev); | 
 | } | 
 |  | 
 | static int __init of_bus_driver_init(void) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = of_bus_type_init(&of_platform_bus_type, "of"); | 
 | #ifdef CONFIG_PCI | 
 | 	if (!err) | 
 | 		err = of_bus_type_init(&isa_bus_type, "isa"); | 
 | 	if (!err) | 
 | 		err = of_bus_type_init(&ebus_bus_type, "ebus"); | 
 | #endif | 
 | #ifdef CONFIG_SBUS | 
 | 	if (!err) | 
 | 		err = of_bus_type_init(&sbus_bus_type, "sbus"); | 
 | #endif | 
 |  | 
 | 	if (!err) | 
 | 		scan_of_devices(); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | postcore_initcall(of_bus_driver_init); | 
 |  | 
 | static int __init of_debug(char *str) | 
 | { | 
 | 	int val = 0; | 
 |  | 
 | 	get_option(&str, &val); | 
 | 	if (val & 1) | 
 | 		of_resource_verbose = 1; | 
 | 	if (val & 2) | 
 | 		of_irq_verbose = 1; | 
 | 	return 1; | 
 | } | 
 |  | 
 | __setup("of_debug=", of_debug); |